Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
4-PHENOXYMETHYL-SUBSTITUTED MILBEMYCINS
Document Type and Number:
WIPO Patent Application WO/2000/042047
Kind Code:
A1
Abstract:
The invention relates to compounds of general formula (I), wherein R¿1?, R¿2?, R¿3?, R¿4?, R¿5?, R¿6?, R¿7? and n have the significances given in claim 1, and optionally the enantiomers thereof. The active ingredients have advantageous pesticidal properties. They are especially suitable for the control of pests in agriculture and in storage.

Inventors:
FROELICH OLIVIER (FR)
ZEHNTNER ANDREAS (CH)
GOEBEL THOMAS (DE)
Application Number:
PCT/EP2000/000244
Publication Date:
July 20, 2000
Filing Date:
January 13, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NOVARTIS AG (CH)
NOVARTIS ERFIND VERWALT GMBH (AT)
FROELICH OLIVIER (FR)
ZEHNTNER ANDREAS (CH)
GOEBEL THOMAS (DE)
International Classes:
A61K31/70; C07D493/22; C07H17/08; C07H19/01; (IPC1-7): C07D493/22; A61K31/70; C07H17/08; C07H19/01
Foreign References:
US4457920A1984-07-03
Other References:
DATABASE WPI Derwent World Patents Index; AN 1990-063696, XP002135633
Attorney, Agent or Firm:
Becker, Konrad (Corporate Intellectual Property Patent & Trademark Dept, Basel, CH)
Download PDF:
Claims:
What we claim is
1. Compounds of formula wherein R, signifies H, halogen, OH, C,C6alkyl, C,C6alkoxy, phenoxy, C,C6alkyl carbonyloxy, C1C6alkoxycarbonyloxy or aLoleandrosylaLoleandrosyloxy; R2 signifies <BR> <BR> <BR> C,C6alkyl, C2C6alkenyl, C2C6alkynyl, C,C6alkoxyC,C6alkyl, C,C6alkylthioC,C6<BR> <BR> <BR> <BR> <BR> alkyl, C3C7cycloalkyl, C3C7cycloalkeny or a 3to 7membered heterocyclic ring; R3 signifies methyl or ethyl; either R4 signifies H and R5 signifies OH, C,C6alkoxy, tri (CiC6 alkyl) silyloxy, C,C6alkylcarbonyloxy or C,C6alkoxycarbonyloxy; or R4 and R5 together signify 0, NH or NOR7; R6 signifies H, halogen, NO2, C,C6alkyl, C,C6haloalkyl, CiCe alkoxy, ClC6haloalkoxy, CN or unsubstituted or monoto pentasubstituted phenoxy, whereby the substituents are selected from the group comprising halogen, N02, C1C6alkyl, C1C6haloalkyl, C1C6alkoxy, C1C6haloalkoxy and CN; R7 signifies H, C1C6a, kyl or benzyl; XY signifies CH2CH2, CH2CH (OH), CH=CH, CH2C (=O) or CH (OH) CH2; and n signifies 1,2,3,4 or 5.
2. Process for the preparation of compounds of formula I according to claim 1, whereby a compound of formula which is known or may be produced analogously to corresponding known compounds, in which Ri, R2, R3, R4, R5 and XY are defined as for formula I and R8 is OH, or optionally an enantiomer thereof, is reacted with a compound of formula which is known or may be prepared analogously to corresponding known compounds, and wherein R6 and n have the significances given for formula 1, in the presence of a hydro extracting agent and optionally a basic catalyst.
3. Composition for the control of pests, which contains as active ingredient at least one compound of formula I according to claim 1, in addition to carriers and/or dispersants.
4. Use of compounds of formula I according to claim 1 in the control of pests.
5. Process for controlling pests, whereby a pesticidally active amount of at least one compound of formula I according to claim 1 is used on the pests or on the locus thereof.
6. Use of a compound of formula I according to claim 1 in a process for controlling parasites on warmblooded animals.
7. Use of a compound of formula I according to claim 1 in the preparation of a pharmaceutical composition against parasites.
Description:
4-Phenoxymethyl-substituted milbemycins The present invention relates to new 4-phenoxymethyl-substituted milbemycins of formula 1, their preparation and their use in the control of pests, and also pesticides which contain at least one of these compounds.

Milbemycin derivatives having pesticidal action are described for example in EP-B1-0,274,871. However, the active ingredients specifically disclosed therein cannot always fulfil the requirements regarding strength of activity and activity spectrum. There is therefore a need for active ingredients with improved pesticidal properties. It has now been found that 4-phenoxymethyl-substituted milbemycin derivatives have outstanding pesticidal properties.

The new compounds correspond to the general formula wherein R, signifies H, halogen, OH, C,-C6-alkyl, C1-C6-alkoxy, phenoxy, C,-C6-alkyl- carbonyloxy, C1-C6-alkoxycarbonyloxy or a-L-oleandrosyl-a-L-oleandrosyloxy; R2 signifies <BR> <BR> C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy-C1-C6-alkyl, C,-C6-alkylthio-C,-C6-<BR> <BR> alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkeny or a 3-to 7-membered heterocyclic ring; R3 signifies methyl or ethyl; either R4 signifies H and R5 signifies OH, C1-C6-alkoxy, tri (Ci-C6- alkyl) silyloxy, C1-C6-alkylcarbonyloxy or C1-C6-alkoxycarbonyloxy; or R4 and R5 together signify O, NH or NOR7; R6 signifies H, halogen, N02, C1-C6-alkyl, Ci-Ce-haioaiky), Ci-Ce- alkoxy, C1-C6-haloalkoxy, CN or unsubstituted or mono-to penta-substituted phenoxy, whereby the substituents are selected from the group comprising halogen, NO2, C1-C6-alkyl, C,-C6-haloalkyl, C1-C6-alkoxy, C,-C6-haloalkoxy and CN; R7 signifies H, C1-C6-alkyl or benzyl; X-Y signifies CH2CH2, CH2CH (OH), CH=CH, CH2C (=O) or CH (OH) CH2; and n signifies 1,2,3,4 or 5.

The alkyl groups present in the definitions of the substituents may be straight-chained or branched and are for example methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl, pentyl and hexyl, as well as the branched isomers thereof. The alkoxy, alkenyl and alkynyl radicals are derived from the said alkyl radicals. The alkenyl and alkynyl groups may be mono-or repeatedly unsaturated.

As a rule, halogen signifies fluorine, chlorine, bromine or iodine. The same applies to halogen in combination with other significances, such as halogenalkyl or halogenphenyl.

Halogenalkyl groups preferably have a chain length of 1 to 6 carbon atoms. Halogenalkyl is for example fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1.1- difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl and preferably trichloromethyl, difluorochloromethyl, difluoromethyl, trifluoromethyl and dichlorofluoromethyl.

Alkoxy groups preferably have a chain length of 1 to 6 carbon atoms. Alkoxy is for example methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec.-butoxy and tert.-butoxy, as well as the isomers pentyloxy and hexyloxy; preferably methoxy and ethoxy. Alkylcarbonyl is preferably acetyl or propionyl. Alkoxycarbonyl signifies for example methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, iso-propoxycarbonyl, n-butoxycarbonyl, iso-butoxy- carbonyl, sec.-butoxycarbonyl or tert.-butoxycarbonyl; preferably methoxycarbonyl or ethoxycarbonyl. Halogenalkoxy groups preferably have a chain length of 1 to 6 carbon atoms. Halogenalkoxy is e. g. fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2- trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy and preferably difluoromethoxy, 2-chloroethoxy and trifluoromethoxy.

Alkylthio groups preferably have a chain length of 1 to 6 carbon atoms. Alkylthio is for example methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec.- butylthio or tert.-butylthio, preferably methylthio and ethylthio.

Heterocyclic rings may be unsaturated, partly saturated or saturated, and they contain 1 to 3 hetero atoms selected from the group comprising O, S or N.

Preferred embodiments within the scope of the invention are: (1) A compound of formula 1, wherein R, is H, halogen, OH, C1-C6-alkyl, C1-C6-alkoxy or a-L- oleandrosyl-a-L-oleandrosyloxy, more preferably H, halogen or OH, most preferably H; (2) A compound of formula 1, wherein R2 is C,-C4-alkyl, C2-C4-alkenyl, C3-C6-cycloalkyl or C3-C6-cycloalkenyl, more preferably C,-C4-alkyl or C3-C6-cycloalkyl, most preferably methyl or ethyl; (3) A compound of formula 1, wherein R3 is methyl; (4) A compound of formula 1, wherein R4 is H and R5 is OH, C,-C6-alkoxy or C,-C6-alkyl- carbonyloxy, more preferably OH or C1-C4-aikoxy, most preferably OH; (5) A compound of formula 1, wherein R6 is H, halogen, N02, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy, CN or phenoxy, more preferably H, halogen, N02, C,-C4- alkyl, C,-C4-haloalkyl or CN, most preferably H, halogen, N02 or CN; (6) A compound of formula 1, wherein X-Y is CH2CH2 or CH=CH; (7) A compound of formula 1, wherein R, is H, halogen, OH, C1-C6-alkyl, Ct-C6-alkoxy or a-L- oleandrosyl-oc-L-oleandrosyloxy; R2 is C-C4-alkyl, C2-C4-alkenyl, C3-C6-cycloalkyl or C3-C6- cycloalkenyl; R3 is methyl; R4 is H; R5 is OH, d-Ce-atkoxy or C1-C6-alkylcarbonyloxy; R6 is H, halogen, NO2, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy, CN or phenoxy; and X-Y CH2CH2 or CH=CH; (8) A compound of formula 1, wherein R1 is H, halogen or OH, R2 is Cl-C4-alkyl or C3-C6- cycloalkyl; R3 is methyl, R4 is H; R5 is OH or C,-C4-alkoxy; R6 is H, halogen, NO2, Ci-C4- alkyl, C1-C4-haloalkyl or CN; and X-Y is CH2CH2.

(9) A compound of formula 1, wherein R, is H; R2 is methyl or ethyl; R3 is methyl; R4 is H; R5 is OH; R6 is H, halogen, N02 or CN; and X-Y is CH2CH2.

(10) A compound of formula 1, wherein R, is H; R2 is ethyl; R3 is methyl; R4 is H; R5 is OH; R6 is N02; and X-Y is CH2CH2.

A further object of the invention is the process for the preparation of the compounds of formula I and optionally the enantiomers thereof, for example characterised in that a compound of formula which is known or may be produced analogously to corresponding known compounds, in which Ri, R2, R3, R4, R5 and X-Y are defined as for formula I and Re is OH, or optionally an enantiomer thereof, is reacted with a compound of formula which is known or may be produced analogously to corresponding known compounds, in which R6 and n are defined as for formula 1, in the presence of a hydro-extracting agent and optionally in the presence of a basic catalyst, and if desired, a compound of formula I which is obtainable by this process or in another way, or an enantiomer thereof, may be converted into another compound of formula I or an enantiomer thereof, a mixture of enantiomers which is obtainable by this process is separated and the desired enantiomer isolated.

Suitable hydro-extracting agents are e. g. di (cyclohexyl) carbodiimide or diethyl-azo- dicarboxylate (DEAD), diethyl-azodicarboxylate being preferred.

Suitable bases for facilitating the reaction are e. g. basic heterocycles or phosphines.

Pyridine, 4- (N, N-dimethylamino) pyridine, quinuclidine, 1,5-diazabicyclo [5.4.0] undec-5-ene (DBU) and triphenylphosphine may be mentioned by way of example. Triphenylphosphine is preferred.

