Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUS FOR ENSURING A STERILE ENVIRONMENT FOR INCUBATING CELL CULTURES
Document Type and Number:
WIPO Patent Application WO/2022/013303
Kind Code:
A1
Abstract:
The invention relates to an apparatus for ensuring a sterile environment for incubating cell cultures, said apparatus comprising a heating chamber (100) having heating elements, sensors for temperature, humidity and CO2, and a gas supply which provides a gas connection in the interior. The apparatus also has a cultivation container (110) located in the heating chamber (100). Said cultivation container has a sealable passage (130) for each sensor which is also a sealable gas inlet and outlet (130) which couples to the gas connection in the interior of the heating chamber (100). The sensors of the heating chamber (100) are positioned so as to fit into the associated passages (130) of the cultivation container (110). The apparatus also has a water reservoir (120) located in the cultivation container (110). The three elements - the heating chamber (100), the cultivation container (110), and the water reservoir (120) - can be sterilised separately from one another using the method which is optimum in each case. Since the sensors are not part of the cultivation container (110), the latter can also be decontaminated by high temperatures. The fact that the heating chamber (100) is sterilised ensures that the cell cultures in the cultivation container (110) cannot be contaminated by the outside and cannot be the cause of contaminations in the laboratory.

Inventors:
THIEL ERWIN RICHARD (DE)
ZANDER CHRISTOPH (DE)
IRLE STEPHAN (DE)
Application Number:
PCT/EP2021/069642
Publication Date:
January 20, 2022
Filing Date:
July 14, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
S BIOSYSTEMS GMBH (DE)
International Classes:
C12M1/04; C12M1/00; C12M1/12
Domestic Patent References:
WO2011130865A22011-10-27
WO2015172882A12015-11-19
WO2011130865A22011-10-27
Foreign References:
DE102006004157A12007-08-02
DE102010012790A12011-09-29
DE102014106877A12015-11-19
EP0808657A21997-11-26
EP1552888A22005-07-13
EP2873724A12015-05-20
US20180105787A12018-04-19
US20180104697A12018-04-19
EP1403363A12004-03-31
DE102017104508B32018-03-08
Attorney, Agent or Firm:
KÖLLNER & PARTNER MBB (DE)
Download PDF:
Claims:
Patentansprüche

1. Vorrichtung zur Gewährleistung einer sterilen Umgebung für die Inkubation von Zellkulturen mit:

1.1 einem abdichtbaren und/oder abgedichteten Wärmeraum (100);

1.1.1 wobei der Wärmeraum (100) mindestens ein Heizelement (210) aufweist;

1.1.2 wobei der Wärmeraum (100) Sensoren für Temperatur und/oder Luftfeuchtigkeit und/oder CO2 (220) aufweist;

1.1.3 wobei der Wärmeraum (100) außen mindestens einen Anschluss für eine Gaszufuhr aufweist, wobei der Anschluss mit einer Leitung verbunden ist, die im Innenraum des Wärmeraums einen Gasanschluss (130; 240) bereitstellt;

1.2 einem abdichtbaren und/oder abgedichteten Kultivierungsbehälter (110) zum Aufnehmen der Zellkulturen;

1.2.1 wobei der Kultivierungsbehälter (110) im Wärmeraum (100) angeordnet ist;

1.2.2 wobei der Kultivierungsbehälter (110) für jeden der genannten Sensoren einen abdicht baren Durchlass (130; 310) aufweist, der in Kommunikation mit der Atmosphäre im Kul tivierungsbehälter steht;

1.2.3 wobei der Kultivierungsbehälter (110) mindestens einen abdichtbaren Gas-Ein- und/oder Auslass (130; 330) aufweist, der mit dem mindestens einen Gasanschluss (130; 240) im Innenraum des Wärmeraums koppelbar ist; und

1.3 einem Wasserreservoir (120);

1.3.1 wobei das Wasserreservoir (120) im Kultivierungsbehälter (110) angeordnet ist.

2. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass jeder der genannten Sensoren des Wärmeraums (100) durch einen Sterilfilter abgedeckt ist.

