Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ADJUSTABLE PIPE GUIDE FOR USE WITH AN ELEVATOR AND/OR A SPIDER
Document Type and Number:
WIPO Patent Application WO/2009/032758
Kind Code:
A1
Abstract:
One embodiment provides an adjustable guide (10a) to steer the end (90) of a pipe string (88) into position to be engaged and supported by a pipe gripping apparatus such as, for example, an externally gripping elevator assembly (10). The adjustable guide (10a) may comprise a plurality of distributed guide inserts (30), each having a sloped surface (3OA) to engage a pipe end (90). Another embodiment provides an adjustable guide (60a) to steer a pipe connection into position to pass through a spider (60). The guide inserts (30, 80) of an adjustable guide may be controllably positionable to together form a guide that is concentric with the bore of the tapered bowl of an elevator assembly or a spider. One embodiment comprises a guide insert retainer (11) having a plurality of channels (28), each slidably receiving a guide insert (30) and positionable by rotation of a threaded shaft (40).

Inventors:
ANGELLE JEREMY R (US)
MOSING DONALD E (US)
STELLY JOHN ERICK (US)
Application Number:
PCT/US2008/074639
Publication Date:
March 12, 2009
Filing Date:
August 28, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FRANK S INR INC (US)
ANGELLE JEREMY R (US)
MOSING DONALD E (US)
STELLY JOHN ERICK (US)
International Classes:
E21B19/24; E21B19/07; E21B19/10
Domestic Patent References:
WO2003031766A12003-04-17
Foreign References:
US20040016575A12004-01-29
US20040200622A12004-10-14
EP1619349A22006-01-25
US20040251055A12004-12-16
US6394186B12002-05-28
DE3537471C11987-01-08
US4654950A1987-04-07
US20040016575A12004-01-29
Attorney, Agent or Firm:
STEELE, Patrick, K. (13831 Northwest Freeway Suite 35, Houston TX, US)
Download PDF:
Claims:
We claim:

1. An adjustable guide apparatus to position a portion of a pipe string comprising: a plurality of guide inserts in a generally angularly distributed arrangement about a bore, each guide insert coupled to a guide insert retainer.

2. The adjustable guide apparatus of claim 1 wherein one or more of the guide inserts are controllably positionable relative to the guide insert retainer.

3. The adjustable guide apparatus of claim 1 wherein the guide inserts are removable from the guide insert retainer.

4. The adjustable guide apparatus of claim 2 wherein at least one guide insert is controllably positionable relative to the guide insert retainer by rotation of a threaded shaft that threadably engages the guide insert; and wherein the threaded shaft is rotatably coupled to the guide insert retainer.

5. The apparatus of claim 2 wherein the at least one guide insert is operably coupled to an actuator to move the guide insert between a retracted position and at least one deployed position.

6. The apparatus of claim 1 wherein each guide insert comprises a generally sloped engaging surface to contact and guide a portion of a pipe string.

7. The adjustable guide apparatus of claim 6 wherein the generally sloped engaging surfaces of the guide inserts together form a guide to receive and direct a portion of a pipe string.

8. The adjustable guide apparatus of claim 7 wherein a plurality of the generally sloped engaging surfaces of the guide inserts are positionable relative to the guide insert retainer.

9. The apparatus of claim 2 wherein each guide insert is slidably positionable.

10. The apparatus of claim 1 wherein the guide insert retainer comprises two or more cooperating guide insert retainer portions.

11. The apparatus of claim 10 wherein each guide insert retainer portion is hinged to an elevator assembly having a bore, and a guide insert retainer portion is pivotable between a deployed configuration to position the guide inserts to generally surround the bore and at least one removed position to position the guide inserts generally away from the bore.

12. A method of positioning a pipe string comprising the steps of: forming a guide insert retainer having a bore at its center; movably coupling a plurality of guide inserts to the guide insert retainer in a generally angularly distributed arrangement about the bore with the guide inserts movable between a retracted position and at least one deployed position; and deploying the guide inserts to the at least one deployed position to engage a pipe string with at least one of the guide inserts to position the pipe string within the bore.

13. The method of claim 12 wherein the step of coupling the guide inserts to the guide insert retainer comprises slidably coupling the guide inserts to the guide insert retainer.

14. A method of forming a pipe string comprising the steps of: providing a spider supported on a rig and having at least one slip movably received within a bore within the spider; providing an elevator assembly movably supported above the spider and having at least one movable slip; supporting a first pipe segment using the spider; joining an additional pipe segment to a proximal end of the first pipe segment to form the pipe string; supporting the pipe string in the spider; and providing a plurality of radially positionable guide inserts adjacent at least one of the elevator assembly and the spider in an angularly distributed pattern.

15. The method of claim 14 further comprising the step of adjusting the plurality of radially positionable guide inserts from a first position, to center a pipe segment of a first outer diameter, to a second position, to center a pipe segment of a second outer diameter.

16. The method of claim 15 wherein the adjusting step further comprises the step of rotating one or more threaded shafts to position a radially positionable guide insert from the first position to the second position.

17. An assembly comprising an elevator and a bell guide supported axially underneath the elevator, the assembly having a plurality of chambers intermediate the elevator and the bell guide, each for receiving at least one guide insert having an engaging surface to contact and guide a pipe end.

18. The method of claim 12 further comprising the step of disposing a sloped engaging surface on at least some of the guide inserts.

Description:

ADJUSTABLE PIPE GUIDE FOR USE WITH AN ELEVATOR AND/OR A SPIDER

BACKGROUND

Field of the Invention

[0001] One embodiment of the present invention relates to an adjustable guide to position a portion of a pipe string within a pipe gripping assembly, such as an elevator assembly or a spider. One embodiment of the present invention relates to an adjustable guide to steer a pipe end into the bottom of an elevator assembly being lowered by a draw works on a drilling rig, or to generally center a pipe connection so that it may pass through a spider on a drilling rig.

Background of the Related Art

[0002] Wells are drilled into the earth's crust and completed to establish a fluid conduit between the surface and a targeted geologic feature, such as a formation bearing oil or gas. Pipe strings used to drill or complete a well may be made-up as they are run into a drilled borehole. A casing string may be cemented into a targeted interval of a drilled borehole to prevent borehole collapse and/or formation fluid cross-flow, and to isolate the interior of the well from corrosive geologic fluids.

[0003] Generally, a pipe string may be suspended in a borehole from a rig using a pipe gripping assembly, e.g., a spider, and step-wise lengthened by threadably joining a pipe segment (which, for purposes of this disclosure, may be a pipe stand comprising a plurality of pipe segments) to the proximal end of the pipe string at the rig. The lengthened pipe string may then be suspended using a second type of gripping assembly, e.g., an elevator assembly that is movably supported from a draw works and a derrick above the spider. As the load of the pipe string is transferred from the spider to the draw works and the derrick, the spider may be unloaded and then disengaged from the pipe string by retraction of the spider slips. The lengthened pipe string may then be lowered further into the borehole using the draw works. The spider may again engage and support the pipe string within the borehole and an additional pipe segment may be joined to the new proximal end of the pipe string to further lengthen the pipe string.

[0004] Lengthening a pipe string generally involves adding one pipe segment at a time to an existing pipe string. Using one method, a pipe segment is secured to a lift line that hoists the pipe segment into the derrick to position the distal end of the pipe segment near the proximal end of the pipe string just above the spider. The distal end of the pipe segment may be, for example, an externally threaded male connection, or "pin end," of the pipe segment, and it may be positioned by rig personnel to be received into and bear against the proximal end of the pipe string that is suspended by the spider. The proximal end of the pipe string may be, for example, an internally threaded female connection, or a "box end" connection.

[0005] A stabber is typically a member of the rig crew that works in the derrick. The stabber may be secured to a structural component of the derrick to prevent him from falling as he leans out to manually position the proximal end of the pipe segment (which may be an internally threaded connection) to align the distal end of the pipe segment with the proximal end of the pipe string. A power tong may be used to grip and rotate the pipe segment about its axis to make-up the threaded connection between the distal end of the pipe segment and the proximal end of the pipe string to thereby lengthen the pipe string. The proximal end of the now-connected pipe segment then becomes the new proximal end of the lengthened pipe string.

[0006] After threadably connecting the pipe segment to the pipe string, the stabber may then align the new proximal end of the pipe string with the inlet of a bell guide that is coupled to the bottom of an elevator assembly. The stabber attempts to position the proximal end of the pipe string to enter the inlet of the bell guide as the elevator assembly is controllably lowered toward the spider using the draw works. After the proximal end of the pipe string passes through the bell guide and then exits the bell guide at its outlet, the proximal end of the pipe string may then enter a bore between the outlet of the bell guide and the gripping zone of the elevator assembly. Further lowering of the elevator assembly will then cause the proximal end of the pipe string to enter and pass through the gripping zone defined by the slips within the elevator assembly.

[0007] After the proximal end of the pipe string is received through the gripping zone of the elevator assembly, the elevator assembly slips may be actuated to engage and grip the pipe string just below its proximal end. Subsequently raising the elevator assembly using the draw works lifts the pipe string and unloads the spider. The draw works may then be used to controllably

lower the elevator assembly toward the spider to position the proximal end of the pipe string just above the gripping zone of the spider. The spider may reengage and support the pipe string to strategically position the proximal end of the pipe string to receive and threadably connect to a new pipe segment. This step-wise method of lengthening a pipe string is repeated until the pipe string reaches its desired length.

