Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ALLOYED CONSTRUCTION STEEL HAVING INCREASED STRENGTH AND METHOD FOR HEAT STRENGTHENING A HOT-ROLLED PRODUCT
Document Type and Number:
WIPO Patent Application WO/2015/080618
Kind Code:
A1
Abstract:
The invention relates to ferrous metallurgy and specifically to producing alloyed construction steel for manufacturing petroleum pump sucker rods. The proposed steel has the following composition, by mass percent: carbon: 0.40-0.45; silicon: 0.15-0.30; manganese: 0.75-1.00; sulfur: no more than 0.025; phosphorus: no more than 0.025; copper: no more than 0.30; nickel: no more than 0.30; chromium: 0.80-1.10; molybdenum: 0.15-0.25; aluminum: 0.02-0.05; boron: 0.00010-0.00025; nitrogen: no more than 0.008; iron and impurities: the remainder; and also a mode for heat treating a hot-rolled product, which includes normalization at 880°C, cooling in air and tempering at a temperature of 580-600°C. The technical result of the invention consists in obtaining a hot-rolled metal product for the manufacture of pump rods, which exhibits the requisite performance characteristics: minimum yield fluidity of 720 MPa, and yield strength of 930-1000 MPa, while maintaining plasticity at a level seen in comparable products.

Inventors:
VOLOSKOV ALEXANDR DMITRIYEVICH (RU)
Application Number:
PCT/RU2014/000540
Publication Date:
June 04, 2015
Filing Date:
August 05, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CLOSED JOINT STOCK COMPANY OMUTNINSK METALLURG PLANT (RU)
International Classes:
C22C38/32; C21D8/10; C22C38/54
Foreign References:
JP2000094009A2000-04-04
JP2001303130A2001-10-31
JP2000144329A2000-05-26
JP2000096144A2000-04-04
RU2244756C12005-01-20
Download PDF:
Claims:
Формула изобретения

1. Среднеуглеродистая конструкционная, легированная сталь, содержащая углерод, кремний, марганец, серу, фосфор медь, никель, хром, молибден, железо, отличающаяся тем, что она дополнительно содержит алюминий, бор, азот при следующем соотношении компонентов, мас.%:

углерод - 0,40-0,45;

кремний - 0,15-0,30;

марганец - 0,75-1,00;

сера - не более 0,025;

фосфор - не более 0,025;

медь- не более 0,30;

никель- не более 0,30;

хром-0,80-1,10;

молибден-0, 15-0,25;

алюминий-0,015 - 0,05

бор- 0,00010-0,00025;

азот- не более 0,008;

железо и примеси - остальное.

2. Способ термоупрочнения горячекатаного проката, включающий нормализацию, охлаждение на воздухе и отпуск, отличающийся тем, что отпуск проводят при температуре 580-600°С .

Description:
Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката

Изобретение относится к черной металлургии, а именно к производству легированной конструкционной стали для изготовления рессорно-компрессорных штанг нефтяных насосов.

Известна среднеуглеродистая легированная конструкционная сталь 40ХГМ, содержащая, мас.%:

углерод - 0,40-0,45;

кремний - 0,15-0,30;

марганец - 0,75-1,00;

сера - не более 0,025;

фосфор - не более 0,025

медь- не более 0,30;

никель- не более 0,30;

хром- 0,80-1,10;

молибден-0, 15-0,25;

железо и примеси - остальное. [1]

Эта сталь наиболее близка к предлагаемой по механическим свойствам, составу и назначению и взята за прототип.

Указанная сталь после термоупрочнения проката ( нормализации при

температуре нагрева 870-880°С с охлаждением на воздухе, с последующим отпуском при температуре 650°С) имеет недостаточный уровень механических свойств готовых изделий.