3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Anschluss (240) des Wärmeraums für eine Gaszufuhr, die damit verbundene Leitung oder der über diese Leitung verbundene, im Innenraum des Wär meraums bereitgestellte Gasanschluss (130) einen Sterilfilter aufweist.

4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, 4.1 dass der Wärmeraum (100) einen dicht schließenden Deckel oder eine dicht schließende

Tür (250) aufweist;

4.2 wobei die Öffnung des Deckels oder der Tür (250) einen Querschnitt hat, der größer ist als eine Breite des Kultivierungsbehälters (110).

5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder abdichtbare Durchlass (130; 310) am Kultivierungsbehälter (110) einen Sterilfilter (320) aufweist.

6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine abdichtbare Gas-Ein- und/oder Auslass (130; 330) am Kultivie rungsbehälter (110) einen Sterilfilter (340) aufweist.

7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kultivierungsbehälter (110) ein Einweg-Element ist.

8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kultivierungsbehälter (110) einen dicht schließenden Deckel oder eine dicht schlie ßende Tür (350) aufweist.

9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wasserreservoir (120) mit einer semipermeablen Membran (410) bedeckt ist.

10. Vorrichtung nach dem unmittelbar vorhergehenden Anspruch, dadurch gekennzeichnet, dass die semipermeable Membran (410) des Wasserreservoirs (120) vor der Nutzung mit ei ner für Wasser und Wasserdampf undurchlässigen Folie (420) versiegelt ist, die zur Be nutzung entfernt wird.

11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wasserreservoir (120) steriles Reinstwasser enthält. 12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wasserreservoir (120) ein Einweg-Element ist.

13. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

13.1 dass eine Steuerung und/oder Regelung vorhanden ist;

13.1.1 wobei die Steuerung und/oder Regelung in der Lage ist, die Bedingungen im Kultivie rungsbehälter (110) anhand von Daten der Sensoren (220) des Wärmeraums (100) zu beeinflussen;

13.1.2 wobei die Daten des Temperatursensors zur Steuerung und/oder Regelung der Heiz elemente (210) des Wärmeraums (100) dienen;

13.1.3 wobei die Daten des CC>2-Sensors (220) zur Steuerung und/oder Regelung der mindes tens einen Gaszufuhr dienen; und

13.1.4 wobei die Daten des Luftfeuchtigkeits-Sensors zur Ausgabe von Warnmeldungen die nen.

14. Abgedichteter und/oder abdichtbarer Kultivierungsbehälter (110) zum Aufnehmen von

Zellkulturen, mit

14.1 mindestens einem abdichtbaren Durchlass (130; 310) für einen Sensor;

14.1.1 wobei der mindestens eine abdichtbare Durchlass (130; 310) in Kommunikation mit der Atmosphäre im Kultivierungsbehälter (110) steht;

14.2 mindestens einem abdichtbaren Gas-Ein- und/oder Auslass (330), der mit einem Gasan schluss (240) koppelbar ist; und

14.3 einer Position für ein Wasserreservoir (120) im Inneren des Kultivierungsbehälters (110).

15. Kultivierungsbehälter (110) nach dem unmittelbar vorhergehenden Anspruch zur Verwen dung in einer Vorrichtung gemäß einem der Ansprüche 1 bis 13.

16. Verwendung eines Kultivierungsbehälters (110) nach Anspruch 14 in einer Vorrichtung gemäß einem der Ansprüche 1 bis 13.

Description:
Vorrichtung zur Gewährleistung einer sterilen Umgebung für die Inkubation von Zellkulturen

Beschreibung

Gebiet der Erfindung

Die Erfindung betrifft eine Vorrichtung zur Gewährleistung einer sterilen Umgebung für die Inkubation von Zellkulturen. Derartige Vorrichtungen dienen vorwiegend zum Kultivieren von Zellkulturen, überwiegend für medizinische und Forschungszwecke, wobei die Sterilität sämtlicher Elemente, die mit den Zellkulturen in Berührung kommen, und die Vermeidung jedweder Kontamination dieser Zellkulturen im Vordergrund stehen.