[0008] Most gripping assemblies include a tapered bowl having a stepped profile. A stepped profile tapered bowl may comprise a stepped or variable profile within the tapered bowl to provide a generally staged convergence of the slips on the exterior surface of the pipe string. The initial stage of convergence may be a rapid radial convergence of the slips on the exterior surface of a pipe string, generally followed by a more gradual convergence as the slips engage, tighten and grip the exterior surface of the pipe string. While the stepped-profile design affords a more vertically compact elevator assembly, it also substantially limits the range of pipe diameters that may be gripped by the gripping assembly. Pipe strings are generally uniform in diameter and wall thickness throughout their length because gripping assemblies are generally adapted to grip only one size of pipe. Some geological formations, such as salt zones or unconsolidated formations, are prone to movement relative to adjacent formations, and this relative movement may necessitate the use of stronger, thicker- walled pipe at critical intervals to prevent unwanted pipe string failures. Other formations may present a more corrosive environment, thereby necessitating a thicker-walled pipe string. One method of protecting the well against damage in these critical formations is to form the entire pipe string using the thicker and more expensive pipe, but this approach results in a substantial increase in cost.

[0009] An alternative method is to install a tapered pipe string, which is a pipe string that has one or more outer pipe diameter transitions along its length. For example, a tapered pipe string may have a first portion with a first pipe wall thickness and outside diameter, and a second portion with a second pipe wall thickness and outside diameter. The second portion of the tapered pipe string may be connected to extend the length of the tapered pipe string beyond the length of the first portion. A tapered pipe string may be installed in a well so that a thicker and stronger-walled portion of the tapered pipe string is strategically positioned within a more critical depth interval of the well. For example, but not by way of limitation, a thicker-walled first portion may be disposed within a tapered pipe string nearer to the surface so that the lower,

thinner-walled second portion of the tapered pipe string will be adequately supported by the stronger first portion. As another example, but not by way of limitation, a thicker-walled second portion may be positioned adjacent to an unconsolidated formation or an unstable formation penetrated by the well to ensure that the tapered pipe string offers more resistance to movement or shear as a result of movement in the unconsolidated or unstable formation.

[0010] Using conventional, stepped profile tapered bowls, forming a tapered pipe string normally requires the use of two or more elevator assemblies and two or more spiders so that two or more diameters of pipe can be made-up and run in a single pipe string. This approach requires rig downtime to change out the elevator assembly or the spider, or both, for each outer diameter transition.

[0011] A different type of tapered bowl for a gripping assembly may comprise a tapered bowl having a smooth and non-stepped profile. FIGs. IA and IB illustrate the cross-section of a tapered bowl 4 of an elevator assembly or a spider 2 having a non-stepped profile. For illustration purposes, FIG. IA shows a spider adapted for being supported from a rig floor, but it should be understood that the same mechanical cooperation and relationship between a tapered bowl and a set of slips may exist in a conventional string elevator, a casing running tool (CRT), or other pipe gripping apparatus having a non-stepped profile.

[0012] FIG. IA shows a set of slips 5 positioned within the tapered bowl 4 to grip a pipe string 188 having a first diameter Dl. The slips 5 may be positioned using a timing ring 8 that may be vertically movable, e.g., using extendable rods 9.

[0013] FIG. IB shows the same set of slips 5 positioned vertically higher within the same tapered bowl 4 to grip a second, larger diameter portion of the same pipe string 188 having a diameter D2. These figures illustrate how a smooth, non- stepped profile tapered bowl may be used to run a first portion of a tapered pipe string having a first diameter and to run a second portion of the tapered pipe string having a second diameter without rig downtime to replace the elevator assembly or the spider.

[0014] A tapered bowl having a non- stepped profile enables the gripping assembly to engage and grip a range of pipe diameters. The "gripping zone," as that term is used herein, may be

defined as the space within the tapered bowl and between the angularly distributed arrangement of slips, and it varies in size and shape according to the vertical elevation of the set of slips within the tapered bowl when they are engage and grip the pipe.

[0015] A limitation that may affect the utility of a spider, elevator assembly (e.g., string elevator, CRT) or other pipe gripping assembly (for example, one having a non-stepped profile) is the difficulty of positioning the proximal end of the pipe string within the gripping zone of the gripping assembly. Wear, warping and material imperfections in the pipe segments or connections may cause the pipe string to be non-linear. Imperfections in the derrick and/or the rig floor, and other factors such as wind and thermal expansion may all combine to cause the bore of the elevator assembly to be misaligned with the proximal end of the pipe string, or to cause the bore of the spider to be misaligned with a pipe connection within the pipe string. For these or other reasons, the rig crew often has to manually position the proximal end of a pipe string to enter the elevator assembly or to position a pipe connection towards the center of the bore of the spider. It may be important that the slips of the tubular gripping apparatus, for example a spider, CRT or elevator assembly, engage and set against the exterior surface of the pipe string as simultaneously and evenly as possible to prevent damage to equipment or to the pipe string, and/or to ensure a positive grip.

[0016] Devices have been developed to assist the rig crew in aligning the proximal end of the pipe string with the elevator assembly. For example, a conventional bell guide is a rigid and generally inverted, funnel-shaped housing that may be coupled to the bottom of an elevator assembly and used to engage and steer the proximal end of the pipe string into the bore of the tapered bowl beneath the gripping zone of the elevator assembly. As the elevator assembly is lowered over the pipe string, the proximal end of a pipe string may engage the sloped interior surface of the bell guide. The reaction force imparted to the proximal end of the pipe string by the bell guide has an axially compressive component and a radial component. As the elevator assembly is lowered, the proximal end of the pipe string may slide along the interior surface of the bell guide until it reaches the top (outlet) of the bell guide, enter the bore of the tapered bowl of the elevator assembly, and then pass through the gripping zone of the elevator assembly defined by the retracted slips.

[0017] A conventional bell guide may have a significant limitation when used with a elevator assembly with a smooth, non-stepped tapered bowl adapted for gripping a range of pipe diameters. The size of the outlet of the bell guide must necessarily be larger than the largest diameter of pipe that can be gripped by the elevator assembly. If the outlet of the bell guide is too small to pass the largest pipe diameter that may be gripped by the elevator assembly, then the bell guide may need to be replaced in order to make-up and run a large diameter pipe string. Depending on its capacity, an elevator assembly may weigh up to 15,000 pounds or more, and the bell guide alone may weigh hundreds of pounds. Replacing the bell guide to run different diameters of pipe may be difficult and time consuming. Similarly, a bell guide sized to accommodate a large-diameter pipe string may not be useful for running a smaller diameter pipe string. If the outlet at the proximal end of the bell guide is too large, then a smaller diameter pipe string may not be sufficiently aligned by the bell guide with the bore of the gripping zone in the tapered bowl of the elevator assembly as it exits the bell guide, and the proximal end of the pipe string may enter the elevator assembly and hit the bottom of one or more slips as the elevator assembly is lowered over the proximal end of the pipe string.

[0018] A bottom guide is another tool that may cooperate with a bell guide and an elevator assembly to position the end of the pipe string to enter the elevator assembly. The bottom guide may be coupled between the outlet of a bell guide and the bore in the bottom of the tapered bowl to receive the end of the pipe string as it passes the bell guide and to further direct it to the bore of the tapered bowl. A bottom guide has the same limitation as a bell guide when used with elevator assemblies with tapered bowls having a non- stepped profile. That is, the bottom guide may require replacing when the pipe diameter being run into the borehole is changed.

[0019] A spider, like an elevator assembly, may also include a tapered bowl having a smooth, non-stepped profile that enables the spider to grip and support a broader range of pipe diameters. Unlike an elevator assembly, a spider does not typically receive the end of a pipe string (except on the very first pipe segment used to begin the string), but it may receive and pass internally threaded pipe sleeves of the kind used to form conventional threaded pipe connections. Each internally threaded sleeve comprises a downwardly disposed shoulder that may be, depending on the diameter and grade of the pipe string being formed, up to 0.30 inches or more in thickness. Misalignment of a pipe connection as it passes through the tapered bowl of the spider may result

from the same material imperfections, winds and thermal expansion or contraction, that affect alignment between the bore of the gripping zone of a elevator assembly and the proximal end of the pipe string. A misaligned pipe connection may cause the sleeve of a pipe connection to hang on the top of one or more slips or other structures of the spider as the lengthened pipe string is lowered into the borehole using the draw works. Given the large weight of a pipe string, hanging a sleeve shoulder on a spider slip as the pipe string is lowered through the spider may damage the spider, the pipe connection, or both.

[0020] A gripping assembly capable of gripping and supporting a broad range of pipe string diameters without alignment problems would provide a significant advantage because it could be used to make-up and run tapered pipe strings, or pipe strings having a generally telescoping configuration, into a borehole with substantially less rig downtime. But misalignment problems caused by material imperfections or deflections in pipe, the derrick and other rig structures, and winds and thermal expansion or contraction, make it difficult to achieve the full benefit of using gripping assemblies with tapered bowls having non-stepped profiles. While some tools exist to center the proximal end of a pipe string or a pipe connection, these conventional tools limit the range of diameters of pipe that may be run, thereby defeating the advantage provided by the use of a gripping assembly having a tapered bowl with a non-stepped profile.

