Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM FOR THERMAL INSULATION FROM THE OUTSIDE, MADE UP OF A HIGHLY INSULATING PNEUMATIC MORTAR, AND METHOD FOR MANUFACTURING THE SYSTEM
Document Type and Number:
WIPO Patent Application WO/2018/115766
Kind Code:
A1
Abstract:
The present invention relates to a system for thermal insulation from the outside of a wall, which comprises: at least one non-metal three-dimensional structural reinforcement element made up of empty spaces or cavities and a portion attached to the wall to be insulated; at least one layer of thermally insulating mortar filling all the empty spaces or cavities of the reinforcement element; and at least finishing elements.

Inventors:
PERRAT-DIT-GENTON MICHAËL (FR)
COMOY DANIEL (FR)
GIRET ANTOINE (FR)
AUFFRET XAVIER (FR)
Application Number:
PCT/FR2017/053771
Publication Date:
June 28, 2018
Filing Date:
December 21, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAINT GOBAIN WEBER (FR)
International Classes:
E04F13/04; C04B28/02; C04B28/06; C04B111/00
Domestic Patent References:
WO2002025034A12002-03-28
WO2013053681A12013-04-18
WO2013150148A12013-10-10
WO2014090790A12014-06-19
WO2011095718A12011-08-11
WO2013121143A12013-08-22
WO2013150148A12013-10-10
Foreign References:
EP1390592A12004-02-25
FR2261999A11975-09-19
US3021291A1962-02-13
FR2574104A11986-06-06
US20100000665A12010-01-07
EP2597072A22013-05-29
Attorney, Agent or Firm:
SAINT-GOBAIN RECHERCHE (FR)
Download PDF:
Claims:
REVENDICATIONS

1 . Système d'isolation thermique par l'extérieur d'une paroi qui comprend - au moins un élément de renforcement structurel (E) tridimensionnel non-métallique formé d'alvéoles ou espaces vides et d'une partie fixée sur la paroi (8) à isoler,

- au moins une couche de mortier thermiquement isolant remplissant l'ensemble des alvéoles ou espaces vides de l'élément de renforcement et

- au moins des éléments de finition.

2. Système selon la revendication 1 caractérisé en ce que l'élément de renforcement structurel (E) a une profondeur d'au moins 40 mm et d'au plus 300 mm.

3. Système selon l'une des revendications précédentes caractérisé en ce que l'élément de renforcement structurel (E) a une structure en nids d'abeille, une structure bidimensionnelle plissée ou structure en accordéon (4), une structure gaufrée, une structure correspondant à la superposition d'au moins deux grilles bidimensionnelles reliées les unes aux autres, et/ou une structure comprenant des pics rigides (2) placés perpendiculairement à la partie fixée sur la paroi à isoler.

4. Système selon la revendication précédente caractérisé en ce que la structure de l'élément de renforcement (E) comprend des moyens de renforcement supplémentaires tels que des pics (2) perpendiculaires au plan formé par la partie fixée sur la paroi (8) à isoler, et/ou un ou plusieurs maillages bidimensionnels (6a, 6b).

5. Système selon la revendication précédente caractérisé en ce que l'élément de renforcement (E) comprend une structure bidimensionnelle plissée, éventuellement positionnée entre deux maillages bidimensionnels (6a, 6b), l'ensemble étant solidarisé avec des pics rigides (2) placés perpendiculairement à la partie fixée sur la paroi (8) à isoler.

6. Système selon l'une des revendications précédentes caractérisé en ce que l'élément de renforcement structurel est fait dans un ou plusieurs matériaux choisis parmi la fibre de verre, la fibre de polypropylène, la fibre de plastique, la fibre de nylon, la fibre de polyamide, la fibre naturelle telle que le lin ou le chanvre.

7. Système selon l'une des revendications précédentes caractérisé en ce que la couche de mortier est une couche de mortier allégé dont la conductivité thermique est comprise entre 25mW/m. K et 50 mW/m. K, de préférence entre 25 mW et 35 mW/m. K et encore plus préférentiellement entre 25 mW/m. K et 30 mW/m. K.

8. Système selon l'une des revendications précédentes caractérisé en ce que la couche de mortier est obtenue par mélange avec de l'eau d'une composition pulvérulente comprenant au moins un liant hydraulique avec des charges allégeantes organiques et/ou minérales, éventuellement en présence de granulats, fillers et/ou autres additifs puis par durcissement dudit mélange.

9. Système selon la revendication 8 caractérisé en ce que les charges allégeantes minérales sont choisies parmi la perlite expansée, la vermiculite expansée, les billes de verre expansé, les microsphères creuses de verre, les cénosphères, les argiles expansées, les schistes expansés, les pierres ponces, les silicates expansés, et/ou les aérogels. 10. Système selon la revendication 9 caractérisé en ce que les charges allégeantes synthétiques sont choisies parmi les microsphères à base de polymères ou copolymères thermoplastiques comme le polystyrène expansé ou extrudé, le polyéthylène, le polyéthylène téréphtalate, le polyuréthane.

1 1 . Système selon l'une des revendications 9 à 10 caractérisé en ce que le liant est choisi parmi les liants hydrauliques tels que les ciments Portland, les ciments de mélange comprenant des cendres volantes, des laitiers, des pouzzolanes naturelles ou calcinées, les ciments alumineux, les ciments sulfoalumineux, les ciments belitiques et/ou la chaux hydraulique, ou parmi les liants organiques, ou parmi les liants de type phosphate résultant d'une réaction acido-basique entre un sel métallique et un dérivé ou un sel de l'acide phosphorique et/ou parmi les liants minéraux à base de plâtre ou à base de silicates, de la chaux hydraulique ou aérienne.

1 2. Système selon l'une des revendications précédentes caractérisé en ce que la couche de mortier est obtenue après durcissement d'un mélange sous forme de pâte ou de mousse.

1 3. Système selon la revendication précédente caractérisé en ce que la mousse est obtenue par incorporation d'une mousse aqueuse pré-formée pendant la préparation du mortier, ou par ajout dans la composition d'agents moussants et/ou entraîneurs d'air qui permettent de former la mousse in-situ pendant la préparation du mortier.

