Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ABSORBER SYSTEM WITH GUIDEWAYS AND METHOD FOR THE ARRANGEMENT OF GUIDEWAYS ON AN ABSORBER SYSTEM
Document Type and Number:
WIPO Patent Application WO/2017/067744
Kind Code:
A1
Abstract:
The invention relates to an absorber system provided with an absorption mass carrier comprising guideways for receiving absorption masses, connected to guideways of the absorption masses by means of coupling elements, the guideways causing a pivoting movement of the absorption masses about a centre of gravity, upon deflection of the absoprtion masses. The arrangement of the guideways and plotting of the trajectories of the centres of gravity of the absorption masses are carried out in association. For the arrangement of the guideways, the lengths of thread of an imaginary thread pendulum which predetermine the position of the respective coupling element are used, while the plotting of the trajectory of the centre of gravity is carried out on the basis of two imaginary radial sections, the first radial section extending from a central axis of the absorption mass carrier to a connection point of the second radial section and performing movements along an angle of oscillation of the respective absorption mass about the central axis, while the second radial section extends from the first radial section to the centre of gravity and performs movements along an angle of deflection about the connection point on the first radial section. A ratio different from zero is formed from a pivoting angle of the absorption mass in relation to the angle of oscillation thereof, by which means the position of the respective coupling element in relation to the length of thread of the thread pendulum is determined, by selecting the point along the length of thread where the position of said coupling element on the thread pendulum remains unchanged by the angle of deflection, and contact forces acting between the coupling elements and the guideways are adjusted in relation to each other independently from the respective angle of deflection, in order to obtain waypoints for the guideways which differ from each other in terms of the radii thereof, and when connected up, form a polygonal curve by means of trajectory segments.

Inventors:
SIEMENS KYRILL (DE)
KOPP MATHIAS (DE)
Application Number:
PCT/EP2016/072792
Publication Date:
April 27, 2017
Filing Date:
September 26, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ZAHNRADFABRIK FRIEDRICHSHAFEN (DE)
International Classes:
F16F15/14
Foreign References:
DE102011016568A12011-11-03
DE102008005138A12008-08-14
DE102011086532A12012-06-21
Download PDF:
Claims:
Patentansprüche

1. Tilgersystem (1) mit einem über Tilgermassen (5; 5a, 5b, 5c) verfügenden Tilger- massenträger (7), der zur Aufnahme der Tilgermassen (5; 5a, 5b, 5c) Führungsbahnen (23; 23a, 23b) aufweist, welche mittels Koppelelementen (30) jeweils mit Führungsbahnen (25; 25a, 25b) der Tilgermassen (5; 5a, 5b, 5c) verbunden sind, wobei die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) von Tilgermassenträger (7) und Tilgermasse (5; 5a, 5b, 5c) bei Auslenkung der Tilgermassen (5; 5a, 5b, 5c) aus einer unter Fliehkraft eingenommenen Ausgangsposition (32) um einen Auslenkwinkel (cii , 02) eine Schwenkbewegung an der jeweiligen Tilgermasse (5; 5a, 5b, 5c) um einen Massenschwerpunkt (40) mit einem Schwenkwinkel (δ) auslösen, und die geometrische Auslegung der Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) sowie die geometrische Auslegung einer Bahnkurve (42) des Massenschwerpunktes (40) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) in Zuordnung zueinander erfolgen, wobei für die geometrische Auslegung der Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) die Fadenlängen (Si , S2) imaginärer Fadenpendel (46, 48) herangezogen werden, die sich bei Auslenkung der jeweiligen Tilgermasse (5; 5a, 5b, 5c) aus der Ausgangsposition (32) um einen Auslenkwinkel (CH , 02) ergeben und jeweils die Position des jeweiligen Koppelelementes (30) vorgeben, während die geometrische Auslegung der Bahnkurve (42) des Massenschwerpunktes (40) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) anhand zweier imaginärer Radialabschnitte (Li , L2) erfolgt, von denen dem ersten Radialabschnitt (Li) eine Erstreckungslänge von einer Zentralachse (3) des Tilgermassenträgers (7) bis zu einer Anbindungsstelle (44) des zweiten Radialabschnittes (L2) zugeordnet ist, und der erste Radialabschnitt (Li) Bewegungen entlang eines Schwingwinkels (cp) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) um die Zentralachse (3) vollzieht, während dem zweiten Radialabschnitt (L2) eine Erstreckungslänge von der Anbindungsstelle (44) am ersten Radialabschnitt (Li) bis zum Massenschwerpunkt (40) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) zugeordnet ist, und der zweite Radialabschnitt (L2) Bewegungen entlang jeweils eines Auslenkwinkels (a) um die Anbindungsstelle (44) am ersten Radialabschnitt (Li) vollzieht, dadurch gekennzeichnet, dass nach Vorgabe eines aus dem Schwenkwinkel (δ) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) in Relation zu deren Schwingwinkel (φ) bestimmten, von Null abweichenden Verhältniswertes (Κφ) die Bestimmung der Position des jeweiligen Koppelelementes (30) in Bezug zur Fadenlänge (Si , S2) des diesem Koppelelement (30) zugeordneten imaginären Fadenpendels (46, 48) erfolgt, indem diejenige Stelle entlang der Fadenlänge (S1 , S2) auszuwählen ist, bei welcher einerseits die Position dieses Koppelelementes (30) an dem jeweiligen imaginären Fadenpendel (46, 48) über den Auslenkwinkel (αι , 02) unverändert bleibt, und andererseits zwischen den Koppelelementen (30) und den Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) von Tilgermassenträger (7) und Tilgermassen (5; 5a, 5b, 5c) wirksame Kontaktkräfte (Fi , F2) unabhängig vom jeweiligen Auslenkwinkel (αι , 02 ) aufeinander zugerichtet sind, um auf diese Weise eine Mehrzahl an Bahnpunkten (52a bis 52e und 57a bis 57e) für die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) in Tilgermassenträger (7) und Tilgermassen (5; 5a, 5b, 5c) zu erhalten, die sich bezüglich ihrer Radien (R1, R2, R3, R4, R5) voneinander unterscheiden, und durch Verbindung untereinander zur Bildung eines Polygonzuges (54, 58) mittels aneinander gereihter Bahnkurvensegmenten (55a, 55b, 55c, 55d; 59a, 59b, 59c, 59d) dienen.