The reagents may be reacted together as such, i. e. without adding a solvent or diluent, for example in the melt. However, for the most part, it is advantageous to add an inert solvent or diluent or a mixture thereof. Examples of such solvents or diluents that may be mentioned are: aromatic, aliphatic and alicyclic hydrocarbons and halogen-hydrocarbons, such as benzene, toluene, xylene, mesitylene, tetralin, chlorobenzene, dichlorobenzene, bromobenzene, petroleum ether, hexane, cyclohexane, dichloromethane, trichloromethane, tetrachloromethane, dichloroethane, trichloroethene or tetrachloroethene; ethers such as diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tert.-butylmethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, dimethoxydiethyl ether, tetrahydrofuran or dioxane; ketones such as acetone, methyl ethyl ketone or methyl isobutyl ketone; amides such as N, N-dimethyl formamide, N, N-diethyl formamide, N, N-dimethyl acetamide, N-methyl-pyrrolidone or hexamethylphosphoric acid triamide; nitriles such as acetonitrile or propionitrile; and sulphoxides such as dimethyl sulphoxide. Preference is given to aromatic, aliphatic and alicyclic hydrocarbons, especially toluene.

The reaction is advantageously carried out in a temperature range of ca.-20°C to ca. +150° C, preferably from ca.-10°C to ca. +50°C, most preferably from ca.-5°C to ca. +30°C.

In a preferred embodiment, a compound of formula 11 is reacted at 0° to 30°, preferably 20°, in an aromatic hydrocarbon, preferably toluene, with a compound of formula lil.

The compounds I and 11 may be present in the form of one of the possible isomers or as a mixture thereof, e. g. depending on the number of absoute and relative configurations of the asymmetric carbon atoms as pure isomers, such as antipodes and/or diastereoisomers, or as isomeric mixtures, such as enantiomeric mixtures, e. g. racemates, diastereoisomeric mixtures or racemic mixtures; the invention relates to both the pure isomers and all the possible isomeric mixtures, and is to be understood as such hereinbefore and hereinafter, even if stereochemical details are not specifically mentioned in each case.

Depending on the choice of starting materials and procedures, diastereoisomeric mixtures and racemic mixtures of compounds I and 11, which are obtained in accordance with the invention or in another way, may be separated into the pure diastereoisomers or racemates as a result of the physical-chemical differences of the constituents, for example by means of fractional crystallisation, distillation and/or chromatography.

Mixtures of enantiomers that are obtainable accordingly, such as racemates, may be broken down into the optical antipodes by known methods, for example by recrystallisation from an optically active solvent, by chromatography on chiral adsorbents, e. g. high-pressure liquid chromatography (HPLC) on acetyl cellulose, with the assistance of appropriate micro- organisms, by cleavage with specific immobilised enzymes, through the formation of inclusion compounds, e. g. using chiral crown ethers, wherein only one enantiomer is complexe.

According to the invention, apart from isolation of corresponding isomer mixtures, generally known methods of diastereoselective or enantioselective synthesis can also be applied to obtain pure diastereoisomers or enantiomers, e. g. by carrying out the method of the invention using educts with correspondingly suitable stereochemistry.

It is advantageous to isolate or synthesise the biologically more active isomer in each case, e. g. enantiomer or isomer mixture, e. g. enantiomer mixture, if the individual components show differences in biological efficacy.

In the method of the present invention, the starting materials and intermediates used are preferably those that lead to the compounds I described at the beginning as being especially useful.

The invention relates especially to the method of preparation described in the example.

Starting materials and intermediates, which are new and are used according to the invention for the preparation of compounds 1, as well as their usage and process for the preparation thereof, similarly form an object of the invention.

The compounds I according to the invention are notable for their broad activity spectrum and are valable active ingredients for use in pest control, including in particular the control of endo-and ecto-parasites on animals, whilst being well-tolerated by warm-blooded animals, fish and plants. The endo-and ecto-parasites include those of the order Acarina, especially pests from the family Ixodidae, Dermanyssidae, Sarcoptidae and Psoroptidae; the orders Mallophaga, Siphonaptera, Anoplura (e. g. the family Haemotopinidae); the order Diptera especially pests of the families Muscidae, Calliphoridae, Oestridae, Tabanidae, Hippoboscidae and Gastrophilidae.

Compounds I can also be used against hygiene pests, especially of the order Diptera of the families Sarcophagidae, Anophilidae and Culicidae; the orders Orthoptera, Dictyoptera (e. g. the family Blattidae) and Hymenoptera (e. g. the family Formicidae).

Compounds I also have sustainable efficacy on parasitic mites and insects of plants. In the case of spider mites of the order Acarina, they are effective against eggs, nymphs and adults of Tetranychidae (Tetranychus spp. and Panonychus spp.).

They have high activity against sucking insects of the order Homoptera, especially against pests of the families Aphididae, Delphacidae, Cicadellidae, Psyllidae, Loccidae, Diaspididae and Eriophydidae (e. g. rust mite on citrus fruits); the orders Hemiptera, Heteroptera and Thysanoptera, and on the plant-eating insects of the orders Lepidoptera, Coleoptera, Diptera and Orthoptera They are similarly suitable as a soil insecticide against pests in the soil.

The compounds of formula I are therefore effective against all stages of development of sucking insects and eating insects on crops such as cereals, cotton, rice, maize, soya, potatoes, vegetables, fruit, tobacco, hops, citrus, avocados and other crops.

The compounds of formula I are also effective against plant nematodes of the species Meloidogyne, Heterodera, Pratylenchus, Ditylenchus, Radopholus, Rizoglyphus etc.

In addition, the compounds are effective against helminths, in which the endoparasitic nematodes may be the cause of serious diseases of mammals and poultry, e. g. sheep, pigs, goats, cattle, horses, donkeys, dogs, cats, guinea-pigs and exotic birds. Typical nematodes of this indication are: Haemonchus, Trichostrongylus, Ostertagia, Nematodirus, Cooperia, Ascaris, Bunostonum, Oesophagostonum, Charbertia, Trichuris, Strongylus, Trichonema, Dictyocaulus, Capillaria, Heterakis, Toxocara, Ascaridia, Oxyuris, Ancylostoma, Uncinaria, Toxascaris and Parascaris. The particular advantage of the compounds of formula I is their efficacy against those parasites that are resistant towards active ingredients based on benzimidazole.

Certain pests of the species Nematodirus, Cooperia and Oesophagostonum infest the intestinal tract of the host animal, while others of the species Haemonchus and Ostertagia are parasitic in the stomach and those of the species Dictyocaulus are parasitic in the lung tissue. Parasites of the families Filariidae and Setariidae may be found in the internal cell tissue and in the organs, e. g. the heart, the blood vessels, the lymph vessels and the subcutaneous tissue. A particularly notable parasite is the heartworm of the dog, Dirofilaria immitis. The compounds of formula I are highly effective against these parasites.

Furthermore, the compounds of formula I are suitable for the control of human-pathogenic parasites. Of these, typical representatives that appear in the digestive tract are those of the species Ancylostoma, Necator, Ascaris, Strongyloides, Trichinella, Capillaria, Trichuris and Enterobius. The compounds of the present invention are also effective against parasites of the species Wuchereria, Brugia, Onchocerca and Loa from the family of Filariidae, which appear in the blood, in the tissue and in various organs, and also against Dracunculus and parasites of the species Strongyloides and Trichinella, which infect in particular the gastrointestinal tract.

The good pesticidal activity of the compounds of formula I corresponds to a mortality rate of at least 50-60% of the pests mentioned.) In particular, the compounds of formula I are notable for the exceptionally long duration of efficacy.

The activity of the compounds according to the invention and of the compositions containing them against animal pests may be substantially broadened and adapted to the prevailing circumstances by adding other insecticides and/or acaricides. The additives in question may be for example representatives of the following classes of active ingredient: organophosphorus compounds, nitrophenols and derivatives, formamidines, ureas, carbamates, pyrethroids, chlorinated hydrocarbons and Bacillus thuringiensis preparations.

The compounds of formula I are employed in unmodified form or preferably together with the adjuvants conventionally used in the art of formulation and may therefore be processed in a known manner to give, for example, emulsifiable concentrates, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules or microencapsulations in polymeric substances. As with the compositions, the methods of application, such as spraying, atomising, dusting, scattering or pouring, are selected in accordance with the intended objectives and the prevailing circumstances.

The formulation, i. e. the agents, preparations or compositions containing the active ingredient of formula 1, or combinations of these active ingredients with other agrochemical active ingredients, and optionally with a solid or liquid adjuvant, are produced in a manner known per se, for example by intimately mixing or grinding the active ingredients with spreading compositions, for example with solvents, solid carriers, and optionally surface- active compounds (surfactants).

The solvents in question may be: aromatic hydrocarbons, preferably fractions of alkylbenzenes having 8 to 12 carbon atoms, such as xylene mixtures or alkylated naphthalenes, aliphatic or cyclo-aliphatic hydrocarbons, such as cyclohexane, paraffins or tetrahydronaphthalene, alcools, such as ethanol, propanol or butanol, glycols and their ethers and esters, such as propylene glycol, dipropylene glycol ether, ethyl glycol or ethylene glycol monomethyl or ethyl ether, ketones, such as cyclohexanone, isophorone or diacetanol alcool, strong polar solvents, such as N-methyl-2-pyrrolidone, dimethyl sulphoxide or dimethylformamide, or water, vegetable oils, such as rape, castor, coconut, or soybean oil, and also, if appropriate, silicone oils.

The solid carriers used for example for dusts and dispersible powders, are normally natural mineral fillers such as calcite, talcum, kaolin, montmorillonite or attapulgite. In order to improve the physical properties it is also possible to add highly dispersed silicic acid or highly dispersed absorbent polymers. Suitable granulated adsorptive carriers are porous types, for example pumice, broken brick, sepiolite or bentonite, and suitable non-sorbent carriers are calcite or sand. In addition, a great number of pregranulated materials of inorganic or organic nature can be used, e. g. especially dolomite or pulverised plant residues.

Depending on the type of active ingredient of formula I to be formulated, or the combination of these active ingredients with other insecticides or acaricides, suitable surface-active compounds are non-ionic, cationic and/or anionic surfactants having good emulsifying, dispersing and wetting properties. The surfactants are also understood to be surfactant mixtures.

Suitable anionic surfactants can be both so-called water-soluble soaps and water-soluble synthetic surfactant compounds.

Suitable soaps are the alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts of higher fatty acids (C, 0-C22), for example the sodium or potassium salts of oteic or stearic acid, or of natural fatty acid mixtures which can be obtained for example from coconut oil or tallow oil. The fatty acid methyltaurine salts may also be mentioned as surfactants.

More frequently, however, so-called synthetic surfactants are used, especially fatty sulphonates, fatty sulphates, sulphonated benzimidazole derivatives or alkylarylsulphonates.

The fatty sulphonates or sulphates are usually in the form of alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammoniums salts and have an alkyl radical with 8 to 22 carbon atoms, which also includes the alkyl moiety of acyl radicals, for example, the sodium or calcium salt of ligninsulphonic acid, of dodecylsulphate or of a mixture of fatty alcohol sulphates obtained from natural fatty acids. These compounds also comprise the salts of sulphuric acid esters and sulphonic acids of fatty alcohol/ethylene oxide adducts.

