Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
1- (7-(HEXAHYDROPYRROLO [3, 4-C] PYRROL-2 (1H) -YL) QUIN0LIN-4-YL) -3- (PYRAZIN-2-YL) UREA DERIVATIVES AND RELATED COMPOUNDS AS GLYCOGEN SYNTHASE KINASE 3 (GSK-3)
Document Type and Number:
WIPO Patent Application WO/2009/130317
Kind Code:
A1
Abstract:
The present invention relates to novel heterocyclic compounds which are useful for inhibiting glycogen synthase kinase 3 (GSK-3), methods of making the compounds, compositions containing the compounds, and methods of treatment using the compounds.

Inventors:
TURNER SEAN COLM (DE)
BAKKER MARGARETHA HENRICA MARIA (DE)
HORNBERGER WILFRIED (DE)
Application Number:
PCT/EP2009/054987
Publication Date:
October 29, 2009
Filing Date:
April 24, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ABBOTT GMBH & CO KG (DE)
TURNER SEAN COLM (DE)
BAKKER MARGARETHA HENRICA MARI (DE)
HORNBERGER WILFRIED (DE)
International Classes:
C07D487/04; A61K31/497; A61P19/02; A61P25/16; A61P25/28; C07C275/28; C07C275/32; C07C275/42; C07D487/08
Domestic Patent References:
WO2007017145A22007-02-15
WO2004055009A12004-07-01
WO2003049739A12003-06-19
WO2000047577A12000-08-17
Other References:
PORTER EL AT: "1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor", BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS, vol. 11, no. 14, 2001, pages 1907 - 1910, XP002498257
"Glycogen Synthase Kinase 3 (GSK-3) and its inhibitors: Drug Discovery and Developments", 2006, JOHN WILEY AND SONS
B. BARTH ET AL., ANTIVIRAL CHEMISTRY & CHEMOTHERAPY, vol. 7, no. 6, 1996, pages 300 - 312
Attorney, Agent or Firm:
REITSTÖTTER, KINZEBACH & PARTNER (Ludwigshafen, DE)
Download PDF:
Claims:

We claim:

1. A heterocyclic compound of the general formula (I)

the stereoisomers, prodrugs, tautomers and/or physiologically tolerated acid addition salts thereof, wherein

A is selected from the group consisting of CR A1 R A2 and NR B ; where

R A1 and R A2 are independently of each other selected from the group consisting of hydrogen, Ci-C2-alkyl, Ci-C2-haloalkyl, Nhb and OH; and

R B is selected from H, Ci-C4-alkyl and Ci-C4-haloalkyl;

X 1 , X 2 and X 3 are independently of each other selected from the group consisting of CR 2 and N;

X 4 , X 5 , X 6 and X 7 are independently of each other selected from the group consisting of CR 1 , CR 3 and N;

with the proviso that at least one of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and X 7 is N and that no more than two of X 4 , X 5 , X 6 and X 7 are CR 1 ;

G is a 5- or 6-membered heteroaromatic ring containing one nitrogen atom and optionally 1 , 2 or 3 further nitrogen atoms as ring members, where the heteroaromatic ring is bonded to the group NR 4 via a carbon atom in exposition to the nitrogen ring atom and where the heteroaromatic ring op- tionally carries 1 , 2, 3 or 4 substituents R 5 or 1 , 2 or 3 substituents R 5 and 1 substituent R 1 ;

with the proviso that G carries one substituent R 1 if none of X 4 , X 5 , X 6 and X 7 is CR 1 ;

each R 1 is independently a 6-, 7-, 8-, 9-, 10-, 1 1-, 12-, 13- or 14-membered bi- cyclic or tricyclic saturated or unsaturated heterocyclic ring containing one nitrogen atom and optionally 1 , 2 or 3 further heteroatoms selected from N, O and S as ring members and optionally carrying 1 , 2 or 3 substituents R 6 ;

each R 2 is independently selected from the group consisting of hydrogen, OH, halogen, CN, d-Ce-alkyl, d-Ce-haloalkyl, d-Ce-alkoxy, d-Ce-haloalkoxy and NR a R b ; or two radicals R 2 bonded at the carbon atoms of groups X 2 and X 3 , together with the carbon atoms to which they are bonded, form a 5- or 6- membered saturated or unsaturated ring which may contain 1 or 2 heteroa- toms as ring members selected from the group consisting of N, O and S and which optionally carries 1 , 2 or 3 substituents R 7 ;

each R 3 is independently selected from the group consisting of hydrogen, CN, NR a R b , OH, halogen, d-Ce-alkyl, d-Ce-haloalkyl, C 3 -C 7 -cycloalkyl, C 3 -C 7 - halocycloalkyl, C2-d-alkenyl, C2-C4-haloalkenyl, Ci-Cβ-alkoxy, C-i-Cβ- haloalkoxy, formyl, d-Cβ-alkylcarbonyl, d-Cβ-haloalkylcarbonyl, C-i-Cβ- alkoxycarbonyl, d-Cβ-haloalkoxycarbonyl, Ci-C6-alkyl-NR a R b and an aromatic radical Ar, which is selected from the group consisting of phenyl and a 5- or 6-membered N- or C-bound heteroaromatic radical comprising one nitrogen atom and optionally 1 , 2 or 3 further heteroatoms independently selected from O, S and N as ring members, wherein Ar is unsubstituted or carries one or two radicals R 8 and wherein Ar may also be bonded via a CH 2 group;

R 4 is selected from the group consisting of hydrogen, Ci-d-alkyl and CTC 4 - haloalkyl;

R 5 , R 6 and R 7 , independently of each other and independently of each occurrence, have one of the meanings given for R 3 ;

each R 8 is independently selected from the group consisting of halogen, C-i-Cβ- alkyl, d-Cβ-haloalkyl, Cs-Cβ-cycloalkyl, Cs-Cβ-halocycloalkyl, d-Cβ-alkoxy, d-Cβ-haloalkoxy, NR a R b , a phenyl group and an aromatic 5- or 6- membered C-bound heteroaromatic radical comprising one nitrogen atom

and optionally 1 , 2 or 3 further heteroatoms independently selected from O, S and N as ring members, wherein phenyl and the heteroaromatic radical are, independently of each other, unsubstituted or substituted by 1 , 2, 3 or 4 radicals selected from halogen, cyano, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci- C4-alkoxy and Ci-C4-haloalkoxy; and

R a and R b are independently of each other selected from the group consisting of hydrogen, Ci-Cβ-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy, Ci- C4-alkylcarbonyl and Ci-C4-haloalkylcarbonyl; or R a and R b form, together with the nitrogen atom to which they are bonded, a 3-, 4-, 5-, 6- or 7-membered saturated or unsaturated aromatic or non-aromatic N-heterocyclic ring, which may contain 1 further heteroa- tom or heteroatom containing group selected from the group consisting of O, S, SO, SO2 and N as a ring member.

2. The heterocyclic compound according to claim 1 , wherein one or two of X 4 , X 5 , X 6 and X 7 are CR 1 .

3. The heterocyclic compound according to claim 1 , wherein none of X 4 , X 5 , X 6 and X 7 is CR 1 and G carries a substituent R 1 .

4. The heterocyclic compound according to any of the preceding claims, wherein X 1 is N, one of the groups X 2 and X 3 is CR 2 and the other is CR 2 or N and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 .

5. The heterocyclic compound according to claim 4, wherein X 1 is N, X 2 and X 3 are CR 2 and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 .

6. The heterocyclic compound according to claim 5, wherein X 1 is N, X 4 is CR 1 , CR 3 or N, X 2 and X 3 are CR 2 and X 5 , X 6 and X 7 are CR 1 or CR 3 .

7. The heterocyclic compound according to claim 6, wherein X 4 is CR 1 or CR 3 .

8. The heterocyclic compound according to any of claims 1 to 3, wherein X 2 is N, X 1 and X 3 are CR 2 and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 .

9. The heterocyclic compound according to claim 8, wherein X 2 is N, X 1 and X 3 are CR 2 and X 4 , X 5 , X 6 and X 7 are CR 1 or CR 3 .

10. The heterocyclic compound according to any of claims 1 to 3, wherein X 3 is N, X 1 and X 2 are CR 2 and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 .

1 1. The heterocyclic compound according to claim 10, wherein X 3 is N, X 1 and X 2 are R 2 and X 4 , X 5 , X 6 and X 7 are CR 1 or CR 3 .

12. The heterocyclic compound according to any of the preceding claims, wherein R 1 is a 7-, 8-, 9- or 10-membered bicyclic saturated heterocyclic ring containing one nitrogen atom and optionally 1 , 2 or 3 further heteroatoms selected from N and O as ring members and optionally carrying 1 , 2 or 3 substituents R 6 which are as defined in claim 1.

13. The heterocyclic compound according to claim 12, wherein R 1 is a 7-, 8-, 9- or 10- membered bicyclic saturated heterocyclic ring bound via a nitrogen ring atom, optionally containing one further heteroatom selected from N and O as ring member and optionally carrying 1 , 2 or 3 substituents R 6 which are as defined in claim 1.

14. The heterocyclic compound according to any of the preceding claims, wherein R 6 is selected from Ci-C4-alkyl, Ci-C4-fluoroalkyl, Ci-C4-alkoxy, Ci-C4-fluoroalkoxy, Ci-C4-alkylcarbonyl, Ci-C4-fluoroalkylcarbonyl, Ci-C4-alkoxycarbonyl and C1-C4- fluoroalkoxycarbonyl.

15. The heterocyclic compound according to any of claims 13 and 14, wherein R 1 is selected from one of the following formulae

and the stereoisomers thereof; where

Y 1 is O or NR 61 ;

R 61 is H or has one of the meanings of R 6 given in claims 1 or 14; and # is the attachment point to the remainder of the molecule.

16. The heterocyclic compound according to any of the preceding claims, wherein one of X 4 , X 5 , X 6 and X 7 is CR 1 .

17. The heterocyclic compound according to claim 16, wherein X 5 or X 6 is CR 1 .

18. The heterocyclic compound according to any of the preceding claims, wherein each R 3 is independently selected from hydrogen, halogen, Ci-C4-alkyl, C1-C4- fluoroalkyl, Ci-C4-alkoxy and Ci-C4-fluoroalkoxy.

19. The heterocyclic compound according to any of the preceding claims, wherein each R 2 is independently selected from hydrogen, halogen, Ci-C4-alkyl and Ci- C4-fluoroalkyl.

20. The heterocyclic compound according to any of the preceding claims, wherein one of groups X 1 , X 2 and X 3 is N, one of groups X 1 , X 2 and X 3 is CH and one of groups X 1 , X 2 and X 3 is CR 2 , where R 2 has one of the meanings given in claims 1 or 19.

21. The heterocyclic compound according to any of the preceding claims, wherein X 1 is N, X 2 and X 3 are CR 2 , preferably CH, one of X 5 and X 6 is CR 1 and the other is CR 3 , preferably CH, X 4 and X 7 are CR 3 , preferably CH, and G carries no sub- stituent R 1 ; or X 1 is N, X 2 and X 3 are CR 2 , preferably CH, X 4 , X 5 and X 7 are CR 3 , preferably CH, X 6 is CR 3 , preferably C-methoxy, and G carries one substituent R 1 .

22. The heterocyclic compound according to any of the preceding claims, wherein G is a 6-membered heteroaromatic ring selected from pyridin-2-yl, pyrazin-2-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyridazin-3-yl and triazin-2-yl, which may carry 1 , 2, or 3 substituents R 5 which are as defined in claim 1 or which may carry 1 or 2 substituents R 5 which are as defined in claim 1 and one substituent R 1 which is as defined in any of claims 1 or 12 to 15.

23. The heterocyclic compound according to claim 22, wherein G is a 6-membered heteroaromatic ring selected from pyridin-2-yl and pyrazin-2-yl, which may carry 1 , 2, or 3 substituents R 5 which are as defined in claim 1 or which may carry 1 or 2 substituents R 5 which are as defined in claim 1 and one substituent R 1 which is

as defined in any of claims 1 or 12 to 15.

24. The heterocyclic compound according to claim 23, wherein G carries the sub- stituent R 1 in the 6-position.

25. The heterocyclic compound according to any of the preceding claims, wherein A is CH 2 , NH or NCH 3 .

26. The heterocyclic compound according to any of the preceding claims, wherein R 4 is H or CH 3 .

27. A pharmaceutical composition comprising at least one heterocyclic compound as defined in any of the preceding claims, a stereoisomer, prodrug, tautomer and/or physiologically tolerated acid addition salt thereof and optionally at least one physiologically acceptable carrier and/or auxiliary substance.

28. The use of the heterocyclic compound as defined in any of claims 1 to 26 or of a stereoisomer, prodrug, tautomer or physiologically tolerated acid addition salt thereof for the preparation of a medicament for the treatment of a medical disor- der susceptible to the treatment with a compound that modulates, preferably inhibits, the activity of glycogen synthase kinase 3β.

29. A method for treating a medical disorder susceptible to treatment with a compound that modulates glycogen synthase kinase 3β activity, said method com- prising administering an effective amount of at least one heterocyclic compound as defined in any of claims 1 to 26 or of a stereoisomer, prodrug, tautomer or physiologically tolerated acid addition salt thereof or of a pharmaceutical composition as defined in claim 27 to a subject in need thereof.

30. The use according to claim 28 or the method according to claim 29, where the medical disorder is a neurodegenerative disorder or an inflammatory disorder.

31. The use or the method according to claim 30, where the medical disorder is selected from schizophrenia, Alzheimer's disease, Parkinson's disease, tau- opathies, vascular dementia, acute stroke and others traumatic injuries, cerebrovascular accidents, brain and spinal cord trauma, peripheral neuropathies, bipolar disorders, retinopathies, glaucoma, rheumatoid arthritis and osteoarthritis.