14. Procédé de fabrication d'un système isolant thermique par l'extérieur d'un support ou paroi caractérisé en ce qu'il comprend les étapes de : -fixation contre ladite paroi (8) ou à une distance de 1 à 5 cm de celle-ci d'un élément de renforcement structurel (E) non-métallique tridimensionnel formé d'alvéoles ou espaces vides,

-projection ou coulage d'une couche de mortier isolant thermiquement dans ledit élément de renforcement structurel (E) de façon à remplir l'ensemble des espaces vides ou alvéoles,

-lissage de la couche de mortier projetée une fois que la totalité de la profondeur de l'élément de renforcement (E) est remplie,

-séchage et durcissement de la couche de mortier, puis

-mise en place des éléments de finition.

15. Procédé selon la revendication 14 caractérisé en ce que la fixation est réalisée par des moyens de fixation (7) dont les dimensions sont telles qu'ils ne dépassent pas de l'élément de renforcement.

16. Procédé selon l'une des revendications 14 ou 15 caractérisé en ce que la fixation est réalisée par des moyens de fixation (7) dont les dimensions sont telles qu'ils permettent de maintenir une distance de 1 à 5 cm entre l'élément structurel et la paroi.

17. Procédé selon l'une des revendications 14 à 16 caractérisé en ce que la projection de la couche de mortier est réalisée par plusieurs passages successifs de sorte à remplir la totalité des alvéoles ou espaces vides de l'élément de renforcement.

18. Procédé selon l'une des revendications 14 à 17 caractérisé en ce que l'étape de mise en place des éléments de finition comprend une étape d'application d'une couche de sous-enduit et d'un enduit de finition.

19. Procédé selon la revendication 18 caractérisé en ce qu'il comprend en outre une étape de fixation d'une trame de renforcement préalablement ou pendant l'application de la couche de sous-enduit.

20. Procédé selon l'une des revendications 14 à 19 caractérisé en ce que des éléments décoratifs sont collés ou fixés mécaniquement sur la couche de mortier durcie, éventuellement revêtue d'un sous-enduit et d'une trame de renforcement.

Description:
SYSTEME D'ISOLATION THERMIQUE PAR L'EXTERIEUR CONSTITUE D'UN MORTIER PROJETE FORTEMENT ISOLANT ET PROCEDE DE FABRICATION DU SYSTEME

La présente invention porte sur un système d'Isolation Thermique par l'Extérieur (ITE) mettant en œuvre un mortier fortement isolant remplissant une grille de renforcement mécanique.

L'isolation thermique par l'extérieur est une solution actuellement très utilisée dans le domaine de la construction aussi bien en rénovation qu'en construction neuve. Il existe plusieurs types d'isolation thermique par l'extérieur. Les systèmes les plus répandus aujourd'hui sur le marché utilisent des panneaux rigides isolants collés sur le support en respectant un plan de calepinage réglementé. Ces panneaux sont à base de polystyrène expansé, éventuellement avec adjonction de graphite, à base de mousse phénolique ou polyuréthane, à base de laine minérale comme la laine de verre ou la laine de roche, ou à base de liège ou de tout autre matériau connu pour ses propriétés d'isolant. Sur ces panneaux isolants, il est nécessaire d'appliquer un enduit de base (ou enduit d'armature) armé d'une grille ou treillis sur lequel on applique ensuite un enduit de finition pour assurer la protection nécessaire et l'aspect esthétique. Ces systèmes sont complexes et sont connus sous le terme d'ETICS (External Thermal Insulating Composite System). Leur avantage est notamment d'offrir une large gamme de performances thermiques accessibles puisque les conductivités thermiques des panneaux isolants s'étalent de 12 mW/m. K pour les panneaux isolants sous vide à 130 mW/m. K. pour certains panneaux d'agglomérés type OSB (Oriented Strand Board). Les panneaux à base de polystyrène expansé ou à base de laine minérale ont classiquement une conductivité thermique de l'ordre de 35 mW/m. K. D'autre part, ces panneaux, de nature rigides, une fois collés sur le support présentent l'avantage d'être suffisamment résistants mécaniquement pour supporter le poids de sous-enduits ainsi que des enduits de finition ou de peinture. Cependant, l'adjonction de parements lourds tels que des carreaux de céramique, des pierres taillées ou des panneaux de verre est strictement réglementée en termes de poids surfacique limite au mètre carré et en terme de hauteur de structures de bâtiments.

Plus récemment, d'autres types de système d'isolation par l'extérieur à base de mortiers projetés se sont développés. Ces mortiers sont à base de charges allégeantes comme par exemple des billes de polystyrène expansé, des billes de perlite, des billes de verre expansé ou des aérogels. Ils sont projetés sur le support à revêtir, avec des machines de projection spécifiques. Ces types de systèmes permettent d'éviter la phase de tracé du plan de calepinage, la phase de rectification de la planéité du support, notamment des vieux supports en cas de rénovation, et également la phase de collage du panneau isolant. Cependant, les performances thermiques des mortiers projetés dépendent sévèrement de leur densité. Pour abaisser la valeur de la conductivité thermique d'un mortier projeté, il faut abaisser sa densité et par conséquent utiliser des quantités importantes de charges allégeantes, et également des agents moussants et/ou entraîneurs d'air. La baisse de la densité entraîne une diminution drastique des performances mécaniques de ces produits, et donc une capacité portante moindre vis-à-vis des parements de finition.

On cherche par conséquent une solution qui combine à la fois les performances en termes d'isolation thermique et de résistance mécanique. C'est dans ce cadre que s'inscrit la présente invention qui propose un système d'isolation thermique d'une paroi dans lequel le renfort mécanique et les propriétés thermiques sont apportés par deux éléments différents associés l'un avec l'autre. La présente invention propose également un procédé de fabrication dudit système isolant.