The sulphonated benzimidazole derivatives preferably contain 2 sulphonic acid groups and one fatty acid radical containing 8 to 22 carbon atoms. Examples of alkylarylsulphonates are the sodium, calcium or triethanolamine salts of dodecylbenzenesulphonic acid, dibutylnapthalenesulphonic acid, or of a naphthalenesulphonic acid/formaldehyde condensation product. Also suitable are corresponding phosphates, e. g. salts of the phosphoric acid ester of an adduct of p-nonylphenol with 4 to 14 moles of ethylene oxide or phospholipids.

Non-ionic surfactants are preferably polyglycol ether derivatives of aliphatic or cycloaliphatic alcools, or saturated or unsaturated fatty acids and alkylphenols, said derivatives containing 3 to 30 glycol ether groups and 8 to 20 carbon atoms in the (aliphatic) hydrocarbon moiety and 6 to 18 carbon atoms in the alkyl moiety of the alkylphenols.

Further suitable non-ionic surfactants are the water-soluble adducts of polyethylene oxide with polypropylene glycol, ethylenediamine polypropylene glycol and alkylpolypropylene glycol containing 1 to 10 carbon atoms in the alkyl chain, which adducts contain 20 to 250 ethylene glycol ether groups and 10 to 100 propylene glycol ether groups. These compounds usually contain 1 to 5 ethylene glycol units per propylene glycol unit.

Examples of non-ionic surfactants are nonylphenolpolyethoxyethanols, castor oil polyglycol ethers, polypropylene/polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol and octylphenoxypolyethoxyethanol. Also suitable are fatty acid esters of polyoxyethylene sorbitan, such as polyoxyethylene sorbitan trioleate.

Cationic surfactants are preferably quaternary ammonium salts which have as N-substituent at least one C8-C22 alkyl radical and, as further substituents, lower-where appropriate- halogenated alkyl, benzyl or lower hydroxyalkyl radicals. The salts preferably exist as halides, methyl sulphates or ethyl sulphates, preferably as stearyl trimethylammonium chloride or benzyl-di- (2-chloroethyl)-ethylammonium bromide.

The surfactants which are customary in formulation technology are described for example in the following publications: "Mc Cutcheon's Detergents and Emulsifiers Annual", McPublishing Corp., Glen Rock, NJ, USA, 1988", H. Stache,"Tensid-Taschenbuch", 2. edition., C. Hanser Verlag Munich, Vienna 1981.

M. and J. Ash."Encyclopedia of Surfactants", Vol. 1-III, Chemical Publishing Co., New York, 1980-1981.

Preferred application forms for usage on warm-blooded animals in the control of helminths include solutions, emulsions, suspensions (drenches), food additives, powders, tablets including effervescent tables, boli, capsules, micro-capsules and pour-on formulations, whereby the physiological compatibility of the formulation excipients must be taken into consideration.

The binders for tablets and boli may be chemically modified polymeric natural substances that are soluble in water or in alcool, such as starch, cellulose or protein derivatives (e. g. methyl cellulose, carboxymethyl cellulose, ethylhydroxyethyl cellulose, proteins such as zein, gelatin and the like), as well as synthetic polymers, such as polyvinyl alcohol, polyvinyl pyrrolidone etc. The tablets also contain fillers (e. g. starch, microcrystalline cellulose, sugar, lactose etc.), glidants and disintegrants.

If the anthelminthics are present in the form of feed concentrates, then the carriers used are e. g. performance feeds, feed grain or protein concentrates. Such feed concentrates or compositions may contain, apart from the active ingredients, also additives, vitamins, antibiotics, chemotherapeutics or other pesticides, primarily bacteriostats, fungistats, coccidiostats, or even hormone preparations, substances having anabolic action or substances which promote growth, which affect the quality of meat of animals for slaughter or which are beneficial to the organism in another way. If the compositions or the active ingredients of formula I contained therein are added directly to feed or to the drinking troughs, then the formulated feed or drink contains the active ingredients preferably in a concentration of ca. 0.0005 to 0.02 % by weight (5-200 ppm).

Application of the compositions according to the invention to the animals to be treated may take place topically, perorally, parenterally or subcutaneously, the composition being present in the form of solutions, emulsions, suspensions, (drenches), powders, tables, boli, capsules and pour-on formulations.

The compounds of formula I according to the invention may be used alone or in combination with other biocides. They may be combined with pesticides having the same sphere of activity e. g. to increase activity, or with substances having another sphere of activity e. g. to broaden the range of activity. It can also be sensible to add so-called repellents. If the range of activity is to be extended to endoparasites, e. g. wormers, the compounds of formula I are suitably combined with substances having endoparasitic properties. Of course, they can also be used in combination with antibacterial compositions.

Since the compounds of formula I are adulticides, i. e. since they are effective in particular against the adult stage of the target parasites, the addition of pesticides which instead attack the juvenile stages of the parasites may be very advantageous. In this way, the greatest part of those parasites that produce great economic damage will be covered.

Moreover, this action will contribute substantially to avoiding the formation of resistance.

Many combinations may also lead to synergistic effects, i. e. the total amount of active ingredient can be reduced, which is desirable from an ecological point of view. Preferred groups of combination partners and especially preferred combination partners are named in the following, whereby combinations may contain one or more of these partners in addition to a compound of formula 1.

Suitable partners in the mixture may be biocides, e. g. the insecticides and acaricides with a varying mechanism of activity, which are named in the following and have been known to the person skilled in the art for a long time, e. g. chitin synthesis inhibitors, growth regulators; active ingredients which act as juvenile hormones; active ingredients which act as adulticides; broad-band insecticides, broad-band acaricides and nematicides; and also the well known anthelminthics and insect-and/or acarid-deterring substances, said repellents or detachers.

Non-limitative examples of suitable insecticides and acaricides are: (I) Aldicarb; (Xll) Lambda-Cy- (XXIII) Methiocarb; (II) Azinphos-halothrin; (XXIV) Heptenophos; methyl; (XIII) Alpha-cyper (XXV) Imidacloprid; (III) Benfuracarb; methrin; (XXVI) Isoprocarb; (IV) Bifenthrin; (XIV) zeta-Cyper (XXVII) Methamidophos; (V) Buprofezin; methrin; (XXVIII) Methomyl; (Vt) Carbofuran; (XV) Deltamethrin; (XXIX) Mevinphos;- (Vil) Dibutylamino (XVI) Diflubenzuron; (XXX) Parathion; thio; (XVII) Endosulfan; (XXXI) Parathionmethyl; (vil) Cartap; (XVIII) Ethiofencarb; (XXXII) Phosalone; (IX) Chlorfluazuron; (XIX) Fenitrothion; (XXXIII) Pirimicarb; (X) Chlorpyrifos; (XX) Fenobucarb; (XXXIV) Propoxur; (Xl) Cyfluthrin; (XXI) Fenvalerate; (XXXV) Teflubenzuron; (XXII) Formothion; (XXXVI) Terbufos; (XXXVII) Triazamate; (XLII) beta-Cyfluthrin; (XLVII) Pyriproxyfen; (XXXVIII) Abamectin; (XLIII) Silafluofen; (XLVIII) Pyrimidifen; (XXXIX) Fenobucarb; (XLIV) Fenpyroximate; (XLIX) Nitenpyram; (XL) Tebufenozide; (XLV) Pyridaben; (L) NI-25, Acetami- (XLI) Fipronil; (XLVI) Fenazaquin; prid; (Lll) Avermectin B1 ; (Llil) an insect-active extract from a plant; (LIV) a preparation containing insect-active nematodes; (LV) a preparation obtained from Bacillus subtilis; (LVI) a preparation containing insect-active fungi; (LVII) a preparation containing insect-active viruses; (LIX) AC 303 630; (LXXXI) Chloethocarb; (CI) Esfenvalerat; (LX) Acephat; (LXXXII) Chlorethoxyfos; (Cil) Ethion; (LXI) Acrinathrin; (LXXXIII) Chlormephos; (cil) Ethofenprox; (LXII) Alanycarb; (LXXXIV) Cis-Resmethrin; (CIV) Ethoprophos; (LXIII) Alphamethrin; (LXXXV) Clocythrin; (CV) Etrimphos; (LXIV) Amitraz; (LXXXVI) Clofentezin; (CVI) Fenamiphos; (LXV) AZ 60541; (LXXXVII) Cyanophos; (CVII) Fenbutatinoxid; (LXVI) Azinphos A; (LXXXVIII) Cycloprothrin; (CVIII) Fenothiocarb; (LXVII) Azinphos M; (LXXXIX) Cyhexatin; (CIX) Fenpropathrin; (LXVIII) Azocyclotin; (XC) Demeton M; (CX) Fenpyrad; (LXIX) Bendiocarb; (XCI) Demeton S; (CXI) Fenthion; (LXX) Bensultap; (XCII) Demeton-S- (CXII) Fluazinam; (LXXI) Betacyfluthrin; methyl; (CXIII) Flucycloxuron; (LXXII) BPMC; (XCIII) Dichlofenthion; (CXIV) Flucythrinat; (LXXIII) Brofenprox; (XCIV) Dicliphos; (CXV) Flufenoxuron; (LXXIV) Bromophos A; (XCV) Diethion; (CXVI) Flufenprox; (LXXV) Bufencarb; (XCVI) Dimethoat; (CXVII) Fonophos; (LXXVI) Butocarboxin; (XCVII) Dimethylvin- (CXVIII) Fosthiazat; (LXXVII) Butylpyridaben; phos; (CXIX) Fubfenprox; (LXXVIII) Cadusafos; (XCVIII) Dioxathion; (CXX) HCH; (LXXIX) Carbaryl; (XCIX) Edifenphos; (CXXI) Hexaflumuron; (LXXX) Carbophenthion; (C) Emamectin; (CXXII) Hexythiazox; (CXXIII) Iprobenfos;<BR> <BR> <BR> (CXXIV) Isofenphos;<BR> <BR> <BR> (CXXV) Isoxathion;<BR> <BR> <BR> (CXXVI) Ivermectin; (CXXVII) Lambda- cyhalothrin; (CXXVIII) Malathion; (CXXIX) Mecarbam; (CXXX) Mesulfenphos; (CXXXI) Metaldehyd; (CXXXII) Metolcarb; (CXXXIII) Milbemectin; (CXXXIV) Moxidectin; (CXXXV) Naled; (CXXXVI) NC 184; (CXXXVII) Omethoat; (CXXXVIII) Oxamyl; (CXXXIX) Oxydemethon M; (CXL) Oxydeprofos; (CXLI) Permethrin; (CXLII) Phenthoat; (CXLIII) Phorat; (CXLIV) Phosmet; (CXLV) Phoxim; (CXLVI) Pirimiphos M; (CXLVII) Pirimiphos A; (CXLVIII) Promecarb; (CXLIX) Propaphos; (CL) Prothiofos; (CLI) Prothoat; (CLII) Pyrachlophos; (CLIII) Pyradaphent hion; (CLIV) Pyresmethrin; (CLV) Pyrethrum; (CLVI) RH 5992; (CLVII) Salithion; (CLVIII) Sebufos; (CLIX) Sulfotep; (CLX) Sulprofos; (CLXI) Tebufenpyrad; (CLXII) Tebupirimphos; (CLXIII) Tefluthrin; (CLXIV) Temephos; (CLXV) Terbam; (CLXVI) Tetrachlor- vinphos; (CLXVII) Thiafenox; (CLXVIII) Thiodicarb; (CLXIX) Thiofanox; (CLXX) Thionazin; (CLXXI) Thuringiensin; (CLXXII) Tralomethrin; (CLXXIII) Triarthen; (CLXXIV) Triazophos; (CLXXV) Triazuron; (CLXXVI) Trichlorfon; (CLXXVII)Triflumuron; (CLXXVIII) Trimethacarb; (CLXXIX) Vamidothion; (CLXXX) Xylylcarb; <BR> <BR> <BR> (CLXXXI) YI 5301/5302; (CLXXXII) Zetamethrin; (CLXXXIII) DPX-MP062; (CLXXXIV)RH-2485; (CLXXXV)D 2341; (CLXXXVI) XMC (3,5,- Xy-lyl-Methyl carbamat), (CLXXXVII) Lufenuron (CLXXXVlil) Fluazuron (CLXXXIX) Methoprene (CXC) Hydroprene (CXCI) Fenoxycarb (CXCII) Chlorfenapyr or (CXCIII) Spinosad Non-limitative examples of suitable anthelminthics are named in the following, a few representatives have insecticidal and acaricidal activity in addition to the anthelminthic activity, and are partly already in the above list.