Description:

1- (7- (HEXAHYDROPYRROLO [3 , 4-C] PYRROL-2 (IH) -YL) QUINOLIN-4-YL) -3- ( PYRAZIN-2-YL) UREA DERIVATIVES AND RELATED COMPOUNDS AS GLYCOGEN SYNTHASE KINASE 3 (GSK-3 )

Technical Field 5

The present invention relates to novel heterocyclic compounds which are useful for inhibiting glycogen synthase kinase 3 (GSK-3), methods of making the compounds, compositions containing the compounds, and methods of treatment using the compounds. 10

Background of the Invention

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase encoded by two iso- forms, GSK-3α and GSK-3β, with molecular weights of 51 and 47 kDa, respectively.

15 These share 97% sequence similarity in their kinase catalytic domains. The GSK-3α isoform has an extended glycine-rich N-terminal tail. A minor splice variant of GSK-3β has been identified (expressed at -15% of total) with a 13 amino acid insert within the kinase domain. This variant had a reduced activity towards tau. GSK-3 is highly conserved throughout evolution, and found in all mammalians thus far with high homology

20 in the kinase domain. Both isoforms are ubiquitously expressed in mammalian tissues, including the brain. Pharmacological GSK-3 inhibitors are not able to selectively inhibit one of the isoforms.

GSK-3β plays an important role in the control of metabolism, differentiation and sur- 25 vival. It was initially identified as an enzyme able to phosphorylate and hence inhibit glycogen synthase. Subsequently, it was recognised that GSK-3β was identical to tau protein kinase 1 (TPK1), an enzyme that phosphorylates tau protein in epitopes that are also found to be hyperphosphorylated in Alzheimer's disease and in several tau- opathies. 30

Interestingly, protein kinase B (AKT) phosphorylation of GSK-3β results in a loss of kinase activity, and it has been proposed that this inhibition may mediate some of the effects of neurotrophic factors. Moreover, phosphorylation of β-catenin (a protein involved in cell survival) by GSK-3β, results in its degradation by an ubiquitinilation de- 35 pendent proteasome pathway.

Therefore it appears that inhibition of GSK-3β activity may result in neurotrophic activity. There is evidence that lithium, an uncompetitive inhibitor of GSK-3β, enhances neu- ritogenesis in some models and can also increase neuronal survival, through the in-

auction of survival factors such as Bcl-2 and the inhibition of the expression of proa- poptotic factors such as P53 and Bax.

Further studies have shown that β-amyloid increases GSK-3β activity and tau protein phosphorylation. Moreover, this hyperphosphorylation as well as the neurotoxic effects of β-amyloid are blocked by lithium chloride and by a GSK-3β antisense mRNA. These observations taken together suggest that GSK-3β may be the link between the two major pathological processes in Alzheimer's disease: abnormal APP (Amyloid Precursor Protein) processing and tau protein hyperphosphorylation.

These experimental observations indicate that compounds which modulate the GSK- 3β activity may find application in the treatment of the neuropathological consequences and the cognitive and attention deficits associated with Alzheimer's disease, as well as other acute and chronic neurodegenerative diseases. These include, but are not limited to: Parkinson's disease, tauopathies (e.g. fro ntotemporo parietal dementia, corticobasal degeneration, Pick's disease, progressive supranuclear palsy, argyrophilic grain disease) and other dementia including vascular dementia; acute stroke and others traumatic injuries; cerebrovascular accidents (e.g. age related macular degeneration); brain and spinal cord trauma; peripheral neuropathies; bipolar disorders, reti- nopathies and glaucoma.

GSK-3β may further have utility in the treatment of inflammatory diseases, such as rheumatoid arthritis and osteoarthritis.

GSK-3β may also have utility in the treatment of other diseases such as: Non-insulin dependent diabetes and obesity; osteoporosis; manic depressive illness; schizophrenia; alopecia; cancers such as breast cancer, non-small cell lung carcinoma, thyroid cancer, T or B-cell leukemia and several virus-induced tumors.

A review on GSK-3, its functions, its therapeutic potential and its possible inhibitors is given in "Glycogen Synthase Kinase 3 (GSK-3) and its inhibitors: Drug Discovery and Developments" by A. Martinez et al. (editors), John Wiley and Sons, 2006.

B. Barth et al. (Antiviral Chemistry & Chemotherapy 7 (6), 1996, 300-312) describe 6- alkyl substituted pyridazino[3,4-b][1 ,5]benzoxazepin-5-ones which are useful as inhibitors of HIV-1 reverse transcriptase. They also describe several pyridazino[3,4- b][1 ,5]benzoxazepin-5(6H)-ones being unsubstituted at the nitrogen as intermediates, namely pyridazino[3,4-b][1 ,5]benzoxazepin-5(6H)-one, 3-chloropyridazinobenzo[3,4- b][1 ,5]benzoxazepin-5(6H)-one, 3-chloro-8-trifluoromethylpyridazino[3,4-

b][1 ,5]benzoxazepin-5(6H)-one, 3-chloro-8-methylpyridazino[3,4-b][1 ,5]benzoxazepin- 5(6H)-one, 3-chloro-9-methylpyridazino [3,4-b][1 ,5]benzoxazepin-5(6H)-one, 3-chloro- 8-methoxypyridazino[3,4-b][1 ,5]benzoxazepin-5(6H)-one and 3-chloro-8,10- dimethylpyridazinobenzo[3,4-b][1 ,5]benzoxazepin-5(6H)-one.

G. Heinisch et al. (Arch. Pharm. Pharm. Med. Chem. 2000, 333, 231-240) describe pyridazinobenzo[3,4-b][1 ,5]benzoxazepin-5(6H)-ones being unsubstituted at the nitrogen as intermediates in the synthesis of the corresponding N-alkyl derivatives, namely 3-chloropyridazinobenzo[3,4-b][1 ,5]benzoxazepin-5(6H)-one, 3,8- dichloropyridazino[3,4-b][1 ,5]benzoxazepin-5(6H)-one, 3-chloro-8- methylpyridazino[3,4-b][1 ,5]benzoxazepin-5(6H)-one and 3-chloro-9-methylpyridazino [3,4-b][1 ,5]benzoxazepin-5(6H)-one.

I. Ott et al. (J. Med. Chem. 2004, 47, 4627-4630) describe 6-alkyl substituted pyridazi- nobenzo[3,4-b][1 ,5]benzoxazepin-5-ones which are useful as Multidrug-Resistance Modulating agents in tumor therapy. They also describe several pyridazinobenzo[3,4- b][1 ,5]benzoxazepin-5(6H)-ones being unsubstituted at the nitrogen as intermediates, e.g. 3-chloro-9-trifluoromethylpyridazino[3,4-b][1 ,5]benzoxazepin-5(6H)-one.

G. Heinisch et al. (Arch. Pharm. Pharm. Med. Chem. 1997, 330, S. 29-34 and Hetero- cycles 1997, 45, 673-682) describe inter alia 3-chloro-8-nitro-1 1-propyl-pyridazino[3,4- b][1 ,5]benzodiazipin-5-one.

Summary of the Invention

The object of the present invention is to provide compounds which modulate the GSK- 3β activity, in particular compounds which have an inhibitory activity on GSK-3β and which thus are useful as an active ingredient of a composition for preventive and/or therapeutic treatment of a disease caused by abnormal GSK-3β activity, especially of neurodegenerative and/or inflammatory diseases. More specifically, the goal is to provide novel compounds useful as an active ingredient of a composition that enables prevention and/or treatment of neurodegenerative diseases such as Alzheimer's disease.

It was surprisingly found that the problem is solved by providing a heterocyclic compound of the general formula I

the stereoisomers, prodrugs, tautomers and/or physiologically tolerated acid addition salts thereof, wherein

A is selected from the group consisting of CR A1 R A2 and NR B ; where

R A1 and R A2 are independently of each other selected from the group consisting of hydrogen, Ci-C2-alkyl, Ci-C2-haloalkyl, Nhb and OH; and

R B is selected from H, Ci-C4-alkyl and Ci-C4-haloalkyl;

X 1 , X 2 and X 3 are independently of each other selected from the group consisting of

CR 2 and N;

X 4 , X 5 , X 6 and X 7 are independently of each other selected from the group consisting of

CR 1 , CR 3 and N;

with the proviso that at least one of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and X 7 is N and that no more than two of X 4 , X 5 , X 6 and X 7 are CR 1 ;

G is a 5- or 6-membered heteroaromatic ring containing one nitrogen atom and optionally 1 , 2 or 3 further nitrogen atoms as ring members, where the heteroaromatic ring is bonded via a carbon atom in α-position to the nitrogen ring atom to the group NR 4 and where the heteroaromatic ring optionally carries 1 , 2,

3 or 4 substituents R 5 or 1 , 2 or 3 substituents R 5 and 1 substituent R 1 ;

with the proviso that or G carries one substituent R 1 if none of X 4 , X 5 , X 6 and X 7 is CR 1 ;

each R 1 is independently a 6-, 7-, 8-, 9-, 10-, 1 1-, 12-, 13- or 14-membered bicyclic or tricyclic saturated or unsaturated heterocyclic ring containing one nitrogen atom and optionally 1 , 2 or 3 further heteroatoms selected from N, O and S as ring members and optionally carrying 1 , 2 or 3 substituents R 6 ;

each R 2 is independently selected from the group consisting of hydrogen, OH, halogen, CN, d-Ce-alkyl, Ci-C 6 -haloalkyl and NR a R b ;

or two radicals R 2 bonded at the carbon atoms of groups X 2 and X 3 , together with the carbon atoms to which they are bonded, form a 5- or 6-membered saturated or unsaturated ring which may contain 1 or 2 heteroatoms as ring members selected from the group consisting of N, O and S and which optionally carries 1 , 2 or 3 substituents R 7 ;

each R 3 is independently selected from the group consisting of hydrogen, CN, NR a R b , OH, halogen, Ci-C 6 -alkyl, Ci-C 6 -haloalkyl, C 3 -C 7 -cycloalkyl, C 3 -C 7 -halocycloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, C-i-Cβ-alkoxy, d-Cβ-haloalkoxy, formyl, C-i-Cβ- alkylcarbonyl, Ci-Cβ-haloalkylcarbonyl, C-i-Cβ-alkoxycarbonyl, C-i-Cβ- haloalkoxycarbonyl, Ci-C6-alkyl-NR a R b and an aromatic radical Ar, which is selected from the group consisting of phenyl and a 5- or 6-membered N- or C- bound heteroaromatic radical comprising one nitrogen atom and optionally 1 , 2 or 3 further heteroatoms independently selected from O, S and N as ring members, wherein Ar is unsubstituted or carries one or two radicals R 8 and wherein Ar may also be bondd via a CH2 group;

R 4 is selected from the group consisting of hydrogen, Ci-C4-alkyl and C1-C4- haloalkyl;

R 5 , R 6 and R 7 , independently of each other and independently of each occurrence, have one of the meanings given for R 3 ;

each R 8 is independently selected from the group consisting of halogen, Ci-Cβ-alkyl, C-i-Ce-haloalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halocycloalkyl, d-Ce-alkoxy, Ci-C 6 - haloalkoxy, NR a R b , a phenyl group and an aromatic 5- or 6-membered C-bound heteroaromatic radical comprising one nitrogen atom and optionally 1 , 2 or 3 further heteroatoms independently selected from O, S and N as ring members, wherein phenyl and the heteroaromatic radical are, independently of each other, unsubstituted or substituted by 1 , 2, 3 or 4 radicals selected from halogen, cyano, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy and Ci-C4-haloalkoxy; and

R a and R b are independently of each other selected from the group consisting of hydrogen, Ci-Cβ-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy, C1-C4- alkylcarbonyl and Ci-C4-haloalkylcarbonyl;

or R a and R b form, together with the nitrogen atom to which they are bonded, a 3-, 4-, 5-, 6- or 7-membered saturated or unsaturated aromatic or non-aromatic N- heterocyclic ring, which may contain 1 further heteroatom or heteroatom contain- ing group selected from the group consisting of O, S, SO, SO2 and N as a ring member.

Thus, the present invention relates to compounds of the formula I as defined herein and in the claims, to the stereoisomers, tautomers, prodrugs and/or physiologically tolerated acid addition salts thereof.

According to a further aspect, the present invention relates to a pharmaceutical composition comprising at least one compound of the formula I as defined herein, a stereoisomer, a tautomer, a prodrug and/or a physiologically tolerated acid addition salt thereof, optionally together with at least one physiologically acceptable carrier and/or auxiliary substance.

According to a further aspect, the present invention relates to the use of at least one compound of the formula I as defined herein, the stereoisomers, tautomers, prodrugs and/or physiologically tolerated acid addition salts thereof, for the preparation of a pharmaceutical composition for the treatment of a medical disorder susceptible to treatment with a compound that modulates glycogen synthase kinase 3β activity.

According to a further aspect, the present invention relates to a method for treating a medical disorder susceptible to treatment with a compound that modulates glycogen synthase kinase 3β activity, said method comprising administering an effective amount of at least one compound of the formula I as defined herein, a stereoisomer, a tautomer, a prodrug and/or a physiologically tolerated acid addition salt thereof, to a subject in need thereof.

Detailed description of the invention

Provided the compounds of the formula I of a given constitution may exist in different spatial arrangements, for example if they possess one or more centers of asymmetry, polysubstituted rings or double bonds, or as different tautomers, it is also possible to use enantiomeric mixtures, in particular racemates, diastereomeric mixtures and tautomeric mixtures, preferably, however, the respective essentially pure enantiomers, diastereomers and tautomers of the compounds of formula I and/or of their salts.