2. Tilgersystem nach Anspruch 1 , dadurch gekennzeichnet, dass bei Realisierung eines Verhältniswertes (Κφ) mit dem Betrag von 1 die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) in Tilgermassenträger (7) und in Tilgermassen (5; 5a, 5b, 5c) derart gegenüber Tilgermassenträger (7) und Tilgermassen (5; 5a, 5b, 5c) ausgerichtet sind, dass deren Mittenachsen (60) die Zentralachse (3) des Tilgermassenträgers (7) jeweils kreuzen.

3. Tilgersystem nach Anspruch 1 , dadurch gekennzeichnet, dass bei Realisierung eines Verhältniswertes (Κφ) ungleich dem Betrag von 1 die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) in Tilgermassenträger und in Tilgermassen (5; 5a, 5b, 5c) derart gegenüber Tilgermassenträger (7) und Tilgermassen (5; 5a, 5b, 5c) ausgerichtet sind, dass deren Mittenachsen (60a) die Zentralachse (3) des Tilgermassenträgers (7) jeweils verfehlen.

4. Verfahren zur Auslegung der Geometrie von Führungsbahnen (23; 23a, 23b) an einem Tilgermassenträger (7) eines Tilgersystems (1 ), wobei der Tilgermassenträger (7) zur Aufnahme von Tilgermassen (5; 5a, 5b, 5c) dient, und die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) von Tilgermassenträger (7) und Tilgermassen (5; 5a, 5b, 5c) jeweils mittels Koppelelementen (30) miteinander in Wirkverbindung stehen, wobei folgende Schritte beinhaltet sind: a) Auslösung einer Schwenkbewegung an der jeweiligen Tilgermasse (5; 5a, 5b, 5c) um einen Massenschwerpunkt (40) mit einem Schwenkwinkel (δ) durch die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) von Tilgermassenträger (7) und Tilgermasse (5; 5a, 5b, 5c) bei Auslenkung der Tilgermassen (5; 5a, 5b, 5c) aus einer unter Fliehkraft eingenommenen Ausgangsposition (32) um einen Auslenkwinkel (αι , 02), b) geometrische Auslegung der Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) sowie geometrische Auslegung einer Bahnkurve (42) des Massenschwerpunktes (40) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) in Zuordnung zueinander, c) geometrische Auslegung der Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) durch Heranziehung der Fadenlängen (S1 , S2) imaginärer Fadenpendel (46, 48), die sich bei Auslenkung der jeweiligen Tilgermasse (5; 5a, 5b, 5c) aus der Ausgangsposition (32) um einen Auslenkwinkel (CM , a2 ) ergeben und jeweils die Position des jeweiligen Koppelelementes (30) vorgeben, d) geometrische Auslegung der Bahnkurve (42) des Massenschwerpunktes (40) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) anhand zweier imaginärer Radialabschnitte (Li , L2), e) dem ersten Radialabschnitt (Li) wird eine Erstreckungslänge von einer Zentralachse (3) des Tilgermassenträgers (7) bis zu einer Anbindungsstelle (44) des zweiten Radialabschnittes (L2) zugeordnet, wobei der erste Radialabschnitt (Li) Bewegungen entlang eines Schwingwinkels (φ) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) um die Zentralachse (3) vollzieht, f) dem zweiten Radialabschnitt (L2) wird eine Erstreckungslänge von der Anbindungsstelle (44) am ersten Radialabschnitt (Li) bis zum Massenschwerpunkt (40) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) zugeordnet, wobei der zweite Radialabschnitt (L2) Bewegungen entlang jeweils eines Auslenkwinkels (a) um die Anbindungsstelle (44) am ersten Radialabschnitt (Li) vollzieht, gekennzeichnet durch die g) Vorgabe eines aus dem Schwenkwinkel (δ) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) in Relation zu deren Schwingwinkel (φ) bestimmten, von Null abweichenden Verhältniswertes (κφ), h) Bestimmung der Position des jeweiligen Koppelelementes (30) in Bezug zur Fadenlänge (Si , S2) des diesem Koppelelement (30) zugeordneten imaginären Fadenpendels (46, 48) durch Auswahl derjenigen Stelle entlang der Fadenlänge (S1 , S2), bei welcher einerseits die Position dieses Koppelelementes (30) an dem jeweiligen imaginären Fadenpendel (46, 48) über den Auslenkwinkel (αι , 02) unverändert bleibt, und andererseits zwischen den Koppelelementen (30) und den Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) von Tilgermassenträger (7) und Tilgermassen (5; 5a, 5b, 5c) wirksame Kontaktkräfte (Fi , F2) unabhängig vom jeweiligen Auslenkwinkel (CM , 02) aufeinander zugerichtet sind, um auf diese Weise eine Mehrzahl an Bahnpunkten (52a bis 52e und 57a bis 57e) für die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) in Tilgermassenträger (7) und Tilgermassen (5; 5a, 5b, 5c) zu erhalten, die sich bezüglich ihrer Radien (R-i, R2, R3, R4, R5) voneinander unterscheiden, i) Verbindung der Mehrzahl an Bahnpunkten (52a bis 52e und 57a bis 57e) für die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) untereinander zur Bildung eines Polygonzuges (54, 58) mittels aneinander gereihter Bahnkurvensegmenten (55a, 55b, 55c, 55d; 59a, 59b, 59c, 59d).

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass bei Realisierung eines Verhältniswertes (κφ) mit Betrag von 1 die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) in Tilgermassenträger (7) und in Tilgermassen (5; 5a, 5b, 5c) derart gegenüber Tilgermassenträger (7) und Tilgermassen (5; 5a, 5b, 5c) ausgerichtet sind, dass deren Mittenachsen (60) die Zentralachse (3) des Tilgermassenträgers (7) kreuzen.

6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass bei Realisierung eines Verhältniswertes (Κφ) ungleich einem Betrag von 1 die Führungsbahnen (23; 23a, 23b, 25; 25a, 25b) in Tilgermassenträger (7) und in Tilgermassen (5; 5a, 5b, 5c) derart gegenüber Tilgermassenträger (7) und Tilgermassen (5; 5a, 5b, 5c) ausgerichtet sind, dass deren Mittenachsen (60a) die Zentralachse (3) des Tilgermassenträgers (7) jeweils verfehlen.