(A1) Praziquantel = 2-cyclohexylcarbonyl-4-oxo-1,2,3,6,7,11b-hexahydro-4H-pyrazi no [2,1-a ] isoquinoline (A2) Closantel = 3,5-diiodo-N- [5-chloro-2-methyl-4- (a-cyano-4-chlorobenzyl) phenyl]- salicylamide (A3) Triclabendazole = 5-chloro-6- (2, 3-dichlorophenoxy)-2-methylthio-1 H-benzimidazole (A4) Levamisol = L- (-)-2,3,5,6-tetrahydro-6-phenylimidazo [2,1b] thiazole (A5) Mebendazole = (5-benzoyl-1 H-benzimidazol-2-yl) carbaminic acid methylester (A6) Omphalotin = a macrocyclic fermentation product of the fungus Omphalotus olearius described in WO 97/20857 (A7) Abamectin = avermectin B1 (A8) Ivermectin = 22,23-dihydroavermectin B1 (A9) Moxidectin = 5-O-demethyl-28-deoxy-25- (1, 3-dimethyl-1-butenyl)-6, 28- epoxy-23- (methoxyimino)-milbemycin B (A10) Doramectin = 25-cyclohexyl-5-O-demethyl-25-de (1-methylpropyl)-avermectin A1a (A11) Milbemectin = mixture of milbemycin A3 and milbemycin A4 (A12) Milbemycinoxim = 5-oxim of milbemectin Non-limitative examples of suitable repellents and detachers are: (R1) DEET (N, N-diethyl-m-toluamide) (R2) KBR 3023 N-butyl-2-oxycarbonyl-(2-hydroxy)-piperidine (R3) Cymiazole = The said partners in the mixture are best known to specialists in this field. Most are described in various editions of the Pesticide Manual, The British Crop Protection Council, London, and others in the various editions of The Merck Index, Merck & Co., Inc., Rahway, New Jersy, USA or in patent literature. Therefore, the following listing is restricted to a few places where they may be found by way of example.

(I) 2-Methyl-2- (methylthio) propionaldehyd-O-Methylcarbamoyloxime (Aldicarb), from The Pesticide Manual, 11""Ed. (1997), The British Crop Protection Council, London, page 26; <BR> <BR> <BR> (I I) S- (3, 4-Dihydro-4-oxobenzo (dj- [1,2,3]-triazin-3-ylmethyl) O, O-dimethyl-phosphorodithioate (Azinphos-methyl), from The Pesticide Manua !, 11"'Ed. (1997), The British Crop Protec- tion Council, London, page 67; (III) Ethyl-N- [2,3-dihydro-2,2-dimethylbenzofuran-7-yloxycarbonyl- (methyl) aminothio]-N- isopropyl-ß-alaninate (Benfuracarb), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 96; (IV) 2-Methylbiphenyl-3-ylmethyl-(Z)-(1 RS)-cis-3-(2-chlor-3,3,3-trifluorprop-1-enyl)-2,2- dimethylcyclopropancarboxylate (Bifenthrin), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 118; (V) 2-tert-Butylimino-3-isopropyl-5-phenyl-1,3,5-thiadiazian-4-o ne (Buprofezin), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 157; (VI) 2,3-Dihydro-2,2-dimethylbenzofuran-7-yl-methylcarbamate (Carbofuran), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 186; (VII) 2,3-Dihydro-2, 2-dimethylbenzofuran-7-yl-(dibutylaminothio) methylcarbamate (Carbosulfan), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 188; (VIII) S, S'- (2-Dimethylaminotrimethylene)-bis (thiocarbamate) (Cartap), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 193; (IX) 1- [3, 5-Dichloro-4- (3-chloro-5-trifluoromethyl-2-pyridyloxy) phenyl]-3- (2, 6-difluoro- benzoyl)-urea (Chlorfluazuron), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 213; (X) O, O-Diethyl-0-3,5,6-trichloro-2-pyridyl-phosphorothioate (Chlorpyrifos), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 235; <BR> <BR> <BR> <BR> (XI) (RS)-a-Cyano-4-fluoro-3-phenoxybenzyl- (1 RS, 3RS; 1 RS, 3RS)-3- (2, 2-dichlorovinyl)-2,2- di-methylcyclopropancarboxylate (Cyfluthrin), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 293; (XII) Mixture of (S)-a-Cyano-3-phenoxybenzyl- ()- (1 R, 3R)-3- (2-chloro-3,3,3-trifluoro- propenyl)-2, 2-dimethylcyclopropanecarboxylate and (R)-a-cyano-3-phenoxybenzyl- (Z)- (1 R, 3R)-3- (2-chloro-3,3,3-trifluoropropenyl)-2, 2-dimethylcyclopropanecarboxylate (Lambda-Cyhalothrin), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 300; (XIII) Racemate consisting of (S)-a-cyano-3-phenoxybenzyl- (1 R, 3R)-3- (2, 2-dichlorovinyl)- 2,2-dimethylcyclopropanecarboxylate and (F »-a-cyano-3-phenoxybenzyl-(1 S, 3S)-3-(2,2- dichlorovinyl)-2, 2-dimethylcyclopropanecarboxylate (Alpha-cypermethrin), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 308; (XIV) Mixture of the stereoisomers of (S)-a-cyano-3-phenoxybenzyl (1 RS, 3RS, 1 RS, 3RS)-3- (2,2-dichlorovinyl)-2, 2-dimethylcyclopropanecarboxylate (zeta-Cypermethrin), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 314; (XV) (S)-a-cyano-3-phenoxybenzyl- (1 R, 3R)-3- (2, 2-dibromovinyl)-2, 2-dimethylcyclopropane- carboxylate (Deltamethrin), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 344; (XVI) (4-Chlorophenyl)-3- (2, 6-difluorobenzoyl) urea (Diflubenzuron), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 395; (XVII) 10-trinorborn-5-en-2, 3-ylenbismethylene)-sulphite (Endosulfan), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 459; (XVIII) a-Ethylthio-o-tolyl-methylcarbamate (Ethiofencarb), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 479; (XIX) O, O-Dimethyl-O-4-nitro-m-tolyl-phosphorothioate (Fenitrothion), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 514; (XX) 2-sec-Butylphenyl-methylcarbamate (Fenobucarb), from The Pesticide Manual, 11'"Ed.

(1997), The British Crop Protection Council, London, page 516; (XXI) (RS)-a-Cyano-3-phenoxybenzyl- (RS)-2- (4-chlorophenyl)-3-methylbutyrate (Fenvalerate), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 539; (XXII) S- [Formyl (methyl) carbamoylmethyl]-0, 0-dimethyl-phosphorodithioate (Formothion), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 625; (XXIII) 4-Methylthio-3, 5-xylyl-methylcarbamate (Methiocarb), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 813; (XXIV) 7-Chlorbicyclo [3.2.0] hepta-2,6-dien-6-yl-dimethylphosphate (Heptenophos), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 670; (XXV) 1-(6-Chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylidenami ne (Imidacloprid), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 706; (XXVI) 2-lsopropylphenyl-methylcarbamate (Isoprocarb), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 729; (XXVII) O, S-Dimethyl-phosphoramidothioate (Methamidophos), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 808; (XXVIII) S-Methyl-N- (methylcarbamoyloxy) thioacetimidate (Methomyl), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 815; (XXIX) Methyl-3- (dimethoxyphosphinoyloxy) but-2-enoate (Mevinphos), from The Pesticide Manual, 11 Ih Ed. (1997), The British Crop Protection Council, London, page 844; (XXX) 0, 0-Diethyl-0-4-nitrophenyl-phosphorothioate (Parathion), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 926; (XXXI) 0, O-Dimethyl-0-4-nitrophenyl-phosphorothioate (Parathion-methyl), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 928; (XXXII) S-6-Chloro-2, 3-dihydro-2-oxo-1, 3-benzoxazol-3-ylmethyl-0, O-diethyl-phosphor- dithioate (Phosalone), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 963; (XXXIII) 2-Dimethylamino-5, 6-dimethylpyrimidin-4-yl-dimethylcarbamate (Pirimicarb), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 985; (XXXIV) 2-lsopropoxyphenyl-methylcarbamate (Propoxur), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 1036; (XXXV) 1- (3, 5-Dichloro-2, 4-difluorophenyl)-3- (2, 6-difluorobenzoyl) urea (Teflubenzuron), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 1158; (XXXVI) S-tert-butylthiomethyl-O, O-dimethyl-phosphorodithioate (Terbufos), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 1165; (XXXVII) Ethyl- (3-tert.-butyl-1-dimethylcarbamoyl-1 H-1,2,4-triazol-5-yl-thio)-acetate, (Triazamate), from The Pesticide Manual, 11""Ed. (1997), The British Crop Protection Council, London, page 1224; (XXXVIII) Abamectin, from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 3; (XXXIX) 2-sec-butylphenyl-methylcarbamate (Fenobucarb), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 516; (XL) N-tert.-butyl-/V- (4-ethylbenzoyl)-3, 5-dimethylbenzohydrazide (Tebufenozide), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 1147; <BR> <BR> <BR> <BR> (XLI) ()-5-Amino-1- (2, 6-dichloro-a, a, a-trifluoro-p-tolyl)-4-trifluoromethyl-sulphinylpyrazol-3- carbonitrile (Fipronil), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 545; (XLII) (RS)-a-cyano-4-fluoro-3-phenoxybenzyl (1 RS, 3RS ; 1 RS, 3RS)-3- (2, 2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate (beta-Cyfluthrin), from The Pesticide Manual, 11'hEd.