It is likewise possible to use physiologically tolerated salts of the compounds of the formula I, especially acid addition salts with physiologically tolerated acids. Examples of suitable physiologically tolerated organic and inorganic acids are hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, Ci-C4-alkylsulfonic acids, such as methanesulfonic acid, aromatic sulfonic acids, such as benzenesulfonic acid and tolu- enesulfonic acid, oxalic acid, maleic acid, fumaric acid, lactic acid, tartaric acid, adipic acid and benzoic acid. Other utilizable acids are described in Fortschritte der Arzneimittelforschung [Advances in drug research], Volume 10, pages 224 et seq., Birkhauser Verlag, Basel and Stuttgart, 1966.

In the terms of the present invention, "prodrugs" are compounds which are metabolized in vivo to give the compounds of the invention of formula I. Typical examples for prodrugs are for example decribed in CG. Wermeth (editor): The Practice of Medicinal Chemistry, Academic Press, San Diego, 1996, pages 671-715. Examples are phos- phates, carbamates, aminoacids, esters, amides, peptides, urea and the like. In the present case, suitable prodrugs can be compounds of formula I wherein an external nitrogen atom, for example a secondary nitrogen ring atom of the heterocyclic group R 1 or a nitrogen atom of a primary or secondary amino group being a substituent R 2 , R 3 , R 5 , R 6 , R 7 and/or R 8 (= at least one of R 2 , R 3 , R 5 , R 6 , R 7 and R 8 is NR a R b , wherein at least one of R a and R b is H), forms an amide/peptide bond in that this nitrogen atom is substituted by a Ci-C4-alkylcarbonyl group, e.g. by acetyl, propionyl, n- propylcarbonyl, isopropylcarbonyl, n-butylcarbonyl or tert-butylcarbonyl (pivaloyl), by benzoyl, or by an aminoacid group bonded via CO, e.g. glycine, alanine, serine, phenylalanine and the like bonded via CO. Suitable prodrugs are furthermore alkylcar- bonyloxyalkylcarbamat.es, wherein said nitrogen atom carries a group -C(=O)-O-CHR X - O-C(=O)-R y , wherein R x und R y independently of each other are Ci-C4-alkyl. These carbamate compounds are for example described in J. Alexander, R. Cargill, S. R. Michelson, H. Schwam, J. Medicinal Chem. 1988, 31 (2), 318-322. These groups can be removed under metabolic conditions and result in compounds I wherein said nitro- gen atom carries a hydrogen atom instead.

The compounds of formula I may also be present in the form of the respective tautom- ers. This is for instance the case for compounds I wherein R 2 and/or R 3 are OH and these substituents are bonded to a carbon atom which is in α-position to a nitrogen ring atom. This results for example in following tautomeric formulae:

The organic moieties mentioned in the above definitions of the variables are - like the term halogen - collective terms for individual listings of the individual group members. The prefix C n -Cm indicates in each case the possible number of carbon atoms in the group.

The term halogen denotes in each case fluorine, bromine, chlorine or iodine, in particu- lar fluorine, chlorine or bromine.

Ci-C2-Alkyl is methyl or ethyl; Ci-C3-alkyl is additionally n-propyl or isopropyl.

Ci-C4-Alkyl is a straight-chain or branched alkyl group having from 1 to 4 carbon at- oms. Examples are methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl (sec-butyl), iso- butyl and tert-butyl.

d-Cε-Alkyl is a straight-chain or branched alkyl group having from 1 to 6 carbon atoms. Examples include the residues mentioned above for Ci-C4-alkyl and also pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1 ,1-dimethylpropyl, 1 ,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1 ,1-dimethylbutyl, 1 ,2-dimethylbutyl, 1 ,3-dimethylbutyl, 2,2- dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1 ,1 ,2- trimethylpropyl, 1 ,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1 -ethyl-2- methylpropyl.

Ci-C2-Haloalkyl is an alkyl group having 1 or 2 carbon atoms (as mentioned above), where at least one of the hydrogen atoms, e.g. 1 , 2, 3, 4 or 5 hydrogen atoms in these groups are replaced by halogen atoms as mentioned above, such as chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, bromomethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1- chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl or pentafluoroethyl.

Ci-C4-Haloalkyl is a straight-chain or branched alkyl group having 1 to 4 carbon atoms (as mentioned above), where at least one of the hydrogen atoms, e.g. 1 , 2, 3, 4 or 5 hydrogen atoms in these groups are replaced by halogen atoms as mentioned above. Examples are, apart those listed above for Ci-C2-haloalkyl, 1-chloropropyl, 1- bromopropyl, 1-fluoropropyl, 2-chloropropyl, 2-bromopropyl, 2-fluoropropyl, 3- chloropropyl, 3-bromopropyl, 3-fluoropropyl, 1 ,1-dichloropropyl, 1 ,1-difluoropropyl, 2,2- dichloropropyl, 2,2-difluoropropyl, 2,3-dichloropropyl, 2,3-difluoropropyl, 1 ,3- dichloropropyl, 1 ,3-difluoropropyl, 3,3-dichloropropyl, 3,3-difluoropropyl, 1 ,1 ,2- trichloropropyl, 1 ,1 ,2-trifluoropropyl, 1 ,2,2-trichloropropyl, 1 ,2,2-trifluoropropyl, 1 ,2,3- trichloropropyl, 1 ,2,3-trifluoropropyl, 2,2,3-trichloropropyl, 2,2,3-trifluoropropyl, 3,3,3- trichloropropyl, 3,3,3-trifluoropropyl, 1 ,1 ,1-trifluoroprop-2-yl, 1-chlorobutyl, 1- bromobutyl, 1-fluorobutyl, 2-chlorobutyl, 2-bromobutyl, 2-fluorobutyl, 3-chlorobutyl, 3- bromobutyl, 3-fluorobutyl, 4-chlorobutyl, 4-bromobutyl, 4-fluorobutyl, and the like.

Ci-Cβ-Haloalkyl is a straight-chain or branched alkyl group having 1 to 6 carbon atoms (as mentioned above), where at least one of the hydrogen atoms in these groups is replaced by halogen atoms as mentioned above. Examples are, apart those listed above for Ci-C4-haloalkyl, chloropentyl, bromopentyl, fluoropentyl, chlorohexyl, bromo- hexyl, fluorohexyl, and the like.

Ci-C2-Fluoroalkyl (= fluorinated Ci-C2-alkyl) is an alkyl group having 1 or 2 carbon atoms (as mentioned above), where at least one of the hydrogen atoms, e.g. 1 , 2, 3, 4 or 5 hydrogen atoms in these groups are replaced by fluorine atoms, such as difluoro- methyl, trifluoromethyl, 1-fluoroethyl, (R)-i-fluoroethyl, (S)-i-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, or pentafluoroethyl.

Ci-C4-Fluoroalkyl (= fluorinated Ci-C4-alkyl) is a straight-chain or branched alkyl group having 1 to 4 carbon atoms (as mentioned above), where at least one of the hydrogen atoms, e.g. 1 , 2, 3, 4 or 5 hydrogen atoms in these groups are replaced by fluorine atoms. Examples are, apart those listed above for Ci-C2-fluoroalkyl, 1-fluoropropyl, (R)-i-fluoropropyl, (S)-i-fluoropropyl, 2-fluoropropyl, (R)-2-fluoropropyl, (S)-2- fluoropropyl, 3-fluoropropyl, 1 ,1-difluoropropyl, 2,2-difluoropropyl, 1 ,2-difluoropropyl, 2,3-difluoropropyl, 1 ,3-difluoropropyl, 3,3-difluoropropyl, 1 ,1 ,2-trifluoropropyl, 1 ,2,2- trifluoropropyl, 1 ,2,3-trifluoropropyl, 2,2,3-trifluoropropyl, 3,3,3-trifluoropropyl, 1 ,1 ,1- trifluoroprop-2-yl, 2-fluoro-1-methylethyl, (R)-2-fluoro-1-methylethyl, (S)-2-fluoro-1- methylethyl, 2,2-difluoro-1-methylethyl, (R)-2,2-difluoro-1-methylethyl, (S)-2,2-difluoro- 1-methylethyl, 1 ,2-difluoro-1-methylethyl, (R)-1 ,2-difluoro-1-methylethyl, (S)-1 ,2- difluoro-1 -methylethyl, 2,2,2-trifluoro-1 -methylethyl, (R)-2,2,2-trifluoro-1 -methylethyl, (S)-2,2,2-trifluoro-1 -methylethyl, 2-fluoro-1 -(fluoromethyl)ethyl, 1 -(difluoromethyl)-2,2- difluoroethyl, 1-(trifluoromethyl)-2,2,2-trifluoroethyl, 1-(trifluoromethyl)-1 ,2,2,2- tetrafluoroethyl, 1-fluorobutyl, (R)-i-fluorobutyl, (S)-i-fluorobutyl, 2-fluorobutyl, (R)-2- fluorobutyl, (S)-2-fluorobutyl, 3-fluorobutyl, (R)-3-fluorobutyl, (S)-3-fluorobutyl, 4- fluorobutyl, 1 ,1-difluorobutyl, 2,2-difluorobutyl, 3,3-difluorobutyl, 4,4-difluorobutyl, 4,4,4- trifluorobutyl and the like.

Ci-Cβ-Fluoroalkyl (= fluorinated d-Cε-alkyl) is a straight-chain or branched alkyl group having 1 to 6 carbon atoms (as mentioned above), where at least one of the hydrogen atoms, e.g. 1 , 2, 3, 4 or 5 hydrogen atoms in these groups are replaced by fluorine atoms. Examples are, apart those listed above for Ci-C4-fluoroalkyl, 1-fluoropentyl, (R)-i-fluoropentyl, (S)-i-fluoropentyl, 2-fluoropentyl, (R)-2-fluoropentyl, (S)-2- fluoropentyl, 3-fluoropentyl, (R)-3-fluoropentyl, (S)-3-fluoropentyl, 4-fluoropentyl, (R)-4- fluoropentyl, (S)-4-fluoropentyl, 5-fluoropentyl, (R)-5-fluoropentyl, (S)-5-fluoropentyl, 1- fluorohexyl, (R)-i-fluorohexyl, (S)-i-fluorohexyl, 2-fluorohexyl, (R)-2-fluorohexyl, (S)-2- fluorohexyl, 3-fluorohexyl, (R)-3-fluorohexyl, (S)-3-fluorohexyl, 4-fluorohexyl, (R)-4- fluorohexyl, (S)-4-fluorohexyl, 5-fluorohexyl, (R)-5-fluorohexyl, (S)-5-fluorohexyl, 65- fluorohexyl, (R)-6-fluorohexyl, (S)-6-fluorohexyl, and the like.

C-I-C 4 -AIkOXy is a straight-chain or branched alkyl group having from 1 to 4 carbon atoms, which is bound to the remainder of the molecule via an oxygen atom. Examples

include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, 2-butoxy, isobutoxy and tert-butoxy.

d-Cβ-Alkoxy is a straight-chain or branched alkyl group having from 1 to 6 carbon at- oms, which is bound to the remainder of the molecule via an oxygen atom. Examples include, apart those listed above for Ci-C4-alkoxy, pentyloxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexyloxy, 1 ,1- dimethylpropoxy, 1 ,2-dimethylpropoxy, 1-methylpentyloxy, 2-methylpentyloxy, 3- methylpentyloxy, 4-methylpentyloxy, 1 ,1-dimethylbutyloxy, 1 ,2-dimethylbutyloxy, 1 ,3-dimethylbutyloxy, 2,2-dimethylbutyloxy, 2,3-dimethylbutyloxy, 3,3-dimethylbutyloxy, 1-ethylbutyloxy, 2-ethylbutyloxy, 1 ,1 ,2-trimethylpropoxy, 1 ,2,2-trimethylpropoxy, 1- ethyl-1-methylpropoxy and 1-ethyl-2-methylpropoxy.

Halogenated Ci-C6-alkoxy (which is also termed d-Cβ-haloalkoxy), in particular fluori- nated d-Cβ-alkoxy (also termed Ci-Cβ-fluoroalkoxy) is a straight-chain or branched alkoxy group having from 1 to 6, in particular 1 to 4 carbon atoms (= fluorinated C1-C4- alkoxy), wherein at least one, e.g. 1 , 2, 3, 4 or all of the hydrogen atoms are replaced by a halogen atoms, in particular fluorine atoms such as in fluoromethoxy, difluoro- methoxy, trifluoromethoxy, (R)-i-fluoroethoxy, (S)-i-fluoroethoxy, 2-fluoroethoxy, 1 ,1- difluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 1 ,1 ,2,2-tetrafluoroethoxy,

(R)-i-fluoropropoxy, (S)-i-fluoropropoxy, (R)-2-fluoropropoxy, (S)-2-fluoropropoxy, 3- fluoropropoxy, 1 ,1-difluoropropoxy, 2,2-difluoropropoxy, 3,3-difluoropropoxy, 3,3,3- trifluoropropoxy, (R)-2-fluoro-1-methylethoxy, (S)-2-fluoro-1-methylethoxy, (R)-2,2- difluoro-1-methylethoxy, (S)-2,2-difluoro-1-methylethoxy, (R)-1 ,2-difluoro-1- methylethoxy, (S)-1 ,2-difluoro-1-methylethoxy, (R)-2,2,2-trifluoro-1-methylethoxy, (S)- 2,2,2-trifluoro-1 -methylethoxy, 2-fluoro-1 -(fluoromethyl)ethoxy, 1 -(difluoromethyl)-2,2- difluoroethoxy, (R)-i-fluorobutoxy, (S)-i-fluorobutoxy, 2-fluorobutoxy, 3-fluorobutoxy, 4-fluorobutoxy, 1 ,1-difluorobutoxy, 2,2-difluorobutoxy, 3,3-difluorobutoxy, 4,4- difluorobutoxy, 4,4,4-trifluorobutoxy, and the like.