Durch die Erfindung der Gen-Schere (bekannt unter dem Stichwort CRISP/CAS) hat sich die Möglichkeit einer gezielten Veränderung von genetischem Material ergeben. Vor diesem Hintergrund sind bereits heute verschiedene Arbeitsgruppen dabei, neue zelltherapeutische Therapien zu entwickeln, die auf einer Manipulation von Gen-Material beruhen. Im Bereich humanmedizinischer Therapien wird es sich in diesem Zusammenhang um eine personalisier te Medizin handeln, bei der Patienten-Material (also lebende Zellen eines Patienten) vor und nach der gentechnischen Manipulation in Zellkulturen inkubiert werden. In der Absicht, Kon taminationen dieses Patienten-Materials strikt zu vermeiden, werden Vorrichtungen benötigt, die eine sterile Umgebung für diese Zellkulturen während der Phase der Inkubation sicher gewährleisten.

Stand der Technik

Die Kultivierung von Zellkulturen erfolgt in Inkubatoren, in deren Inneren eine wählbare, konstante Temperatur (zumeist 37 °C), eine einstellbare CO2- Konzentration (z.B. 5%), sowie eine hohe relative Luftfeuchtigkeit herrschen soll. Somit sind in einem Inkubator ideale Wachs tumsbedingungen für jede Art von Zellen gegeben, also sowohl für erwünschte als auch für unerwünschte Kulturen. Eine besonders kritische Komponente stellt in einem Inkubator die Wasserversorgung dar. Grundsätzlich hat das Wasser im Inkubator die Aufgabe, eine relativ hohe Luftfeuchtigkeit von nahe 100% zu gewährleisten, damit das wässrige Nährmedium, in dem sich die Zellen der Zellkultur befinden, nicht oder nur sehr wenig verdampft. Um ein Wachstum von zellbiologi schen Verunreinigungen im Wasserreservoir zu verhindern, werden dem Wasser typischer weise für Einzeller toxische Substanzen beigemischt.

Aus dem zuvor beschriebenen ergeben sich gleich zwei Probleme: Zum einen kann mit dem Wasser eine Verunreinigung eingetragen werden, die sich dann im Inkubator vermehrt, auch wenn dem Wasser selbst eine toxische Substanz beigefügt wird. Zum anderen wird durch die Kombination der relativ hohen Luftfeuchtigkeit und der für ein Zellwachstum optima len Temperatur jede ggf. vorhandene Kontamination zu einem explosionsartigen Wachstum angeregt, was sich bei einer Kondensation der Luftfeuchtigkeit im Inkubator noch um ein viel faches verstärkt.

In der Praxis resultiert daher aus den idealen Wachstumsbedingungen im Inkubator, dass sich dort nicht nur die Zellen von Patienten vermehren, sondern ebenso auch unbeab sichtigt eingebrachte Fremdzellen, sogenannte Verunreinigungen oder Kontaminationen. Dies kann zu einer Verunreinigung bzw. Kontamination der eigentlichen Zellkultur, dem Patienten- Material, führen, was zur Folge hat, dass das Patienten-Material für eine Therapie unbrauch barwird und im schlimmsten Fall der Patient an den Folgen der Kontamination verstirbt.

Mit dem Ziel, eine Kontamination des Inkubators durch Fremdzellen zu reduzieren, muss der Innenraum herkömmlicher Inkubatoren in regelmäßigen Abständen sterilisiert werden (De kontamination). Zu diesem Zweck wird der Innenraum des Inkubators für eine Zeit von bis zu mehreren Stunden auf Temperaturen von nahe 200 °C gebracht. Auf diese Weise wird die Population dort vorhandener Zellen stark dezimiert, jedoch nicht völlig ausgelöscht. Eine Re duktion der Kontamination um z.B. einen Faktor Tausend ist üblich.