Задачей, на которую направлено предлагаемое техническое решение - получение стали для изготовления насосных штанг с обеспечением требуемых потребителем эксплуатационных свойств : минимальным пределом текучести 720 МПа, пределом прочности 930-1000 МПа, при сохранении пластичности на уровне аналога . Техническое решение задачи достигается за счет того, что предлагается среднеуглеродистая конструкционная сталь, микролегированная бором и алюминием, содержащая в мас.%:

углерод - 0,40-0,45

кремний - 0,15-0,30;

марганец - 0,75-1,00;

сера - не более 0,025;

фосфор - не более 0,025;

медь- не более 0,30;

никель- не более 0,30;

хром- 0,80-1,10;

молибден- 0,15-0,25;

алюминий- 0,02 - 0,05;

бор- 0,00010-0,00025;

азот- не более 0,008;

железо и примеси - остальное,

а также режим термообработки горячекатаного проката, включающий

нормализацию при температуре 880°С , охлаждение на воздухе и отпуск при

температуре 580-600°С.

Рассмотрим влияние компонентов на функциональные свойства и структуру предлагаемой стали.

Углерод эффективно влияет на механические свойства стали. Для достижения желаемых функциональных свойств предлагаемой стали содержание углерода должно быть не менее 0,40%. При превышении 0,45% происходит падение пластических характеристик.

Кремний увеличивает сопротивление окислению при высоких температурах. Минимальное содержание марганца 0,75% устанавливается для обеспечения прокаливаемости, прочности и ударной вязкости. Содержание марганца более 1,0 % снижает вязкость феррита (снижение ударной вязкости)

Введение в сталь хрома менее0,8 % не обеспечивает заданный уровень прокаливаемости, прочности и ударной вязкости. Содержание хрома свыше 1,1 % вызовет укрупнение частиц карбидов и снижение ударной вязкости.

Молибден улучшает процессы нитридообразования, измельчает зерно, повышает прочность и износостойкость, трещиноустойчивость стали. При

содержании в предложенной стали менее 0,15% влияние молибдена незначительно, а при содержании более 0,25% проявляется снижение ударной вязкости и удорожание стали.

Алюминий обычно добавляется в сталь как раскислитель. В присутствии азота образуется нитрид алюминия, предотвращающий рост зерна и обеспечивающий улучшение микроструктуры стали, повышение прочности и ударной вязкости.

Образование нитрида алюминия способствует увеличению растворимости бора и существенному повышению прокаливаемости стали. Для эффективной защиты бора от связывания в нитрид бора минимальное содержание алюминия в предложенной стали должно быть не менее 0,02%. Однако значительное повышение содержания алюминия ( более 0,05%) ухудшает качество поверхности слитков по поверхностным пленам и трещинам, снижает жидкотекучесть стали, и может вызвать сложности при разливке на МНЛЗ. Поэтому для исключения негативного влияния алюминия на жидкотекучесть стали необходимо совместное раскисление алюминием и ферро- или силикокальцием.

Бор, даже в небольших количествах, существенно повышает прокаливаемость стали, предел прочности, ударную вязкость. При содержании бора менее 0,0001% его влияние незначительно. При содержании более 0,00025% бор образует легкоплавкую эвтектику, располагающуюся по границам зерен, что снижает прочностные свойства стали при высоких температурах. Азот, соединяясь с нитридообразующими элементами (А1, В) способствует

измельчению зерна и нитридному и карбонитридному упрочнению стали. Увеличение содержания азота свыше указанного предела (при высоком содержании алюминия) приводит к снижению показателей ударной вязкости (в металле образуется

межзеренный излом, проходящий по границам зерен первичного аустенита;

образование такого излома вызвано ослаблением связи между зернами вследствие выделения по их границам включений нитрида алюминия и оно свидетельствует об ухудшении свойств стали).

Практический пример выполнения.

Выплавка заявленной марки стали проводится на ЗАО "Омутнинский металлургический завод" в сталеплавильном агрегате. В СПА выплавляют сталь основного состава, содержащую углерод, марганец, кремний, железо и неизбежные примеси, после нагрева до 1620-1640°С выпускают в сталеразливочный ковш. Раскисление стали алюминием проводят на сливе из сталеплавильного агрегата в ковш, вводят в донную зону ковша компоненты для раскисления при оптимальном соотношении [Mn]/[Si]<3. Проводится достаточно глубокое раскисление стали вторичным алюминием для получения оптимальных условий всплытия образовавшихся крупных оксидов алюминия. Дополнительно контролируется кислород (не более 0,001% на предлагаемой марке стали).