Ci-C4-Alkylcarbonyl is a straight-chain or branched alkyl group having from 1 to 4 carbon atoms), which is bound to the remainder of the molecule via a carbonyl group (CO), such as in acetyl, propionyl, isopropylcarbonyl, butylcarbonyl, sec-butylcarbonyl, isobutylcarbonyl, and tert-butylcarbonyl.

Ci-Cβ-Alkylcarbonyl is a straight-chain or branched alkyl group having from 1 to 6 carbon atoms, which is bound to the remainder of the molecule via a carbonyl group (CO). Examples include, apart those listed above for Ci-C4-alkylcarbonyl, pentylcar- bonyl, hexylcarbonyl and the constitutional isomers thereof.

Ci-C4-Haloalkylcarbonyl is a straight-chain or branched haloalkyl group having from 1 to 4 carbon atoms as defined above, which is bound to the remainder of the molecule via a carbonyl group (CO)

Ci-Cβ-Haloalkylcarbonyl is a straight-chain or branched haloalkyl group having from 1 to 6 carbon atoms as defined above, which is bound to the remainder of the molecule via a carbonyl group (CO)

Ci-C4-Fluoroalkylcarbonyl is a straight-chain or branched fluoroalkyl group having from 1 to 4 carbon atoms as defined above, which is bound to the remainder of the molecule via a carbonyl group (CO)

Ci-Cβ-fluoroalkylcarbonyl is a straight-chain or branched fluoroalkyl group having from 1 to 6 carbon atoms as defined above, which is bound to the remainder of the molecule via a carbonyl group (CO)

Ci-Cβ-Alkoxycarbonyl is a straight-chain or branched alkoxy group having from 1 to 6, especially 1 to 4 carbon atoms (= Ci-C4-alkoxycarbonyl), in particular 1 to 3 carbon atoms (= d-Cs-alkoxycarbonyl), which is bound to the remainder of the molecule via a carbonyl group (CO), such as in methoxycarbonyl, ethoxycarbonyl, propyloxycarbonyl, and isopropyloxycarbonyl.

Ci-Cβ-Haloalkoxycarbonyl is a straight-chain or branched haloalkoxy group having from 1 to 6, especially 1 to 4 carbon atoms (= Ci-C4-haloalkoxycarbonyl), in particular 1 to 3 carbon atoms (= d-Cs-haloalkoxycarbonyl) as defined above, which is bound to the remainder of the molecule via a carbonyl group (CO).

Ci-Cβ-Fluoroalkoxycarbonyl is a straight-chain or branched fluorooalkoxy group having from 1 to 6, especially 1 to 4 carbon atoms (= Ci-C4-fluoroalkoxycarbonyl), in particular 1 to 3 carbon atoms (= d-Cs-fluoroalkoxycarbonyl) as defined above, which is bound to the remainder of the molecule via a carbonyl group (CO).

C3-C6-Cycloalkyl is a cycloaliphatic radical having from 3 to 6 C atoms, such as cyclo- propyl, cyclobutyl, cyclopentyl and cyclohexyl. The cycloalkyl radical may be unsubsti- tuted or may carry 1 , 2, 3 or 4 C1-C4 alkyl radicals, preferably a methyl radical. If substituted, one alkyl radical is preferably located in the 1 -position of the cycloalkyl radical, such as in 1-methylcyclopropyl or 1-methylcyclobutyl. Likewise, C3-C4-cycloalkyl is a cycloaliphatic radical having from 3 to 4 C atoms, such as cyclopropyl and cyclobutyl.

C3-C7-Cycloalkyl is a cycloaliphatic radical having from 3 to 7 C atoms, such as cyclo- propyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. The cycloalkyl radical may be unsubstituted or may carry 1 , 2, 3 or 4 C1-C4 alkyl radicals, preferably a methyl radi- cal. If substituted, one alkyl radical is preferably located in the 1 -position of the cycloalkyl radical, such as in 1-methylcyclopropyl or 1-methylcyclobutyl.

C3-C6-Halocycloalkyl is a cycloaliphatic radical having from 3 to 6 C atoms, such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, wherein at least one, e.g. 1 , 2, 3, 4 or all of the hydrogen atoms are replaced by a halogen atoms, preferably by fluorine atoms such as in 1-fluorocyclopropyl, 2-fluorocyclopropyl, (S)- and (R)-2,2-difluorocyclopropyl, 1 ,2-difluorocyclopropyl, 2,3-difluorocyclopropyl, penta- fluorocyclopropyl, 1-fluorocyclobutyl, 2-fluorocyclobutyl, 3-fluorocyclobutyl, 2,2- difluorocyclobutyl, 3,3-difluorocyclobutyl, 1 ,2-difluorocyclobutyl, 1 ,3-difluorocyclobutyl, 2,3-difluorocyclobutyl, 2,4-difluorocyclobutyl, or 1 ,2,2-trifluorocyclobutyl.

C3-C7-Halocycloalkyl is a cycloaliphatic radical having from 3 to 7 C atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, wherein at least one, e.g. 1 , 2, 3, 4 or all of the hydrogen atoms are replaced by a halogen atoms, preferably by fluorine atoms. Examples include, apart those listed above for C3-C6- fluorocycloalkyl, 1-fluorocycloheptyl, 2-fluorocycloheptyl, 3-fluorocycloheptyl, 4- fluorocycloheptyl, 1 ,2-difluorocycloheptyl, 1 ,3-difluorocycloheptyl, 1 ,4- difluorocycloheptyl, 2,2-difluorocycloheptyl, 2,3-difluorocycloheptyl, 2,4- difluorocycloheptyl, 2,5-difluorocycloheptyl, 2,6-difluorocycloheptyl, 2,7- difluorocycloheptyl, 3,3-difluorocycloheptyl, 3,4-difluorocycloheptyl, 3,5-difluorocyclo- heptyl, 3,6-difluorocycloheptyl, 4,4-difluorocycloheptyl, 4,5-difluorocycloheptyl, and the like.

C2-C4-Alkenyl is a singly unsaturated hydrocarbon radical having 2, 3 or 4 C-atoms, e.g. vinyl, allyl (2-propen-1-yl), 1-propen-1-yl, 2-propen-2-yl, methallyl (2-methylprop-2- en-1-yl) and the like.

C2-C4-Haloalkenyl is a singly unsaturated hydrocarbon radical having 2, 3 or 4 C- atoms, wherein at least one, e.g. 1 , 2, 3, 4 or all of the hydrogen atoms are replaced by halogen atoms, preferably by fluorine atoms such as in 1-fluorovinyl, 2-fluorovinyl, 2,2-fluorovinyl, 3,3,3-fluoropropenyl, 1 ,1-difluoro-2-propenyl, 1-fluoro-2-propenyl and the like.

Examples for 5- or 6-membered heteroaromatic rings containing one nitrogen atom and optionally 1 , 2 or 3 further nitrogen atoms as ring members, where the heteroaromatic ring is bonded via a carbon atom in α-position to the nitrogen atom, are pyrrol-2- yl, pyrazol-3-yl, pyrazol-5-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, [1 ,2,3]-1 H- triazol-4-yl, [1 ,2,3]-1 H-triazol-5-yl, [1 ,2,3]-2H-triazol-4-yl, [1 ,2,3]-2H-triazol-5-yl, [1 ,2,4]- 1 H-triazol-3-yl, [1 ,2,4]-1 H-triazol-5-yl, [1 ,2,4]-4H-triazol-3-yl, [1 ,2,3,4]-1 H-tetrazol-5-yl, [1 ,2,3,4]-2H-tetrazol-5-yl, pyridin-2-yl, pyridazin-3-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl and triazin-2-yl.

Examples for 5- or 6-membered N- or C-bound heteroaromatic radicals comprising one nitrogen atom and optionally 1 , 2 or 3 further heteroatoms independently selected from O, S and N as ring members are pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imi- dazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5- yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, [1 ,2,3]-1 H-triazol-1 -yl, [1 ,2,3]-1 H-triazol-4-yl, [1 ,2,3]-1 H-triazol-5-yl, [1 ,2,3]-2H-triazol-2- yl, [1 ,2,3]-2H-triazol-4-yl, [1 ,2,3]-2H-triazol-5-yl, [1 ,2,4]-1 H-triazol-1 -yl, [1 ,2,4]-1 H- triazol-3-yl, [1 ,2,4]-1 H-triazol-5-yl, [1 ,2,4]-4H-triazol-3-yl, [1 ,2,4]-4H-triazol-4-yl, oxadia- zolyl, thiadiazolyl, [1 ,2,3,4]-1 H-tetrazol-1-yl, [1 ,2,3,4]-1 H-tetrazol-5-yl, [1 ,2,3,4]-2H- tetrazol-2-yl, [1 ,2,3,4]-2H-tetrazol-5-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin- 3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and tri- azin-2-yl.

Examples for N-bound 3-, 4-, 5-, 6- or 7-membered saturated or unsaturated aromatic or non-aromatic N-heterocyclic rings, which may contain 1 further heteroatom or het- eroatom-containing group selected from the group consisting of O, S, SO, SO2 and N as a ring member, are aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, pyrazolidin-1-yl, imida- zolidin-1-yl, oxazolidin-3-yl, isoxazolidin-2-yl, thiazolidin-3-yl, isothiazolidin-1-yl, [1 ,2,3]- triazolidin-1-yl, [1 ,2,3]-triazolidin-2-yl, [1 ,2,4]-triazolidin-1-yl, [1 ,2,4]-triazolidin-4-yl, piperidin-1-yl, piperazin-1-yl, morpholin-4-yl, thiomorpholin-1-yl, 1-oxothiomorpholin-1- yl, 1 ,1-dioxothiomorpholin-1-yl, azepan-1-yl, azirin-1-yl, azetin-1-yl, pyrrolin-1-yl, pyra- zolin-1-yl, imidazolin-1-yl, oxazolin-3-yl, isoxazolin-2-yl, thiazolin-3-yl, isothiazolin-1-yl, 1 ,2-dihydropyridin-1-yl, 1 ,2,3,4-tetrahydropyridin-1-yl, 1 ,2,5,6-tetrahydropyridin-1-yl, 1 ,2-dihydropyridazin, 1 ,6-dihydropyridazin, 1 ,2,3,4-tetrahydropyridazin-1-yl, 1 ,2,5,6- tetrahydropyridazin-1-yl, 1 ,2-dihydropyrimidin, 1 ,6-dihydropyrimidin, 1 ,2,3,4- tetrahydropyrimidin-1 -yl, 1 ,2,5,6-tetrahydropyrimidin-1 -yl, 1 ,2-dihydropyrazin-1 -yl, 1 ,2,3,4-tetrahydropyrazin-1-yl, 1 ,2,5,6-tetrahydropyrazin-1-yl, pyrrol-1-yl, pyrazol-1-yl, imidazol-1-yl, [1 ,2,3]-1 H-triazol-1 -yl, [1 ,2,3]-2H-triazol-2-yl, [1 ,2,4]-1 H-triazol-1 -yl and [1 ,2,4]-4H-triazol-4-yl.

6-, 7-, 8-, 9-, 10-, 1 1-, 12-, 13- or 14-membered bicyclic or tricyclic rings are preferably 6-, 7-, 8-, 9-, 10-, 1 1 or 12-membered bicyclic rings or are 8-, 9-, 10-, 11 -, 12-, 13- or 14-membered tricyclic rings.

Examples for 6-, 7-, 8-, 9-, 10-, 1 1-, 12-, 13- or 14-membered bicyclic or tricyclic saturated or unsaturated heterocyclic ring containing one nitrogen atom and optionally 1 , 2 or 3 further heteroatoms selected from N, O and S as ring members and optionally carrying 1 , 2 or 3 substituents R 6 include the radicals of the following formulae:

and the like and all stereoisomers thereof, where

Y is CH2, CH (if Y is part of a double bond or is a bridge atom), NH, N (if Y is part of a double bond or is a bridge atom), O or S, preferably NH or O and more preferably NH, with the proviso that Y is not O or S if Y is part of a double bond or a bridge atom; R 6 has one of the general meanings given above or one of the preferred meanings given below; a is 0, 1 , 2 or 3, preferably 0, 1 or 2 and more preferably 0 or 1 ; and # is the attachment point to the remainder of the molecule.

R 6 and/or the attachment point can also be located on a nitrogen atom where they replace the hydrogen atom. R 6 and the attachment point can also be located on the same ring or be switched in the above formulae. However, they are preferably located on different rings and as shown above. Preferably, the attachment point is located on a nitrogen atom. R 6 , if present, is preferably also located on a nitrogen atom.

The remarks made above and in the following with respect to preferred aspects of the invention, e.g. to preferred meanings of the variables X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 61 , R a , R b , R A1 , R A2 , R B , A, G of compound I, to preferred compounds I and to preferred embodiments of the method or the use according to the in- vention, apply in each case on their own or in particular to combinations thereof.

The compounds of the invention are characterized by having one or two substituents R 1 bonded to the condensed heteroaromatic system (to be more precise on the position of groups X 4 , X 5 , X 6 and/or X 7 ) and/or one substituent R 1 bonded to the het- eroaromatic ring G.

In a preferred embodiment of the invention, one or two of groups X 4 , X 5 , X 6 and X 7 are CR 1 . In this case, the heteroaromatic ring G preferably doesn't carry a substituent R 1 . More preferably, only one of groups X 4 , X 5 , X 6 and X 7 is CR 1 . In this case, too, the het- eroaromatic ring G preferably doesn't carry a substituent R 1 .