(1997), The British Crop Protection Council, London, page 295; <BR> <BR> <BR> <BR> (XLIII) (4-Ethoxyphenyl)- [3- (4-fluoro-3-phenoxyphenyl) propyl] (dimethyl) silane (Silafluofen), from The Pesticide Manual, 11""Ed. (1997), The British Crop Protection Council, London, page 1105; <BR> <BR> <BR> <BR> (XLIV) tert.-butyl (E)-a- (1, 3-dimethyl-5-phenoxypyrazol-4-yl-methylenamino-oxy)-p-toluat e (Fenpyroximate), from The Pesticide Manual, 11'"Ed. (1997), The British Crop Protection Council, London, page 530; (XLV) 2-tert.-butyl-5- (4-tert.-butylbenzyithio)-4-chloropyridazin-3 (2-one (Pyridaben), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 1161; (XLVI) 4- [ [4- (1, 1-dimethylphenyl) phenyl] ethoxy]-quinazoline (Fenazaquin), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 507; (XLVII) 4-Phenoxyphenyl- (RS)-2- (pyridyloxy) propyl-ether (Pyriproxyfen), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 1073; (XLVIII) 5-Chloro-N {2- [4- (2-ethoxyethyl)-2, 3-dimethylphenoxy] ethyl}-6-ethylpyrimidin-4- amine (Pyrimidifen), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 1070; (XLIX) (E)-N-(6-chloro-3-pyridylmethyl)-N-ethyl-N-methyl-2-nitrovin ylidenediamine (Nitenpyram), from The Pesticide Manual, 11""Ed. (1997), The British Crop Protection Council, London, page 880; (L) ()-N'- [ (6-chloro-3-pyridyl) methyl]-I-cyano-N'-methylacetamidine (NI-25, Acetamiprid), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 9; (LI) Avermectin Bi, from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 3; (LII) an insect-active extract from a plant, especially (2R, 6aS, 12aS)-1,2,6,6a, 12,12a- hexhydro-2-isopropenyl-8,9-dimethoxy-chromeno [3,4-b] furo [2,3-h] chromen-6-one (Rotenone), from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 1097; and an extract from Azadirachta indica, especially azadirachtin, from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 59; and (LIIl) a preparation which contains insect-active nematodes, preferably Heterorhabditis bacteriophora and Heterorhabditis megidis, from The Pesticide Manual, 11'hEd. (1997), The British Crop Protection Council, London, page 671; Steinernema feltiae, from The Pesticide Manual, 11thEd. (1997), The British Crop Protection Council, London, page 1115 and Steinemema scapterisci, from The Pesticide Manual, 11thEd. (1997), The British Crop Protection Council, London, page 1116; (LIV) a preparation obtainable from Bacillus subtilis, from The Pesticide Manual, 11thEd.

(1997), The British Crop Protection Council, London, page 72; or from a strain of Bacillus thuringiensis with the exception of compounds isolated from GC91 or from NCTC11821; The Pesticide Manual, 11thEd. (1997), The British Crop Protection Council, London, page 73; (LV) a preparation which contains insect-active fungi, preferably Verticillium lecanii, from The Pesticide Manual, 11""Ed. (1997), The British Crop Protection Council, London, page 1266; Beauveria brogniartii, from The Pesticide Manual, 11thEd. (1997), The British Crop Protection Council, London, page 85 and Beauveria bassina, from The Pesticide Manual, 11thEd. (1997), The British Crop Protection Council, London, page 83; (LVI) a preparation which contains insect-active viruses, preferably Neodipridon Sertifer NPV, from The Pesticide Manual, 11thEd. (1997), The British Crop Protection Council, London, page 1342; Mamestra brassicae NPV, from The Pesticide Manual, 11 thEd.

(1997), The British Crop Protection Council, London, page 759 and Cydia pomonella granulosis virus, from The Pesticide Manual, 11 thEd. (1997), The British Crop Protection Council, London, page 291; (CLXXXI) 7-Chloro-2,3,4a,5-tetrahydro-2- [methoxycarbonyl (4-trifluoromethoxyphenyl)- carbamoyl] indole [1,2e] oxazolin-4a-carboxylat e (DPX-MP062, Indoxycarb), from The Pesticide Manual, 11"Ed. (1997), The British Crop Protection Council, London, page 453; (CLXXXII) N-tert.-butyl-N'(3, 5-dimethylbenzoyl)-3-methoxy-2-methylbenzohydrazide (RH- 2485, Methoxyfenozide), from The Pesticide Manual, 1 1thEd. (1997), The British Crop Protection Council, London, page 1094; and (CLXXXIII) (N'[4-methoxy-biphenyl-3-yl]-hydrazinecarboxylic acid isopropyl ester (D 2341), from Brighton Crop Protection Conference, 1996,487-493; (R2) Book of Abstracts, 212th ACS National Meeting Orlando, FL, August 25-29 (1996), AGRO-020. Publisher: American Chemical Society, Washington, D. C. CONEN: 63BFAF.

As a consequence of the above details, a further essential aspect of the present invention relates to combination preparations for the control of parasites on warm-blooded animals, characterised in that they contain, in addition to a compound of formula 1, at least one further active ingredient having the same or different sphere of activity and at least one physiologically acceptable carrier. The present invention is not restricted to two-fold combinations.

As a rule, the anthelminthic compositions according to the invention contain 0.1 to 99 % by weight, especially 0.1 to 95 % by weight of active ingredient of formula 1, la or mixtures thereof, 99.9 to 1 % by weight, especially 99.8 to 5 % by weight of a solid or liquid admixture, including 0 to 25 % by weight, especially 0.1 to 25 % by weight of a surfactant.

The pour-on or spot-on method consists in applying the compound of formula I to a specific location of the skin or fur, advantageously to the neck or backbone of the animal. This takes place e. g. by applying a swab or spray of the pour-on or spot-on formulation to a relatively small area of the fur, from where the active substance is dispersed almost automatically over wide areas of the fur owing to the spreading nature of the components in the formulation and assisted by the animal's movements.

Pour-on or spot-on formulations suitably contain carriers, which promote rapid dispersement over the skin surface or in the coat of the host animal, and are generally regarded as spreading oils. Suitable carriers are e. g. oily solutions; alcoholic and isopropanolic solutions such as solutions of 2-octyldodecanol or oleyl alcohol; solutions in esters of monocarboxylic acids, such as isopropyl myristate, isopropyl palmitate, lauric acid oxalic ester, oleic acid oleyl ester, oleic acid decyl ester, hexyl laurate, oleyl oleate, decyl oleate, capric acid esters of saturated fat alcools of chain length Ciz-Cie; solutions of esters of dicarboxylic acids, such as dibutyl phthalate, diisopropyl isophthalate, adipic acid diisopropyl ester, di-n-butyl adipate or also solutions of esters of aliphatic acids, e. g. glycols. It may be advantageous for a dispersing agent to be addition present, such as one known from the pharmaceutical or cosmetic industry. Examples are 2-pyrrolidone, 2- (N-alkyl) pyrrolidone, acetone, polyethylene glycol and the ethers and esters thereof, propylene glycol or synthetic triglycerides.

The oily solutions include e. g. vegetable oils such as olive oil, groundnut oil, sesame oil, pine oil, linseed oil or castor oil. The vegetable oils may also be present in epoxidised form.

Paraffins and silicone oils may also be used.

A pour-on or spot-on formulation generally contains 1 to 20 % by weight of a compound of formula 1,0.1 to 50 % by weight of dispersing agent and 45 to 98.9 % by weight of solvent.

The pour-on or spot-on method is especially advantageous for use on herd animals such as cattle, horses, sheep or pigs, in which it is difficult or time-consuming to treat all the animals orally or by injection. Because of its simplicity, this method can of course also be used for all other animals, including individual domestic animals or pets, and is greatly favoured by the keepers of the animals, as it can often be carried out without the specialist presence of the veterinarian.

Whereas it is preferred to formulate commercial products as concentrates, the end user will normally use dilute formulations.

Such compositions may also contain further additives, such as stabilisers, anti-foaming agents, viscosity regulators, binding agents or tackifiers, as well as other active ingredients, in order to achieve special effects.

Anthelminthic compositions of this type, which are used by the end user, similarly form a constituent of the present invention.

In each of the processes according to the invention for pest control or in each of the pest control compositions according to the invention, the active ingredients of formula, can be used in all of their steric configurations or in mixtures thereof.

The invention also includes a method of prophylactically protecting warm-blooded animals, especially productive livestock, domestic animals and pets, against parasitic helminths, which is characterised in that the active ingredients of formula I or the active ingredient formulations prepared therefrom are administered to the animals as an additive to the feed, or to the drinks or also in solid or liquid form, orally or by injection or parenterally. The invention also includes the compounds of formula I according to the invention for usage in one of the said processes.

The following examples serve merely to illustrate the invention without restricting it, the term active ingredient representing a substance listed in tables 1 to 3.

In particular, preferred formulations are made up as follows: (% = percent by weight) Formulation examples 1. Emulsion concentrates a) b) c) active ingredient from tables 1 to 3 25 % 40 % 50 % Ca dodecylbenzene sulphonate 5 % 8 % 6 % castor oil polyethylene glycol ether (36 mols ethylene oxide) 5 % tributylphenolpolyethylene glycol ether (30 mols ethylene oxide)-12% 4% cyclohexanone-15 % 20 % xylene mixture 65 % 25 % 20 % From these concentrates, emulsions of any desired concentration may be prepared by diluting with water.

2. Emulsion concentrates a) b) c) active ingredient from tables 1 to 3 10 % 8 % 60 % octylphenol polyethylene glycol ether (4-5 mols ethylene oxide) 3 % 3 % 2 % Ca dodecylbenzene sulphonate 3 % 4 % 4 % castor oil polyethylene glycol ether <BR> <BR> <BR> (35 mols ethylene oxide) 4 % 5 % 4 %<BR> <BR> <BR> <BR> <BR> cyclohexanone 30% 40% 15%<BR> <BR> <BR> <BR> <BR> <BR> xylene mixture 50% 40% 15% From these concentrates, emulsions of any desired concentration may be prepared by diluting with water.

3. Suspension concentrate active ingredient from tables 1 to 3 40 % ethylene glycol 10 % nonylphenol polyethylene glycol ether (15 mols ethylene oxide) 6 % Na ligninsulphonate 10 % carboxymethylcellulose 1 % 37% aqueous formaldehyde solution 0.2 % silicone oil in the form of a 75% aqueous emulsion 0.8 % water 32 % The finely ground active ingredient is intimately mixed with the admixtures. In this way, a suspension concentrate is obtained, from which suspensions of any desired concentration can be prepared by diluting with water.

4. Powder mixtures that are dispersible in water a) b) c) active ingredient from tables 1 to 3 25 % 50 % 75 % Na ligninsulphonate 5 % 5 % oleic acid 3 %-5 % Na diisobutylnaphthalene sulphonate-6% 10% octylphenol polyethylene glycol ether (7-8 mols ethylene oxide)-2 % highly dispersed silicic acid 5% 10% 10 % 10 % kaolin 62% 27% The active ingredient is mixed thoroughly with the admixtures and ground well in an appropriate mill. Wettable powders are obtained, which may be diluted with water to form suspensions of any desired concentration.

5. Dusts a) b) active ingredient from tables 1 to 3 2 % 5 % highly dispersed silicic acid 1 % 5 % ta) c 97% kaolin-90 % By intimately mixing the carriers with the active ingredient and grinding the mixture, ready- to-use dusts are obtained.

6. Granulate a) b) active ingredient from tables 1 to 3 5 % 10 % kaolin 94%- highly dispersed silicic acid 1 % attapulgite-90 % The active ingredient is dissolved in methylene chloride, sprayed onto the carrier and the solvent subsequently concentrated by evaporation under vacuum. Granulats of this kind can be mixed with the fodder.

7. Granulate active ingredient from tables 1 to 3 10 % Na ligninsulphonate 2 % carboxymethylcellulose 1 % kaolin 87 % The active ingredient is mixed with the admixtures, ground and moistened with water. This mixture is extruded and then dried in a stream of air.

8. Granulate active ingredient from tables 1 to 3 3 % polyethylene glycol (mw 200) 3 % kaolin 94 % (mw = molecular weight) The finely ground active ingredient is evenly applied in a mixer to the kaolin which has been moistened with polyethylene glycol. In this way, dust-free coated granules are obtained.