После выпуска плавки из СПА производят удаление печного шлака из сталеразливочного ковша. При внепечной обработке с продувкой металла аргоном наводят известково-глиноземистый шлак присадками извести и ал юмо содержащего материала. Получают раскисленный рафинировочный «белый» шлак, далее присадкой ферросплавов достигают марочного содержания основных элементов (углерод, марганец, кремний, хром, молибден).

Затем нагревают металл до температуры, гарантирующей заданный перегрев металла над температурой ликвидус стали в промежуточном ковше при разливке на МНЛЗ, с учетом существующих тепловых потерь и последующего раскисления и микролегирования алюминием, ферро- или силикокальцием, бором. Ввод бора в сталь осуществляют порошковой проволокой при помощи трайб-аппарата после раскисления алюминий- и затем кальцийсодержащей проволокой.

Разливку на МНЛЗ производят с защитой металла от вторичного окисления способом «под уровень». Оголение поверхности металла в промковше (искрение) не допускают.

В результате разливки получают непрерывно-литую заготовку, которую затем прокатывают в круг диаметром 10,0-40,0 мм на стане горячей прокатки 280-2.

Полученный горячекатаный профиль подвергается термическому упрочнению при изготовлении насосной штанги на базе потребителя-Очерского машиностроительного завода. Для оценки возможностии получения заданного уровня механических свойств готового изделия у потребителя в условиях ЗАО"ОМЗ" проведена термообработка образцов двух плавок с предложенным хим. составом, по скорректированному режиму термообработки, проводимой у потребителя, с последующими испытаниями.

Испытания механических свойств термически обработанных образцов, (обточенных до диаметра 10 мм) проводились на 25-тонной разрывной машине фирмы "QUASAR 250", испытания твердости проводились на твердомере типа ТШ-2М по методу Бриннеля. Ударную вязкость испытывали на маятниковом копере КМ-30. Результаты исследования механических свойств известной и предлагаемой стали, а также ударная вязкость приведены в таблице 2.

Под номерами 1-3 для сравнения приведены показатели механических свойств образцов плавок исходного химического состава с известным режимом термообработки. Они соответствуют требованиям прототипа.

Под номерами 4, 5 приведены результаты исследования образцов от первой из предложенных плавок, с содержанием алюминия 0,0226%, термообработанных по исходному режиму.

Под номерами 6, 7 показаны результаты исследования образцов от второй из предложенных плавок, с содержанием алюминия 0,0364%, также термоупрочненных по режиму прототипа. По результатам испытаний видно, что образцы из стали с предложенным химическим составом имеют более высокие показатели прочностных свойств при . термоупрочнении по известному режиму, при этом наиболее значительное повышение прочностных свойств наблюдается на образцах второй из предложенных плавок (с алюминием 0,0364%).

Под номерами 8, 9 приведены результаты исследования образцов от первой из предложенных плавок, с содержанием алюминия 0,0226%, термообработанных по предлагаемому режиму. Результаты соответствуют заявленной марке стали.

Под номерами 10-13 приведены результаты оценки образцов второй из исследуемых плавок, с содержанием алюминия 0,0364%, термоупрочненных по предлагаемому режиму. Номера 10, 11 соответствуют результатам, полученным при нижнем значении интервала температуры отпуска (580°С). Номера 12, 13 соответствуют результатам, полученным при верхнем значении интервала температуры отпуска (600°С). Продукция с указанными параметрами удовлетворила потребителя.

Поступило предложение о замене марки стали для насосных штанг 40ХГМ на 40ХГМ повышенной прочности, как наиболее удовлетворяющую условиям эксплуатации.

Таким образом, предложенный химический состав и режим термооупрочнения позволяет получить сталь с повышенным пределом прочности 930-1000 МПа и повышенным пределом текучести не менее 720 МПа , с сохранением показателей пластичности на уровне прототипа.

Таблица 1

Сталь С, % Мп, % Si, % Р, % S, % Си, %

1 0,45 0,89 0,18 0,014 0,009 0,24

2 0,44 0,92 0,24 0,014 0,009 0,24

Предлагае 0,43-0,45 0,75-1,00 0,15-0,30 <0,025 <0,025 <0,30 мая

Прототип 0,40-0,45 0,75-1,00 0,15-0,30 <0,025 <0,025 <0,30 Продолжение таблицы 1

Таблица 2

Источники информации:

1. ТУ 14-125-768-2013