Ein anderer Ansatz, die Gefahren einer Kontamination zu verringern, besteht darin, dass sich die Proben in einem separaten, abgeschlossenen Behältnis befinden. Dieses Behältnis ist in der Regel mit einer gasdurchlässigen Membran versehen, so dass ein Gas- und Feuchtig keits-Austausch mit der Atmosphäre im Inkubator gegeben ist. Die Membran selbst ist in der Regel als Sterilfilter ausgelegt, wodurch ein Eindringen von biologischen Kontaminationen ins Innere des Behältnisses weitgehend minimiert wird. Allerdings lassen sich mit diesen Behält nissen nicht die Kontaminationen im Inkubator selbst und vor allem nicht auf der Außenfläche eines derartigen Behältnisses verhindern. Insbesondere auf der Außenfläche des Sterilfilters eines solchen Behältnisses können sich bevorzugt Kontaminationen ablagern, so dass ein Verschleppen dieser Kontamination in den Innenraum des Behältnisses nicht auszuschließen ist.

Um Parameter wie Temperatur oder C0 2 -Konzentration im Inkubator zu überwachen bzw. zu regulieren, ist es notwendig, Sensoren in dessen Innenraum zu platzieren. Viele die ser Sensoren reagieren jedoch empfindlich gegenüber hohen Temperaturen, beispielsweise vertragen die üblichen CC>2-Sensoren keine Temperaturen von über 160 °C. Aus diesem Grund ist eine Dekontamination eines Inkubators mit Aufwand verbunden, da zuvor zumindest einige der Sensoren aus dem Inkubator entfernt werden müssen. Außerdem können diese Sensoren zwar nicht selbst dekontaminiert werden, müssen aber dennoch wieder in den In nenraum des Inkubators eingebaut werden, wodurch die Wirkung der Dekontamination des selben zumindest teilweise wieder zunichte gemacht wird.

Für viele derzeitige Anwendungen in der Zellbiologie und der Medizin und besonders für mögliche zukünftige Anwendungen, beispielsweise in der Therapie von genetisch bedingten Krankheiten (z.B. Tumoren, Leukämie oder Erbkrankheiten), ist eine vollständig sterile Umge bung im Inkubator unabdingbar.

Aus der Veröffentlichung WO 2015/172882 A1 ist ein System bekannt, das durch vonei nander autarke Mini-Inkubatoren, die jeweils für nur einen Probenträger ausgelegt sind, die Sicherheit im Labor erhöhen und insbesondere Konfusion und mögliche Kontamination der Proben verhindern soll. Vollständige Sterilität kann dieses System jedoch nicht garantieren.

Die Veröffentlichung WO 2011/130865 A2 beschreibt einen im Wesentlichen herkömm lich ausgelegten Inkubator, bei dem zum Verhindern von Kontamination der Proben vorgese hen ist, möglichst viele Behandlungsschritte innerhalb des Inkubators maschinell, ohne menschliche Beteiligung auszuführen. Hierzu sind spezielle Vorrichtungen wie z.B. Roboter arme vorgesehen. Vollständige Sterilität kann jedoch auch hierbei nicht gewährleistet werden.

Aufgabe

Aufgabe der Erfindung ist es, eine Vorrichtung anzugeben, die eine Verbesserung der Sterilität bei der Inkubation von Zellkulturen ermöglicht.

Lösung

Diese Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst. Vor teilhafte Weiterbildungen der Gegenstände der unabhängigen Ansprüche sind in den Unteran sprüchen gekennzeichnet. Der Wortlaut sämtlicher Ansprüche wird hiermit durch Bezugnahme zum Inhalt dieser Beschreibung gemacht.