[0021] What is needed is an adjustable guide that can be coupled to an elevator assembly to position the proximal end of a pipe string relative to the bore of the elevator assembly, and that can be used to position pipe strings within a range of pipe string diameters. What is needed is an adjustable guide that can be coupled to a spider to position a pipe connection relative to the bore of the spider, and that can be used to position pipe connections within a range of pipe connection diameters. What is needed is an adjustable guide that may be used to radially position the proximal end of a pipe string as the elevator assembly is lowered over the proximal end of the pipe string, and that can be used to position pipe strings having a range of diameters. What is needed is an adjustable guide that may be used to radially position a pipe connection within a pipe string as the pipe string is lowered through the spider, and that can be used to position pipe connections having a range of diameters.

SUMMARY

[0022] This invention satisfies some or all of the above needs, and others. One embodiment provides a method of forming a tapered pipe string having at least one outer diameter transition along its length without replacing the gripping assemblies. One embodiment includes the steps of using a spider and a elevator assembly, each having smooth, non-stepped tapered bowls for receiving and cooperating with a set of slips, to make-up and run a first portion of a pipe string having a first diameter, connecting a pipe segment having a second diameter larger than the first to the proximal end of the first portion of the pipe string, and using the same spider and elevator assembly to make-up additional pipe segments having the second diameter to lengthen the pipe string. The resulting tapered pipe string may be used to, for example, strategically position thicker- walled pipe at critical intervals of the borehole, while using less expensive standard pipe at less critical intervals of the borehole to minimize the overall cost of the completed well.

[0023] The forming of a tapered pipe string using the method described above may be hindered if the proximal ends of smaller diameter segments of the tapered pipe string do not sufficiently align with the bore of the elevator assembly, or if threaded connections of the smaller diameter portion of the tapered pipe string do not sufficiently align with the bore of the spider. In these instances, the proximal end of the pipe string or the internally threaded sleeve of the threaded pipe connections may hang on or otherwise land on slips or other portions of the elevator assembly or spider due to misalignment. This problem may be abated using an embodiment of the method that comprises the steps of securing an adjustable pipe guide to the bottom of the elevator assembly, and adjusting the adjustable pipe guide to steer the proximal end of a pipe string into the bore of the elevator assembly as the elevator assembly is being lowered over the proximal end of the pipe string. The adjustable guide may be securable to the bottom of the elevator assembly, or the portion disposed toward the spider, in a generally aligned position with a bore of its tapered bowl. The additional steps pertaining to the installation and use of the adjustable guide facilitates the unobstructed entry of the proximal end of the pipe string into the bore in the bottom of the tapered bowl as the elevator assembly is lowered over the proximal end of the pipe string.

[0024] In one embodiment, an adjustable pipe guide may comprise a plurality of replaceable guide inserts securable within a guide insert retainer to collectively cooperate with a bell guide, which is a first convergent structure, and to thereby provide a second convergent structure to position the proximal end of a pipe string within the gripping zone of an elevator assembly. This adjustable pipe guide apparatus may comprise a set of generally angularly distributed guide inserts, each guide insert being securable within or on a guide insert retainer. The guide inserts may be selected to together engage and position a pipe string of a specific diameter that can be received within the adjustable pipe guide. The guide inserts may be removable from the guide insert retainer to permit selective installation of guide inserts for positioning a pipe string of a different diameter.

[0025] The present invention may comprise, in one embodiment, a string elevator assembly having an adjustable guide intermediate a bell guide and a pipe gripping elevator. The adjustable guide may comprise a guide insert retainer that may be used to secure guide inserts in a fixed position within the guide insert retainer, and in a generally angularly distributed arrangement. The guide inserts may each comprise a sloped engaging surface for engaging the pipe string, and the sloped engaging surfaces may together comprise a portion of a generally frustoconical interior to, for example, guide the end of a pipe into the bore of an elevator assembly as the elevator assembly is lowered over the end of the pipe string. The guide inserts of this embodiment of the adjustable pipe guide may be adapted for being secured in a static position within a guide insert retainer that couples a bell guide to an elevator to form an elevator assembly. The guide insert retainer may comprise a plurality of spaces, channels, cavities or chambers therein (hereinafter referred to as "chambers"), each for receiving and securing a guide insert in a position relative to the guide insert retainer. Each guide insert may comprise a generally sloped engaging surface that forms, together with the engaging surfaces of the other guide inserts, a portion of an interior conical frustum to funnel and guide the top end of a pipe string from the top of a bell guide to the opening in the bottom of a tapered bowl of an elevator in which the pipe string is to be gripped. The conical frustum formed by the engaging surfaces of the secured guide inserts form a generally convergent interior surface to contact and guide the top end of the pipe string as the elevator assembly is lowered downwardly to receive and direct a pipe string into the bore of the elevator. The pipe string is thereby positioned to be gripped and supported by slips movable within the elevator.

[0026] Alternately, in one embodiment, each guide insert may be controllably positionable within or on the guide insert retainer. The positionable guide inserts may each be movable between a retracted position and at least one deployed position to engage and position the proximal end of a pipe string into general alignment with the bore of the slips of the pipe gripping elevator of the elevator assembly.

)27j Another embodiment of the method comprises the steps of securing an adjustable pipe guide to the top portion of a spider to center a pipe connection within a pipe string to generally coincide with the aligned bore of the slips of the spider. The steps may include securing the adjustable pipe guide to a top portion of a spider so that the adjustable guide is disposed toward the elevator assembly, and generally centering a pipe connection of a pipe string within the bore of the spider to facilitate unhindered movement of the pipe connection through the disengaged spider as the pipe string is lowered into a borehole. The pipe guide may be adjusted by replacing the guide inserts with guide inserts of a different size or shape to generally center a pipe string connection having a given diameter.

[0028] In an alternate embodiment of the method, the step of positioning the guide inserts provides for adjustment of the pipe guide. The step of positioning the guide inserts may include using one or more actuators to radially position guide inserts within or on a guide insert retainer to adjust the pipe guide defined by the guide inserts to a desire size or shape. Each guide insert may be movable between a retracted position and at least one deployed position to engage and generally center a pipe connection of a pipe string into general alignment with the bore of the tapered bowl of the spider.

[002^j Another embodiment of the adjustable pipe guide apparatus comprises an adjustable guide wherein the guide inserts are each controllably movable within a groove, a furrow, passage, gutter or channel in a guide insert retainer. The guide inserts may, for example, be rollably, slidably or pivotably movable relative to the guide insert retainer, and each of the guide inserts may be securable in a plurality of positions within or on the guide insert retainer. The guide inserts may each be coupled to, and radially positionable relative to, the guide insert retainer by a drive member to provide controlled radial positioning of the guide insert between a retracted position and the at least one deployed position. The drive member may comprise a

threaded rotatable shaft, an extendable pneumatic or hydraulic cylinder, a rack and pinion gear, or some other mechanical drive device to provide controlled deployment and/or retraction of each guide insert. The drive member may be manually, pneumatically, hydraulically, or electrically powered, and the drive member may be remotely controlled using wired or wireless controls.

3Oj For example, but not by way of limitation, a drive member used to controllably and radially position a guide insert may comprise an externally threaded and rotatable shaft that is threadably received within an internally threaded hole in the guide insert. In this embodiment, the threaded shaft is controllably rotatable about its axis to so that rotation of the threaded shaft in a first direction deploys the guide insert radially towards its at least one deployed position, and rotation of the threaded shaft in the second, opposite direction retracts the guide insert radially towards a retracted position. It should be understood that the controlled rotation of the threaded shaft may be manual, such as by use of a crank, a hand tool with a bit or a hand-held drill, or the controlled rotation may be powered using a motor, such as an electrically driven motor. In one embodiment, an adjustable guide may comprise guide inserts that are radially positionable using a small servo-motor coupled to the threaded shaft for imparting controlled rotation to the shaft to deploy and retract the guide insert. The servo-motor used to position a guide insert may be pneumatically, hydraulically or electrically powered, and a single motor may be mechanically coupled to one, two or more adjacent threaded shafts to achieve simultaneous guide insert deployment or retraction.

31 j An adjustable guide having one or more powered servo-motors to deploy and retract guide inserts may be remotely controlled using wired or wireless systems. A portable power source, such as a battery, may be disposed onboard the adjustable guide to power the servomotors) and other control circuitry or devices related to the adjustable guide. Remotely controlling the adjustable guide may provide enhanced flexibility and may, in one embodiment, enable the user to engage and "push" the proximal end of a pipe string or a pipe connection toward a desired position relative to the elevator assembly or spider instead of relying only on the radial component of the force imparted by contact between the pipe string and one or more guide inserts to position the pipe string. For example, but not by way of limitation, an adjustable guide coupled to the bottom of an elevator assembly may be "opened" by fully retracting the

guide inserts to capture the proximal end of a pipe string that is misaligned with the centerline of the elevator assembly and, once the proximal end of the pipe string is disposed within the radially interior space formed between the guide inserts, the adjustable guide may be remotely actuated to deploy the guide inserts and thereby reduce the size of the radially interior space. In this manner, the adjustable guide may be used to push the proximal end of the pipe string toward the center bore of the elevator assembly. It should be noted that with an adjustable guide on an elevator assembly, as opposed to a spider, there may be lateral displacement of the pipe string combined with lateral displacement of the elevator assembly in the opposite direction to reduce misalignment between the proximal end of the pipe string and the bore of the tapered bowl of the pipe string.

[0032] In one embodiment, the guide inserts may each comprise at least one generally sloped surface to engage and impart a positioning force to a pipe end or to the sleeve of a pipe connection. The sloped surface of a guide insert may be sloped at, for example, a 45 to 60 degree angle (from the axis of the pipe string) to impart a force to the pipe string that includes a generally radial or lateral, relative to the axis of the pipe string, component to position a pipe end or a pipe connection within the pipe string. The sloped surfaces of the guide inserts may together form portions of a variable and generally frustoconical guide to steer a pipe end or a pipe connection generally towards alignment with the bore of the tapered bowl of an elevator assembly or of a spider.