7. Tilgersystem (1 ) mit einem über Tilgermassen (5; 5a, 5b, 5c) verfügenden Tilgermassenträger (7), der zur Aufnahme der Tilgermassen (5; 5a, 5b, 5c) Führungsbahnen (23) aufweist, welche mittels Koppelelementen (30) jeweils mit Führungsbahnen (25) der Tilgermassen (5; 5a, 5b, 5c) verbunden sind, wobei die Führungsbahnen (23, 25) von Tilgermassenträger (7) und Tilgermasse (5; 5a, 5b, 5c) bei Auslenkung der Tilgermassen (5; 5a, 5b, 5c) aus einer unter Fliehkraft eingenommenen Ausgangsposition (32) um einen Auslenkwinkel (αι , 0:2) eine Schwenkbewegung an der jeweiligen Tilgermasse (5; 5a, 5b, 5c) um einen Massenschwerpunkt (40) mit einem Schwenkwinkel (δ) auslösen, und die Führungsbahnen (23, 25) sowie die geometrische Auslegung einer Bahnkurve (42) des Massenschwerpunktes (40) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) in Zuordnung zueinander erfolgen, wobei für die geometrische Auslegung der Führungsbahnen (23, 25) die Fadenlängen (S1 , S2) imaginärer Fadenpendel (46a, 48a) herangezogen werden, die sich bei Auslenkung der jeweiligen Tilgermasse (5; 5a, 5b, 5c) aus der Ausgangsposition (32) um einen Auslenkwinkel (αι , 02) ergeben, während die Bahnkurve (42) des Massenschwerpunktes (40) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) mittels zweier imaginärer Radialabschnitte (Li , L2) beschreibbar ist, von denen dem ersten Radialabschnitt (Li) eine Erstreckungslänge von einer Zentralachse (3) des Tilgermassenträgers (7) bis zu einer Anbindungsstelle (44) des zweiten Radialabschnittes (L2) zugeordnet ist, und der erste Radialabschnitt (Li) Bewegungen entlang eines Schwingwinkels (φ) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) um die Zentralachse (3) vollzieht, während dem zweiten Radialabschnitt (L2) eine Erstreckungslänge von der Anbindungsstelle (44) am ersten Radialabschnitt (Li) bis zum Massenschwerpunkt (40) der jeweiligen Tilgermasse (5; 5a, 5b, 5c) zugeordnet ist, und der zweite Radialabschnitt (L2) Bewegungen entlang jeweils eines Auslenkwinkels (a) um die Anbindungsstelle (44) am ersten Radialabschnitt (Li) vollzieht, dadurch gekennzeichnet, dass die Führungsbahnen (23, 25) in Tilgermassen-Trägerelementen (9a, 9b) des Tilgermassenträgers (7) sowie in den Tilgermassen (5, 5a, 5b, 5c) jeweils aus unterschiedlichen Kreissegmenten (23', 23", 25', 25") unterschiedlicher Radien (R1 , R2) zusammengesetzt sind, wobei die Kreissegmente (23', 23", 25', 25") durch Variation von Längen (S-i) und (S2) imaginärer Fadenpendel (46a, 48a) bei der Auslenkung aus der Auslenkposition (32) über einen Auslenkwinkel (a 1, 02) derart ausgewählt sind, dass die Bahnkurve (42) des Massenschwerpunktes (40) der Tilgermassen (5, 5a, 5b, 5c) bezüglich ihres Verlaufes dem Verlauf einer angestrebten Bahnkurve zumindest im Wesentlichen entspricht.

Description:
Tilgersvstem mit Führungsbahnen und Verfahren zur Auslegung

von Führungsbahnen an einem Tilgersvstem

Die Erfindung betrifft ein Tilgersystem mit einem über Tilgermassen verfügenden Til- germassenträger, der zur Aufnahme der Tilgermassen Führungsbahnen aufweist, welche mittels Koppelelementen jeweils mit Führungsbahnen der Tilgermassen verbunden sind, wobei die Führungsbahnen von Tilgermassenträger und Tilgermasse bei Auslenkung der Tilgermassen aus einer unter Fliehkraft eingenommenen Ausgangsposition um einen Auslenkwinkel eine Schwenkbewegung an der jeweiligen Tilgermasse um einen Massenschwerpunkt mit einem Schwenkwinkel auslösen, und die geometrische Auslegung der Führungsbahnen sowie die geometrische Auslegung einer Bahnkurve des Massenschwerpunktes der jeweiligen Tilgermasse in Zuordnung zueinander erfolgen, wobei für die geometrische Auslegung der Führungsbahnen die Fadenlängen imaginärer Fadenpendel herangezogen werden, die sich bei Auslenkung der jeweiligen Tilgermasse aus der Ausgangsposition um einen Auslenkwinkel ergeben und jeweils die Position des jeweiligen Koppelelementes vorgeben, während die geometrische Auslegung der Bahnkurve des Massenschwerpunktes der jeweiligen Tilgermasse anhand zweier imaginärer Radialabschnitte erfolgt, von denen dem ersten Radialabschnitt eine Erstreckungslänge von einer Zentralachse des Tilgermassenträgers bis zu einer Anbindungsstelle des zweiten Radialabschnittes zugeordnet ist, und der erste Radialabschnitt Bewegungen entlang eines Schwingwinkels der jeweiligen Tilgermasse um die Zentralachse vollzieht, während dem zweiten Radialabschnitt eine Erstreckungslänge von der Anbindungsstelle am ersten Radialabschnitt bis zum Massenschwerpunkt der jeweiligen Tilgermasse zugeordnet ist, und der zweite Radialabschnitt Bewegungen entlang jeweils eines Auslenkwinkels um die Anbindungsstelle am ersten Radialabschnitt vollzieht. Die Erfindung betrifft weiterhin ein Verfahren zur Auslegung der Geometrie von Führungsbahnen an einem Tilgermassenträger eines Tilgersystems, der zur Aufnahme von Tilgermassen dient, wobei die Führungsbahnen von Tilgermassenträger und Tilgermasse jeweils mittels Koppelelementen miteinander in Wirkverbindung stehen.