If one or two of groups X 4 , X 5 , X 6 and X 7 are CR 1 , it is preferred that one or two of the groups X 5 , X 6 and X 7 are CR 1 , X 4 being different from CR 1 . More preferably, X 6 is CR 1 and optionally one of X 5 and X 7 is also CR 1 . If only one of groups X 4 , X 5 , X 6 and X 7 is CR 1 , it is preferred that one of X 5 , X 6 and X 7 is the group CR 1 . More preferably, either X 5 or X 6 is the group CR 1 . In particular, X 6 is the group CR 1 .

In an alternatively preferred embodiment of the invention, the heteroaromatic ring G carres a substituent R 1 . In this case it is preferred that none of X 4 , X 5 , X 6 and X 7 is CR 1 .

In a preferred embodiment of the invention, the mandatorily present nitrogen ring atom of the bicyclic heteroaromatic moiety is in the position of X 1 , X 2 or X 3 . Thus, at least one, preferably one or two of X 1 , X 2 and X 3 are N and X 4 , X 5 , X 6 and X 7 have one of the meanings given above. Preferably, at least one, preferably one or two of X 1 , X 2 and X 3 are N and optionally one of X 4 , X 5 , X 6 and X 7 is N, too.

In one preferred embodiment of the invention, X 1 is N, one of the groups X 2 and X 3 is CR 2 and the other is CR 2 or N and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 . More preferably, X 1 is N, X 2 and X 3 are CR 2 and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 . Even more preferably, X 1 is N, X 4 is CR 1 , CR 3 or N, X 2 and X 3 are CR 2 and X 5 , X 6 and X 7 are CR 1 or CR 3 . In all these combinations of X 1 to X 7 it is preferred that one or two, preferably one of X 4 , X 5 , X 6 and X 7 is CR 1 . Particularly preferably X 6 is CR 1 . Alternatively, none of X 4 , X 5 , X 6 and X 7 is CR 1 and G carries one sub- stituent R 1 and optionally 1 , 2 or 3 substituents R 5 .

In an alternatively preferred embodiment of the invention, X 2 is N, one of the groups X 1 and X 3 is CR 2 and the other is CR 2 or N and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 . More preferably, X 2 is N, X 1 and X 3 are CR 2 and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 . Even more preferably, X 2 is N, X 4 is CR 1 , CR 3 or N, X 1 and X 3 are CR 2 and X 5 , X 6 and X 7 are CR 1 or CR 3 . In all these combinations of X 1 to X 7 it is preferred that one or two, preferably one of X 4 , X 5 , X 6 and X 7 is CR 1 . Particularly preferably X 6 is CR 1 . Alternatively, none of X 4 , X 5 , X 6 and X 7 is CR 1 and G carries one substituent R 1 and optionally 1 , 2 or 3 substituents R 5 .

In an alternatively preferred embodiment of the invention, X 3 is N, one of the groups X 1 and X 2 is CR 2 and the other is CR 2 or N and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 . More preferably, X 3 is N, X 1

and X 2 are CR 2 and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 . Even more preferably, X 3 is N, X 4 is CR 1 , CR 3 or N, X 1 and X 2 are CR 2 and X 5 , X 6 and X 7 are CR 1 or CR 3 . In all these combinations of X 1 to X 7 it is preferred that one or two, preferably one of X 4 , X 5 , X 6 and X 7 is CR 1 . Particularly preferably X 6 is CR 1 . Alternatively, none of X 4 , X 5 , X 6 and X 7 is CR 1 and G carries one substituent R 1 and optionally 1 , 2 or 3 substituents R 5 .

However, the first embodiment, wherein X 1 is N, is more preferred. Accordingly, in a more preferred embodiment of the invention, X 1 is N, one of the groups X 2 and X 3 is CR 2 and the other is CR 2 or N and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 ; even more preferably, X 1 is N, X 2 and X 3 are CR 2 and one of the groups X 4 , X 5 , X 6 and X 7 is CR 1 , CR 3 or N and the other three groups are CR 1 or CR 3 ; and in particular, X 1 is N, X 4 is CR 1 , CR 3 or N, X 2 and X 3 are CR 2 and X 5 , X 6 and X 7 are CR 1 or CR 3 . In all these combinations of X 1 to X 7 it is pre- ferred that one or two, preferably one of X 4 , X 5 , X 6 and X 7 is CR 1 . Particularly preferably X 5 or X 6 is CR 1 . Alternatively, none of X 4 , X 5 , X 6 and X 7 is CR 1 and G carries one substituent R 1 and optionally 1 , 2 or 3 substituents R 5 . Specifically, X 1 is N, X 2 and X 3 are CR 2 , preferably CH, one of X 5 and X 6 is CR 1 and the other is CR 3 , preferably CH, X 4 and X 7 are CR 3 , preferably CH, and G carries no substituent R 1 (and preferably also no substituent R 5 ); or X 1 is N, X 2 and X 3 are CR 2 , preferably CH, X 4 , X 5 and X 7 are

CR 3 , preferably CH, X 6 is CR 3 , preferably C-methoxy, and G carries one substituent R 1 (and preferably no substituent R 5 ).

R 1 , which is mandatorily present either as substituent of the condensed heteroaromatic ring system or as substituent of G (or of both), is preferably a 7-, 8-, 9- or 10- membered bicyclic saturated heterocyclic ring containing one nitrogen atom and optionally 1 , 2 or 3 further heteroatoms, selected from N and O and preferably N, as ring members and optionally carrying 1 , 2 or 3 substituents R 6 which have one of the general meanings given above or one of the preferred meanings given below. More pref- erably, R 1 is a 7-, 8-, 9- or 10-membered bicyclic saturated heterocyclic ring containing one nitrogen atom and optionally 1 or 2 further heteroatoms, selected from N and O and preferably N, as ring members and optionally carrying 1 , 2 or 3 substituents R 6 which have one of the general meanings given above or one of the preferred meanings given below. Even more preferably, R 1 is a 7-, 8-, 9- or 10-membered bicyclic saturated heterocyclic ring containing one nitrogen atom and optionally 1 further het- eroatom, selected from N and O and preferably N, as ring members and optionally carrying 1 , 2 or 3 substituents R 6 which have one of the general meanings given above or one of the preferred meanings given below.

Examples for preferred radicals R 1 have the following formulae

where

Y is CH2, NH or O, preferably NH or O and more preferably NH;

R 6 has one of the general meanings given above or one of the preferred meanings given below; a is 0, 1 , 2 or 3, preferably 0, 1 or 2 and more preferably 0 or 1 ; and # is the attachment point to the remainder of the molecule.

R 6 and/or the attachment point can also be located on a nitrogen atom where they re- place the hydrogen atom. R 6 and the attachment point can also be located on the same ring or be switched in the above formulae. However, they are preferably located on different rings and as shown above. Preferably, the attachment point is located on a nitrogen atom. R 6 , if present, is preferably also located on a nitrogen atom.

More preferably, R 1 is a 7-, 8-, 9- or 10- membered bicyclic saturated heterocyclic ring bound via a nitrogen ring atom, optionally containing one further heteroatom, selected from N and O and preferably N, as ring member and optionally carrying 1 , 2 or 3, preferably 1 or 2 and more preferably 1 substituents R 6 which have one of the general meanings given above or one of the preferred meanings given below.

Even more preferably, R 1 is selected from one of the following formulae

where

Y 1 is CH 2 , O or NR 61 , preferably O or NR 61 and more preferably NR 61 ; R 61 is H or has one of the general meanings of R 6 given above or one of the preferred meanings given below; and # is the attachment point to the remainder of the molecule.

Especially preferably, R 1 is a 7-, 8-, 9- or 10- membered bicyclic saturated heterocyclic ring bound via a nitrogen ring atom, containing one further heteroatom, selected from N and O and preferably N, as ring member and optionally carrying 1 , 2 or 3, preferably 1 or 2 and more preferably 1 substituents R 6 which have one of the general meanings given above or one of the preferred meanings given below.

Particularyl, R 1 is selected from one of the following formulae

where

Y 1 is O or NR 61 and is preferably NR 61 ;

R 61 is H or has one of the general meanings of R 6 given above or one of the preferred meanings given below; and # is the attachment point to the remainder of the molecule.

Specifically, R 1 is selected from the following formulae:

where

R 61 is H or has one of the general meanings of R 6 given above or one of the preferred meanings given below; and # is the attachment point to the remainder of the molecule.

Preferably, R 6 is selected from Ci-C4-alkyl, Ci-C4-fluoroalkyl, Ci-C4-alkoxy, C1-C4- fluoroalkoxy, Ci-C4-alkylcarbonyl, Ci-C4-fluoroalkylcarbonyl, Ci-C4-alkoxycarbonyl, Ci- C4-fluoroalkoxycarbonyl and benzyl. More preferably, R 6 is selected from Ci-C4-alkyl, Ci-C4-fluoroalkyl, Ci-C4-alkoxy, Ci-C4-fluoroalkoxy, Ci-C4-alkylcarbonyl, C1-C4- fluoroalkylcarbonyl, Ci-C4-alkoxycarbonyl and Ci-C4-fluoroalkoxycarbonyl. Even more preferably, R 6 is selected from Ci-C4-alkyl, Ci-C4-fluoroalkyl, Ci-C4-alkoxycarbonyl and Ci-C4-fluoroalkoxycarbonyl and in particular from Ci-C4-alkyl and C1-C4- alkoxycarbonyl. Specifically, R 6 is Ci-C4-alkoxycarbonyl.

Accordingly, R 61 in the above formulae is preferably selected from hydrogen, C1-C4- alkyl, Ci-C4-fluoroalkyl, Ci-C4-alkoxy, Ci-C4-fluoroalkoxy, Ci-C4-alkylcarbonyl, C1-C4- fluoroalkylcarbonyl, Ci-C4-alkoxycarbonyl, Ci-C4-fluoroalkoxycarbonyl and benzyl. More preferably, R 61 is selected from hydrogen, Ci-C4-alkyl, Ci-C4-fluoroalkyl, C1-C4-

alkoxy, Ci-C4-fluoroalkoxy, Ci-C4-alkylcarbonyl, Ci-C4-fluoroalkylcarbonyl, C1-C4- alkoxycarbonyl and Ci-C4-fluoroalkoxycarbonyl. Even more preferably, R 61 is selected from hydrogen, Ci-C4-alkyl, Ci-C4-fluoroalkyl, Ci-C4-alkoxycarbonyl and C1-C4- fluoroalkoxycarbonyl and in particular from hydrogen, Ci-C4-alkyl and C1-C4- alkoxycarbonyl. Specifically, R 61 is hydrogen or Ci-C4-alkoxycarbonyl.

Preferably, one of all radicals R 3 present in the compound I has one of the general meanings given above or one of the preferred meaning given below and the other radicals R 3 present in compound I are all hydrogen; i.e. it is preferred that at most one of X 4 , X 5 , X 6 and X 7 is CR 3 with R 3 being different from hydrogen.

Preferably, each R 3 is independently selected from hydrogen, halogen, Ci-C4-alkyl, Ci- C4-fluoroalkyl, Ci-C4-alkoxy and Ci-C4-fluoroalkoxy, and specifically from hydrogen and Ci-C 4 -alkoxy. It is preferred that at most one of X 4 , X 5 , X 6 and X 7 is CR 3 with R 3 being different from hydrogen. If one or two of X 4 , X 5 , X 6 and X 7 is CR 1 , R 3 is specifically hydrogen.

If none X 4 , X 5 , X 6 and X 7 of is CR 1 , it is preferred that one R 3 is different from hydrogen.

Preferably, each R 2 is independently selected from hydrogen, halogen, Ci-C4-alkyl and Ci-C4-fluoroalkyl. It is preferred that at most one of X 1 , X 2 and X 3 is CR 2 with R 2 being different from hydrogen. Accordingly, in a preferred embodiment one of groups X 1 , X 2 and X 3 is N, one of groups X 1 , X 2 and X 3 is CH and one of groups X 1 , X 2 and X 3 is CR 2 , where R 2 has one of the meanings given above. Specifically, all radicals R 2 are hydrogen.

The heteroaromatic group G is preferably a 6-membered heteroaromatic ring having 1 , 2 or 3, preferably 1 or 2 nitrogen ring atoms and is bonded in α-position to one of these nitrogen atoms. Preferably G is selected from pyridin-2-yl, pyrazin-2-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyridazin-3-yl and triazin-2-yl, which may carry 1 , 2, or 3 substituents R 5 or which may carry 1 or 2 substituents R 5 and one substituent R 1 , where each R 5 independently has one of the general meanings given above or one of the preferred meanings given below and R 1 has one of the general or preferred meanings given above.

More preferably, G is selected from pyridin-2-yl and pyrazin-2-yl, which may carry 1 , 2, or 3 substituents R 5 or which may carry 1 or 2 substituents R 5 and one substituent R 1 , where each R 5 independently has one of the general meanings given above or one of the preferred meanings given below and R 1 has one of the general or preferred mean-

ings given above. Specifically, G is pyrazin-2-yl which may carry 1 , 2, or 3 substituents R 5 or which may carry 1 or 2 substituents R 5 and one substituent R 1 , where each R 5 independently has one of the general meanings given above or one of the preferred meanings given below and R 1 has one of the general or preferred meanings given above.

If G is substituted, it carries preferably only one substituent selected from R 5 and R 1 . Preferably, G is substituted by R 1 only in case that none of X 4 , X 5 , X 6 and X 7 is CR 1 .