[0033] In an embodiment, a guide insert retainer may comprise two or more guide insert retainer portions that cooperate to position the guide inserts in a generally angularly distributed arrangement that is generally aligned with the bore of the tapered bowl of the elevator assembly or of the spider. Each guide insert retainer portion may comprise one or more grooves, tracks or channels therein to slidably receive a corresponding tongue, rail or key on the at least one guide insert. The guide insert retainer portion may be movably secured to the elevator assembly or spider, and movable between a deployed position, to position the guide inserts in a generally angularly distributed arrangement aligned with the bore of the tapered bowl, and a removed position, to remove the guide inserts away from the bore and out of an angularly distributed arrangement. In another embodiment, two or more guide insert retainer portions may be actuatable to move between the removed position and the deployed position by a retainer drive

member, such as a cylinder or a rotatable threaded shaft. In yet another embodiment, two or more guide insert retainer portions may be hingedly or pivotably movable between the deployed position and the removed position.

[0034] In another embodiment, the guide insert retainer may comprise a bell guide. That is, the guide insert retainer may comprise a generally frustoconical and rigid interior guide surface or surfaces that can be used when the guide inserts are in the retracted position to engage and position the proximal end of a pipe string or a pipe connection generally into alignment with the bore of the tapered bowl of an elevator assembly or a spider, respectively. In one embodiment, each guide insert may be movable within a channel, terminating at an aperture in the bell guide, between a generally retracted position and at least one deployed position. The guide inserts may each comprise a generally sloped surface that may be positioned to be generally flush with the interior surface of the bell guide when the guide inserts are in the retracted position, and the guide inserts may each be deployable from that retracted position to radially position the sloped surfaces within the interior of the bell guide to provide an adjustable guide.

[0035] The embodiments of the adjustable guide disclosed herein may be especially useful to form and install a tapered pipe string in a borehole without damaging the elevator assembly or the spider due to misalignment and without additional rig downtime to change out the elevator assembly or the spider, or any components thereof.

[0036] So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. However, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] FIGs. IA and IB are elevation cross-section views of the tapered bowl of an elevator assembly or a spider having a smooth, non-stepped profile that may be used with the adjustable guide of the present invention.

[0038] FIG. 2 is a perspective exploded view of one embodiment of the elevator assembly of the present invention having an adjustable guide.

[0039] FIG. 3 is an assembled perspective view of the elevator assembly of FIG. 2 with the adjustable guide intermediate a tapered bowl of an elevator and a bell guide.

[0040] FIG. 4 is a bottom view of the elevator assembly of FIG. 3, further having a circle indicating the position of the end of a pipe string received into the bell guide and corresponding to the position of the pipe string in FIG. 7.

[0041] FIG. 5 is the bottom view of FIG. 4 illustrating the movement of the end of the pipe string within the bell guide and to the interface between the bell guide and the adjustable guide generally surrounding the opening in the bottom of the tapered bowl. The circle indicating the position of the end of the pipe string corresponds to the position of the pipe string in FIG. 8.

[0042] FIG. 6 is the bottom view of FIG. 5 illustrating further movement of the end of the pipe string as guided by the adjustable guide to a position aligned with the opening in the bottom of the tapered bowl. The circle indicating the position of the end of the pipe string corresponds to the position of the pipe string in FIG. 9.

[0043] FIG. 7 is the elevation view corresponding to FIG. 4 illustrating the position of the pipe string received within the bell guide for being guided into an adjustable guide generally surrounding an opening in the bottom of the tapered bowl.

[0044] FIG. 8 is the elevation view corresponding to FIG. 5 illustrating the position of the pipe string after movement of the elevator assembly downwardly to further receive the pipe string.

[0045] FIG. 9 is the elevation view corresponding to FIG. 6 illustrating the position of the pipe string after further movement of the elevator assembly downwardly to further receive the pipe string into alignment with the bore of the tapered bowl.

[0046] FIG. 10 is the elevation view of FIG. 9 illustrating the position of the pipe string after further movement of the string elevator assembly downwardly to insert the end of the pipe string into the tapered bowl where it is gripped by engagement of the slips.

[0047] FIG. 11 is a top perspective view of an alternate elevator assembly supporting an alternate embodiment of an adjustable guide and a cooperating spider aligned there below and supporting another alternate embodiment of an adjustable guide.

[0048] FIG. 12 is an enlarged top perspective view of the adjustable guide supported by the elevator assembly shown in FIG. 11 after the timing ring is lowered to move the slips to an engaged position. The pipe string shown in FIG. 11 is omitted to show additional features of the elevator assembly.

[0049] FIG. 13 A is a bottom perspective view of the adjustable guide supported on the elevator assembly of FIG. 12 revealing a plurality of angularly distributed guide inserts, each retracted within a channel of a guide insert retainer.

[0050] FIG. 13B is the perspective view of the adjustable guide of FIG. 13A after deployment of the guide inserts to a first deployed position.

[0051] FIG. 13C is the perspective view of the adjustable guide of FIG. 13B after further deployment of the guide inserts to a second deployed position.

[0052] FIG. 14A is a bottom view of the elevator assembly and the adjustable guide of FIGs. 13A-13C illustrating the position of the proximal end of a pipe string of a first diameter that could be introduced into the adjustable guide to be positioned to enter the elevator assembly. The circle indicating the position of the proximal end of the pipe string corresponds to the position of the pipe string in FIG. 15A.

[0053] FIG. 14B is the bottom view of FIG. 14A illustrating the position of the proximal end of a pipe string of a second diameter, smaller than the first, that could be introduced into the adjustable guide to be positioned to enter the elevator assembly. The circle indicating the position of the proximal end of the pipe string corresponds to the position of the pipe string in FIG. 15B.

[0054] FIG. 14C is the bottom view of FIGs. 14A and 14B illustrating the position of the proximal end of a pipe string of a third diameter, smaller than the first and second, that could be introduced into the adjustable guide to be positioned to enter the elevator assembly. The circle

indicating the position of the end of the pipe string corresponds to the position of the pipe string in FIG. 15C.

[0055] FIG. 15A is an elevation cross-section view of the tapered bowl and the adjustable guide of the elevator assembly of FIGs. 13A and 14A showing the position of the guide inserts, each retracted to a position within a channel in a guide insert retainer corresponding to the configuration shown in FIGs. 13A and 14A.

[0056] FIG. 15B is an elevation cross-section view of the tapered bowl and the adjustable guide of the elevator assembly of FIGs. 13B and 14B showing the position of the guide inserts, each deployed to a first deployed position within a channel in the guide insert retainer corresponding to the configuration shown in FIGs. 13B and 14B.

[0057] FIG. 15C is an elevation cross-section view of the tapered bowl and the adjustable guide of the elevator assembly of FIGs. 13C and 14C showing the position of the guide inserts, each deployed to a second deployed position within a channel of the guide insert retainer corresponding to the configuration shown in FIGs. 13C and 14C.

[0058] FIG. 16 is a perspective view of a spider assembly having another embodiment of the adjustable guide comprising two guide insert retainer portions hinged to pivot between the removed position shown in FIG. 16 and a deployed position, e.g., shown in FIGs. 17A-17C.

[0059] FIG. 17A is the perspective view of FIG. 16 after the guide insert retainer portions are pivoted to their deployed position to form a generally angularly distributed arrangement of guide inserts. The guide inserts are shown in their retracted position to receive and generally center a pipe connection having a diameter that corresponds to a pipe string of the first diameter shown in FIGs. 14A and 15A.

[0060] FIG. 17B is the perspective view of FIG. 17A after the guide inserts are each deployed to a first deployed position within a channel of the guide insert retainer to position a pipe connection having a diameter that corresponds to a pipe string of the second diameter shown in FIGs. 14B and 15B.

[0061] FIG. 17C is the perspective view of FIG. 17B after the guide inserts are each deployed further to a second deployed position within a channel to position a pipe connection having a diameter that corresponds to a pipe string of the third diameter shown in FIGs. 14B and 15B.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0062] Embodiments of the adjustable guide are used to position the proximal end of a pipe string, or a pipe connection within a pipe string, relative to an elevator assembly, or relative to a spider, respectively, that may comprise a smooth, non-stepped tapered bowl. The adjustable guide may be used to make-up and run a pipe string into a drilled borehole, including a tapered pipe string having at least one outer diameter transition along its length.

[0063] FIG. 2 illustrates one embodiment of an elevator assembly 10 having a tapered bowl 12, a plurality of slips 16 for movement radially inwardly and downwardly within the tapered bowl 12 to grip and support a pipe string (not shown in FIG. 2) received into the elevator assembly along its axis 80 and introduced through the bottom 21 of a bell guide 20. The elevator assembly 10 is supportable above a rig floor by bails (not shown in FIG. 2) that may engage and support lift ears 14. The bails are not shown in FIG. 2 to reveal the elevator assembly 10 in more detail.