Die Verwendung der Einzahl soll die Mehrzahl nicht ausschließen, was auch im umge kehrten Sinn zu gelten hat, soweit nichts Gegenteiliges offenbart ist. Zur Lösung der Aufgabe wird eine Vorrichtung zur Gewährleistung einer sterilen Umge bung für die Inkubation von Zellkulturen vorgeschlagen. Die Vorrichtung hat einen abdichtba ren und/oder abgedichteten Wärmeraum, der mindestens ein Heizelement aufweist. Der Wärmeraum weist Sensoren für Temperatur und/oder Luftfeuchtigkeit und/oder CO2 und au ßen mindestens einen Anschluss für eine Gaszufuhr auf. Der Anschluss ist mit einer Leitung verbunden, die im Innenraum des Wärmeraums einen Gasanschluss bereitstellt. Bei der Gas zufuhr handelt es sich typischerweise um CO2, für spezielle Zellkulturen können aber auch andere Gase vorgesehen sein. Die Vorrichtung hat außerdem einen abdichtbaren und/oder abgedichteten Kultivierungsbehälter zum Aufnehmen der Zellkulturen, der im Wärmeraum angeordnet ist. Der Kultivierungsbehälter hat keine eigene Heizung. Der Kultivierungsbehälter weist für jeden der genannten Sensoren einen abdichtbaren Durchlass auf, der in Kommunika tion mit der Atmosphäre im Kultivierungsbehälter steht. Der Kultivierungsbehälter weist auch mindestens einen abdichtbaren Gas-Ein- und/oder Auslass auf, der mit dem mindestens einen Gasanschluss im Innenraum des Wärmeraums koppelbar ist. Die Sensoren des Wärmeraums sind so angeordnet, dass sie beim Einsetzen des Kultivierungsbehälters in den Wärmeraum in die jeweiligen abdichtbaren Durchlässe des Kultivierungsbehälters eingebracht werden. Auf diese Weise können die Sensoren des Wärmeraums Messdaten zu den Bedingungen im Kul tivierungsbehälter liefern. Die Vorrichtung hat des Weiteren ein Wasserreservoir, welches im Kultivierungsbehälter angeordnet ist.

Mit dieser Vorrichtung lässt sich eine erhebliche Verbesserung der Sterilisierungssituati on bei der Inkubation von Zellkulturen erreichen, da die drei Elemente Wärmeraum, Kultivie rungsbehälter und Wasserreservoir getrennt voneinander mit dem dafür jeweils optimalen Ver fahren sterilisiert werden können. Dadurch, dass die Sensoren sich nicht im Kultivierungsbe hälter befinden, kann dieser z.B. bei Bedarf durch hohe Temperaturen (z.B. über 200 °C) de- kontaminiert werden. Durch den - seinerseits sterilisierten - Wärmeraum ist besonders si chergestellt, dass die Zellkulturen im Kultivierungsbehälter weder von außen kontaminiert werden können, noch ihrerseits Kontaminationen im Labor verursachen können.

Durch den abdichtbaren Gas-Ein- und/oder Auslass, der an den im Inneren des Wärme raums bereitgestellten Gasanschluss gekoppelt werden kann, ist die Aufrechterhaltung opti maler Bedingungen im Kultivierungsbehälter möglich. Diese Bedingungen können mittels Sensoren, die in den bzw. die abdichtbaren Durchlässe passen, kontrolliert werden.

Eine mögliche Kontamination der Zellkulturen im Kultivierungsbehälter durch die Senso ren kann dadurch verhindert werden, dass jeder der genannten Sensoren des Wärmeraums durch einen Sterilfilter abgedeckt ist. Ebenso können Kontaminierungen durch die Gaszufuhr dadurch vermieden werden, dass der mindestens eine Anschluss des Wärmeraums für eine Gaszufuhr, die damit verbun dene Leitung oder der über diese Leitung verbundene, im Innenraum des Wärmeraums be reitgestellte Gasanschluss einen Sterilfilter aufweist.

Zum Einbringen des Kultivierungsbehälters in den Wärmeraum ist es vorteilhaft, wenn der Wärmeraum einen dicht schließenden Deckel oder eine dicht schließende Tür aufweist, wobei die Öffnung des Deckels oder der Tür einen Querschnitt hat, der größer ist als eine Breite des Kultivierungsbehälters.

Kontaminierungen durch die Sensoren können auch dadurch verhindert werden, dass jeder abdichtbare Durchlass am Kultivierungsbehälter einen Sterilfilter aufweist. Diese Ausfüh rung wird besonders bevorzugt. Sie kann alternativ zu Sterilfiltern direkt an den Sensoren des Wärmeraums oder ergänzend dazu eingesetzt werden.