Preferred substituents R 5 are selected from halogen, Ci-C4-alkyl, Ci-C4-fluoroalkyl, Ci- C4-alkoxy, Ci-C4-fluoroalkoxy and a group NR a R b , where R a and R b have one of the meanings given above. When R 5 represents a group NR a R b , it is preferred that R a and R b , together with the nitrogen atom to which they are bonded, form a 3-, 4-, 5- or 6- membered N-bound saturated heterocyclic ring which may contain a further heteroa- torn as ring member selected from N and O, such as in aziridin-1-yl, azetidin-1-yl, pyr- rolidin-1-yl, pyrazolidin-1-yl, imidazolidin-1-yl, oxazolidin-3-yl, isoxazolidin-2-yl, [1 ,2,3]- triazolidin-1-yl, [1 ,2,3]-triazolidin-2-yl, [1 ,2,4]-triazolidin-1-yl, [1 ,2,4]-triazolidin-4-yl, piperidin-1-yl, piperazin-1-yl and morpholin-4-yl. Specifically, R 5 is Ci-C4-fluoroalkyl and more specifically CF3.

Preferably, G is unsubstituted if one or two of X 4 , X 5 , X 6 and X 7 are CR 1 ; and carries one substituent R 1 and no substituent R 5 if none of X 4 , X 5 , X 6 and X 7 is CR 1 . In the latter case, R 1 is preferably bound on the 6-position, relative to the 1 -position of the nitrogen ring atom and to the 2-position of the attachment point of G to the group NR 4 .

In group A, R A1 and R A2 are preferably selected from hydrogen, Ci-C2-alkyl, C1-C2- fluoroalkyl, NH2 and OH, more preferably from hydrogen, Ci-C2-alkyl and C1-C2- fluoroalkyl and are specifically both H.

In group A, R B is preferably selected from hydrogen, methyl and ethyl and more preferably from hydrogen and methyl. Specifically, R B is hydrogen.

A is preferably selected from CH2, NH or NCH3 and more preferably from NH or NCH3. Specifically, A is NH.

R 4 is preferably selected from hydrogen, methyl and ethyl and more preferably from hydrogen and methyl. Specifically, R 4 is hydrogen.

Particularly preferred compounds are compounds of formula I, the stereoisomers,

prodrugs, tautomers and/or physiologically tolerated acid addition salts thereof, wherein

A is selected from the group consisting of Chb, NH and NCH3, and is preferably NH;

X 1 is N;

X 2 and X 3 are independently of each CR 2 ;

X 4 is selected from the CR 3 and N, and is preferably CR 3 ;

X 5 , X 6 and X 7 are independently of each other selected from the group consisting of

CR 1 , CR 3 ;

with the proviso that only one of X 5 , X 6 and X 7 is CR 1 , it being preferred that X 6 is CR 1 and X 5 and X 7 are CR 3 or that X 5 is CR 1 and X 6 and X 7 are CR 3 ;

G is a 6-membered heteroaromatic ring selected from pyridin-2-yl, pyrazin-2-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyridazin-3-yl and triazin-2-yl, which may carry 1 , 2, or 3 substituents R 5 ;

R 1 is a 7-, 8-, 9- or 10- membered bicyclic saturated heterocyclic ring bound via a nitrogen ring atom, optionally containing one further heteroatom selected from N and O as ring member and optionally carrying 1 , 2 or 3 substituents R 6 ;

each R 2 is independently selected from the group consisting of hydrogen, OH, halogen, CN, Ci-Cβ-alkyl, d-Cβ-haloalkyl and NR a R b and is preferably hydrogen;

one R 3 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, C1-C4- fluoroalkyl, Ci-C4-alkoxy and Ci-C4-fluoroalkoxy and preferably from hydrogen, Ci-C4-alkoxy and Ci-C4-fluoroalkoxy and the other radicals R 3 are hydrogen;

R 4 is selected from the group consisting of hydrogen, methyl and ethyl, preferably hydrogen and methyl and is specifically hydrogen;

R 5 and R 7 , independently of each other and independently of each occurrence, have one of the meanings given here for R 3 and are preferably hydrogen and R 5 is preferably also CF3;

R 6 is selected from hydrogen, Ci-C4-alkoxycarbonyl and Ci-C4-fluoroalkoxycarbonyl; and

R a and R b are independently of each other selected from the group consisting of hydrogen, Ci-Cβ-alkyl, Ci-C4-haloalkyl and Ci-C4-alkoxy; or R a and R b form, together with the nitrogen atom to which they are bonded, a 3-, 4-, 5- or 6-membered saturated or N-heterocyclic ring, which may contain 1 further heteroatom selected from the group consisting of O and N as a ring member.

Alternatively, particularly preferred compounds are compounds of formula I, the stereoisomers, prodrugs, tautomers and/or physiologically tolerated acid addition salts thereof, wherein

A is selected from the group consisting of Chb, NH and NCH3, and is preferably NH;

X 1 is N;

X 2 and X 3 are independently of each other CR 2 ;

X 4 is selected from the CR 3 and N, and is preferably CR 3 ;

X 5 , X 6 and X 7 are independently of each other CR 3 ;

G is a 6-membered heteroaromatic ring selected from pyridin-2-yl, pyrazin-2-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyridazin-3-yl and triazin-2-yl, which carries one radical R 1 and which may further carry 1 or 2 substituents R 5 ;

R 1 is a 7-, 8-, 9- or 10- membered bicyclic saturated heterocyclic ring bound via a nitrogen ring atom, optionally containing one further heteroatom selected from N and O as ring member and optionally carrying 1 , 2 or 3 substituents R 6 ;

each R 2 is independently selected from the group consisting of hydrogen, OH, halo- gen, CN, Ci-Cβ-alkyl, d-Cβ-haloalkyl and NR a R b and is preferably hydrogen;

one R 3 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, C1-C4- fluoroalkyl, Ci-C4-alkoxy and Ci-C4-fluoroalkoxy and preferably from hydrogen, Ci-C4-alkoxy and Ci-C4-fluoroalkoxy and the other radicals R 3 are hydrogen;

R 4 is selected from the group consisting of hydrogen, methyl and ethyl, preferably hydrogen and methyl and is specifically hydrogen;

R 5 and R 7 , independently of each other and independently of each occurrence, have one of the meanings given here for R 3 and are preferably hydrogen;

R 6 is selected from hydrogen, Ci-C4-alkoxycarbonyl and Ci-C4-fluoroalkoxycarbonyl; and

R a and R b are independently of each other selected from the group consisting of hydrogen, Ci-Cβ-alkyl, Ci-C4-haloalkyl and Ci-C4-alkoxy; or R a and R b form, together with the nitrogen atom to which they are bonded, a 3-, 4-, 5- or 6-membered saturated or N-heterocyclic ring, which may contain 1 further heteroatom selected from the group consisting of O and N as a ring member.

Specifically preferred compounds I are those of formulae 1.1 to 1.26, the stereoisomers, prodrugs, tautomers and/or physiologically tolerated acid addition salts thereof, wherein R 1 and R 3 have the above-defined general or preferred meanings. Particularly preferred meanings of R 1 and R 3 in compounds of formula I and specifically in compounds of formulae 1.1 to 1.26 are as defined below.

1.1 I.2 I.3 1.4

I 13 I 14 I 15 I 16

The pyrazine or pyridine substituents G in compounds 1.1 to 1.12 may also carry a CF3 substituent.

Preferred groups R 1 in compounds I and specifically in compounds of formulae 1.1 to 1.26 are selected from the radicals of the following formulae:

m

aa cc dd ff

gg hh kk

mm nn oo PP qq rr

ss uu

wherein R 61 is H or has one of the preferred meanings given for R 6 . "Normal" bonds in positions where they replace wedge or dotted bonds of neighbouring radicals symbolize all possible stereoisomers and mixtures of the respective stereoisomers.

Examples of preferred compounds which are represented by the formulae 1.1 to 1.26 are listed in following tables 1 to 17724. In the tables, the position of R 3 is characterized as follows:

Table 1

Compounds of the formula 1.1 in which R 1 is a group of formula a and R 61 is selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, meth- oxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl,n-butoxycarbonyl, sec-butoxycarbonyl, isobutoxycarbonyl and tert-butoxycarbonyl

Table 2

Compounds of the formula 1.1 in which R 1 is a group of formula b and R 61 has one of the meanings given in table 1 Table 3

Compounds of the formula 1.1 in which R 1 is a group of formula c and R 61 has one of the meanings given in table 1

Table 4

Compounds of the formula 1.1 in which R 1 is a group of formula d and R 61 has one of the meanings given in table 1

Table 5

Compounds of the formula 1.1 in which R 1 is a group of formula e and R 61 has one of the meanings given in table 1

Table 6 Compounds of the formula 1.1 in which R 1 is a group of formula f and R 61 has one of the meanings given in table 1

Table 7

Compounds of the formula 1.1 in which R 1 is a group of formula g and R 61 has one of the meanings given in table 1 Table 8

Compounds of the formula 1.1 in which R 1 is a group of formula h and R 61 has one of the meanings given in table 1

Table 9

Compounds of the formula 1.1 in which R 1 is a group of formula i and R 61 has one of the meanings given in table 1

Table 10

Compounds of the formula 1.1 in which R 1 is a group of formula j and R 61 has one of the meanings given in table 1

Table 11 Compounds of the formula 1.1 in which R 1 is a group of formula k and R 61 has one of the meanings given in table 1

Table 12

Compounds of the formula 1.1 in which R 1 is a group of formula I and R 61 has one of the meanings given in table 1

Table 13 Compounds of the formula 1.1 in which R 1 is a group of formula m and R 61 has one of the meanings given in table 1

Table 14

Compounds of the formula 1.1 in which R 1 is a group of formula n and R 61 has one of the meanings given in table 1 Table 15

Compounds of the formula 1.1 in which R 1 is a group of formula o and R 61 has one of the meanings given in table 1

Table 16

Compounds of the formula 1.1 in which R 1 is a group of formula p and R 61 has one of the meanings given in table 1

Table 17

Compounds of the formula 1.1 in which R 1 is a group of formula q and R 61 has one of the meanings given in table 1

Table 18 Compounds of the formula 1.1 in which R 1 is a group of formula r and R 61 has one of the meanings given in table 1

Table 19

Compounds of the formula 1.1 in which R 1 is a group of formula s and R 61 has one of the meanings given in table 1 Table 20

Compounds of the formula 1.1 in which R 1 is a group of formula t and R 61 has one of the meanings given in table 1

Table 21

Compounds of the formula 1.1 in which R 1 is a group of formula u and R 61 has one of the meanings given in table 1

Table 22

Compounds of the formula 1.1 in which R 1 is a group of formula aa

Table 23

Compounds of the formula 1.1 in which R 1 is a group of formula bb Table 24

Compounds of the formula 1.1 in which R 1 is a group of formula cc

Table 25

Compounds of the formula 1.1 in which R 1 is a group of formula dd

Table 26

Compounds of the formula 1.1 in which R 1 is a group of formula ee

Table 27

Compounds of the formula 1.1 in which R 1 is a group of formula ff Table 28

Compounds of the formula 1.1 in which R 1 is a group of formula gg

Table 29

Compounds of the formula 1.1 in which R 1 is a group of formula hh

Table 30 Compounds of the formula 1.1 in which R 1 is a group of formula ii

Table 31

Compounds of the formula 1.1 in which R 1 is a group of formula jj

Table 32

Compounds of the formula 1.1 in which R 1 is a group of formula kk Table 33

Compounds of the formula 1.1 in which R 1 is a group of formula Il

Table 34

Compounds of the formula 1.1 in which R 1 is a group of formula mm

Table 35 Compounds of the formula 1.1 in which R 1 is a group of formula nn

Table 36

Compounds of the formula 1.1 in which R 1 is a group of formula oo

Table 37

Compounds of the formula 1.1 in which R 1 is a group of formula pp Table 38

Compounds of the formula 1.1 in which R 1 is a group of formula qq

Table 39

Compounds of the formula 1.1 in which R 1 is a group of formula rr

Table 40 Compounds of the formula 1.1 in which R 1 is a group of formula ss

Table 41

Compounds of the formula 1.1 in which R 1 is a group of formula tt

Table 42

Compounds of the formula 1.1 in which R 1 is a group of formula uu Tables 43 to 84

Compounds of the formula 1.2 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42

Tables 85 to 126

Compounds of the formula 1.3 in which the combination of R 1 and R 61 is as defined in

tables 1 to 21 or in which R 1 is as defined in tables 22 to 42

Tables 127 to 168

Compounds of the formula 1.4 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 Tables 169 to 210

Compounds of the formula 1.5 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42

Tables 21 1 to 252

Compounds of the formula 1.6 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42

Tables 253 to 294

Compounds of the formula 1.7 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42

Tables 295 to 336 Compounds of the formula 1.8 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42

Tables 337 to 378

Compounds of the formula 1.9 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 Tables 379 to 420

Compounds of the formula 1.10 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42

Tables 421 to 462

Compounds of the formula 1.11 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42

Tables 463 to 504

Compounds of the formula 1.12 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42

Tables 505 to 546 Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is H

Tables 547 to 588

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 5-methyl Tables 589 to 630

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 6-methyl

Tables 631 to 672

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in

tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 7-methyl

Tables 673 to 714

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 8-methyl Tables 715 to 756

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 5-trifluoromethyl

Tables 757 to 798

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 6-trifluoromethyl

Tables 799 to 840

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 7-trifluoromethyl

Tables 841 to 882 Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 8-trifluoromethyl

Tables 883 to 924

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 5-methoxy Tables 925 to 966

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 6-methoxy

Tables 967 to 1008

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 7-methoxy

Tables 1009 to 1050

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 8-methoxy

Tables 1051 to 1092 Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 5- trifluoromethoxy

Tables 1093 to 1 134

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 6- trifluoromethoxy

Tables 1135 to 1 176

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 7-

trifluoromethoxy Tables 1177 to 1218

Compounds of the formula 1.13 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 8- trifluoromethoxy Tables 1219 to 2436

Compounds of the formula 1.14 in which the combination of R 1 , R 61 and R 3 is as defined in tables 1 to 1218 Tables 2437 to 3654 Compounds of the formula 1.15 in which the combination of R 1 , R 61 and R 3 is as defined in tables 1 to 1218 Tables 3655 to 4872