Ein derartiges Tilgersystem ist durch die DE 10 2011 086 532 A1 bekannt. Bei diesem Tilgersystem vermag der Tilgermassenträger Drehbewegungen um seine Zent- ralachse auszuführen, während die Tilgermassen mittels der Koppelelemente Verlagerungsbewegungen gegenüber dem Tilgermassenträger vollziehen, sobald Torsionsschwingungen eines Antriebs auf das Tilgersystem geleitet werden. Bei diesen Verlagerungsbewegungen ist einer an sich translatorischen Bewegung der Tilgermassen eine Schwenkbewegung der Tilgermassen um deren Massenschwerpunkt überlagert. Hierdurch ergibt sich eine Gesamtbewegung, bei welcher die Tilgermassen vorzüglich der Gestaltung eines zur Aufnahme des Tilgersystems bestimmten Bauraums nachführbar sind. Dieser vorteilhafte Bewegungsablauf ermöglicht Tilgermassen erheblicher Trägheit selbst in kompakten Bauräumen. Ungeachtet dieser Vorteile gestaltet sich allerdings die Auslegung der Geometrie der Führungsbahnen von Tilgermassenträger und Tilgermassen sehr aufwändig, zumal das jeweilige Koppelelement in den Führungsbahnen jeweils sauber geführt werden soll.

Der Erfindung liegt die Aufgabe zugrunde, auf einfache Weise eine vorteilhafte Auslegung der Geometrie der Führungsbahnen in Tilgermassenträger und Tilgermassen vornehmen zu können.

In den Ansprüchen ist eine Lösung für diese Aufgabe angegeben.

Hierzu ist ein Tilgersystem vorgesehen mit einem über Tilgermassen verfügenden Tilgermassenträger, der zur Aufnahme der Tilgermassen Führungsbahnen aufweist, welche mittels Koppelelementen jeweils mit Führungsbahnen der Tilgermassen verbunden sind, wobei die Führungsbahnen von Tilgermassenträger und Tilgermasse bei Auslenkung der Tilgermassen aus einer unter Fliehkraft eingenommenen Ausgangsposition um einen Auslenkwinkel eine Schwenkbewegung an der jeweiligen Tilgermasse um einen Massenschwerpunkt mit einem Schwenkwinkel auslösen, und die geometrische Auslegung der Führungsbahnen sowie die geometrische Auslegung einer Bahnkurve des Massenschwerpunktes der jeweiligen Tilgermasse in Zuordnung zueinander erfolgen, wobei für die geometrische Auslegung der Führungsbahnen die Fadenlängen imaginärer Fadenpendel herangezogen werden, die sich bei Auslenkung der jeweiligen Tilgermasse aus der Ausgangsposition um einen Auslenkwinkel ergeben und jeweils die Position des jeweiligen Koppelelementes vorgeben, während die geometrische Auslegung der Bahnkurve des Massenschwerpunk- tes der jeweiligen Tilgermasse anhand zweier imaginärer Radialabschnitte erfolgt, von denen dem ersten Radialabschnitt eine Erstreckungslänge von einer Zentralachse des Tilgermassenträgers bis zu einer Anbindungsstelle des zweiten Radialabschnittes zugeordnet ist, und der erste Radialabschnitt Bewegungen entlang eines Schwingwinkels der jeweiligen Tilgermasse um die Zentralachse vollzieht, während dem zweiten Radialabschnitt eine Erstreckungslänge von der Anbindungsstelle am ersten Radialabschnitt bis zum Massenschwerpunkt der jeweiligen Tilgermasse zugeordnet ist, und der zweite Radialabschnitt Bewegungen entlang jeweils eines Auslenkwinkels um die Anbindungsstelle am ersten Radialabschnitt vollzieht.

Von besonderer Bedeutung hierbei ist, dass nach Vorgabe eines aus dem Schwenkwinkel der jeweiligen Tilgermasse in Relation zu deren Schwingwinkel bestimmten, von Null abweichenden Verhältniswertes die Bestimmung der Position des jeweiligen Koppelelementes in Bezug zur Fadenlänge des diesem Koppelelement zugeordneten imaginären Fadenpendels erfolgt, indem diejenige Stelle entlang der Fadenlänge auszuwählen ist, bei welcher einerseits die Position dieses Koppelelementes an dem jeweiligen imaginären Fadenpendel über den Auslenkwinkel unverändert bleibt, und andererseits zwischen den Koppelelementen und den Führungsbahnen von Tilger- massenträger und Tilgermassen wirksame Kontaktkräfte unabhängig vom jeweiligen Auslenkwinkel aufeinander zugerichtet sind, um auf diese Weise eine Mehrzahl an Bahnpunkten für die Führungsbahnen in Tilgermassenträger und Tilgermassen zu erhalten, die sich bezüglich ihrer Radien voneinander unterscheiden, und durch Verbindung untereinander zur Bildung eines Polygonzuges mittels aneinander gereihter Bahnkurvensegmenten dienen.

Durch die vorgenannte Vorgehensweise bei der Auslegung der Führungsbahnen werden Maßnahmen ergriffen, welche unmittelbar Einfluss auf das jeweilige Bewegungsverhalten der Tilgermassen nehmen. Hierbei können durch wenige, gegebenenfalls iterativ angewandte Auslegungsmaßnahmen die Führungsbahnen von Tilgermassenträger und Tilgermassen derart ausgebildet werden, dass der an sich translatorischen Bewegung der Tilgermassen eine Schwenkbewegung um den jeweiligen Massenschwerpunkt überlagert wird. Die Schwenkbewegung der Tilgermassen um ihren jeweiligen Schwerpunkt wird hierbei mit Vorzug durch Bestimmung eines Verhältniswertes Κφ aus einem Schwenkwinkel δ der Tilgermasse um ihren Massenschwerpunkt in Relation zum Schwingwinkel φ gewählt, welcher der translatorischen Bewegung der Tilgermasse zugeordnet ist. Durch geschickte Auswahl des Verhältniswertes Κφ können sich die Tilgermassen jeweils gerade so stark innerhalb des vorgegebenen, üblicherweise ringförmigen Bauraums ausrichten, dass sie sowohl mit ihren Außenbereichen als auch mit ihren Innenbereichen ohne Kontaktaufnahme mit dem sie umgebenden Bauraum verbleiben, und somit keine diesbezügliche Korrekturen an den Tilgermassen zur Reduzierung von Außenbereichen oder von Innenbereichen erforderlich sind. Da derartige Korrekturen an den Tilgermassen durch Materialentnahme zumindest an Kantenbereichen erfolgen würden, hätte dies aufgrund des Gewichtsentzugs eine Trägheitsreduzierung zur Folge, und zwar insbesondere bei Materialentnahme in den Außenbereichen. Nicht genug damit, hätte die Materialentnahme im Außenbereich einer Tilgermasse eine Verschiebung des Massenschwerpunktes nach radial innen zur Folge.