Un objet de l'invention porte sur un système d'isolation thermique d'une paroi qui comprend :

- au moins un élément de renforcement structurel tridimensionnel non- métallique formé d'alvéoles ou espaces vides et d'une partie fixée sur la paroi à isoler,

- au moins une couche de mortier thermiquement isolant remplissant l'ensemble des alvéoles ou espaces vides de l'élément de renforcement et

- au moins des éléments de finition. Ainsi, l'élément de renforcement permet d'obtenir la résistance mécanique et la couche de mortier permet d'obtenir les performances d'isolation thermique attendues. Il devient ainsi possible, grâce à l'élément de renforcement structurel d'utiliser des mortiers notamment minéraux présentant de très faible densité, et par conséquent de très faible conductivité thermique. Lorsqu'on parle de mortiers minéraux, on comprend les mélanges de liants tels les ciments et la chaux, extraits de matériaux naturels, de charges silico-calcaires et pigments inertes, d'additifs et adjuvants. Ces mélanges sont fabriqués en usine et sont conditionnés en sacs ou en silos, sous forme d'une poudre homogène, prête au mélange sur chantier avec de l'eau (gâchage). Ces mortiers sont notamment décrits dans la norme NF EN 998-1 . Ils présentent en particulier l'avantage d'avoir une très bonne résistance au feu.

Le système d'isolation thermique selon la présente invention est fixé directement sur la paroi ou le support à isoler. La partie de l'élément structurel fixée sur la paroi est positionnée soit en étant plaquée contre la paroi, soit positionnée à quelques centimètres (entre 1 et 5 cm) de celle-ci. La paroi peut être verticale, intérieure ou extérieure, type mur, ou une paroi horizontale, type plafond ou sol. La paroi à revêtir peut être de tout type : béton, briques, bois, etc .. Le support sur lequel le système isolant est fixé peut être un support neuf ou un support à rénover. L'ajout d'aucun autre isolant tel que des panneaux isolants habituellement utilisés dans les systèmes ETICS comme les panneaux à base d' EPS ou de laine minérale par exemple, n'est nécessaire dans le système d'isolation thermique selon la présente invention. Le système qui est placé sur le support à isoler est donc constitué de l'élément de renforcement mécanique, de la couche de mortier isolante et des éléments de finition.

L'élément de renforcement structurel tridimensionnel est formé d'alvéoles ou espaces vides sont remplis d'une couche de mortier thermiquement isolant, et sur lequel sont disposés des éléments de finition.

Les éléments de finition sont par exemple une couche de sous-enduit et une couche d'enduit de finition, pour assurer l'imperméabilité et l'esthétique de la paroi revêtue. Les épaisseurs des différentes couches des éléments de finition sont identiques à celles existant dans les systèmes d'ITE classiques utilisés actuellement. La couche de sous-enduit a par exemple une épaisseur de 3 à 12 mm et la couche d'enduit de finition a une épaisseur inférieure, par exemple de l'ordre de 1 à 6 mm). Les éléments de finition peuvent également comprendre des plaques de parement, fixées directement sur l'élément de renforcement structurel tridimensionnel rempli de la couche de mortier. Dans ce cas, ces plaques de parement remplacent les couches de sous-enduits et d'enduit de finition. Les plaques de parement sont fixées sur l'élément de renforcement par collage par un mortier-colle adéquat et également à l'aide d'une fixation mécanique pour un renforcement optimum du parement, notamment contre les actions du vent.

Le système d'isolation selon la présente invention permet en particulier un gain en termes de rapidité d'application sur la paroi à isoler par rapport aux systèmes ITE classiques existant sur le marché. Il n'est plus nécessaire de réaliser des plans de calepinage et de coller ou fixer sur la paroi des plaques d'isolant. Il n'est également plus nécessaire de rectifier la planéité de la surface de la paroi, notamment dans le cas des supports à rénover comme il est souvent nécessaire de le faire lorsqu'on souhaite coller ou fixer le panneau isolant. Il permet également de limiter la quantité de matériau à apporter sur le chantier lui-même. Les plaques d'isolants utilisées dans les systèmes ITE classiques représentant un encombrement important, les moyens de transport nécessaire pour les acheminer sur le chantier sont une source de coût non négligeable. L'élément de renforcement utilisé dans le système isolant de la présente invention est tridimensionnel et a une profondeur de plusieurs centimètres. De préférence, la profondeur de l'élément de renforcement est d'au moins 40 mm et au maximum de 300 mm. L'élément structurel tridimensionnel forme un réseau en trois dimensions d'alvéoles ou d'espaces vides remplis par le mortier isolant thermiquement. La profondeur de l'élément tridimensionnel structurel et l'épaisseur de la couche de mortier thermiquement isolant sont liées. Afin d'obtenir un système possédant la résistance mécanique souhaitée, l'élément de renforcement a une profondeur minimale correspondant à l'épaisseur de la couche de mortier. La totalité des espaces vides de l'élément de renforcement est remplie par la couche de mortier. Le choix de l'élément de renforcement et notamment de sa profondeur est adapté en fonction du mortier thermiquement isolant. Si les performances isolantes du mortier sont très bonnes, la profondeur de l'élément de renforcement peut être relativement faible. En revanche, si les performances isolantes du mortier isolant sont moindres, il peut être nécessaire que l'épaisseur de la couche de mortier isolant soit plus importante et dans ce cas, la profondeur de l'élément de renforcement est également plus importante. De façon générale, plus la profondeur de l'élément de renforcement est importante, plus l'épaisseur de mortier isolant est importante et meilleures sont les performances en terme d'isolation thermique du système selon la présente invention, la profondeur maximale étant de 300 mm et avantageusement de 250 mm.

L'élément de renforcement peut se présenter sous différentes formes, à partir du moment où il comprend des alvéoles ou espaces vides qui peuvent être remplis par le mortier isolant thermiquement. L'élément de renforcement structurel a une structure en nids d'abeille, une structure bidimensionnelle plissée ou structure en accordéon, une structure gaufrée, une structure correspondant à la superposition d'au moins deux grilles bidimensionnelles reliées les unes aux autres, et/ou une structure comprenant des pics rigides placés perpendiculairement à la partie fixée sur la paroi à isoler. Il peut également comprendre des moyens de renforcement supplémentaires tels que des pics perpendiculaires au plan formé par la partie fixée sur la paroi à isoler, et/ ou un ou plusieurs maillages bidimensionnels.