Compounds of the formula 1.16 in which the combination of R 1 , R 61 and R 3 is as defined in tables 1 to 1218 Tables 4873 to 6090

Compounds of the formula 1.17 in which the combination of R 1 , R 61 and R 3 is as defined in tables 1 to 1218 Tables 6091 to 6132 Compounds of the formula 1.18 in which the combination of R 1 , R 61 and R 3 is as de- fined in tables 1 to 1218 Tables 6133 to 7350

Compounds of the formula 1.19 in which the combination of R 1 , R 61 and R 3 is as defined in tables 1 to 1218 Tables 7351 to 8568 Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is H Tables 8569 to 8610

Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 6-methyl Tables 8611 to 8652

Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 7-methyl Tables 8653 to 8694 Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 8-methyl Tables 8695 to 8736

Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 6-trifluoromethyl Tables 8737 to 8778

Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 7-trifluoromethyl

Tables 8779 to 8820

Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 8-trifluoromethyl

Tables 8821 to 8862

Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 6-methoxy

Tables 8863 to 8904 Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 7-methoxy

Tables 8905 to 8946

Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 8-methoxy Tables 8947 to 8988

Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 6- trifluoromethoxy

Tables 8989 to 9030 Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 7- trifluoromethoxy

Tables 9031 to 9072

Compounds of the formula 1.20 in which the combination of R 1 and R 61 is as defined in tables 1 to 21 or in which R 1 is as defined in tables 22 to 42 and R 3 is 8- trifluoromethoxy

Tables 9073 to 10794

Compounds of the formula 1.21 in which the combination of R 1 , R 61 and R 3 is as defined in tables 7351 to 9072 Tables 10795 to 12516

Compounds of the formula 1.22 in which the combination of R 1 , R 61 and R 3 is as defined in tables 7351 to 9072

Tables 12517 to 12558

Compounds of the formula 1.23 in which the combination of R 1 , R 61 and R 3 is as de- fined in tables 7351 to 9072

Tables 12559 to 14280

Compounds of the formula 1.24 in which the combination of R 1 , R 61 and R 3 is as defined in tables 7351 to 9072

Tables 14281 to 16002

Compounds of the formula 1.25 in which the combination of R 1 , R 61 and R 3 is as defined in tables 7351 to 9072 Tables 16003 to 17724

Compounds of the formula 1.26 in which the combination of R 1 , R 61 and R 3 is as de- fined in tables 7351 to 9072

Among the above compounds of formulae 1.1 to 1.26 preference is given to compounds of formulae 1.1 , I.2, 1.9, 1.10, 1.13, 1.14, 1.15, 1.17 and 1.18. More preference is given to compounds of formulae 1.2, 1.10, 1.13, 1.17 and 1.18. Particular preference is given to compounds of formulae 1.2, 1.10, 1.13 and 1.17.

The compounds of the present invention can be prepared by analogy to routine techniques a skilled person is familiar with. In particular, the compounds of the formula I can be prepared according to the following schemes, wherein the variables, if not stated otherwise, are as defined above:

Scheme 1 :

I

(X 4 ', X 5 ', X 6 ' and X 7 ' are N or CR 3 , where at least one of X 4 ', X 5 ', X 6 ' and X 7 ' is CH; R 1 ' is a group R 1 bonded via a nitrogen atom to the hydrogen atom and Z is halogen)

For synthesizing compounds of formula I wherein A is NR B , the amine 1 can be acy- lated by reaction with an acyl azide 2 (prepared by reaction of the corresponding acyl halide with a metal azide salt according to standard methods of organic chemistry) to give disubstituted ureas of general formula 3. The reaction is carried out in the pres-

ence of a suitable solvent such as toluene or N,N-dimethylformamide. The reaction is usually carried out at temperatures of from 20 to 120 ° C. Other conditions for describing this transformation (known as the Curtius rearrangement) are described in the following articles: Journal of Organic Chemistry, 1986, 51 , 3007 & 5123; Journal of Organic Chemistry, 1987, 52, 4875; Tetrahedron Letters, 1984, 25, 3515; and Organic Reactions, 1947, 3, 337.

Substitution of Z can then be accomplished by reaction of 3 with a bi- or tricyclic amine R 1 '-H to give substituted products of general formula I wherein one or two of X 4 , X 5 , X 6 and X 7 are CR 1 . The substitution may be conducted with a base (e.g. NaH or K2CO3) or via a palladium-mediated coupling using a catalyst such as Pd2(DBA)3 in the presence of a ligand such as 1 ,1'-bis(diphenylphosphino)ferrocene. The same product may also be obtained by a 2-step procedure where a suitably mono-protected amine is reacted and then deprotected (e.g. an N-BOC derivative which is deprotected using HCI or TFA).

Disubstituted urea compounds of the general formula I, i.e. compounds of formula I wherein A is NR B , can also be prepared according to the route depicted in scheme 2.

Scheme 2:

I

(X 4 ', X 5 ', X 6 ' and X 7 ' are N or CR 3 , where at least one of X 4 ', X 5 ', X 6 ' and X 7 ' is CH; R 1 ' is a group R 1 bonded via a nitrogen atom to the hydrogen atom and Z is halogen)

The amine 1 can be acylated by reaction with an isocyanate 4 to give disubstituted ureas of general formula 3. The reaction is carried out in the presence of a suitable

solvent such as toluene or N,N-dimethylformamide. The reaction is usually carried out at temperatures of from 20 - 12O 0 C.

Substitution of Z can then be accomplished as described for scheme 1.

Disubstituted urea compounds of the general formula I, i.e. compounds of formula I wherein A is NR B , can also be prepared according to the route depicted in scheme 3.

Scheme 3:

(X 4 ', X 5 ', X 6 ' and X 7 ' are N or CR 3 , where at least one of X 4 ', X 5 ', X 6 ' and X 7 ' is CH; R 1 ' is a group R 1 bonded via a nitrogen atom to the hydrogen atom and Z is halogen)

The amine 1 can be converted to the trichloroacetamide 5 by reaction with tri- chloroacetyl chloride The reaction is carried out in the presence of a suitable solvent such as toluene or N,N-dimethylformamide. The reaction is usually carried out at temperatures of from 20 - 12O 0 C. The trichloroacetamide 5 can be reacted with an amine 6 to give disubstituted ureas of general formula 3.

Substitution of Z can then be accomplished as described for scheme 1.

Amide analogs of the general formula I, i.e. compounds of formula I wherein A is Chb, can be prepared according to the route depicted in scheme 4.

Scheme 4:

(X 4 ', X 5 ', X 6 ' and X 7 ' are N or CR 3 , where at least one of X 4 ', X 5 ', X 6 ' and X 7 ' is CH; R 1 ' is a group R 1 bonded via a nitrogen atom to the hydrogen atom and Z is halogen)

The carboxylic acid 7 can be converted into the amide 8 by reaction with an amine 6 using standard amide formation conditions familiar to those skilled in the art. The reaction is carried out in the presence of a suitable solvent such dimethylacetamide, N, N- dimethylformamide or THF. The reaction is usually carried out at temperatures of from 20 to 12O 0 C. Coupling reagents such as HOBT or carbonyl diimidazole are employed.

Substitution of Z can then be accomplished as described for scheme 1.

The synthesis of compounds I in which none of groups X 4 , X 5 , X 6 and X 7 is CR 1 can be accomplished by omitting the last step in the above reaction sequences or by using as starting materials amines 1 or carboxylic acids 7 which do not carry a group Z and wherein none of X 4 , X 5 , X 6 and X 7 is CR 1 . Instead, the group G in compounds 2, 4 and 6 carries a radical R 1 .

If not indicated otherwise, the above-described reactions are generally carried out in a solvent at temperatures between room temperature and the boiling temperature of the solvent employed. Alternatively, the activation energy which is required for the reaction can be introduced into the reaction mixture using microwaves, something which has proved to be of value, in particular, in the case of the reactions catalyzed by transition metals (with regard to reactions using microwaves, see Tetrahedron 2001 , 57, p. 9199 ff. p. 9225 ff. and also, in a general manner, "Microwaves in Organic Synthesis", Andre Loupy (Ed.), Wiley-VCH 2002.

The acid addition salts of compounds I are prepared in a customary manner by mixing the free base with a corresponding acid, where appropriate in solution in an organic solvent, for example a lower alcohol, such as methanol, ethanol or propanol, an ether, such as methyl tert -butyl ether or diisopropyl ether, a ketone, such as acetone or methyl ethyl ketone, or an ester, such as ethyl acetate.

The present invention further relates to a pharmaceutical composition comprising at least one compound I, a stereoisomer, prodrug, tautomer and/or physiologically tolerated acid addition salt thereof and optionally at least one physiologically acceptable carrier and/or auxiliary substance.

The invention also relates to the use of the compound I or of a stereoisomer, prodrug, tautomer or physiologically tolerated acid addition salt thereof for the preparation of a medicament for the treatment of a disorder susceptible to the treatment with a com- pound that modulates, preferably inhibits, the activity of glycogen synthase kinase 3β.

Furthermore, the invention relates to a method for treating a medical disorder susceptible to treatment with a compound that modulates glycogen synthase kinase 3β activity, said method comprising administering an effective amount of at least one com- pound I or of a stereoisomer, prodrug, tautomer or physiologically tolerated acid addition salt thereof or of a pharmaceutical composition as defined above to a subject in need thereof.

The compounds of the formula I according to the present invention, as well as the stereoisomers, the tautomers, the prodrugs and physiologically tolerated acid addition salts thereof, are capable of modulating the activity on glycogen synthase kinase 3β. In particular, the compounds of the formula I, as well as the stereoisomers, the tautomers, the prodrugs and physiologically tolerated acid addition salts thereof, have an inhibitory activity on glycogen synthase kinase 3β. Amongst the compounds of the formula I those are preferred which achieve effective inhibition at low concentrations. In particular, compounds of the formula I are preferred which inhibit glycogen synthase kinase 3β at a level of IC50 < 1 μMol, more preferably at a level of IC50 < O.,5 μMol, particularly preferably at a level of IC50 < 0.2 μMol and most preferably at a level of IC50 < 0.1 μMol.

Therefore the compounds of the formula I according to the present invention, their stereoisomers, tautomers, their prodrugs and their physiologically tolerated acid addition salts are useful for the treatment of a medical disorder susceptible to treatment with a compound that modulates glycogen synthase kinase 3β activity. As mentioned above, diseases caused by abnormal GSK-3β activity and which thus can be treated by supplying the compound of the formula I, a steroisomer, tautomer, prodrug and/or a physiologically tolerated acid addition salt thereof, include in particular neurodegenerative diseases such as Alzheimer's disease. In addition, the compounds of the present invention are also useful for treatment of other neurodegenerative diseases such as

Parkinson's disease, tauopathies (e.g. fro ntotemporo parietal dementia, corticobasal degeneration, Pick's disease, progressive supranuclear palsy, argyrophilic grain disease) and other dementia including vascular dementia; acute stroke and others traumatic injuries; cerebrovascular accidents (e.g. age related macular degeneration); brain and spinal cord trauma; peripheral neuropathies; bipolar disorders, retinopathies and glaucoma. In addition, the compounds of the present invention are also useful for treatment of schizophrenia.

Diseases which can be treated by supplying the compound of the formula I, a steroi- somer, tautomer, prodrug and/or a physiologically tolerated acid addition salt thereof, include furthermore inflammatory diseases, such as rheumatoid arthritis and osteoarthritis.

Within the meaning of the invention, a treatment also includes a preventive treatment (prophylaxis), in particular as relapse prophylaxis or phase prophylaxis, as well as the treatment of acute or chronic signs, symptoms and/or malfunctions. The treatment can be orientated symptomatically, for example as the suppression of symptoms. It can be effected over a short period, be orientated over the medium term or can be a long-term treatment, for example within the context of a maintenance therapy.

Within the context of the treatment, the use according to the invention of the compounds of the formula I involves a method. In this method, an effective quantity of one or more compounds I, a steroisomer, tautomer, prodrug or physiologically tolerable acid addition salt thereof, as a rule formulated in accordance with pharmaceutical and veterinary practice, is administered to the individual to be treated, preferably a mammal, in particular a human being, productive animal or domestic animal. Whether such a treatment is indicated, and in which form it is to take place, depends on the individual case and is subject to medical assessment (diagnosis) which takes into consideration signs, symptoms and/or malfunctions which are present, the risks of developing par- ticular signs, symptoms and/or malfunctions, and other factors.

As a rule, the treatment is effected by means of single or repeated daily administration, where appropriate together, or alternating, with other active compounds or active compound-containing preparations such that a daily dose of preferably from about 0.1 to 1000 mg/kg of bodyweight, in the case of oral administration, or of from about 0.1 to 100 mg/kg of bodyweight, in the case of parenteral administration, is supplied to an individual to be treated.

The invention also relates to pharmaceutical compositions for treating an individual,

preferably a mammal, in particular a human being, productive animal or domestic animal. Thus, the compounds according to the invention are customarily administered in the form of pharmaceutical compositions which comprise a pharmaceutically acceptable excipient together with at least one compound according to the invention and, where appropriate, other active compounds. These compositions can, for example, be administered orally, rectally, transdermally, subcutaneously, intravenously, intramuscularly or intranasally.

Examples of suitable pharmaceutical formulations are solid medicinal forms, such as powders, granules, tablets, in particular film tablets, lozenges, sachets, cachets, sugar- coated tablets, capsules, such as hard gelatin capsules and soft gelatin capsules, suppositories or vaginal medicinal forms, semisolid medicinal forms, such as ointments, creams, hydrogels, pastes or plasters, and also liquid medicinal forms, such as solutions, emulsions, in particular oil-in-water emulsions, suspensions, for example lotions, injection preparations and infusion preparations, and eyedrops and eardrops. Implanted release devices can also be used for administering inhibitors according to the invention. In addition, it is also possible to use liposomes or microspheres.