Durch Anwendung der zuvor erwähnten, gegebenenfalls iterativ angewandten Auslegungsmaßnahmen an den Führungsbahnen von Tilgermassenträger und Tilgermassen erfolgt die Ausbildung dieser Führungsbahnen mit einer Mehrzahl an Bahnpunkten, die sich bezüglich ihrer Radien voneinander unterscheiden, und durch Verbindung untereinander zur Bildung eines Polygonzuges mittels aneinander gereihter Bahnkurvensegmenten dienen. Dadurch ist die jeweilige Führungsbahn an jedem Punkt ihrer Erstreckung jeweils so ausgebildet, dass sich trotz der Schwenkbewegung der Tilgermassen um ihren Massenschwerpunkt ein sauberer Bewegungsablauf des jeweiligen Koppelelementes in der zugeordneten Führungsbahn ergibt.

Selbstverständlich wird die hierzu notwendige Bedingung eingehalten, wonach jeweils die Position dieses Koppelelementes in Bezug zur Erstreckungslänge des diesem Koppelelement zugeordneten imaginären Fadenpendels bestimmt wird, bei welcher einerseits die Position dieses Koppelelementes in Bezug zur Erstreckungslänge dieses Fadenpendels über den Auslenkwinkel konstant bleibt, und andererseits die Kontaktkräfte zwischen dem Koppelelement und den Führungsbahnen von Tilgermassenträger und Tilgermassen bei jedem Auslenkwinkel aufeinander zugerichtet sind. Auf die Wirkung des Verhältniswertes κ φ wurde bereits hingewiesen. Bei Realisierung eines Verhältniswertes κ φ mit dem Betrag von 1 werden die Führungsbahnen in Til- germassenträger und in Tilgermassen derart gegenüber Tilgermassenträger und Tilgermassen ausgerichtet, dass deren Mittenachsen die Zentralachse des Tilgerma- ssenträgers jeweils kreuzen. Im Gegensatz dazu sind die Führungsbahnen in Tilgermassenträger und in Tilgermassen bei Realisierung eines Verhältniswertes Κφ ungleich dem Betrag von 1 , aber betragsmäßig größer als Null, derart gegenüber Tilgermassenträger und Tilgermassen ausgerichtet, dass deren Mittenachsen die Zentralachse des Tilgermassenträgers jeweils verfehlen.

Ein Vorteil, der sich bei Realisierung eines Verhältniswertes κ φ ungleich Null ergibt, ist eine Verkleinerung der Bahnkurve des Massenschwerpunktes der jeweiligen Tilgermasse, und damit der Führungsbahnen in Tilgermassenträger und Tilgermasse. Dies führt zum einen zu einer Reduzierung der Flächenpressung in Tilgermassenträger und Tilgermasse, und zwar insbesondere dann, wenn der Verhältniswert ungleich dem Betrag von 1 ist, und zum anderen zu einem deutlich geringeren Ordnungsabfall über den Schwingwinkel.

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen beschrieben. Es zeigt im Einzelnen:

Fig. 1 ein Tilgersystem mit an einem Tilgermassenträger aufgenommenen

Tilgermassen;

Fig. 2 eine Draufsicht auf das Tilgersystem in Teilschnittdarstellung gemäß der Linie B - B in Fig. 1 ;

Fig. 3 eine schematische Darstellung einer Tilgermasse bei einer Auslenkbewegung zur Auslegung von Führungsbahnen an Tilgermassenträger und Tilgermassen; Fig. 4 eine schematische Darstellung der Führungsbahnen an Tilgermassen- träger und Tilgermassen, sowie von die Führungsbahnen miteinander verbindenden Koppelelementen;

Fig. 5 ein Tilgermassenträger in Draufsicht, mit Ausrichtung von Mittenachsen der Führungsbahnen auf eine Zentralachse des Tilgermassenträgers;

Fig. 6 eine vergrößerte Herauszeichnung einer Führungsbahn des Tilgermassenträgers aus Fig. 5 zur Darstellung von Bahnkurvensegmenten eines Polygonzuges;

Fig. 7 eine vergrößerte Herauszeichnung zweier Führungsbahnen des Tilgermassenträgers aus Fig. 5 zur Darstellung der Ausrichtung der Mittenachsen der Führungsbahnen auf die Zentralachse des Tilgermassenträgers;

Fig. 8 eine vergrößerte Herauszeichnung einer Führungsbahn einer Tilgermasse zur Darstellung von Bahnkurvensegmenten eines Polygonzuges;

Fig. 9 wie Fig. 6, aber mit Ausrichtung von Mittenachsen der Führungsbahnen gegenüber der Zentralachse des Tilgermassenträgers derart, dass die Zentralachse nicht gekreuzt wird;

Fig. 10 wie Fig. 3, aber mit einer anderen Auslegungsweise für die Führungsbahnen;

Fig. 11 wie Fig. 6, aber mit der Auslegung der Führungsbahn eines Tilgermassenträgers mittels Kreissegmenten;

Fig. 12 wie Fig. 11 , aber mit der Führungsbahn einer Tilgermasse;

Fig. 13 wie Fig. 1 , aber mit einer anderen konstruktiven Ausbildung des Tilgersystems; Fig. 14 eine Darstellung des Tilgersystems aus der Blickrichtung B in Fig. 13.

In Fig. 1 und 2 ist ein Tilgersystem 1 dargestellt, das um eine Zentralachse 3 drehbar ist. Das Tilgersystem 1 verfügt zur Aufnahme von Tilgermassen 5a, 5b, 5c einer Tilgermasseneinheit 6 über einen Tilgermassenträger 7 mit zwei voneinander beab- standeten, parallel zueinander angeordneten Tilgermassen-Trägerelementen 9a, 9b, die axial zwischen sich die jeweiligen Tilgermassen 5a, 5b, 5c aufnehmen, und mittels Abstandshaltern 11 fest miteinander verbunden sind. Die Abstandshalter 11 nehmen darüber hinaus einen im Wesentlichen ringförmigen Anschlag 13 für die Tilgermassen 5a, 5b, 5c auf, wobei die Tilgermassen 5a, 5b, 5c je nach Betriebssituation entweder mit ihren radialen Innenseiten 15 an außenseitigen Anschlagelementen 19 des Anschlags 13 in Anlage gelangen, oder aber mit ihren umfangsseitigen Enden 17a, 17b an umfangsseitigen Anschlagelementen 21a, 21 b des Anschlags 13.