Kontaminierungen durch die Gaszufuhr können bevorzugt dadurch verhindert werden, dass der mindestens eine abdichtbare Gas-Ein- und/oder Auslass am Kultivierungsbehälter einen Sterilfilter aufweist. Dieser kann wiederum entweder alternativ zu Sterilfiltern direkt am Gas-Anschluss des Wärmeraums oder ergänzend dazu eingesetzt werden.

Um sicherzustellen, dass der Kultivierungsbehälter vor der Benutzung sterilisiert wurde, ist es von Vorteil, wenn der Kultivierungsbehälter ein Einweg-Element ist. Dieses kann bereits unter sterilen bzw. Reinraum-Bedingungen hergestellt werden.

Das Einbringen des bzw. der Probenträger mit den Zellkulturen wird erleichtert, wenn der Kultivierungsbehälter einen dicht schließenden Deckel oder eine dicht schließende Tür aufweist.

Besonders vorteilhaft ist es, wenn das Wasserreservoir mit einer semipermeablen Membran bedeckt ist. Diese Membran sollte wasserundurchlässig sein, aber Wasserdampf durchlassen. Vliesstoffe aus Polyethylen hoher Dichte (PE-HD) haben sich beispielsweise für diesen Zweck hervorragend bewährt. Auf diese Weise kann das Wasser bereits bei der Her stellung des Wasserreservoirs hineingegeben werden.

Ein vorzeitiges Verdunsten des Wassers aus dem Wasserreservoir kann verhindert wer den, wenn die semipermeable Membran des Wasserreservoirs vor der Nutzung mit einer für Wasser und Wasserdampf undurchlässigen Folie, z.B. mit einer Kunststofffolie, versiegelt ist, die zur Benutzung entfernt wird.

Eine mögliche Kontamination der Zellkulturen über das Wasserreservoir wird besonders unwahrscheinlich, wenn das Wasserreservoir steriles Reinstwasser enthält.

Die Sterilität des Wasserreservoirs kann besonders gut sichergestellt werden, wenn das Wasserreservoir ein Einweg-Element ist.

Die Inkubationsbedingungen im Kultivierungsbehälter können besonders optimal einge stellt werden, wenn eine Steuerung und/oder Regelung vorhanden ist, welche in der Lage ist, die Bedingungen im Kultivierungsbehälter anhand von Daten der Sensoren des Wärmeraums zu beeinflussen. Dabei dienen die Daten des Temperatursensors zur Steuerung und/oder Re gelung der Heizelemente des Wärmeraums und die Daten des CC> 2 -Sensors zur Steuerung und/oder Regelung der mindestens einen Gaszufuhr. Die Daten des Luftfeuchtigkeits-Sensors dienen zur Ausgabe von Warnmeldungen, welche den Nutzer z.B. auffordern können, das Wasserreservoir zu erneuern, wenn die Luftfeuchtigkeit einen zu niedrigen Wert erreicht.

Die Aufgabe wird ferner gelöst durch einen abgedichteten und/oder abdichtbaren Kulti vierungsbehälter zum Aufnehmen von Zellkulturen. Der Kultivierungsbehälter weist mindes tens einen abdichtbaren Durchlass für einen Sensor auf, der in Kommunikation mit der Atmo sphäre im Kultivierungsbehälter steht. Ferner weist der Kultivierungsbehälter mindestens ei nen abdichtbaren Gas-Ein- und/oder Auslass auf, der mit einem Gasanschluss koppelbar ist. Schließlich befindet sich im Inneren des Kultivierungsbehälters eine Position für ein Wasserre servoir.

Ein solcher Kultivierungsbehälter kann problemlos dekontaminiert werden, und/oder so gar unter sterilen Bedingungen hergestellt werden. Kontaminationssensitive Proben können somit in einen solchen Kultivierungsbehälter eingesetzt werden und sind dann für den gesam ten Kultivierungsvorgang besonders geschützt. Der Kultivierungsbehälter kann dann in einen Wärmeraum, wie er bereits beschrieben wurde, eingesetzt werden. Durch den abdichtbaren Gas-Ein- und/oder Auslass, der an den im Inneren des Wärmeraums bereitgestellten Gasan schluss gekoppelt werden kann, ist die Aufrechterhaltung optimaler Bedingungen im Kultivie rungsbehälter möglich. Diese können mittels Sensoren, die in den bzw. die abdichtbaren Durchlässe passen, kontrolliert werden.