Les alvéoles, ou espaces vides situés dans l'élément de renforcement peuvent ainsi avoir des formes différentes : carrées, rectangulaires, triangulaires, rondes, coniques, hexagonales, etc. L'élément de renforcement peut être une association de différentes formes entre elles. De façon préférée, l'élément de renforcement comprend une structure bidimensionnelle plissée, éventuellement positionnée entre deux maillages bidimensionnels, l'ensemble étant solidarisé avec des pics placés perpendiculairement à la partie fixée sur la paroi à isoler. Une telle structure tridimensionnelle présente en particulier une très bonne rigidité.

L'élément de renforcement est fait dans un matériau non métallique pour limiter les conductions thermiques au travers de la couche de mortier isolant. Le matériau utilisé est préférentiellement choisi parmi la fibre de verre, la fibre de polypropylène, la fibre de plastique, la fibre de nylon, la fibre de polyamide, la fibre naturelle telle que le lin ou le chanvre. L'élément de renforcement peut comprendre différents type de matériaux non métalliques. Par exemple, une partie de l'élément de renforcement peut être en fibres de verre et une autre partie, comme des pics plus rigides, peuvent être en plastique. Ces matériaux ont une rigidité suffisante pour maintenir l'élément de renforcement sous la forme d'une structure tridimensionnelle. Avantageusement, l'élément de renforcement est aisément compactable, voire enroulable, ce qui permet de le stocker et de le transporter facilement sur le site d'utilisation.

Le système selon la présente invention peut comprendre une trame de renforcement, appelée également voile. Cette trame est du même type que celle utilisée dans les systèmes ITE classiques. Il s'agit d'une grille de fibres en deux dimensions telle que, par exemple, celle décrite dans la demande de brevet US2010/0000665. La trame peut être solidaire de l'élément de renforcement structurel et peut être considérée comme faisant partie de cet élément. Elle peut également être ajoutée ultérieurement et fixée sur l'élément de renforcement une fois que la couche de mortier a été appliquée, étant alors considérée comme faisant partie des éléments de finition.

Le système isolant selon la présente invention comprend au moins une couche de mortier thermiquement isolant remplissant les espaces vides de l'élément de renforcement. La couche de mortier est une couche de mortier allégé, de faible densité et caractérisée par de bonnes propriétés en terme d'isolation thermique, obtenu par mélange de différents constituants ou charges avec de l'eau (eau de gâchage) puis par durcissement de ce mélange. Plusieurs types de compositions sont utilisables dans le système selon la présente invention. La couche de mortier utilisée dans le système selon la présente invention est caractérisée, après séchage, par une faible conductivité thermique. Avantageusement, la conductivité thermique du mortier est comprise entre 25 mW/m. K et 50 mW/mK. De façon préférée, le mortier isolant a une conductivité thermique inférieure à 35 mW/m. K et encore plus préférentiellement inférieure à 30 mW/ mK. En termes de densité, ces valeurs de conductivités thermiques correspondent à des mortiers dont la masse volumique apparente est comprise entre 100 et 500 kg/m 3 . Ces valeurs de conductivité thermique dépendent également de la porosité des différentes charges et de la façon dont l'air est confiné dans le matériau. En effet, à même densité, pour des charges de porosité différente, la conductivité thermique est susceptible d'être différente en fonction des constituants du mortier utilisés. La résistance en compression de la couche de mortier telle que déterminée selon la norme EN998-1 n'est pas un critère limitant dans le choix de la composition de mortier puisque seule la résistance mécanique du système complet (élément de renforcement structurel et mortier isolant thermique) est à considérer.

La couche de mortier est obtenue par mélange avec de l'eau d'une composition pulvérulente comprenant au moins un liant hydraulique et des charges allégeantes organiques et/ou minérales, éventuellement des granulats, des fillers et/ou d'autres additifs, puis par durcissement dudit mélange.

Si la couche de mortier est une couche de mortier minéral, elle présente l'avantage de ne pas utiliser de substances organiques toxiques et d'avoir, en plus de ces performances d'isolant thermique, une bonne résistance au feu. Un tel mortier est notamment à base de charges allégeantes minérales telles que la perlite expansée, la vermiculite expansée, les billes de verre expansé, les microsphères creuses de verre, les cénosphères, les argiles expansées, les schistes expansés, les pierres ponces, les silicates expansés et/ou les aérogels.

La couche de mortier peut également comprendre des charges allégeantes organiques synthétiques telles que les microsphères à base de polymères ou copolymères thermoplastiques comme le polystyrène expansé ou extrudé, le polyéthylène, le polyéthylène téréphtalate, le polyuréthane.

La couche de mortier utilisée dans le système isolant selon la présente invention peut également comprendre un mélange de différentes charges allégeantes de type minéral, associées avec différentes charges allégeantes de type organique. On peut, par exemple, citer des formulations de mortier comprenant à la fois de la perlite et des aérogels. La demande de brevet EP 2597072 A2 décrit notamment des formulations de mortiers isolants comprenant des mélanges d'aérogels de silice et de polystyrène expansé ou de polystyrène extrudé. La demande de brevet WO 2014/090790 décrit des mélanges de charges allégeantes de type aérogels de silice avec de la pierre ponce.

Le liant, qui permet d'assurer la cohésion entre les différents constituants du mortier peut être un liant hydraulique choisi parmi les ciments Portland, les ciments de mélange comprenant des cendres volantes, des laitiers, des pouzzolanes naturelles ou calcinées, les ciments alumineux, les ciments sulfoalumineux, les ciments belitiques et/ou la chaux hydraulique. Le liant peut également comprendre, en plus du liant hydraulique d'autres liants minéraux à base de plâtre ou à base de silicates, de la chaux aérienne, ou des liants organiques par exemple à base de résines. Le liant peut également être un liant de type phosphate résultant d'une réaction acido- basique généralement entre un sel métallique, comme par exemple un sel de magnésium, un sel de calcium, un sel d'aluminium, ou un sel de zinc et un dérivé ou un sel de l'acide phosphorique.