Die Tilgermassen-Trägerelemente 9a, 9b weisen pro Tilgermasse 5a, 5b, 5c und damit pro Tilgermasseneinheit 6 jeweils zwei Führungsbahnen 23 auf, und auch die Tilgermasse 5a, 5b, 5c der jeweiligen Tilgermasseneinheit 6 verfügt über jeweils zwei Führungsbahnen 25. Die Führungsbahnen 23 und 25 sind mittels Koppelelementen 30 miteinander verbunden, wobei diese Koppelelemente 30 zumindest im Wesentlichen zylindrisch geformt sind, und nach Möglichkeit in den Führungsbahnen 23 und 25 abrollen sollten.

In einem Betriebszustand, bei welchem die Tilgermassen-Trägerelemente 9a, 9b eine Drehbewegung um die Zentralachse 3 ausführen mit einer Drehzahl, bei welcher die Fliehkraft an den Tilgermassen 5a, 5b, 5c die Gewichtskraft übersteigt, nehmen die Koppelelemente 30 eine Ausgangsposition 32 in den Führungsbahnen 23 und 25 ein, die in Fig. 2 dargestellt ist. In dieser Ausgangsposition 32 befinden sich die Koppelelemente 30 jeweils an derjenigen Stelle 35 der Führungsbahnen 23 der Tilgermassen-Trägerelemente 9a, 9b, die über den größten Radialabstand gegenüber der Zentralachse 3 verfügt. Was die Tilgermassen 5a, 5b, 5c betrifft, so nehmen die Koppelelemente 30 ihre jeweilige Ausgangsposition 32 jeweils an denjenigen Stellen 37 der Führungsbahnen 25 ein, in welchen der geringste Radialabstand gegenüber der Zentralachse 3 vorliegt.

In den Tilgermassenträger 7 eingeleitete Torsionsschwingungen bewirken Auslenkungen der Tilgermassen 5a, 5b, 5c aus deren jeweiliger Ausgangsposition 32 in den Führungsbahnen 23 und 25 gegen die Wirkung der Fliehkraft, die somit auch als Rückstellkraft in Richtung zur jeweiligen Ausgangsposition 32 wirksam ist. Die jeweilige Bewegung der Tilgermassen 5a, 5b, 5c bei dieser Auslenkbewegung um die Zentralachse 3 über einen in Fig. 3 gezeigten Schwingwinkel φ hängt unter anderem davon ab, um welchen Schwenkwinkel δ die Tilgermasse 5a, 5b, 5c eine Drehbewegung um einen Massenschwerpunkt 40 vollzieht. In Fig. 3 ist die bei dieser Bewegung vom Massenschwerpunkt 40 absolvierte Bahnkurve 42 anhand einer schematisch dargestellten Tilgermasse 5 gezeigt, wobei sich der Massenschwerpunkt 40 in Abhängigkeit von einem Auslenkwinkel α entlang der Bahnkurve 42 bewegt, und zwar bei einer Auslegung, bei welcher ein aus dem Schwenkwinkel δ in Relation zum Schwingwinkel φ gebildeter Verhältniswert Κφ den Wert von 1 annimmt. Hier gilt also:

Κφ = δ / φ = 1

Wie Fig. 3 zeigt, wird bei der Auslegung eines Tilgersystems 1 , wie es zuvor behandelt worden ist, das Modell eines Fadenpendels herangezogen. Demnach zeigt Fig. 3 zwei imaginäre Fadenpendel 46, 48, von denen das erste Fadenpendel 46 mit einer Fadenlänge Si und das zweite Fadenpendel 48 mit einer Fadenlänge S 2 ausgebildet ist, wobei sich die Fadenlängen S 1 und S 2 voneinander unterscheiden. Das erste Fadenpendel 46 greift in der Ausgangsposition 32 der Tilgermasse 5 unter einem Winkel ß an, das zweite Fadenpendel 48 dagegen mit einem Winkel γ. Bei der Bewegung der Tilgermasse 5 aus ihrer Ausgangsposition 32 in ihre in Fig. 3 gezeigte Auslenkposition 50 wird das erste Fadenpendel 46 um den Winkel αι verlagert, das zweite Fadenpendel 48 dagegen um den Winkel 0 2 .

Wie Fig. 3 weiter zeigt, weist der erste Radialabschnitt Li eine Erstreckungslänge von der Zentralachse 3 bis zur Anbindungsstelle 44 des zweiten Radialabschnittes l_ 2 auf, während dem zweiten Radialabschnitt L 2 eine Erstreckungslänge von der An- bindungssteile 44 am ersten Radialabschnitt Li bis zum Massenschwerpunkt 40 der Tilgermasse 5 zugeordnet ist. Der Radius rsp, mit welchem der Massenschwerpunkt 40 von der Zentralachse 3 entfernt ist, ergibt sich somit in der Ausgangsposition 32 der Tilgermasse 5 aus der Addition der Längen von erstem Radialabschnitt Li und zweitem Radialabschnitt l_ 2 . Bei der in Fig. 3 gezeigten Auslenkung der Tilgermasse 5 führt deren Massenschwerpunkt 40 die Auslenkbewegung entlang der Bahnkurve 42 aus, wobei der erste Radialabschnitt Li gegenüber der Zentralachse 3 um den Schwingwinkel φ ausgelenkt wird, der zweite Radialabschnitt L 2 dagegen um einen Auslenkwinkel α um die Anbindungsstelle 44 auf dem ersten Radialabschnitt Li.

Die Erstreckungslänge für den zweiten Radialabschnitt l_2 wird wie folgt ermittelt:

m Tng8r * Ordnung 2 *r SP 2 -4*J T , lger *Ordnung 2 * p 2 +m Tliger *r SP 2

m Tjiger *Ordnung 2 +m TiigBr

2*Ordnung 2 +2

Notwendig für die Ermittlung der Erstreckungslänge für den Radialabschnitt L 2 sind Vorgaben zum Gewicht m T ii g er der Tilgermasse 5, dem Radius rsp des Massenschwerpunktes 40 der Tilgermasse 5 um die Zentralachse 3, die Trägheit Jjiiger der Tilgermasse 5 sowie die Ordnung, auf welche das Tilgersystem 1 ausgelegt werden soll. Weiterhin ist der Verhältniswert Κφ anzugeben.