9. Tablets or boli active ingredient from tables 1 to 3 33.00 % methyl cellulose 0.80 % highly dispersed silicic acid 0.80 % corn starch 8.40 % 11 crystalline lactose 22.50 % corn starch 17.00 % microcrystalline cellulose 16.50 % magnesium stearate 1.00 % I Methyl cellulose is stirred into water. After the material has swollen, silicic acid is stirred in and the mixture homogeneously suspended. The active ingredient and the corn starch are mixed. The aqueous suspension is worked into this mixture and kneaded to a dough. The resulting mass is granulated through a 12 M sieve and dried.

II Al14 excipients are mixed thoroughly.

III The preliminary mixes obtained according to I and 11 are mixed and pressed into tablets or boli.

10. Injectables A. Oily vehicle (slow release) 1. active ingredient from tables 1 to 3 0.1-1.0 g groundnut oil ad 100 ml 2. active ingredient from tables 1 to 3 0.1-1.0 g sesame oil ad 100 ml Preparation: The active ingredient is dissolved in part of the oil whilst stirring and, if required, with gentle heating, then after cooling made up to the desired volume and sterile- filtered through a suitable membrane filter with a pore size of 0.22 mm.

B. Water-miscible solvent (medium rate of release) active ingredient from tables 1 to 3 0.1-1.0 g 4-hydroxymethyl-1,3-dioxolane (glycerol formal) 40 g 1,2-propanediol ad 100 mi An active ingredient from table 1 0.1-1.0 g glycerol dimethylketal 40 g 1,2-propanediol ad 100 ml Preparation: The active ingredient is dissolved in part of the solvent whilst stirring, made up to the desired volume and sterile-filtered through a suitable membrane filter with a pore size of 0.22 mm.

C. Aqueous solubilisate (rapid release) 1. active ingredient from tables 1 to 3 0.1-1.0 g polyethoxylated castor oil (40 ethylene oxide units) 10 g 1,2-propanediol 20 g benzyl alcohol 1 g aqua ad inject.

2. active ingredient from tables 1 to 3 0.1-1.0 g polyethoxylated sorbitan monooleate (20 ethylene oxide units) 8 g 4-hydroxymethyl-1, 3-dioxolane (glycerol formal) 20 g benzyl alcohol 1 g aqua ad inject.

Preparation: The active ingredient is dissolved in the solvents and the surfactant, and made up with water to the desired volume. Sterile filtration through a suitable membrane filter with a pore size of 0. 22 mm.

11. Pour-on A. active ingredient from tables 1 to 3 5 g isopropyl myristate 10 g isopropanol ad 100 ml <BR> <BR> <BR> <BR> <BR> <BR> <BR> B. active ingredient from tables 1 to 3 2 g hexyl laurate 5 g medium-chained triglyceride 15 g ethanol ad 100 ml C. active ingredient from tables 1 to 3 2 g oleyl oleate 5 g N-methyl-pyrrolidone 40 g isopropanol ad 100 ml The aqueous systems may also preferably be used for oral and/or intraruminal application.

The compositions may also contain further additives, such as: stabilisers, e. g. where appropriate epoxidised vegetable oils (epoxidised coconut oil, rapeseed oil, or soybean oil); antifoams, e. g. silicone oil; preservatives; viscosity regulators; binders; tackifiers, as well as fertilisers or other active ingredients to achieve special effects.

Further biologically active substances or additives, which are neutral towards the compounds of formula I and do not have a harmful effect on the host animal to be treated, as well as mineral salts or vitamins, may be added to the compositions described.

The following examples serve to illustrate the invention. They do not limit the invention. The letter'h'stands for hour.

Preparation examples 3.26 g of IV, 1.9 g of triphenylphosphine, 1.25 g of diethylazodicarboxylate (DEAD) and 0.93 g of p-chlorophenol are dissolved in 35 ml of toluene, and the yellow, slightly cloudy solution is stirred for 1 h at room temperature. Afterwards, the toluene is concentrated in a vacuum and the residue dissolved in 50 ml of CH2CI2 and 25 mi of saturated NaHCO3 solution. The organic phase is washed twice with 10 ml of 1 N NaOH, then with 25 ml of water, dried over MgS04 and finally concentrated by evaporation under vacuum.

Afterwards, the residue is chromatographed on silica gel (ethyl acetate : hexane, 1: 1). In this way, 1.44 g (36%) of V are obtained as white crystals with a melting point of 120-123°C.

The substances named in the following table may also be prepared analogously to the above-described method. The values of the melting points are given in °C.