La couche de mortier est obtenue par durcissement d'un mélange se présentant sous forme de pâte ou de mousse. La mousse peut être obtenue soit par incorporation d'une mousse aqueuse pré-formée pendant la préparation du mortier, soit par ajout dans la composition d'agents moussants et/ou entraîneurs d'air qui permettent de former la mousse in-situ pendant la préparation du mortier. Une couche de mortier se présentant sous la forme d'une mousse présente l'avantage d'apporter un allégement supplémentaire. Un exemple de mousse aqueuse préformée ajoutée aux différents constituants du mortier est décrit dans la demande de brevet WO 201 1 /095718. Un procédé de moussage in-situ est décrit par exemple dans la demande WO 2013/ 121 143. Il est avantageux d'utiliser une composition de mortier se présentant sous forme de mousse et comprenant des charges allégeantes minérales et/ou organiques. On peut par exemple citer des mortiers obtenus par mélange de mousse de silice avec de la perlite, comme décrits dans la demande de brevet WO 2013/ 150148. Ces mousses sont connues pour être très stables et pour présenter de très faibles conductivités thermiques.

Les compositions de mortier utilisées pour former la couche de mortier peuvent également comprendre des granulats ou sables, jouant sur la rhéologie, l'épaisseur, la dureté, l'aspect final et la perméabilité de la couche de mortier. Ils sont généralement formés de sables siliceux, calcaires et/ou silico-calcaires et présentent une granulométrie comprise entre 100 μητι et 5 mm.

Un exemple de composition de mortier isolant allégé possédant de bonnes performances d'isolation thermique comprend un liant constitué de 20 et 60% de ciment, de 20 et 40% de chaux et de 5 à 25% d'agent pouzzolanique, tel que le métakaolin, les laitiers de hauts fourneaux, les cendres collantes ou les fumées de silice, mélangé avec une quantité importante (au moins 70% en volume) de billes de polystyrène expansé.

Un autre exemple de composition de mortier isolant allégé peut comprendre jusqu'à 40% en poids de charge minérales allégeantes, un liant minéral, un agent entraîneur d'air et un agent viscosant, tout en étant exempte de granulats de granulométrie supérieure à 100 m.

L'ensemble des compositions de mortier utilisables dans le système selon l'invention présente la caractéristique d'être projetable par une machine de projection usuellement utilisée dans le domaine du revêtement de façade. Elles peuvent également être appliquées par coulage par machine ou par application manuelle. La présente invention porte également sur un procédé de fabrication d'un système d'isolation thermique d'une paroi ou support qui comprend les étapes de : -fixation contre ladite paroi, ou à une distance de 1 à 5 cm de celle-ci, d'un élément de renforcement structurel non-métallique tridimensionnel formé d'alvéoles ou espaces vides,

-projection ou coulage d'une couche de mortier isolant thermiquement dans ledit élément de renforcement structurel de façon à remplir l'ensemble des espaces vides ou alvéoles,

-lissage de la couche de mortier projetée une fois que la totalité de la profondeur de l'élément de renforcement est remplie,

-séchage et durcissement de la couche de mortier, puis

-mise en place des éléments de finition.

L'élément de renforcement est fixé contre la paroi à isoler, soit en étant directement plaquée sur la paroi, soit en étant maintenu à une certaine distance. La fixation est réalisée par des moyens de fixation dont les dimensions sont telles qu'ils ne dépassent pas de l'élément de renforcement. L'élément de renforcement peut être fixé sur la paroi par l'intermédiaire de rails de fixation placés à différentes hauteurs. Ces rails peuvent être équipés de crochets permettant la fixation de l'élément de renforcement. Des moyens de fixation tels que des vis, par exemple à tête circulaire, insérées dans des chevilles placées dans la paroi à isoler ou des agrafes peuvent également être envisagés.

De façon avantageuse, l'élément de renforcement est fixé sur la paroi à isoler avec des chevilles constituées d'au moins deux parties différentes : une première partie filetée et munie d'une tête de fixation, permettant de fixer la partie de l'élément de renforcement qui est positionnée directement contre la paroi à isoler et une seconde partie constituant le corps de la cheville dont la longueur correspond à la profondeur de l'élément de renforcement structurel, et destinée à être insérée dans la première partie de la cheville. L'extrémité opposée du corps de la cheville, c'est-à-dire l'extrémité « libre » qui ne pénètre pas dans la première partie peut être munie d'un orifice, éventuellement taraudé, destiné à recevoir un moyen de bouchage. Lors de l'étape de projection ou de coulage de la couche de mortier isolant, l'orifice situé à l'extrémité opposée à celle de la paroi à isoler est occulté par un moyen de bouchage de façon à éviter que l'orifice se remplisse de mortier. Le moyen de bouchage peut être avantageusement équipé d'une partie souple qui peut être facilement repérable, même après projection ou coulage de la couche de mortier et permettre d'ajouter un éventuel moyen de fixation pour une trame de renforcement par exemple. Ce moyen de fixation supplémentaire peut être fixé par clipsage dans l'orifice de la deuxième partie de la cheville ou par vissage dans le cas d'un orifice taraudé. De façon avantageuse, le moyen de fixation de la trame peut être équipé d'un moyen d'écartement permettant de laisser un espace vide entre la trame et la cheville permettant notamment que la couche de sous-enduit recouvre la totalité de la trame de renforcement avant la pose de l'enduit de finition. Ce type de cheville dont la longueur peut être variable est particulièrement avantageusement pour la fixation du système selon la présente invention.

Les moyens de fixation utilisés pour fixer l'élément de renforcement et notamment un moyen de type cheville tel que celui décrit précédemment permettent avantageusement d'apporter un renforcement supplémentaire au système. Le nombre de moyens de fixation utilisés pour fixer le système est adapté en fonction du type d'élément structurel mis en œuvre.

D'autres moyens de fixation, comme des agrafes peuvent également permettre de fixer directement la partie de l'élément de renforcement qui est directement en contact avec la paroi à isoler. Ce type de moyen de fixation est particulièrement adapté lorsque l'élément de renforcement structurel a suffisamment de rigidité et ne nécessite pas de renforcement supplémentaire. C'est en particulier le cas lorsque l'élément de renforcement structurel est composé d'une association de différentes formes entre elles, comme des formes en accordéon couplées à des pics perpendiculaires au support.

Les éléments de renforcement sont positionnés sur la paroi à isoler les uns à côté des autres. Des zones de recouvrement entre deux éléments de renforcement successifs sont envisageables.