Zwischen den Radialabschnitten Li und l_ 2 besteht folgender Zusammenhang:

Somit kann auch die Erstreckungslänge für den Radialabschnitt Li ermittelt werden.

Zur Ermittlung der Geometrie der Führungsbahnen 23 in den Tilgermassen- Trägerelementen 9a, 9b sowie der Geometrie der Führungsbahnen 25 in den Tilgermassen 5 oder 5a, 5b, 5c werden die imaginären Fadenpendel 46, 48 herangezogen. Bei diesen Fadenpendeln 46, 48 muss eine Variation der jeweiligen Länge in Zuordnung zum jeweiligen Auslenkwinkel α-ι , α 2 erfolgen, um sicher zu stellen, dass der Massenschwerpunkt 40 der jeweiligen Tilgermasse 5 der Bahnkurve 42 folgt. Wie Fig. 3 im Einzelnen erkennen lässt, muss das Fadenpendel 46 hierzu um den Betrag xi verlängert werden, während das Fadenpendel 48 um den Betrag x 2 verkürzt werden muss. Es verbietet sich demnach eine Platzierung der Koppelelemente 30 an den Fadenpendeln 46, 48 jeweils in Erstreckungsrichtung mittig. Stattdessen muss die Position des jeweiligen Koppelelementes 30 entlang der Erstreckungsrichtung der Fadenpendel 46, 48 außermittig gewählt werden, was zur Folge hat, dass die sich hieraus ergebenden Führungsbahnen 23, 25 bezüglich Bahnlänge und Bahnkrümmung ungleich sind. Fig. 4 zeigt je ein Koppelelement 30 an den Fadenpendeln 46, 48 in Verbindung mit den Führungsbahnen 23a, 25a oder 23b, 25b. Es ist deutlich erkennbar, dass die Führungsbahnen 23b, 25b am Fadenpendel 48 bezüglich ihrer jeweiligen Ausrichtung sowie ihres jeweiligen Verlaufes deutlich von den Führungsbahnen 23a, 25a am Fadenpendel 46 abweichen.

Bei einer derartigen Auslegung der Führungsbahnen 23a, 25a oder 23b, 25b muss darauf geachtet werden, dass die Kontaktkräfte F1 , F 2 zwischen dem jeweiligen Koppelelement 30 und den Führungsbahnen 23, 23a, 23b in den Tilgermassen- Trägerelementen 9a, 9b oder den Führungsbahnen 25, 25a, 25b in den Tilgermassen 5a, 5b, 5c bei jedem Auslenkwinkel α-ι , a 2 idealerweise exakt aufeinander zugerichtet sind, da nur dann ein sauberes Abrollen des Koppelelementes 30 in der jeweiligen Führungsbahn 23, 25, 23a, 25a, 23b, 25b gewährleistet ist.

Die bisherigen Überlegungen gehen von Koppelelementen 30 aus, die nicht gestuft sind. Bei gestuften Koppelelementen 30 ändert sich aufgrund der zuvor erläuterten Auslegung der Führungsbahnen 23, 25, 23a, 25a, 23b, 25b das durch die Stufung bewirkte Übersetzungsverhältnis.

Zur Auslegung der Führungsbahnen 23, 25 werden, wie Fig. 6 für eine Führungsbahn 23 am Tilgermassen-Trägerelement 9a, 9b und Fig. 8 für eine Führungsbahn 25 an der Tilgermasse 5a, 5b, 5c zeigt, entsprechend der Proportionierung des jeweiligen Koppelelementes 30 in Zuordnung zu vorbestimmten Auslenkwinkeln αι bis 04 einzelne Bahnpunkte 52a bis 52e (Fig. 6) oder einzelne Bahnpunkte 57a bis 57e (Fig. 8) mit Radien R1 , R2, R3, R4, R5 ausgewählt, die anschließend zu einem Polygonzug 54 (Fig. 6) oder zu einem Polygonzug 58 (Fig. 8) verbunden werden. Auf diese Weise werden Führungsbahnen 23 (Fig. 6) oder Führungsbahnen 25 (Fig. 8) erzeugt, bei denen unterschiedliche Bahnkurvensegmente 55a bis 55d (Fig. 6) oder unterschiedliche Bahnkurvensegmente 59a bis 59d (Fig. 8) miteinander verbunden sind. Im Übrigen sind die Führungsbahnen 23, 25, wie Fig. 5 oder 7 anhand der Führungsbahnen 23 beispielhaft zeigen, derart ausgerichtet, dass deren Mittenachsen 60 durch die Zentralachse 3 des Tilgersystems 1 verlaufen. Dies setzt allerdings voraus, dass für den Verhältniswert κ φ ein Betrag von 1 ausgewählt ist.

Erfolgt die Auslegung der Führungsbahnen 23, 25 statt dessen mit einem Verhältniswert Κφ von 1 ,5, dann ist der Schwenkwinkel ε größer als der Schwingwinkel φ. Die Führungsbahnen 23 in den Tilgermassen-Trägerelementen 9a, 9b sind dann ebenso wie die Führungsbahnen 25 in den Tilgermassen 5a, 5b, 5c derart verdreht, dass deren Mittenachsen 60a die Zentralachse 3 nicht treffen. Fig. 9 zeigt beispielhaft anhand eines Tilgermassen-Trägerelementes 9d, wie dessen Führungsbahnen 23 bei einem Verhältniswert κ φ νοη 1 ,5 ausgerichtet sind.