When producing the pharmaceutical compositions, the compounds according to the invention are optionally mixed or diluted with one or more excipients. Excipients can be solid, semisolid or liquid materials which serve as vehicles, carriers or medium for the active compound.

Suitable excipients are listed in the specialist medicinal monographs. In addition, the formulations can comprise pharmaceutically acceptable carriers or customary auxiliary substances, such as glidants; wetting agents; emulsifying and suspending agents; preservatives; antioxidants; antiirritants; chelating agents; coating auxiliaries; emulsion stabilizers; film formers; gel formers; odor masking agents; taste corrigents; resin; hy- drocolloids; solvents; solubilizers; neutralizing agents; diffusion accelerators; pigments; quaternary ammonium compounds; refatting and overfatting agents; raw materials for ointments, creams or oils; silicone derivatives; spreading auxiliaries; stabilizers; steri- lants; suppository bases; tablet auxiliaries, such as binders, fillers, glidants, disinte- grants or coatings; propellants; drying agents; opacifiers; thickeners; waxes; plasticiz- ers and white mineral oils. A formulation in this regard is based on specialist knowl- edge as described, for example, in Fiedler, H. P., Lexikon der Hilfsstoffe fur Pharmazie, Kosmetik und angrenzende Gebiete [Encyclopedia of auxiliary substances for pharmacy, cosmetics and related fields], 4 th edition, Aulendorf: ECV-Editio-Kantor-Verlag, 1996.

The following examples serve to explain the invention without limiting it.

Examples

The compounds were either characterized via proton-NMR in dβ-dimethylsulfoxide or d-chloroform on a 400 MHz or 500 MHz NMR instrument (Bruker AVANCE), or by mass spectrometry, generally recorded via HPLC-MS in a fast gradient on C18- material (electrospray-ionisation (ESI) mode), or melting point.

The magnetic nuclear resonance spectral properties (NMR) refer to the chemical shifts (δ) expressed in parts per million (ppm). The relative area of the shifts in the 1 H-NMR spectrum corresponds to the number of hydrogen atoms for a particular functional type in the molecule. The nature of the shift, as regards multiplicity, is indicated as singlet (s), broad singlet (s. br.), doublet (d), broad doublet (d br.), triplet (t), broad trip- let (t br.), quartet (q), quintet (quint.) and multiplet (m).

I. Preparation Examples

Example 1 (3aR,6aS)-Tert-butyl 5-(4-(3-pyrazin-2-ylureido)quinolin-7-yl)-hexahydropyrrolo[3 ,4- c]pyrrole-2(1 H)-carboxylate

A solution of sodium tert-butoxide (98 mg, 1 ,017 mmol) and (3aR,6aS)-tert-butyl hexa- hydropyrrolo[3,4-c]pyrrole-2(1 H)-carboxylate (95 mg, 0.436 mmol) in THF (3 ml.) was stirred under nitrogen. To this was added 1 ,1 '-bis(diphenylphosphino)ferrocene (25 mg, 0.05 mmol), Pd 2 (DBA) 3 (12 mg, 0.02 mmol) and 1-(7-bromoquinolin-4-yl)-3- (pyrazin-2-yl)urea (100 mg, 0.291 mmol). The mixture was then heated at reflux for 12 h before partitioning between CH 2 CI 2 and water. The mixture was filtered through Celite and the organic phase was separated. The water phase was extracted twice with CH2CI2 and the combined extracts dried (Na 2 SO 4 ), filtered and concentrated in vacuo to provide the crude material, which was purified by flash chromatography to give the title compound (127 mg, 83%) as a white solid.

1 H-NMR (DMSO, 400 MHz) δ 1.40 (s, 9H), 3.05 (s, 2H), 3.23 (s, 2H), 3.32 (m, 2H), 3.65 (m, 4H), 6.86 (s, 1 H), 7.20 (d, 1 H), 7.92 (d, 1 H), 8.00 (d, 1 H), 8.33 (s, 1 H), 8.43 (s, 1 H), 8.56 (d, 1 H), 9.09 (s, 1 H), 10.20 (m, 2H). MS (APCI+) m/z 476.3 (M+H + , 100%).

Example 2 1-(7-((3aR,6aS)-Hexahydropyrrolo[3,4-c]pyrrol-2(1 H)-yl)quinolin-4-yl)-3-(pyrazin-2-

yl)urea

A solution of (3aR,6aS)-tert-butyl 5-(4-(3-pyrazin-2-ylureido)quinolin-7-yl)-hexahydro pyrrolo[3,4-c]pyrrole-2(1 H)-carboxylate (54 mg, 0.1 1 mmol) in hydrochloric acid (4M in dioxane, 0.5 ml) was stirred at 0 0 C and allowed to reach temperature over 1 h with further stirring continued for 16 h. After concentration, the product was washed with EtOAc and dried in vacuo to give the title compound (50 mg, 100%) as a yellow solid. The product was characterised as the HCI salt. MS (APCI+) m/z 376.2 (M+H + , 100%).

Example 3

(3aR,6aS)-tert-butyl 5-(6-(3-(7-methoxyquinolin-4-yl)ureido)pyrazin-2-yl)-hexahyd ro- pyrrolo[3,4-c]pyrrole-2(1 H)-ca rboxylate

The compound was prepared by the method described for Example 1 using 1-(6- bromopyrazin-2-yl)-3-(7-methoxyquinolin-4-yl)urea and (3aR,6aS)-tert-butyl hexahy- dropyrrolo[3,4-c]pyrrole-2(1 H)-carboxylate as starting compounds and was obtained as a white solid (96 mg, 65%).

1 H-NMR (DMSO, 400 MHz) δ 1.40 (s, 9H), 3.05 (s, 2H), 3.18 (s, 2H), 3.32 (m, 2H), 3.55 (m, 2H), 3.70 (m, 2H), 3.95 (s, 3H), 7.32 (d, 1 H), 7.38 (s, 1 H), 7.65 (s, 1 H), 8.10 (m, 2H), 8.41 (s, 1 H), 8.69 (d, 1 H), 9.65 (s, 1 H), 9.75 (s, 1 H). MS (APCI+) m/z 506.3 (M+H + , 100%).

Example 4

1-(6-((3aR,6aS)-Hexahydropyrrolo[3,4-c]pyrrol-2(1 H)-yl)pyrazin-2-yl)-3-(7-methoxy- quinolin-4-yl)urea

The compound was prepared by the method described for Example 2 using (3aR,6aS)-tert-butyl 5-(6-(3-(7-methoxyquinolin-4-yl)ureido)pyrazin-2-yl)- hexahydro-pyrrolo[3,4-c]pyrrole-2(1 H)-carboxylate as starting compound and was obtained as a yellow solid (72 mg, 100%). The product was characterised as the HCI salt. 1 H-NMR (DMSO, 400 MHz) δ 3.15 (m, 4H), 3.18 (s, 2H), 3.5 - 3.7 (m, 6H), 4.02 (s, 3H), 7.50 (s, 1 H), 7.61 (d, 1 H), 7.77 (s, 1 H), 8.53 (s, 1 H), 8.61 (d, 1 H), 8.78 (d, 1 H), 8.92 (m, 2H), 10.40 (s, 1 H), 10.96 (s, 1 H). MS (APCI+) m/z 406.2 (M+H + , 30%).

Example 5

(1 S,4S)-Tert-butyl 5-(4-(3-pyrazin-2-ylureido)quinolin-7-yl)-2,5-diaza bicyclo [2.2.1]-

heptane-2-carboxylate

The compound was prepared by the method described for Example 1 using 1-(7- bromoquinolin-4-yl)-3-(pyrazin-2-yl)urea and (1S,4S)-tert-butyl 2,5-diazabicyclo[2.2.1]- heptane-2-carboxylate as starting compounds. MS (APCI+) m/z 462.3 (M+H + , 100%).

Example 6

Tert-butyl 5-(4-(3-pyrazin-2-ylureido)quinolin-7-yl)hexahydropyrrolo [3,4-b]pyrrole- 1 (2H)-carboxylate

The compound was prepared by the method described for Example 1 using 1-(7- bromoquinolin-4-yl)-3-(pyrazin-2-yl)urea and tert-butyl hexahydropyrrolo[2,3-c]pyrrole- 1 (2H)-carboxylate as starting compounds. MS (APCI+) m/z 476.1 (M+H + ), 419.1 (M-tBu +H + , 100%).

Example 7 1-(7-((1 S,4S)-2,5-Diazabicyclo[2.2.1]heptan-2-yl)quinolin-4-yl)-3-(p yrazin-2-yl)urea

The compound was prepared by the method described for Example 2 using (1 S,4S)- tert-butyl 5-[4-(3-pyrazin-2-yl-ureido)-quinolin-7-yl]- 2,5-diazabicyclo[2.2.1]heptane-2- carboxylate from example 5 as starting compound. MS (APCI+) m/z 362.2 (M+H + ).

Example 8

1-(6-(Dihydro-1 H-furo[3,4-c]pyrrol-5(3H,6H,6aH)-yl)quinolin-4-yl)-3-(pyrazi n-2-yl)urea

The compound was prepared by the method described for Example 1 using hexahy- dro-furo[3,4-c]pyrrole and 1-(6-bromoquinolin-4-yl)-3-(pyrazin-2-yl)urea as starting compounds.

MS (APCI+) m/z 377.2 (M+H + ).

Example 9

1-(6-(Dihydro-1 H-furo[3,4-c]pyrrol-5(3H,6H,6aH)-yl)pyridin-2-yl)-3-(7-metho xyquinolin- 4-yl)urea

The compound was prepared by the method described for Example 1. MS (APCI+) m/z 406.1 (M+H + ).

Example 10

1-(6-((1 S,4S)-2-Oxa-5-azabicyclo[2.2.1]heptan-5-yl)pyridin-2-yl)-3-( 7-methoxyquinolin-

4-yl)urea

The compound was prepared by the method described for Example 1. MS (APCI+) m/z 392.2 (M+H + ).

Example 1 1

(1 S,4S)-Tert-butyl 5-(4-(3-pyrazin-2-ylureido)quinolin-6-yl)-2,5- diazabicyclo[2.2.1]heptane-2-carboxylate

The compound was prepared by the method described for Example 1. MS (APCI+) m/z 462.2 (M+H + ).

Example 12

1-(7-(Hexahydropyrrolo[3,4-b]pyrrol-5(1 H)-yl)quinolin-4-yl)-3-(pyrazin-2-yl)urea

The compound was prepared by the method described for Example 2 starting from tert-butyl 5-(4-(3-pyrazin-2-ylureido)quinolin-7-yl)hexahydropyrrolo [3,4-b]pyrrole- 1 (2H)-carboxylate from example 6. MS (APCI+) m/z 376.2 (M+H + ).

II. Biological tests

The compounds according to the invention exhibit very good affinities for GSK-3 (< 1 μM, frequently < 100 nM) and exhibited good selectivity against multiple kinase targets.

Methods - biochemical hGSK-3beta assay

Compounds were tested for their ability to inhibit human Glycogen Synthase Kinase-3 beta (hGSK-3β) to phosphorylate biotin-YRRAAVPPSPSLSRHSSPHQ(pS)EDEEE. Compounds were incubated with O.δμCi 33P-ATP, 10 μM ATP, 0.0125U hGSK-3β (Upstate cell signaling solutions) and 1 μM substrate (biotin- YRRAAVPPSPSLSRHSSPHQ(pS)EDEEE) in 50 mM HEPES, 10 mM MgCI 2 , 100 mM Na 3 VO 4 , 1 mM DTT, 0.0075% Triton, 2% DMSO (total volume 50 μl_) for 30 minutes at room temperature. The incubation was stopped by addition of an equal volume of 100 mM EDTA, 4M NaCI. 80 μl_ of this mixture was added to streptavid in-coated Flash- plates (PerkinElmer). Following a wash step, 33P incorporation was quantified on a

MicroBeta microplate liquid scintillation counter (PerkinElmer). ICso's were determined by fitting a sigmoidal dose-response curve to the counts obtained at the different concentrations in GraphPad Prism.

Methods - β-catenin reporter-gene assay

Compounds were tested for their ability to modulate β-catenin-modulated gene transcription in a LEF/TCF(T-cell factor) reporter gene assay. SY-SY5Y human neuroblastoma cells were transiently transfected with 80 ng/well TOPFLASH plasmid (Upstate cell signaling solutions) containing two sets of three copies of the TCF binding site upstream of the Thymidine Kinase minimal promoter and firefly Luciferase open reading frame or with 80 ng/well FOPFLASH plasmid (Upstate cell signaling solutions) containing three copies of a mutated TCF binding site upstream of the Thymidine Kinase minimal promoter and firefly Luciferase open reading frame. In addition all cells were transiently transfected with the 20 ng/well pRL-TK plasmid (Promega) containing the herpes simplex virus thymidine kinase promoter to provide low to moderate levels of Renilla Luciferase expression. Transfection medium was exchanged for serum-free medium containing the test substance and incubated for 24h at 37degreedC. The incubation was stopped and quantified using the Dual GIo Luciferase Assay (Promega) as indicated and quantified on a Pherastar reader (BMG).

Firefly Luciferase activity was normalised for Renilla Luciferase activity per well. Subsequently, the normalised TOPFLASH response was compared to the normalised FOPFLASH response, thus giving the LEF/TCF specific signal. The maximal response is the maximal ratio between the normalised TOPFLASH and FOPFLASH signals. Sigmoidal dose-response curves were fitted using Graphpad Prism.

The results of the binding tests are given in the table below.

GSK-3β IC 50 : + > 10μM

++ from 10OnM to 10μM

+++ <100 nM