Table 1: No. R2 R3 n (R6) n Phys. data 1. 1 CH3 CH3 1 H resin 1.2 CH3 CH3 1 4-CH3 1.3 CH3 CH3 1 4-CF3 1.4 CH3 CH3 1 4-F 1.5 CH3 CH3 1 4-CI 1.6 CH3 CH3 1 4-NO2 resin 1.7 CH3 CH3 1 4-OCH3 1.8 CH3 CH3 1 4-OC2H5 1.9 CH3 CH3 1 4-OCF3 1.10 CH3 CH3 1 4-CN 1.11 CH3 CH3 1 4-OC6H5 solid foam 1.12 CH3 CH3 1 4-OC6H4- (3)-F resin solid foam 1.14 CH3 CH3 2 2,4-di-CH3 1.15 CH3 CH3 2 2, 4-di-CI 1.16 CH3 CH3 2 2,4-di-F 1.17 CH3 CH3 2 3, 5-di-CI 1.18 CH3 CH3 2 3,5-di-F 1.19 CH3 CH3 2 2-CI, 4-N02 1.20CH3 CH3 2 3-Cl, 4-NO2 1.21 CH3 CH3 2 2-F, 4-NO2 1.22CH3 CH3 2 3-F, 4-NO2 1.23 C2H5 CH3 1 H 1.24 C2H5 CH3 1 4-CH3 resin 1.25 C2H5 CH3 1 4-CF3 resin 1.26 C2H5 CH3 1 4-F resin 1.27 C2H5 CH3 1 4-CI resin 1.28 C2H5 CH3 1 4-NO2 solidfoam 1.29 C2H5 CH3 1 4-OCH3 resin 1.30 C2H5 CH3 1 4-OC2H5 1.31 C2H5 CH3 1 4-OCF3 solid foam 1.32 C2H5 CH3 1 4-CN resin 1.33 C2H5 CH3 1 4-OC6H5 1.34C2H5 CH3 1 4-OC6H4-(3)-F 1.35 C2H5 CH3 1 4-OC6H3-(3,5)-di-F 1.36 C2H5 CH3 2 2,4-di-CH3 1.37 C2H5 CH3 2 2, 4-di-CI 1.38 C2H5 CH3 2 2,4-di-F 1.39 C2H5 CH3 2 3, 5-di-CI 1.40 C2H5 CH3 2 3,5-di-F 1.41 C2H5 CH3 2 2-CI, 4-NO2 1.42C2H5 CH3 2 3-Cl, 4-NO2 1.43 C2H5 CH3 2 2-F, 4-NO2 resin 1.44 C2H5 CH3 2 3-F, 4-NO2 resin 1.45 CH3 C2H5 1 H 1.46 CH3 C2H5 1 4-CH3 1.47 CH3 C2H5 1 4-CF3 1.48 CH3 C2H5 1 4-F 1.49CH3 C2H5 1 4-Cl 1.50 CH3 C2H5 1 4-NO2 1.51CH3 C2H5 1 4-OCH3 1.52 CH3 C2H5 1 4-OC2H5 1.53CH3 C2H5 1 4-OCF3 1.54 CH3 C2H5 1 4-CN 1.55 CH3 C2H5 1 4-OC6H5 1.56CH3 C2H5 1 4-OC6H4-(3)-F 1.57 CH3 C2H5 1 4-OC6H3-(3,5)-di-F 1.58 CH3 C2H5 2 2,4-di-CH3 1.59 CH3 C2H5 2 2, 4-di-CI 1.60 CH3 C2H5 2 2,4-di-F 1.61 CH3 C2H5 2 3, 5-di-CI resin 1.63 CH3 C2H5 2 2-CI, 4-N02 1.64 CH3 C2H5 2 3-CI, 4-N02 1.65 CH3 C2H5 2 2-F, 4-NO2 1.66 CH3 C2H5 2 3-F, 4-NO2 Table 2: No. R2 R3 n (R6) n Phys. data 2.1 CH3 CH3 1 H 2.2 CH3 CH3 1 4-CH3 2.3 CH3 CH3 1 4-CF3 2.4 CH3 CH3 1 4-F 2.5 CH3 CH3 1 4-CI 2.6CH3 CH3 1 4-NO2 2.7 CH3 CH3 1 4-OCH3 2.8 CH3 CH3 1 4-OC2H5 2.9 CH3 CH3 1 4-OCF3 2.10 CH3 CH3 1 4-CN 2.11 CH3 CH3 1 4-OC6H5 2.12CH3 CH3 1 4-OC6H4-(3)-F 2.13 CH3 CH3 1 4-OC6H3-(3,5)-di-F 2.14 CH3 CH3 2 2, 4-di-CH3 2.15 CH3 CH3 2 2, 4-di-CI 2.16 CH3 CH3 2 2,4-di-F 2.17 CH3 CH3 2 3, 5-di-CI 2.18 CH3 CH3 2 3,5-di-F 2.19 CH3 CH3 2 2-CI, 4-N02 2.20 CH3 CH3 2 3-CI, 4-NO2 2.21 CH3 CH3 2 2-F, 4-NO2 2.22 CH3 CH3 2 3-F, 4-NO2 2.23 C2H5 CH3 1 H 2.24 C2H5 CH3 1 4-CH3 2.25 C2H5 CH3 1 4-CF3 2.26 C2H5 CH3 1 4-F 2.27 C2H5 CH3 1 4-CI 2.28C2H5 CH3 1 4-NO2 2.29 C2H5 CH3 1 4-OCH3 2.30 C2H5 CH3 1 4-OC2H5 2.31 C2H5 CH3 1 4-OCF3 2.32 C2H5 CH3 1 4-CN 2.33C2H5 CH3 1 4-OC6H5 2.34C2H5 CH3 1 4-OC6H4-(3)-F 2.35 C2H5 CH3 1 4-OC6H3-(3,5)-di-F 2.36 C2H5 CH3 2 2,4-di-CH3 2.37 C2H5 CH3 2 2, 4-di-CI 2.38 C2H5 CH3 2 2,4-di-F 2.39 C2H5 CH3 2 3, 5-di-CI 2.40 C2H5 CH3 2 3,5-di-F 2.41 C2H5 CH3 2 2-CI, 4-N02 2.42 C2H5 CH3 2 3-CI, 4-NO2 2.43 C2H5 CH3 2 2-F, 4-NO2 2.44 C2H5 CH3 2 3-F, 4-NO2 2.45 CH3 C2H5 1 H 2.46 CH3 C2H5 1 4-CH3 2.47 CH3 C2H5 1 4-CF3 2.48 CH3 C2H5 1 4-F 2.49 CH3 C2H5 1 4-CI 2.50CH3 C2H5 1 4-NO2 2.51CH3 C2H5 1 4-OCH3 2.52 CH3 C2H5 1 4-OC2H5 2.53 CH3 C2H5 1 4-OCF3 2.54 CH3 C2H5 1 4-CN 2.55CH3 C2H5 1 4-OC6H5 2.56CH3 C2H5 1 4-OC6H4-(3)-F 2.57 CH3 C2H5 1 4-OC6H3-(3,5)-di-F 2.58 CH3 C2H5 2 2,4-di-CH3 2.59CH3 C2H5 2 2,4-di-Cl 2.60 CH3 C2H5 2 2,4-di-F 2.61 CH3 C2H5 2 3, 5-di-CI 2.62 CH3 C2H5 2 3,5-di-F 2.63 CH3 C2H5 2 2-CI, 4-N02 2.64 CH3 C2H5 2 3-CI, 4-NO2 2.65CH3 C2H5 2 2-F, 4-NO2 2.66 CH3 C2H5 2 3-F, 4-NO2 Table 3: No. R2 R3 R7 n (R6) n Phys. data 3.1 CH3 CH3 H 1 H resin 3.2 CH3 CH3 H 1 4-CH3 3.3 CH3 CH3 H 1 4-CF3 3.4 CH3 CH3 H 1 4-F 3.5 CH3 CH3 H 1 4-CI 3.6 CH3 CH3 H 1 4-NO2 3.7 CH3 CH3 H 1 4-OCH3 3.8 CH3 CH3 H 1 4-OC2H5 3.9 CH3 CH3 H 1 4-OCF3 3.10 CH3 CH3 H 1 4-CN 3.11 CH3 CH3 H 1 4-OC6H5 3.12 CH3 CH3 H 1 4-OC6H4- (3)-F 3.13 CH3 CH3 H 1 4-OC6H3- (3,5)-di-F 3.14 CH3 CH3 H 2 2,4-di-CH3 3.15 CH3 CH3 H 2 2, 4-di-CI 3.16 CH3 CH3 H 2 2,4-di-F 3.17 CH3 CH3 H 2 3, 5-di-CI 3.18 CH3 CH3 H 2 3,5-di-F 3.19 CH3 CH3 H 2 2-CI, 4-NO2 3.20 CH3 CH3 H 2 3-CI, 4-NO2 3.21 CH3 CH3 H 2 2-F, 4-NO2 3.22 CH3 CH3 H 2 3-F, 4-NO2 3.23 C2H5 CH3 H 1 H 3.24 C2H5 CH3 H 1 4-CH3 3.25 C2H5 CH3 H 1 4-CF3 3.26 C2H5 CH3 H 1 4-F 3.27 C2H5 CH3 H 1 4-CI 3.28 C2H5 CH3 H 1 4-NO2 3.29 C2H5 CH3 H 1 4-OCH3 3.30 C2H5 CH3 H 1 4-OC2H5 3.31 C2H5 CH3 H 1 4-OCF3 3.32 C2H5 CH3 H 1 4-CN 3.33C2H5 CH3 H 1 4-OC6H5 3.34C2H5 CH3 H 1 4-OC6H4-(3)-F 3.35 C2H5 CH3 H 1 4-OC6H3-(3,5)-di-F 3.36 C2H5 CH3 H 2 2,4-di-CH3 3.37 C2H5 CH3 H 2 2, 4-di-CI 3.38 C2H5 CH3 H 2 2,4-di-F 3.39 C2H5 CH3 H 2 3, 5-di-CI 3.40 C2H5 CH3 H 2 3,5-di-F 3.41 C2H5 CH3 H 2 2-CI, 4-N02 3.42 C2H5 CH3 H 2 3-C1, 4-NO2 3.43 C2H5 CH3 H 2 2-F, 4-NO2 3.44 C2H5 CH3 H 2 3-F, 4-NO2 3.45 CH3 C2H5 H 1 H 3.46 CH3 C2H5 H 1 4-CH3 3.47 CH3 C2H5 H 1 4-CF3 3.48 CH3 C2H5 H 1 4-F 3.49 CH3 C2Hs H 1 4-CI 3.50 CH3 C2Hs H 1 4-NO2 3.51CH3 C2H5 H 1 4-OCH3 3.52 CH3 C2H5 H 1 4-OC2H5 3.53 CH3 C2H5 H 1 4-OCF3 3.54 CH3 C2H5 H 1 4-CN 3.55CH3 C2H5 H 1 4-OC6H5 3.56 CH3 C2H5 H 1 4-OC6H4-(3)-F 3.57 CH3 C2H5 H 1 4-OC6H3-(3,5)-di-F 3.58 CH3 C2H5 H 2 2,4-di-CH3 3.59 CH3 C2H5 H 2 2, 4-di-CI 3.60 CH3 C2H5 H 2 2,4-di-F 3.61 CH3 C2H5 H 23,5-di-Cl 3.62 CH3 C2H5 H 2 3,5-di-F 3.63 CH3 C2H5 H 2 2-CI, 4-NO2 3.64CH3 C2H5 H 2 3-Cl, 4-NO2 3.65 CH3 C2H5 H 2 2-F, 4-NO2 3.66 CH3 C2H5 H 2 3-F, 4-NO2 3.67 CH3 CH3 CH3 1 H resin 3.68 CH3 CH3 CH3 1 4-CH3 3.69 CH3 CH3 CH3 1 4-CF3 3.70 CH3 CH3 CH3 1 4-F 3.71 CH3 CH3 CH3 1 4-CI 3.72CH3 CH3 CH3 1 4-NO2 3.73 CH3 CH3 CH3 1 4-OCH3 3.74 CH3 CH3 CH3 1 4-OC2H5 3.75 CH3 CH3 CH3 1 4-OCF3 3.76 CH3 CH3 CH3 1 4-CN 3.77 CH3 CH3 CH3 1 4-OC6H5 3.78 CH3 CH3 CH3 1 4-OC6H4-(3)-F 3.79 CH3 CH3 CH3 1 4-OC6H3-(3,5)-di-F 3.80 CH3 CH3 CH3 2 2, 4-di-CH3 3.81 CH3 CH3 CH3 2 2, 4-di-CI 3.82 CH3 CH3 CH3 2 2,4-di-F 3.83 CH3 CH3 CH3 2 3, 5-di-CI 3.84 CH3 CH3 CH3 2 3,5-di-F 3.85 CH3 CH3 CH3 2 2-CI, 4-NO2 3.86CH3 CH3 CH3 2 3-Cl, 4-NO2 3.87 CH3 CH3 CH3 2 2-F, 4-NO2 3.88 CH3 CH3 CH3 2 3-F, 4-NO2 3.89 C2H5 CH3 CH3 1 H 3.90 C2H5 CH3 CH3 1 4-CH3 3.91 C2H5 CH3 CH3 1 4-CF3 3.92 C2H5 CH3 CH3 1 4-F 3.93 C2H5 CH3 CH3 1 4-CI 3.94 C2H5 CH3 CH3 1 4-NO2 3.95 C2H5 CH3 CH3 1 4-OCH3 3.96 C2H5 CH3 CH3 1 4-OC2H5 3.97 C2H5 CH3 CH3 1 4-OCF3 3.98C2H5 CH3 CH3 1 4-CN 3.99 C2H5 CH3 CH3 1 4-OC6H5 3.100C2H5 CH3 CH3 1 4-OC6H4-(3)-F 3.101 C2H5 CH3 CH3 1 4-OC6H3-(3,5)-di-F 3.102 C2H5 CH3 CH3 2 2,4-di-CH3 3.103 C2H5 CH3 CH3 2 2, 4-di-CI 3.104 C2H5 CH3 CH3 2 2,4-di-F 3.105 C2H5 CH3 CH3 2 3, 5-di-CI 3.106 C2H5 CH3 CH3 2 3,5-di-F 3.107 C2H5 CH3 CH3 2 2-CI, 4-N02 3.108 C2H5 CH3 CH3 2 3-CI, 4-N02 3.109 C2H5 CH3 CH3 2 2-F, 4-NO2 3.110 C2H5 CH3 CH3 2 3-F, 4-NO2 3.111 CH3 C2H5 CH3 1 H 3.112 CH3 C2H5 CH3 1 4-CH3 3.113 CH3 C2H5 CH3 1 4-CF3 3.114 CH3 C2H5 CH3 1 4-F 3.115 CH3 C2H5 CH3 1 4-CI 3.116CH3 C2H5 CH3 1 4-NO2 3.117 CH3 C2H5 CH3 1 4-OCH3 3.118 CH3 C2H5 CH3 1 4-OC2H5 3.119 CH3 C2H5 CH3 1 4-OCF3 3.120 CH3 C2H5 CH3 1 4-CN 3.121 CH3 C2H5 CH3 1 4-OC6H5 3.122CH3 C2H5 CH3 1 4-OC6H4-(3)-F 3.123 CH3 C2H5 CH3 1 4-OC6H3-(3,5)-di-F 3.124 CH3 C2H5 CH3 2 2,4-di-CH3 3.125 CH3 C2H5 CH3 2 2, 4-di-CI 3.126 CH3 C2H5 CH3 2 2,4-di-F 3.127 CH3 C2H5 CH3 2 3, 5-di-CI 3.128 CH3 C2H5 CH3 2 3,5-di-F 3.129 CH3 C2H5 CH3 2 2-CI, 4-NO2 3.130 CH3 C2H5 CH3 2 3-CI, 4-N02 3.131 CH3 C2Hs CH3 2 2-F, 4-NO2 3.132 CH3 C2H5 CH3 2 3-F, 4-NO2 3.133 CH3 CH3 CH2C6H5 1 H resin 3.134 CH3 CH3 CH2C6H5 1 4-CH3 3.135 CH3 CH3 CH2C6H5 1 4-CF3 3.136 CH3 CH3 CH2C6H5 1 4-F 3.137 CH3 CH3 CH2C6H5 1 4-CI 3.138CH3 CH3 CH2C6H5 1 4-NO2 3.139 CH3 CH3 CH2C6H5 1 4-OCH3 3.140 CH3 CH3 CH2C6H5 1 4-OC2H5 3.141 CH3 CH3 CH2C6H5 1 4-OCF3 3.142 CH3 CH3CH2C6H5 1 4-CN 3.143 CH3 CH3 CH2C6H5 1 4-OC6H5 3.144CH3 CH3 CH2C6H5 1 4-OC6H4-(3)-F 3.145 CH3 CH3 CH2C6H5 1 4-OC6H3-(3,5)-di-F 3.146 CH3 CH3 CH2C6H5 2 2, 4-di-CH3 3.147 CH3 CH3 CH2C6H5 2 2, 4-di-CI 3.148 CH3 CH3 CH2C6H5 2 2,4-di-F 3.149 CH3 CH3 CH2C6H5 2 3, 5-di-CI 3.150 CH3 CH3 CH2C6H5 2 3,5-di-F 3.151 CH3 CH3 CH2C6H5 2 2-CI, 4-NO2 3.152 CH3 CH3 CH2C6H5 2 3-Cl, 4-NO2 3.153 CH3 CH3 CH2C6H5 2 2-F, 4-NO2 3.154CH3 CH3 CH2C6H5 2 3-F, 4-NO2 3.155C2H5 CH3 CH2C6H5 1 H 3.156 C2H5 CH3 CH2C6H5 1 4-CH3 3.157C2H5 CH3 CH2C6H5 1 4-CF3 3.158 C2H5 CH3 CH2C6H5 1 4-F 3.159 C2H5 CH3 CH2C6H5 1 4-CI 3.160C2H5 CH3 CH2C6H5 1 4-NO2 3.161 C2H5 CH3 CH2C6H5 1 4-OCH3 3.162C2H5 CH3 CH2C6H5 1 4-OC2H5 3.163 C2H5 CH3 CH2C6Hs 1 4-OCF3 3.164 C2H5 CH3 CH2C6Hs 1 4-CN 3.165C2H5 CH3 CH2C6H5 1 4-OC6H5 3.166 C2H5 CH3 CH2C6Hs 1 4-OC6H4-(3)-F 3.167 C2H5 CH3 CH2C6H5 1 4-OC6H3-(3,5)-di-F 3.168 C2H5 CH3 CH2C6H5 2 2, 4-di-CH3 3.169 C2H5 CH3 CH2C6H5 2 2, 4-di-CI 3.170 C2H5 CH3 CH2C6H5 2 2,4-di-F 3.171 C2H5 CH3 CH2C6H5 2 3, 5-di-CI 3.172 C2H5 CH3 CH2C6H5 2 3,5-di-F 3.173 C2H5 CH3 CH2C6H5 2 2-CI, 4-NO2 3.174 C2H5 CH3 CH2C6H5 2 3-CI, 4-NO2 3.175C2H5 CH3 CH2C6H5 2 2-F, 4-NO2 3.176C2H5 CH3 CH2C6H5 2 3-F, 4-NO2 3.177 CH3 C2H5 CH2C6H5 1 H 3.178CH3 C2H5 CH2C6H5 1 4-CH3 3.179 CH3 C2H5 CH2C6H5 1 4-CF3 3.180 CH3 C2H5 CH2C6H5 1 4-F 3.181 CH3 C2H5 CH2C6H5 1 4-CI 3.182 CH3 C2H5 CH2C6H5 1 4-NO2 3.183CH3 C2H5 CH2C6H5 1 4-OCH3 3.184CH3 C2H5 CH2C6H5 1 4-OC2H5 3.185CH3 C2H5 CH2C6H5 1 4-OCF3 3.186 CH3 C2H5 CH2C6H5 1 4-CN 3.187 CH3 C2H5 CH2C6H5 1 4-OC6H5 3.188 CH3 C2H5 CH2C6H5 1 4-OC6H4- (3)-F 3.189 CH3 C2H5 CH2C6H5 1 4-OC6H3- (3,5)-di-F 3.190 CH3 C2H5 CHzCeHs 2 2,4-di-CH3 3.191 CH3 C2H5 CH2C6H5 2 2,4-di-CI 3.192 CH3 C2H5 CH2C6H5 2 2,4-di-F 3.193 CH3 C2H5 CH2C6H5 2 3,5-di-CI 3.194 CH3 C2H5 CHzCeHs 2 3,5-di-F 3.195 CH3 C2H5 CH2C6H5 2 2-CI, 4-N02 3.196 CH3 C2H5 CH2C6H5 2 3-CI, 4-N02 3.197 CH3 C2H5 CH2C6H5 2 2-F, 4-NO2 3.198 CH3 C2H5 CHzCeHs 2 3-F, 4-NO2 Biological Examples: 1. In-vivo test on Trichostrongvlus colubriformis and Haemonchus contortus on Mongolian gerbils (Meriones unquiculatus) usina subcutaneous injektion Six to eight week old Mongolian gerbils are infected by artificial feeding with ca. 2000 larvae each of the 3rd stage of T. colubriformis and H. contortus. 6 days after infection, the gerbils are lightly anaesthetised with N20 and treated by subcutaneous injection into the neck area with the test compounds, dissolved in a mixture of 2 parts DMSO and 1 part polyethylene glycol 400, in quantities of 100,32 and 10-0.1 mg/kg. On day 9 (3 days after treatment), when most of the H. contortus that are still present are larvae of the late 4""stage and most of the T. colubriformis are immature adults, the gerbils are killed in order to count the worms. The efficacy is calculated as the % reduction of the number of worms in each gerbil, compared with the geometric average of number of worms from 8 infected and untreated gerbils.