Ainsi, le système isolant est fabriqué in-situ directement sur la paroi à isoler La couche de mortier isolant est projetée ou coulée dans les espaces vides de l'élément de renforcement de façon préférée, la couche de mortier est projetée à l'aide des machines pour la projection de mortiers utilisées classiquement. En fonction de la composition et des propriétés du mortier à appliquer, ces machines de projection peuvent fonctionner selon un mode continu ou un mode discontinu. Le gâchage de la composition de mortier sèche est effectué dans la machine de projection. La composition de mortier humide en sortie de lance de projection remplit les alvéoles ou espaces vides de l'élément de renforcement structurel. La projection peut être effectuée en plusieurs passages successifs de façon à remplir la totalité des espaces vides de l'élément de renforcement structurel. Les différents passages peuvent être réalisés directement les uns après les autres, sans attendre le séchage de la première couche projetée. Les techniques de projection utilisées sont les techniques habituelles utilisées par les façadiers. La présence de l'élément de renforcement ne perturbe pas l'étape de projection du mortier.

L'étape de séchage et de durcissement de la couche de mortier projetée ou coulée dans l'élément de renforcement structurel est nécessaire afin de pouvoir réaliser l'étape de mise en place des éléments de finition. La durée de cette étape de séchage et de durcissement peut varier en fonction de la composition de mortier projetée et en fonction de la profondeur de l'élément de renforcement structurel. Classiquement, la durée préconisée est de un jour par centimètre d'épaisseur. Cette durée peut être amenée à diminuer ou à se rallonger selon les conditions climatiques.

La mise en œuvre de l'étape de mise en place des éléments de finition dépend du type de systèmes de finition choisis et du type d'élément de renforcement structurel utilisé. Cette dernière étape peut comprendre une étape d'application d'une couche de sous-enduit et d'un enduit de finition. Le sous-enduit permet notamment d'augmenter la dureté de surface et d'assurer la protection, notamment l'imperméabilisation, de la façade. L'enduit de finition assure la fonction de décoration (couleurs, texture...). Il peut être avantageux de fixer une trame de renforcement préalablement ou pendant l'étape d'application d'une couche de sous-enduit, notamment si l'élément de renforcement structurel n'a pas de trame de renforcement déjà intégrée. Le système de finition choisi peut consister à positionner d'autres éléments décoratifs tels que par exemple des carreaux de céramique, des pierres taillées, naturelles ou artificielles, sur l'élément de renforcement structurel. Ces éléments décoratifs peuvent être collés et/ou fixés mécaniquement, soit directement sur ledit élément, soit sur une couche de sous-enduit appliquée au préalable sur ledit élément, comprenant éventuellement une trame de renforcement. L'étape de mise en place des éléments de fixations peut également consister à fixer des plaques de parement sur l'élément de renforcement structurel rempli de la couche de mortier isolant.

L'invention sera mieux comprise à la lumière des dessins annexés dans lesquels :

-la figure 1 est une représentation schématique d'un premier type d'élément de renforcement structurel constitué d'une multitude de pics rigides positionnés perpendiculairement à la partie de l'élément fixée sur la paroi à isoler,

-la figure 2 est une représentation schématique d'un deuxième type d'élément de renforcement structurel ayant une structure bidimensionnelle plissée ou sous la forme d'un accordéon,

-la figure 3 est une représentation schématique d'un troisième type d'élément de renforcement structurel constitué d'une structure en accordéon renforcée par des pics rigides perpendiculaires à la partie fixée sur la paroi à isoler,

-la figure 4 est une représentation schématique d'un quatrième type d'élément de renforcement structurel constitué d'une structure rigide en nids d'abeille, renforcée par des pics rigides placés perpendiculairement à la partie fixée sur la paroi à isoler,

-la figure 5 est une représentation schématique d'un cinquième type d'élément de renforcement structurel constitué de deux grilles bidimensionnelles solidarisées entre elles par des pics rigides placés perpendiculairement à la partie fixée sur la paroi à isoler, et fixé contre la paroi par un système de chevilles et de vis à tête circulaire,

-les figures 6a à 6d sont des représentations schématiques d'un moyen de fixation utilisé dans le cadre de la présente invention, -la figure 7a est une représentation schématique du profil de la grille représentée à la figure 3 et les figures 7b à 7d sont des représentations schématiques de la même grille en cours de pliage (figures 7 b et 7c) et une fois compactée (figure 7d).

-la figure 8 donne la courbe de variation de la contrainte en fonction de la déformation lors des essais de résistance mécaniques en compression effectués dans l'exemple 2 ci-après.

La figure 1 est une représentation schématique d'un élément de renforcement structurel (E) comprenant une structure (1 ) sur laquelle sont positionnés des moyens de renforcement supplémentaires tels que des pics également rigides (2) perpendiculaires à la partie rigide (1 ) positionnée contre la paroi à isoler. L'élément de renforcement est fixé sur la paroi par des points d'accroché (3) dans lesquels des moyens de fixation tels que des vis peuvent être facilement insérées. La structure et les pics sont par exemple en plastique, ce qui donne une bonne rigidité à l'élément de renforcement. Les espaces entre les pics forment des espaces vides qui sont ensuite remplis par le mortier isolant. La longueur des pics est variable et varie entre 40 et 300 mm : elle est déterminée en fonction de l'épaisseur de la couche de mortier isolant souhaitée. La couche de mortier isolant est ainsi facilement projetable dans l'élément de renforcement structurel, les pics rigides permettant d'apporter la résistance mécanique nécessaire.

La figure 2 est une représentation schématique sur un plan vertical d'un élément de renforcement structurel (E) constitué d'un réseau de fils en fibres de verre ayant une forme d'accordéon (4). Cet élément de renforcement structurel est notamment obtenu par tissage, c'est-à-dire par entrecroisement dans un même plan de fils disposés dans une direction dans le sens de la chaîne (fils de chaîne) et de fils disposés dans une autre direction dans le sens de la trame (fils de trame), notamment perpendiculaire aux fils de chaîne. Ces fils sont suffisamment rigides pour qu'une fois tissés, il soit possible de les contraindre pour obtenir une structure ayant la forme d'un accordéon. A titre d'exemple, la résolution du maillage est de 25 mm. L'élément de renforcement structurel est fixé sur la paroi à isoler par des points d'accroché (3) situés à ses extrémités. Des éléments de maintien (5) de la structure sous la forme d'accordéon sont disposés sur la totalité de la hauteur de l'élément de renforcement structurel (E). Ce type d'élément structurel présente l'avantage d'être pliable et donc compactable et facilement transportable jusqu'au lieu du chantier. Une fois sur le chantier, l'opérateur déplie l'élément de renforcement et le fixe sur la paroi à isoler, par exemple en plaçant des vis aux points d'accroché (3) et également au niveau des éléments de maintien (5). La couche de mortier peut ainsi être ensuite projetée ou coulée dans les espaces vides ou alvéoles de l'élément de renforcement sur une épaisseur définie par la profondeur de l'élément de renforcement.