[0064] The slips 16 are movable between an engaged position and a disengaged position (shown in FIG. 2) using a timing ring 18. The timing ring 18 may be actuated downwardly by retraction of rods 19 into the body of the tapered bowl 12 to engage the slips 16 against the exterior surface of a pipe string 88 (not shown in FIG. 2 - see FIG. 10). Subsequently, the elevator assembly 10 may be disengaged from the pipe string 88 by extending rods 19 upwardly from the body of the tapered bowl 12 to disengage the slips 16 from the pipe string. The rods 19 may be electrically, hydraulically, pneumatically or mechanically actuated to elevate and thereby disengage the slips 16 from the pipe string, and may be electrically, hydraulically, pneumatically, mechanically or gravitationally actuated to lower and thereby engage the slips 16 with the pipe string. FIG. 10 illustrates the position of the timing ring 18, the rod 19 and the slips 16 when in the engaged position, and the direction 19' of movement of the timing ring 18 to engage the slips with the pipe string 88.

[0065] Returning to FIG. 2, the elevator assembly 10 comprises a guide insert retainer 30 that may be coupled at its bottom 30b to the bell guide 20 and at its top 30a to the tapered bowl 12. An intermediate member may be disposed between the guide insert retainer 30 and either the bell guide 20 or the tapered bowl 12, or both. The guide insert retainer 30 shown in FIG. 2 comprises a plurality of generally vertically extending supports 32 disposed intermediate the top 30a and

the bottom 30b of the guide insert retainer 30 to provide support for the bell guide 20 when it is coupled to the tapered bowl 12 of an elevator assembly 10. A plurality of spaces, apertures, or chambers 36 (hereinafter "chambers") are defined between the supports 32, each for receiving and positioning a guide insert 40 in a generally assembled arrangement with the other guide inserts 40. Each of the guide inserts 40 shown in FIG. 2 comprises a generally sloped engaging surface 46 intermediate notched ends 42 of the guide insert 40. The generally sloped engaging surface 46 (hereinafter "engaging surface") of each of the guide inserts 40, when the guide inserts 40 are secured within the chambers 36 of the guide insert retainer 30, together form a generally continuous section of the interior of a conical frustum that has a bottom disposed toward the top of the bell guide 20 and a smaller diameter top disposed toward the tapered bowl 12, and having convergence in the direction of the top so as to funnel and guide the end of a pipe received within the interior 22 of the bell guide 20 toward an opening (not shown in FIG. 2) in the bottom of the tapered bowl 12.

[0066] FIG. 3 illustrates the configuration of the string elevator assembly 10 of FIG. 2 after it is assembled for use in forming and lengthening a pipe string. In the embodiment shown in FIG. 3, the guide inserts 40 are retained within the chambers 36 of the guide insert retainer 30 using generally curved retainer plates 50 that are securable to the guide insert retainer 30 using bolts 52 that are threadedly receivable into corresponding threaded holes 54 in the supports 32. Each curved retainer plate 50 comprises a pair of generally aligned apertures for receiving bolts 52, and each guide insert 40 is securable within a chamber 36 by the adjacent ends of each of the adjacent curved retainer plates 50. It should be understood that the guide inserts 40 may be securable within the chambers 36 using a variety of fasteners and/or retainers.

[0067] The notched ends 42 of each guide insert 40 may be shaped or contoured to cooperate with a corresponding shape or contour of the supports 32 located on either side of the chamber 36 of the guide insert retainer 30 in which the guide insert is to be received. These corresponding shapes of the notched ends 42 and the supports 32 assist in installing and positioning the guide insert segment 40 within the chamber 36. Similarly, the top 42 and the bottom 43 of each guide insert 40 may be shaped or contoured to cooperate with a corresponding shape or contour within the guide insert retainer 30 in which the guide insert 40 is received and retained. In the adjustable guide illustrated in FIG. 3, the top 42 and the bottom 43 of each guide

insert 40 are smooth to facilitate simple sliding insertion of each guide insert 40 into a chamber 36 of the guide insert retainer 30.

[0068] FIGs. 4-6 are bottom views of the elevator assembly 10 corresponding to the elevation views of FIGs. 7-9. Each bottom view of FIGs. 4-6 shows the bell guide 20 having a generally interior conical frustum 22 and the generally axially aligned conical frustum formed by the engaging surfaces 46 of the guide inserts 40 secured in an arrangement within the chambers 36 of the guide insert retainer 30 (the frustum formed by the guide inserts 40 are not visible in FIGs. 4-6, see FIGs. 7-9). FIGs. 4-6 all show an arrangement of slips 16 within the tapered bowl 12. FIGs. 4-6 further show the generally axially aligned and the generally conically aligned interior surfaces of two separate conical frustums, one being the interior conical frustum 22 of the bell guide 20, and the other being the interior conical frustum formed by the engaging surfaces 46 of the guide inserts 40. The two conical frustums may be positioned one adjacent to the other as shown in FIGs. 4-6 to together form portions of a single conical frustum, or they may be positioned to form two adjacent conical frustums, one having a conical slope different from the other, but both generally converging in the same direction to cooperate to guide the end of a pipe received therein to an opening 21 in the bottom of the tapered bowl 12 (see progression of pipe end 87A in FIGs. 7-9).

[0069] FIG. 4 is a bottom view of the elevator assembly 10 that corresponds to the elevation view of FIG. 7, and these figures together illustrate the position of the top end 87 of a pipe string 88 received within the bell guide 20 by lowering the elevator assembly 10 downwardly to receive the pipe string 88 within the bell guide 20. The pipe string 88 is shown in FIG. 7 to be generally misaligned with the opening 21 and the bore defined by the slips 16 that are movable within the tapered bowl 12 (also shown in FIG. 4). The opening 21 is generally aligned with the axis 80 of the tapered bowl 12. FIGs. 4-6 illustrate a progression of the position of a misaligned pipe end as the elevator assembly 10 is lowered, using , for example, a draw works, over the pipe end 87A to receive the pipe string 88 into the tapered bowl 12. The contact point 87A in FIG. 4 shows an initial point of contact between the interior conical frustum 22 of the bell guide 20 and the top end 87 of the misaligned pipe string 88 as the top end 87 slides generally upwardly and in the convergent direction of the conical frustum 22 toward the curved faces 46 of the bottom guide segments 40 to the position shown in FIG. 5.

[0070] FIG. 5 is a bottom view of the elevator assembly 10 that corresponds to the elevation view of FIG. 8, and these together illustrate the position of the top end 87 of a pipe string 88 received within the bell guide 20 after it slides upwardly along the interior surface of the conical frustum 22 of the bell guide 20 from its position shown in FIGs. 4 and 7. The contact point 87A shown in FIG. 5 is shown to be generally near and contacting the interface between the engaging surfaces 46 of the guide inserts 40 and the top of the conical frustum 22 of the bell guide 20. From this position, the adjacent conical frustum formed by the sloped engaging surfaces 46 of the guide inserts 40 will, with further lowering of the elevator assembly 10, continue to guide the top end 87 of the pipe string 88 toward its aligned position shown in the bottom view of FIG. 6 and the elevation view of FIG. 9 to be aligned with the opening 21 in the tapered bowl 12 and with the bore defined by the slips 16 movably received within the tapered bowl 12.

[0071] FIG. 6 is a bottom view that corresponds to the elevation view of FIG. 9, and these together illustrate the position of the top end 87 of the pipe string 88 after the elevator assembly 10 is lowered further from its position of FIG. 5, and after the pipe string 88 is further received within the adjustable guide 30 and the arrangement of the engaging surfaces 46 of the guide inserts 40. The pipe string 88 is shown in FIGs. 6 and 9 to be generally aligned with the axis of the bell guide 20 and the conical frustum formed by the engaging surfaces 46 of the guide inserts 40. The pipe string 88 is also aligned with the opening 21 and the bore defined by the slips 16 within the tapered bowl 12. The aligned condition of the pipe string 88 with the axis 80 of the tapered bowl 12 and the bore 21 defined by the slips 16 received therein permits the elevator assembly 10 to be lowered further, and for the pipe end 87 of the pipe string 88 to be inserted into the bore 21 by continued downward movement of the elevator assembly 10, and then to be positioned to be gripped by converging movement of the slips 16 radially downwardly and inwardly within the tapered bowl 12, as shown in FIG. 10.

[0072] FIG. 10 is an elevation view of the string elevator assembly 10 of FIG. 9 after the string elevator assembly 10 is lowered further from its position of FIG. 9 to move the top end 87 of the pipe string 88 through the opening 21 in the bottom of the tapered bowl 12.

[0073] An adjustable guide may comprise positionable guide inserts to enable adjustment of the adjustable guide without removal and replacement of the guide inserts 40 shown in the

embodiment of FIGs. 2-10. FIG. 11 is a perspective view of an elevator assembly 100 supporting an alternate embodiment of an adjustable guide 10a, and also of a cooperating spider assembly 60, that is generally aligned with and cooperating with the elevator assembly 100.

[0G ~ 4] FIG. 11 illustrates the alternate embodiment of an elevator assembly 100 having a tapered bowl 121, and a plurality of slips 117 coupled to a timing ring 118 and movable radially inwardly and downwardly within the tapered bowl 121 to grip and support a pipe string 88 having a diameter of 88a that is received through the bores of both the elevator assembly 100 and the spider assembly 60. Drawings to be discussed later illustrate the use of the elevator assembly 100 with pipe strings of smaller diameters 88b and 88c, and these smaller diameters are shown superimposed on the pipe string 88 of FIG. 11 for comparison.