In this test, a vast reduction in nematode infestation is achieved with compounds of formula I from Table 1.

2. Stomach insecticidal activity on Spodoptera littoralis Potted cotton plants at the 5-leaf stage are each sprayed with an acetonic/aqueous test solution containing 1,3,12.5 or 50 ppm of the compound to be tested.

After drying of the spray deposit, the plants are colonise with ca. 30 larvae (Li stage) of Spodoptera littoralis. Two plants are used per test compound and per test species. The test is carried out at ca. 24°C and at 60% relative humidity. Evaluations and intermediate evaluations on moribund animals, larvae and feeding damage are made after 24,48 and 72 h.

The compounds of formula I achieve total mortality after 24 h at a concentration of active ingredient of only 3 ppm.

3. Activity on phytotoxic acarids OP-sensitive Tetranychus urticae The primary leaves of bean plants (Phaseolus vulgaris) are covered 16 hours before the test with a mass-cultivated piece of leaf infested with T. urticae. After removing the piece of leaf, the plants that are infested with all stages of the mites are sprayed to drip point with a test solution containing, as desired, 0.2,0.4 or 1.6 ppm of the compound to be tested. The temperature in the greenhouse is ca. 25°C. After 7 days, an evaluation of the percentage of mobile stages (adults and nymphs) and of eggs is made under a microscope.

The compounds of formula I achieve total mortality at a concentration of active ingredient of 0.4 ppm.

4. Activity on L, larvae of Lucilia sericata 1 ml of an aqueous suspension of the active substance to be tested is admixed with 3 ml of a special larvae growth medium at ca. 50°C, so that a homogenate containing either 250 or 125 ppm of active ingredient is obtained. Ca. 30 Lucilia larvae (L,) are used in each test tube sample. After 4 days, the mortality rate is determined. The compounds of formula I attain 100% activity with 250 ppm.

5. Acaricidal activity on Boophilus microplus (Biarra strain) A piece of sticky tape is attached horizontally to a PVC sheet, so that 10 fully engorged female ticks of Boophilus microplus (Biarra strain) can be adhered thereto by their backs, side by side, in a row. Using an injection needle, 1 ul of a liquid is injected into each tick.

The liquid is a 1: 1 mixture of polyethylene glycol and acetone and it contains, dissolved therein, a certain amount of active ingredient chosen from 1,0.1 or 0.01 pg per tick. Control animals are given an injection without active ingredient. After treatment, the animals are kept under normal conditions in an insectarium at ca. 28°C and at 80% relative humidity until oviposition takes place and the larvae have hatched from the eggs of the control animals. The activity of a tested substance is determined by R9o, i. e. an evaluation is made of the dosage of active ingredient at which 9 out of 10 female ticks (=90%) lay eggs that are infertile even after 30 days.

The compounds of formula I attain an IRgo of 0.1 gg.

6. Contact action on Aphis craccivora Pea seedlings that have been infested with all stages of development of the aphids are sprayed with a solution of active ingredient prepared from an emulsion concentrate, the solution containing 50,25 or 12.5 ppm of active ingredient, as desired. After 3 days, an evaluation is made of more than 80% of aphids that are either dead or have fallen off. Only at this level of activity is a preparation classified as effective.

The compounds of formula I achieve total mortality (= 100%) at a concentration of 12.5 ppm.

7. Larvicidal activity on Aedes aeaypti A sufficient quantity of a 0.1% acetonic solution of the active ingredient for a chosen concentration of 10,3.3 or 1.6 ppm to be attained, is added by pipette to the surface of 150 ml of water in a container. After evaporation of the acetone, the container is covered with ca. 30-40 3-day old Aedes larvae. After 1,2 and 5 days, the mortality is tested.

In this test, the compounds of formula I at a concentration of 1.6 ppm effect complete mortality of all larvae after only one day.

8. In vivo efficacy on adult Ctenocephalides felis on domestic cats after oral treatment The test substances are given orally to domestic cats in a gelatin capsule before or after feeding, the dose varying between 0.5 and 20 mg/kg. On days 1,3,7 and 10 after treatment, each cat is exposed to 100 fleas (ca. 50 male and ca. 50 female), depending on the result of previous flea colonisation. The efficacy (in % reduction in flea numbers) is based on the number of living fleas found after combing for 10 minutes one day after each new flea colonisation, whereby the efficacy in % corresponds to the arithmetic average of the number of living fleas on control animals minus the number of living fleas on the treated animals, divided by the arithmetic average of the number of living fleas on control animais and multiplie by 100.

The dying fleas found in the cat cages and by combing are collected, placed in an incubator at 28°C and 70% relative humidity and after 24 hours are tested for survival/mortality. If the majority of dying fleas die, the test compound is regarded as a flea adulticide, and if the majority survive, the test compound shows"knock-down"activity.

In this test, the compounds of formula I effect at least 80% mortality of the fleas.

9. In vivo efficacy on adult Ctenocephalides felis on domestic cats after spot-on treatment The test substances are given to domestic cats as spot-on treatment, the dose varying between 0.5 and 10 mg/kg. On days 1,3,7 and 10 after treatment, each cat is exposed to 100 fleas (ca. 50 male and ca. 50 female), depending on the result of previous flea colonisation.

The efficacy (in % reduction in flea numbers) is based on the number of living fleas found after combing for 10 minutes one day after each new flea colonisation, whereby the efficacy in % corresponds to the arithmetic average of the number of living fleas on control animals minus the number of living fleas on the treated animals, divided by the arithmetic average of the number of living fleas on control animals and multiplied by 100.

The dying fleas found in the cat cages and by combing are collecte, placed in an incubator at 28°C and 70% relative humidity and after 24 hours are tested for survival/mortality. If the majority of dying fleas die, the test compound is regarded as a flea adulticide, and if the majority survive, the test compound shows"knock-down"activity.

In this test, the compounds of formula I effect more than 90% mortality of the fleas after 35 days. In particular, compound 1.28 administered at 5 mg/kg effects 91 % mortality a further 35 days after treatment.

10. In vitro efficacy on engorged female Boophilus microplus (BIARRA) : 4x10 engorged female ticks of the OP-resistant BIARRA strain are adhered to a sticky strip and covered for 1 hour with a cotton-wool ball soaked in an emulsion or suspension of the test compound in concentrations of 500,125,31 and 8 ppm respectively. Evaluation takes place 28 days later based on mortality, oviposition and hatched larvae.

An indication of the activity of the test compounds is shown by the number of females that -die quickly before laying eggs, -survive for some time without laying eggs, -lay eggs in which no embryos are formed, -lay eggs in which embryos form, from which no larvae hatch, and -lay eggs in which embryos form, from which larvae normally hatch within 26 to 27 days.

In this test, the compounds of formula I effect more than 80% rapid mortality of the female ticks.

11. In vitro efficacy on nymphs of Amblyomma hebraeum About 5 fasting nymphs are placed in a polystyrene test tube containing 2 ml of the test compound in solution, suspension or emulsion.

After immersion for 10 minutes, and shaking for 2x10 seconds on a vortex mixer, the test tubes are blocked up with a tight wad of cotton-wool and rotated. As soon as the cotton wool ball has soaked up all the liquid, it is pushed half-way into the test tube, which is still being rotated, so that most of the liquid is squeezed out of the cotton-wool ball and flows into a Petri dish below.

The test tubes are then kept at room temperature in a room with daylight until evaluated.

After 14 days, the test tubes are immersed in a beaker of boiling water. If the ticks begin to move in reaction to the heat, the test substance is inactive at the tested concentration, otherwise the ticks are regarded as dead and the test substances regarded as active at the tested concentration. All substances are tested in a concentration range of 0.1 to 100 ppm.

In this test, the compounds of formula I effect more than 80% mortality of the ticks.