La figure 3 est une représentation schématique sur un plan vertical d'un élément de renforcement structurel (E) associant une structure constituée d'un réseau de fils en fibres de verre ayant une forme d'accordéon (4), renforcée par des moyens de renforcement supplémentaires tels que des pics rigides (2) perpendiculaires à la partie positionnée contre la paroi à isoler et également avec des maillages bidimensionnels (6a, 6b) placés dans deux plans parallèles et permettant de renforcer la structure en forme d'accordéon. Ainsi, un des maillages bidimensionnels (6a) est placé directement contre la paroi à isoler et permet de maintenir solidaires les parties inférieures de la structure en accordéon (qui sont également les parties de la structure en accordéon placées contre la paroi). L'autre maillage (6b) permet de maintenir solidaire les parties supérieures de la structure en accordéon (c'est-à-dire les parties qui sont les plus éloignées de la paroi à isoler). Les maillages 6a et 6b peuvent être de dimension différente. Les fils utilisés pour réaliser les maillages bidimensionnels peuvent être identiques ou différents de ceux utilisés pour réaliser la structure en accordéon. Les moyens de fixation, non représentés sur la figure, peuvent être des systèmes de vis/chevilles ou des agrafes placés au niveau du maillage bidimensionnel positionné contre la paroi à isoler. Les pics rigides (2), distincts des moyens de fixation de l'élément de renforcement, permettent de maintenir solidaire l'ensemble de la structure en accordéon et les maillages bidimensionnels et également d'apporter de la rigidité supplémentaire à l'élément de renforcement structurel. Les pics peuvent être de taille et de forme variable. L'ensemble de la structure fait donc apparaître des alvéoles ou espaces vides qui seront remplis par le mortier isolant. La hauteur de la structure en accordéon par rapport au plan du support, ainsi que la hauteur des pics rigides (2) permettent de déterminer l'épaisseur de la couche de mortier isolant à projeter. Ce type d'élément de renforcement structurel permet notamment de projeter des couches de mortier épaisses.

La figure 4 est une représentation schématique sur un plan horizontal d'un élément de renforcement structurel (E) constitué d'un maillage de fils de fibres de verre tridimensionnel en forme de nids d'abeille, renforcé par des pics rigides (2) perpendiculaires à la partie positionnée contre la paroi à isoler. Les alvéoles sont, sur cette figure, de forme hexagonale, mais elles peuvent être de forme différente, par exemple carrée. La profondeur des alvéoles correspond à l'épaisseur de la couche de mortier qui est projetée.

La figure 5 est une représentation schématique d'un élément de renforcement structurel placé sur une paroi verticale à isoler. L'élément de renforcement structurel représenté est constitué de deux grilles ou maillages bidimensionnels (6a, 6b) de même dimension solidarisées entre eux par des pics rigides (2) placés perpendiculairement aux grilles bidimensionnelles. La longueur des pics rigides (2) définit la profondeur de la couche de mortier projetable. Un système de fixation de l'élément de renforcement structurel de type chevilles/vis à tête circulaire (7) est représenté sur cette figure. Ce système de fixation permet de fixer l'élément sur le support et contribue également à sa rigidité, puisque les chevilles renforcent le maintien de la structure assurée par les pics rigides (2).

Les figures 6a à 6d sont une représentation schématique, en vue de profil, d'un moyen de fixation de l'élément de renforcement structurel permettant de fixer à la fois ledit élément et également une trame de renforcement faisant partie des éléments de finition. L'élément de renforcement structurel représenté ici comprend une structure de type accordéon (4) associée à deux maillages bidimensionnels (6a) et (6b), le maillage (6a) étant celui positionné contre la paroi à isoler. Une cheville (9), comprenant deux parties distinctes (9a) et (9b), est placée dans la paroi (8) à isoler. La première partie (9a) de la cheville est celle qui permet la fixation de l'élément de renforcement structurel sur la paroi à isoler, par l'intermédiaire d'une tête de cheville plate et circulaire (10). Cette partie de la cheville peut être placée à une distance définie du support à isoler, ce qui permet notamment de laisser un espace entre la partie de l'élément structurel fixée contre la paroi et la paroi elle-même. Ce mode de réalisation permet avantageusement de corriger tout défaut de planéité susceptible d'exister sur la paroi à isoler (chantier de rénovation). L'alignement de l'ensemble des chevilles placées à distance peut par exemple être réalisé par un système laser. Une seconde partie (9b) de la cheville dont la longueur correspond à la profondeur de l'élément de renforcement structurel vient s'insérer par enfoncement ou vissage dans la première partie (9a) comme représenté sur la figure 6b. L'extrémité opposée de la seconde partie (9b) de la cheville est munie d'un orifice (1 1 ). Un moyen de bouchage (12) équipé d'une partie souple et flexible (13) est placé dans l'orifice (1 1 ) pendant l'étape de projection de la couche de mortier dans les alvéoles ou espaces vides de l'élément de renforcement structurel. La partie flexible permet avantageusement de repérer l'emplacement de la cheville, après projection de la couche de mortier, et notamment lors de l'étape de lissage. La figure 6d donne une représentation schématique de la fixation d'une trame de renforcement (14) directement dans le corps de la cheville (9b), dans l'orifice (1 1 ) prévu à cet effet. Un moyen d'espacement (15) est également représenté sur cette figure : il permet de laisser un espace suffisant, par exemple de quelques millimètres, entre la couche de mortier (ou l'élément de renforcement structurel) et la trame de renforcement (1 ) pour appliquer une couche de sous-enduit. Le moyen de fixation de la trame de renforcement (14) est ici une vis (16).