Bei Auslegung der Führungsbahnen 23, 25 mit einem Verhältniswert Κφ ungleich Null fällt auf, dass sich das Trägheitsmoment Jinger im Hinblick auf die Ordnung reduzierend bemerkbar macht, so dass im Vergleich zu Führungsbahnen 23, 25, die mit einem Verhältniswert κ φ gleich Null ausgelegt sind, eine deutlich kürzere Bahnkurve 42 für den Massenschwerpunkt 40 der Tilgermasse 5, 5a, 5b, 5c benötigt wird, um zur gleichen Ordnung zu gelangen. Je stärker der Verhältniswert Κφ ansteigt, umso mehr macht sich diese Folgeerscheinung bemerkbar. Dies ist anhand der nachfolgenden Formel erkennbar:

1 +Sollordnung 2 2

L^L m 'Tilger

Ordnung = Notwendig für die Ermittlung der tatsächlichen Ordnung sind Vorgaben zum Gewicht nriTiiger der Tilgermasse 5, dem Radius rsp des Massenschwerpunktes 40 der Tilgermasse 5 um die Zentralachse 3, die Trägheit Jiiiger der Tilgermasse 5 sowie die Ordnung, auf weiche das Tilgersystem 1 ausgelegt werden soll. Weiterhin ist der Verhältniswert κ φ anzugeben. Sobald diese Werte in die vorgenannte Formel eingetragen sind, erweist sich, dass die tatsächliche Ordnung betragsmäßig deutlich unterhalb der vorgegebenen Sollordnung liegt.

Fig. 10 bis 12 zeigen eine weitere Möglichkeit der Auslegung eines Tilgersystems 1. Ziel hierbei ist, den Massenschwerpunkt 40 einer Tilgermasse 5 entlang einer definierten Bahnkurve 42 zu führen. Um dies zu realisieren, werden die Führungsbahnen 23, 25 in den Tilgermassen-Trägerelementen 9a, 9b des Tilgermassenträgers 7 sowie in den Tilgermassen 5, 5a, 5b, 5c jeweils als zusammengesetzte Kreisbahn ausgeführt. Wie Fig. 11 für ein Tilgermassen-Trägerelement 9b und Fig. 12 für eine Tilgermasse 5b im Einzelnen zeigt, besteht jede Führungsbahn 23, 25 von Tilgermassen-Trägerelementen 9a, 9b sowie von Tilgermassen 5, 5a, 5b, 5c mit Vorzug aus zwei unterschiedlichen Kreissegmenten 23', 23", 25', 25" mit Radien R1 und R2. Wie bereits bei der zuvor beschriebenen Ausführung dargelegt, wird die Schwenkbewegung der Tilgermassen 5, 5a, 5b, 5c um deren jeweiligen Massenschwerpunkt 40 durch Variation der Längen Si und S 2 imaginärer Fadenpendel 46a, 48a bei der Auslenkung aus der Auslenkposition 32 über einen Auslenkwinkel α 1 , a 2 realisiert. Die Kreissegmente 23', 23", 25', 25" werden hierbei derart ausgestaltet, dass die Bahnkurve 42 des Massenschwerpunktes 40 der Tilgermassen 5, 5a, 5b, 5c bezüglich ihres Verlaufes zumindest im Wesentlichen dem Verlauf einer angestrebten Bahnkurve entspricht.

Im Hinblick auf die Bahnkurve 42 des Massenschwerpunktes 40 der Tilgermassen 5, 5a, 5b, 5c ist anzumerken, dass diese durch die beiden imaginären Radialabschnitte Li , l_ 2 beschreibbar ist, von denen dem ersten Radialabschnitt Li eine Erstreckungs- länge von der Zentralachse 3 des Tilgermassenträgers 7 bis zu einer Anbindungs- stelle 44 des zweiten Radialabschnittes L 2 zugeordnet ist, wobei der erste Radialabschnitt Li Bewegungen entlang eines Schwingwinkels φ der jeweiligen Tilgermasse 5; 5a, 5b, 5c um die Zentralachse 3 vollzieht, während dem zweiten Radialabschnitt L-2 eine Erstreckungslänge von der Anbindungsstelle 44 am ersten Radialabschnitt Li bis zum Massenschwerpunkt 40 der jeweiligen Tilgermasse 5; 5a, 5b, 5c zugeordnet ist, wobei der zweite Radialabschnitt L 2 Bewegungen entlang jeweils eines Auslenkwinkels α um die Anbindungsstelle 44 am ersten Radialabschnitt Li vollzieht.

Abweichend von der Ausführung des Tilgersystems gemäß Fig. 1 und 2 zeigen die Fig. 13 und 14 ein Tilgersystem 1 , bei welchem Tilgermassen 5 beidseits eines einzelnen Tilgermassen-Trägerelementes 9 eines Tilgermassenträgers 7 angeordnet sind. Die beiden Tilgermassen 5 sind durch Abstandshalter 11a aneinander befestigt. Um den Tilgermassen 5 die gewünschte Bewegung relativ zum Tilgermassen- Trägerelement 9 und damit zum Tilgermassenträger 7 zu ermöglichen, durchgreifen die Abstandshalter 11a Ausnehmungen 62 im Tilgermassenträger 7. Auch bei dieser Ausführung stehen Führungsbahnen 23 des Tilgermassenträgers 7 und Führungsbahnen 25 der Tilgermassen 5 mittels Koppelelementen 30 in Wirkverbindung miteinander. Ebenfalls angedeutet in Fig. 13 ist der Massenschwerpunkt 40 der Tilgermassen 5 sowie die Zentralachse 3 des Tilgersystems 1. Was die Auslegung der Führungsbahnen 23, 25 von Tilgermassenträger 7 und Tilgermassen 5 betrifft, sind die im Hinblick auf die Ausführung gemäß Fig. 1 und 2 beschriebenen Maßnahmen auch auf die Ausführung nach Fig. 13 und 14 übertragbar.

Bezuqszeichen

I Tilgersystem

3 Zentralachse

5 Tilgermassen

6 Tilgermasseneinheit

7 Tilgermassenträger

9 Tilgermassen-Trägerelemente

I I Abstandshalter

13 Anschlag

15 radiale Innenseiten

17 umfangsseitige Enden

19 Anschlagelemente

21 umfangsseitige Anschlagelemente

23 Führungsbahnen

25 Führungsbahnen

30 Koppelelemente

32 Ausgangsposition

35 Stelle der Führungsbahn 23 mit größtem Radialabstand zur Zentralachse

37 Stelle der Führungsbahn 25 mit geringstem Radialabstand zur Zentralachse

40 Massenschwerpunkt

42 Bahnkurve

44 Anbindungsstelle

46 erstes Fadenpendel

48 zweites Fadenpendel

50 Auslenkposition

52 Bahnpunkte

54 Polygonzug

55 Bahnkurvensegmente

57 Bahnpunkte

58 Polygonzug

59 Bahnkurvensegmente

60 Mittenachsen