[Qϋ ~ 5] The proximal end 87 of the pipe string 88 is shown in FIG. 11 positioned, using the adjustable guide 10a, immediately above or generally even with the timing ring 118. FIG. 11 illustrates a favorable position of the internally threaded sleeve 90a (coupled to the proximal end 87 of the pipe string 88) relative to the timing ring 118 and the retracted slips 117. From the position illustrated in FIG. 11, actuation of the timing ring 118 will set the slips 117 to wedge between the interior of the tapered bowl 121 and the exterior surface of the pipe string 88 immediately below the sleeve 90a. The position of the pipe string 88 shown in FIG. 11 may be achieved using the adjustable guide 10a to position the pipe string 88 to enter the elevator assembly 100 as illustrated and disclosed herein below.

[0G ~ β] The elevator assembly 100 shown in FIG. 11 is supportable above a rig floor using a pair of elongate bails 15, each comprising a lift eye 15a at its distal end to receive one of a pair of opposed lift ears 116 (only one shown in FIG. 11) that protrude radially outwardly from the body of the tapered bowl 121. The opposite end of the bails (not shown in FIG. 11) may be pivotally secured to a block that is, in turn, movably supported by a draw works. Operation of the draw works positions the elevator assembly 100 at the desired elevation relative to the spider assembly 60.

[0077] The slips 117 of the elevator assembly 100 are movable between an engaged position and a disengaged position (shown in FIG. 11) using the timing ring 118. The timing ring 118 may be actuated downwardly in the direction of arrow 119' by retraction of rods 119 into

elongate cylinders (not shown) within the body of the tapered bowl 121 to wedge the slips 117 between the interior of the tapered bowl (not shown in FIG. 11) and the exterior surface of the pipe string 88. The elevator assembly 100 may subsequently be disengaged from the exterior surface of pipe string 88 by extending rods 119 upwardly and out of the elongate cylinders in the body of the tapered bowl 121, opposite the direction of arrow 119', to distance the timing ring 118 from the tapered bowl 121 and to retract the slips 117 upwardly and radially outwardly away from the exterior surface of the pipe string 88. It should be understood that the timing ring may be positioned using other devices, and that, for the embodiment of the elevator assembly shown in FIGs. 11-15C and the spider shown in FIGs. 16-17C, the rods 119 and 69, respectively, may be used to position the timing ring 118 of the elevator assembly 100 or the timing ring 68 of the spider 60 may be hydraulically, pneumatically or mechanically extendable from the body of the tapered bowl.

[0078] Referring again to FIG. 11, the elevator assembly 100 comprises an adjustable guide 10a coupled to the bottom of the tapered bowl 121, or to an intermediate member, such as, for example, an adapter plate. FIG. 11 also shows a spider assembly 60 having a tapered bowl 71 that is generally aligned with the tapered bowl 121 of the elevator assembly 100. The spider assembly 60 shown in FIG. 11 movably supports a timing ring 68 that may be raised and distanced from the tapered bowl 71 by extension of rods 69 from the body of the spider to disengage the slips 67 (not visible in FIG. 11) from the exterior surface of pipe string 88, and again lowered to wedge the slips 117 between the interior tapered surface (not shown in FIG. 11) of the tapered bowl 71 and the exterior surface of pipe string 88 by retraction of the rods 69 back into the body of the tapered bowl 71. The spider assembly 60 shown in FIG. 11 comprises another alternate embodiment of the adjustable guide 60a to position pipe connections (not shown in FIG. 11) that pass through the tapered bowl 71 of the spider assembly 60. The embodiment of the adjustable guide 60a of the spider assembly 60 comprises a plurality of guide inserts 80 that are movably retained on or within guide insert retainer portions 61a and 61b, each of which is hinged to pivot between the retracted position shown in FIG. 11 and the deployed position shown and discussed later in relation to FIGs. 17A, 17B and 17C.

[0079] FIG. 11 also illustrates a range of pipe diameters that may be handled using the spider assembly 60 and the elevator assembly 100 of FIG. 11. Some embodiments of the adjustable

guide may be used to make-up and run tapered pipe strings that have one or more outer pipe diameter transitions. For example, but not by way of limitation, the adjustable guide may be used to make-up and run a pipe string having at least a first portion with a first diameter, and a second portion with a second diameter that is connected to extend the pipe string beyond the length of the first portion. As a further example, FIG. 11 illustrates a pipe string 88 of a diameter 88a that corresponds to a pipe connection 87 with a pipe end 90a. FIG. 11 includes concentric dotted circles within the bore of the proximal pipe end 90a of pipe string 88 illustrating the size of a small pipe end 90c corresponding to smaller pipe diameter 88c, and an intermediate pipe end 90b corresponding to an intermediate pipe diameter 88b. The following description, along with the appended drawings, discusses the use of the adjustable guide 10a to form a tapered pipe string that may include portions having diameters 88a, 88b and 88c and corresponding sleeve connections 90a, 90b and 90c.

[0080] FIG. 12 is an enlarged perspective view of the embodiment of the adjustable guide 10a of the elevator assembly 100 illustrated in FIG. 11 after the timing ring 118 is lowered by retraction of rods 119 in the direction of arrow 119' (shown on FIG. 11) to move the slips 117 to their engaged position against the pipe string 88. In FIG. 12, the pipe string 88 shown in FIG. 11 is omitted to show additional features of the elevator assembly 100. It should be understood that the engaged configuration of the elevator assembly 10 shown in FIG. 12 is generally used to grip and support a pipe string 88 similar to the one shown in FIG. 11. The adjustable guide 10a shown in FIG. 12 comprises a plurality of rotatable sockets 42 that are each coupled to the end of a threaded shaft used to position a guide insert (not shown in FIG. 12). The guide inserts of the adjustable guide 10a of FIG. 12 will be discussed in more detail in relation to FIGs. 13A - 15C. The adjustable guide 10a shown in FIG. 12 further comprises guide insert retainer portions HA and HB, each generally semi-circular in shape and each pivotably coupled at pin 13 to a hanger 112 that pivotally secures the guide insert retainer portions HA and HB to the elevator assembly 100. Each of the hangers 112 may be releasably coupled to a protruding ear 116 of the tapered bowl 121 using a bolt 112a. Additional or alternate fastners, such as bolts, screws, clamps or other devices may be used to secure the guide insert retainer portions HA and HB to the elevator assembly 100.

[0081] The omission of the pipe string 88 (shown in FIG. 11) from FIG. 12 reveals a plurality of gripping dies 122 fastened to the faces of the slips 117. The gripping dies 122 may be removable to provide a replaceable gripping face with a surface that promotes a positive grip on the pipe string (not shown in FIG. 12) without slipping. The gripping dies 122 may be non- marking in order to prevent unwanted mechanical deformation on the exterior surface of the pipe string (not shown in FIG. 12 - see element 88 in FIG. 11). FIG. 12 also illustrates a fin 25 on each slip 117 that is movably received within an aperture 27 in the timing ring 118 to provide for alignment and visual indication of the position of the slip 117. The fin 25 moves radially inwardly within the aperture 27 when the slip 117 is moved downwardly (in the direction of arrow 119' of FIG. 11) and radially inwardly to engage and grip the exterior surface of the pipe string 88 (not shown — see FIG. 11). The fin 25 moves radially outwardly within the aperture 27 when the slip 117 is moved upwardly (opposite the direction of arrow 119'of FIG. 11) and radially outwardly from the exterior surface of the pipe string 88. The fin 25 and the aperture 27 within which it moves may be shaped to cooperate and to maintain the orientation of the slip 117 within the tapered bowl 121 to prevent the slip 117 from being inadvertently misaligned by a pipe connection or a pipe end.

[0082] It should be understood by those skilled in the art that the guide inserts of the adjustable guide may comprise a steering surface, which is a portion of the guide insert that may be positioned to actively engage and displace a pipe end and/or a pipe connection. It should be understood that the sloped steering surface of each guide insert is generally disposed on the guide insert in an orientation that facilitates engagement with a pipe end and/or a pipe connection that may be received in and/or through the adjustable guide.

[0083] FIGs. 13A-13C is a series of perspective views of one embodiment of the adjustable guide 10a illustrating three of the numerous achievable configurations of the adjustable guide. Again, the pipe string (see element 88 in FIG. 11) is omitted from FIGs. 13 A - 13C to reveal details of the elevator assembly 100.

[0084] FIG. 13A is a bottom perspective view of the embodiment of the adjustable guide 10a of the elevator assembly 100 of FIG. 12. FIG. 13A reveals a plurality of guide inserts 30, each movably received within a channel 28 of in one of the guide insert retainer portions HA and

HB. Each of the guide inserts 30 shown in FIG. 13 A are in a retracted position within a channel 28 in an insert retainer portion HA or HB. Each guide insert 30 shown in FIG. 13 A comprises a generally sloped engaging surface 3OA (hereinafter "engaging surface" or "steering surface") disposed radially inwardly toward the bore 91 (see FIG. 12) of the elevator assembly 100. Each guide insert 30 is radially positionable within its channel 28 by rotation of a threaded shaft (not shown in FIG. 13A - see FIG. 13C, element 40) that is rotatable to position the guide insert 30 within the channel 28. Sockets 42 may be rotated to position the guide insert 30 within its channel 28 using, for example, a rotatable bit (not shown). For example, but not by way of limitation, a portable, battery-powered hand-held drill (not shown) may be used with a bit (not shown) adapted to be received within and rotatable with the socket 42. The bit may inserted into the socket 42, and powered rotation of the bit and the socket 42 using the drill may controllably position the guide insert 30 within the channel 28. Each of the other guide inserts 30 may then be positioned in a generally coinciding position within its respective channel 28 to position the engaging surfaces 3OA of the guide inserts 30 to together form a generally frustoconical guide.