Il est avantageux d'utiliser un élément de renforcement structurel qui soit pliable et compactable pour faciliter son transport jusqu'à la zone de chantier. Parmi les différents éléments décrits ci-avant, ceux se présentant sous forme d'un accordéon présentent en particulier cet avantage. Les figures 7a à 7d sont des représentations schématiques en vue de profil d'un élément de renforcement structurel tel que celui décrit à la figure 3 dans sa forme dépliée (figure 7a) et dans ses formes pliées de façon plus ou moins compacte (figures 7b à 7d). L'élément de renforcement structurel comprend deux grilles ou maillages bidimensionnels (6a, 6b), des pics rigides (2) perpendiculaires à la partie positionnée contre la paroi à isoler et un réseau de fils formant une structure en accordéon (4). Un tel élément de renforcement peut être replié sur lui-même de sorte à ce que les pics rigides (2) soient rassemblés les uns contre les autres. Les maillages bidimensionnels et la structure en accordéon se replient également facilement.

L'ensemble des éléments de renforcement structurels décrits ci-avant peut être utilisé en association avec une composition de mortier isolante. L'épaisseur de la couche de mortier est ajustée en fonction des propriétés du mortier isolant et de la structure propre de l'élément de renforcement.

Les exemples ci-après illustrent l'invention sans en limiter la portée.

Exemple 1

Des essais de choc de corps dur sur une paroi revêtue d'un système isolant selon la présente invention ont été réalisés.

Un élément de renforcement structurel associant une structure en forme d'accordéon, des pics rigides d'une longueur de 14 cm et un maillage bidimensionnel, identique à celui décrit à la figure 3, est fixé par un système de vis et de chevilles à ses extrémités inférieure et supérieure sur le mur à isoler Une gâchée est préparée en mélangeant avec de l'eau une composition de mortier sèche à base perlite et de ciment sulfoalumineux comprenant :

- 70 % de perlite de type Silcel 42/ 18,

- 23,7 % de ciment sulfoalumineux,

- 5% de poudre de polymères redispersibles,

- 0,6% d'éther de cellulose,

- 0,6% d'agent entraîneur d'air, et

- 0, 1 % d'agent accélérateur de prise.

La masse volumique apparente de la pâte dans la cuve de malaxage est d'environ 340 kg/m 3 . La composition de mortier humide ainsi formée est projetée par une machine discontinue de type Putzmeister SP1 1 , au travers de l'élément de renforcement, en une seule passe. Un dressage à la règle crantée a été ensuite effectué immédiatement après projection du mortier humide. Après séchage (28 jours), la masse volumique apparente du mortier isolant est d'environ 180 kg/m 3 . La conductivité thermique est d'environ 49 mW/m. K. La couche de mortier est appliquée en une seule passe sur une épaisseur de 140 mm de façon à remplir la totalité de l'élément de renforcement structurel.

Une fois que la couche de mortier est sèche, on applique un élément de finition qui est un sous-enduit minéral à la chaux aérienne, utilisé classiquement dans les systèmes actuels d'isolation thermique par l'extérieur (Weber.therm XM) : deux passes de 3 mm de ce sous-enduit ont été effectuées successivement à la taloche crantée, une trame de finition ayant marouflée lors de la première passe. L'épaisseur totale du sous-enduit appliqué est comprise entre 5 et 6 mm. Un enduit de parement à base de silicate (Weber. maxilin sil T) a ensuite été appliqué à la taloche sur la couche de sous-enduit. Après séchage de l'ensemble, un test de chocs de corps dur a été réalisé, par un système de chute pendulaire, en utilisant une bille d'acier de diamètre 50 mm et de masse de 500 gr pour l'essai libérant une énergie de 3 Joules. La bille en acier est fixée au bout d'une corde de 2 m de long et est lâchée contre la paroi depuis une hauteur de chute de 0,61 m (angle entre la corde et le plan vertical de 46° ). Les tests de résistances aux chocs sont notamment décrits dans le document ETAG004, 2013 selon la norme ISO 7892. Les résultats obtenus ont montré qu'aucune empreinte ni fissure n'est visible lors de l'essai de choc sur la paroi comprenant le système isolant selon la présente invention, ce qui traduit une bonne résistance mécanique du système.

Exemple 2 : Essais mécaniques en compression simple et comparaison avec la laine de roche

Des tests mécaniques en compression ont été réalisés avec une machine de traction/compression. Une éprouvette correspondant à un système selon la présente invention a été préparée en utilisant un système de renforcement tel que celui décrit à la figure 3 (structure en forme d'accordéon, des pics rigides d'une longueur de 14 cm et un maillage bidimensionnel) dans lequel on a projeté une gâchée identique à celle décrite dans l'exemple 1 .

Les essais réalisés consistent à appliquer un déplacement sur une éprouvette se présentant sous la forme d'un prisme rectangulaire, placée entre deux plateaux horizontaux indéformables, et ainsi à provoquer un écrasement de celle-ci. On mesure simultanément le déplacement et la force appliquée au cours de l'essai. On applique une vitesse de compression constante de 8 mm/min. On exprime ainsi la contrainte en kPa (calculée à partir de la force appliquée mesurée en Newtons et divisée par la surface sur laquelle la force est appliquée) en fonction de la déformation qui correspond à la variation de longueur ΔΙ_=Ι_-Ι_0 rapportée à la longueur initiale de l'éprouvette (AL/LO). La courbe obtenue est donnée sur la figure 7. L'épaisseur de l'éprouvette vaut 105mm dans le cas du système selon la présente invention.

A titre de comparaison des tests similaires ont été réalisés en remplaçant le système selon la présente invention par de la laine de roche d'une épaisseur de 80 mm, usuellement utilisée dans les systèmes d'isolation par l'extérieur. Deux tests ont été effectués, le premier utilisant une laine de roche de densité 1 30 kg/m 3 (échantillon 1 ) et le second une laine de roche de densité 125 kg/m 3 (échantillon 2). La comparaison entre les différents échantillons testés montre que le système selon la présente invention a un comportement mécanique tout à fait comparable à ce que l'on obtient avec de la laine de roche.