[0085] In the embodiment shown in FIGs. 13A-13C, the adjustable guide 10a may comprise a bell guide 50 that can be used to position a portion of a pipe string when the guide inserts 30 are retracted. FIG. 13A illustrates the adjustable guide 10a with each guide insert 30 positioned within its channel 28 so that the engaging surface 3OA of the guide insert 30 is generally flush with the portions of the interior wall of the bell guide 50 between the channels 28. The position of the guide inserts 30 and the engaging surfaces 3OA of the guide inserts 30 illustrated in FIG. 13 A may, for example, be used to make-up and run pipe strings 88 (see FIG. 11) having a diameter 88a in FIG. 11, also shown in FIGs. 14A and 15A.

[0086] The guide inserts 30 of the embodiment of the adjustable guide 10a shown in FIGs. 13A-13C may be positioned by rotation of the respective sockets 42 (see FIG. 12). Each of the sockets 42 may be formed on the end of an elongate threaded shaft (not shown in FIGs. 13A-13B — see FIGs. 13B-15C) that is coupled to a guide insert retainer portion HA or HB and rotatably coupled to a guide insert 30. Rotation of the sockets 42 and the threaded shafts may controllably position the guide inserts 30 to displace the sloped surfaces 3OA from their position shown in FIG. 13A to a first deployed position, e.g., as shown in FIG. 13B and/or further displaced to a second deployed position e.g., as shown in FIG. 13C. In one embodiment, each of the threaded

shafts may be rotated using a servo-motor that may be pneumatically, electrically and/or hydraulically operated. For example, but not by way of limitation, FIG. 13A shows a single servo-motor 95 that may be powered using a pressurized stream of air supplied to the servomotor 95 through a fluid conduit 96. The servo-motor 95 may, in one embodiment, comprise a protruding rotatable bit (not shown) for being received into the socket 42 at the end of the threaded shaft (not shown in FIGs. 13A-13C — see FIGs. 14A-15C) to impart rotation to the threaded shaft to controllably position the guide insert. It should be understood that the single servo-motor 95 and related fluid conduit 96 shown in FIG. 13A is an illustration of a device that could be provided at the socket 42 at the end of each threaded shaft to provide controllable positioning of each of the guide inserts. Only one servo-motor 95 is shown in FIGs. 13A-13C to reveal the components of the embodiment of the adjustable guide shown in these figures. It should be further understood that, where a pipe end is in contact with one or more engaging surfaces 3OA of one or more guide inserts 30, rotation of the one or more sockets 42 and the related one or more threaded shafts may controllably position guide inserts 30 and the pipe end that contacts the engaging surfaces 3OA of the guide inserts 30. By contrast, the guide inserts 30 may be pre-positioned to form a guide of a desired size to contact and guide a pipe end that is later introduced into the adjustable guide 10a.

[0087] It should be further understood that, where an actuator is used to position a guide insert 30 by, for example, but not by way of limitation, powered rotation of a threaded shaft on which the guide insert is threadably received, then a controller may be used to position the guide insert 30 at a predetermined or memorized position. For example, but not by way of limitation, a controller may be coupled to a sensor that senses the rotation of the threaded shaft, and that records the number of times the threaded shaft rotates during displacement of the guide insert. The sensor may be disposed within a common case with the actuator, or the sensor may be electronically, mechanically or optically coupled to the actuator or to the threaded shaft. The sensor may be used to disable the actuator upon rotation of the threaded shaft a predetermined number of times or, alternately, the sensor may be used to disable the actuator after the rotation of the actuator moves the guide insert or other member into a sensed proximity with the sensor. In this way, the guide insert may be pre-positioned, using the controller and the actuator, to receive and center a pipe end of a known diameter.

[0088] In another embodiment, an actuator may be coupled to one or more guide inserts to position the guide insert between the retracted position and one or more deployed positions, and vice-versa. An actuator can be fluid powered, electric powered, mechanically powered, etc. Only a single actuator is shown in FIGs. 13A-13C through 17A-17C in order to prevent crowding the drawings and obscuring other features. It will be understood by those skilled in the art that a plurality of actuators may be coupled to the adjustable guide 10a to deploy and/or retract a plurality of guide inserts, that the actuators may be linear or rotary, that the actuators may utilize separate or a common power fluid conduit, and that position indicators may also be added to facilitate desired positioning of the guide inserts.

[0089] FIG. 13B is a bottom perspective view of the adjustable guide 10a of FIG. 13A after deployment of each of the guide inserts 30 to a first deployed position. FIG. 13B shows each guide insert 30 protruding partially into the bore 91 (see FIG. 12) of the optional bell guide 50. The sloped steering surfaces 3OA together define a smaller frustoconical guide generally centered about and aligned with the bore 91 (see FIG. 12) of the elevator assembly 100. The adjustable guide 10a configured as illustrated in FIG. 13B may be used, for example, to position a pipe string introduced into the adjustable guide 10a and having a diameter 88b (shown in FIG. 11) to enter the bore in the bottom of the tapered bowl 121 and then into the gripping zone of the elevator assembly 100.

[0090] FIG. 13C is a bottom perspective view of the adjustable guide 10a of FIG. 13B after further deployment of the guide inserts 30 to a second deployed position. FIG. 13C shows each guide insert 30 protruding substantially into the bore 91 (see FIG. 12) of the bell guide 50. The sloped steering surfaces 3OA together define a still smaller frustoconical guide (as compared to that shown in FIG. 13B) generally centered about and aligned with the bore 91 of the elevator assembly 100. The adjustable guide 10a configured as illustrated in FIG. 13C may be used, for example, to position a pipe string introduced into the adjustable guide 10a and having a diameter 88c (shown in FIG. 11) to enter the bore in the bottom of the tapered bowl 121 and then into the gripping zone of the elevator assembly 100.

[0091] It should be understood that the guide inserts 30 of the embodiment of the adjustable guide 10a shown in FIGs. 13A-13C may be continuously positionable to form a guide having

numerous configurations. In other embodiments, the guide inserts 30 may be discretely positionable to provide only an integer number of guides centered about the bore, each having a generally predetermined size.

[0092] FIG. 14A is a bottom view of the elevator assembly 100 and the adjustable guide 10a of FIGs. 13A-13C illustrating a position of a proximal end 90a of a pipe string of a first diameter that could be introduced into the adjustable guide 10a to be positioned to enter the tapered bowl 121 of the elevator assembly 100. The circle may indicate a position of the proximal end of the pipe string that corresponds to the position of the pipe string in FIG. 15A as it is positioned by the adjustable guide 10a to enter the bore in the bottom of the tapered bowl 121 of the elevator assembly 100. The guide inserts 30 are each shown retracted within a channel 28 of the guide insert retainer 11 comprising the two cooperating guide insert retainer portions 11a and lib.

[0093] FIG. 14B is the bottom view of FIG. 14A illustrating the position of the proximal end 90b of a pipe string of a second diameter, smaller than the first, that could be introduced into the adjustable guide 10a to be positioned to enter the bore in the bottom of the tapered bowl 121 of the elevator assembly 100. The circle indicating the position of the proximal end 90b of the pipe string corresponds to the position of the pipe string in FIG. 15B as it is positioned by the adjustable guide 10a to enter the bore in the bottom of the tapered bowl 121 of the elevator assembly 100. The guide inserts 30 are each shown deployed to a first deployed position within a channel 28 of the guide insert retainer 11 comprising the two cooperating guide insert retainer portions 11a and lib. As one of ordinary skill in the art can readily appreciate, additionally or alternatively to guide insert retainer 11, guide inserts 30 can be at least partially retained by rails, slides, rollers, or other retention device(s).

[0094] FIG. 14C is the bottom view of FIGs. 14A and 14B illustrating the position of the proximal end of a pipe string of a third diameter, smaller than the first and second, that could be introduced into the adjustable guide to be positioned to enter the elevator. The circle indicating the position of the proximal end 90c of the pipe string corresponds to the position of the pipe string in FIG. 15C as it is positioned by the adjustable guide 10a to enter the bore in the bottom of the tapered bowl 121 of the elevator assembly 100. The guide inserts 30 are each shown

deployed to a first deployed position within a channel 28 of the guide insert retainer 11 comprising the two cooperating guide insert retainer portions HA and HB.

[0095] FIG. 15A is an elevation cross-section view of the tapered bowl 121 and the adjustable guide 10a of the elevator assembly 100 of FIGs. 13A and 14A showing the position of the guide inserts 30, each retracted to a position within a channel 28 in a guide insert retainer 11 corresponding to the configuration shown in FIGs. 13A and 14A. The adjustable guide 10a is shown in its fully retracted position to position a pipe string 88 having a diameter 88a to enter the elevator assembly 100.

[0096] FIG. 15B is an elevation cross-section view of the tapered bowl 121 and the adjustable guide 10a of the elevator assembly 100 of FIGs. 13B and 14B showing the position of the guide inserts 30, each deployed to a first deployed position within a channel 28 in the guide insert retainer 11 corresponding to the configuration shown in FIGs. 13B and 14B. The adjustable guide 10a is shown in its substantially retracted position to position a pipe string 88 having a diameter 88b to enter the elevator assembly 100.

[0097] FIG. 15C is an elevation cross-section view of the tapered bowl 121 and the adjustable guide 10a of the elevator assembly 100 of FIGs. 13C and 14C showing the position of the guide inserts 30, each deployed to a second deployed position within a channel 28 of the guide insert retainer 11 corresponding to the configuration shown in FIGs. 13C and 14C. The adjustable guide 10a is shown in its fully retracted position to position a pipe string 88 having a diameter 88c to enter the elevator assembly 100.

[0098] FIG. 16 is a perspective view of a spider assembly 60 having another embodiment of the adjustable guide 10a comprising two guide insert retainer portions 61a and 61b hinged to pivot between the removed position shown in FIG. 16 and a deployed position shown in FIGs. 17A, 17B and 17C. Each of the guide insert retainer portions 61a and 61b are hinged to a base 53 that is shown in FIG. 16 secured to the timing ring 68. The timing ring 68 is positionable, along with the base and the adjustable guide 60a, by extension and retraction of rods 69. It should be understood that the rods 69 may be positionable using an actuator. For example, an actuator that may be fluidically, electrically, or mechanically powered to lift and retract the slips 122 from a seated position, and/or to lower and engage the slips 122 with a pipe string 88, as

shown in FIGs. IA and IB. Like the rods 19 that operate the timing ring 118 of the elevator assembly 100 (see FIG. 11), the rods 69 that operate the timing ring 68 of the spider 60 may also be pneumatically, electrically, hydraulically or mechanically powered between the extended position (not shown) and the retracted position shown in FIGs. 17A-17C.

[0099] The embodiment of the adjustable guide 60a shown in FIG. 16-17C comprises a plurality of guide inserts 80, each movably secured within a channel (not shown in FIG. 16 - see FIGs. 17A-17C) within a guide insert retainer 61. The guide insert retainer 61 may comprise two or more cooperating guide insert retainer portions 61a and 61b. FIG. 16 shows the guide insert retainer portions 61a and 61b hinged to the base 53 and pivotable between a removed position (shown in FIG. 16) and a deployed position (shown in FIGs. 17A-17C). The removed position may be used to substantially open the spider assembly 60 to accommodate the installation of downhole instruments, centralizers and other devices that may not be small enough to fit through the bore of the adjustable guide 60a when the guide insert retainer portions 61a and 61b are in a deployed position.

[00100] FIG. 17A is the perspective view of FIG. 16 after the hinged guide insert retainer portions 61a and 61b are pivoted to their deployed position to form a generally angularly distributed arrangement of guide inserts 80 generally centered about the bore of the spider assembly 60. Hinged guide insert retainer portions 61a and/or 61b can be pivoted via an actuator (not shown). Each guide insert 80 depicted is movably received within a channel 81 within a guide insert retainer portion 61a or 61b. The depicted guide insert 80 is deployable between a retracted position, shown in FIG. 17A, and one or more deployed positions such as those illustrated in FIGs. 17B and 17C. The guide inserts 80 shown in FIGs. 17A-17C may be positionable by rotation of sockets 92 that drive and rotate threaded shafts (not shown in FIG. 17A - see FIGs. 17B and 17C) that are received into mating threaded apertures within each of the guide inserts 80. It should be understood that each threaded shaft may be rotatable using any of a variety of sockets, bits, connectors, heads or fittings including a polygonal recess, such as, for example, an alien-head socket, a groove, such as, for example, a Phillips, Torx or standard screw head, etc. There are numerous mechanical couplings for transmitting torque from a driver to a follower to rotate the follower, and many of these are known in the art and may be adapted for rotation of the threaded shaft.

[00101] FIG. 17B is the perspective view of FIG. 17A after the guide inserts 80 are deployed to a first deployed position by rotation of the sockets 92. Deployment of the guide inserts 80 in the manner illustrated in FIG. 17B positions the sloped surfaces 8OA of the guide inserts 80 to define a funnel-like guide that is generally aligned with and centered about the bore of the spider assembly 60. In this configuration, the sloped surfaces 8OA may engage the leading and downwardly disposed (leading) shoulder of a pipe connection corresponding to circle 90b in FIG. 11 (not shown in FIG. 17B) and impart a force tending to displace the pipe connection toward alignment with the center of the bore of the spider assembly 60. It should be noted that the deployment of the guide inserts 80 illustrated in FIG. 17B forms a guide to position a smaller pipe connection than will be engaged and centered by the configuration illustrated in FIG. 17A. It should be understood that a sloped surface 8OA may comprise a surface suitable for sliding contact with a pipe end or a pipe connection, and does not necessarily comprise a straight or a planar surface to contact and position a portion of the pipe string. A generally sloped engaging surface 8OA may, in one embodiment, comprise a face that is curved circumferentially to the bore of the pipe gripping apparatus to which the adjustable guide is coupled. For example, but not by way of limitation, each guide insert may comprise a generally sloped engaging surface that is radially disposed toward an extension of the bore of the pipe gripping apparatus to which the adjustable guide is coupled. The sloped engaging surfaces of the set of movable guide inserts will generally surround the bore of the adjustable guide or, stated another way, the sloped surfaces will surround an extension of the bore of the pipe gripping apparatus, such as an elevator assembly or a spider, to which the adjustable guide is coupled. The radially inwardly disposed sloped surfaces may each comprise a curvature across its pipe contacting face and in a direction that is circumferential to a pipe string received through the bore of the pipe gripping assembly. In one embodiment, if the curvature of the sloped surface of each guide insert in the circumferential direction generally corresponds with the radius of the exterior of the pipe string, or to a pipe connection on the pipe string, to be engaged and positioned by the adjustable guide 10a so as to provide a plurality of points of contact between the sloped surface of each guide insert and the exterior surface of the pipe string or the pipe connection on the pipe string.

[00102] It should be further understood that the sloped engaging surfaces 8OA may also comprise a curvature, in addition to the curvature in the circumferential direction, if any, along the pipe contacting face of each guide insert and in a direction generally along the axis of the

bore of the adjustable guide, or along the axis of the bore of pipe gripping apparatus to which the adjustable guide is coupled. In one embodiment, the curvature in the axial direction may be skewed off of parallel to the axis of the bore to "funnel" the pipe end or the pipe connection contacted by the adjustable guide toward the center of the bore. In one embodiment, the curvature of the face of the sloped surface may provide an axially concave shape to the guide insert along the sloped surface, and in another embodiment, the curvature of the face of the sloped surface may provide an axially convex shape to the guide insert along the sloped surface. It should be appreciated by those skilled in the art that the aggregation of the sloped surfaces of a set of movable guide inserts, each having a radially inwardly disposed sloped surface with a curvature that is convex in the axial direction, and the set generally surrounding the bore of the adjustable guide, may resemble an inverted vortex, and the aggregation of the sloped surfaces of a set of movable guide inserts, each having a radially inwardly disposed sloped engaging surface with a curvature that is concave in the axial direction, may resemble an inverted bowl.

[00103] It should be understood that the movable guide inserts may be prepositioned to form a guide of a desired size and shape and to engage and steer a pipe end or a pipe connection toward the center of a bore of a pipe gripping apparatus, as described above. Alternately, where a pipe string or a pipe connection is in contact with one or more sloped surfaces 8OA of one or more movable guide inserts 80, manual or powered rotation of the one or more sockets 92 and the related one or more threaded shafts may controllably position the contacting guide inserts 80 and the pipe string or pipe connection that contacts the sloped surfaces 8OA of the guide inserts 80.

[00104] FIG. 17C is the perspective view of FIG. 17B after the guide inserts 80 are further deployed further to a second deployed position by rotation of the sockets 92. Deployment of the guide inserts 80 as illustrated in FIG. 17C positions the sloped surfaces 8OA of the guide inserts 80 to define a second and still smaller guide that is generally aligned with the bore of the spider 60 and generally concentric with the guide formed by the sloped surfaces 8OA shown in FIG. 17B. In this configuration, the sloped surfaces 8OA may engage the leading and downwardly disposed shoulder of a smaller pipe connection of a diameter corresponding to circle 90c in FIG. 11 (not shown in FIG. 17C) and impart a net force tending to displace a pipe connection toward the center of the bore of the spider assembly 60. It should be noted that the deployment of the

guide inserts 80 illustrated in FIG. 8C forms a guide to position a smaller pipe connection than will be engaged and centered by the configuration illustrated in FIGs. 17A and 17B.

[00105] It should be understood that the guide inserts may be secured to the guide insert retainer in a number of ways to ensure controllable positioning to form a guide. For example, but not by way of limitation, the guide inserts may each be pivotally coupled to the retainer so that the size of the steering guide formed by deployment of the guide inserts may be controlled by angularly pivoting the guide inserts into a deployed position rather than by displacement of the guide inserts while generally maintaining the same orientation of the guide inserts relative to the retainer.

[00106] It should be understood that an "elevator assembly," as used herein, means a vertically movable spider, a casing running tool (CRT) or any other pipe gripping assembly that can be manipulated to raise or lower a pipe string that is supported within the elevator assembly. It should be further understood that "pipe gripping apparatus," as used herein, means an apparatus that can support a pipe string, and specifically includes an elevator assembly and also includes a spider.

[00107] The terms "comprising," "including," and "having," as used in the claims and specification herein, shall be considered as indicating an open group that may include other elements not specified. The terms "a," "an," and the singular forms of words shall be taken to include the plural form of the same words, such that the terms mean that one or more of something is provided. The term "one" or "single" may be used to indicate that one and only one of something is intended. Similarly, other specific integer values, such as "two," may be used when a specific number of things is intended. The terms "preferably," "preferred," "prefer," "optionally," "may," and similar terms are used to indicate that an item, condition or step being referred to is an optional (not required) feature of the invention.

[00108] While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.