Dieser Kultivierungsbehälter kann somit in einer Vorrichtung, wie sie oben bereits be schrieben wurde, verwendet werden. Weitere Einzelheiten und Merkmale ergeben sich aus der nachfolgenden Beschreibung von bevorzugten Ausführungsbeispielen in Verbindung mit den Figuren. Hierbei können die jeweiligen Merkmale für sich alleine oder zu mehreren in Kombination miteinander verwirklicht sein. Die Möglichkeiten, die Aufgabe zu lösen, sind nicht auf die Ausführungsbeispiele be schränkt. So umfassen beispielsweise Bereichsangaben stets alle - nicht genannten - Zwi schenwerte und alle denkbaren Teilintervalle.

Ein Ausführungsbeispiel ist in den Figuren schematisch dargestellt. Gleiche Bezugszif fern in den einzelnen Figuren bezeichnen dabei gleiche oder funktionsgleiche bzw. hinsichtlich ihrer Funktionen einander entsprechende Elemente. Im Einzelnen zeigt:

Fig. 1 eine schematische Gesamtdarstellung einer erfindungsgemäßen Vorrichtung;

Fig. 2 eine schematische Darstellung eine Wärmeraums einer erfindungsgemäßen

Vorrichtung;

Fig. 3 eine schematische Darstellung eines Kultivierungsbehälters einer erfindungs gemäßen Vorrichtung; und

Fig. 4 eine schematische Darstellung eines Wasserreservoirs einer erfindungsgemä ßen Vorrichtung.

Fig. 1 zeigt eine Vorrichtung zur Gewährleistung einer sterilen Umgebung für die Inkuba tion von Zellkulturen in Gesamtdarstellung, so dass die Anordnung der drei Hauptkomponen ten zueinander ersichtlich wird. Der Wärmeraum 100 ist das äußere Element und enthält im normalen Betrieb den Kultivierungsbehälter 110. Dieser kann, je nachdem, was für Kulturen inkubiert werden sollen, unterschiedlich groß ausgeführt sein. Bevorzugt wird eine Ausfüh rung, bei der der Kultivierungsbehälter einen Probenträger, z.B. eine Mikrotiterplatte oder eine Petrischale, aufnehmen kann. Es sind aber selbstverständlich auch größere Ausführungen möglich.

Im Inneren des Kultivierungsbehälters ist das Wasserreservoir 120 angeordnet. In der gewählten Darstellung hinter dem Kultivierungsbehälter sind Anschlüsse bzw. Verbindungs elemente 130 angeordnet, die den Kultivierungsbehälter 110 an den Wärmeraum 100 an schließen. Diese Anschlüsse bzw. Verbindungselemente werden im Folgenden im Zusam menhang mit Fig. 2 und 3 detaillierter beschrieben.

In Fig. 2 ist der Wärmeraum 100 dargestellt. Dieser bildet eine äußere Hülle, die die ge wünschte Temperatur gewährleistet. Zu diesem Zweck enthält der Wärmeraum Heizelemente 210. Im Wärmeraum 100 befinden sich auch die erforderlichen Sensoren, z.B. für die Tempe- ratur, relative Luftfeuchte oder den CC>2-Gehalt.

In Fig. 2 ist wegen der Übersichtlichkeit nur der CC>2-Sensor 220 dargestellt. Dieser ist an einer Halterung 230 angebracht, die den Sensor so positioniert, dass er beim Einsetzen des Kultivierungsbehälters an die richtige Stelle gelangt. Ferner ist mindestens ein Anschluss für eine Gaszufuhr vorhanden. Dieser Anschluss ist mit einer Leitung verbunden, die im Inne ren des Wärmeraums einen Gasanschluss 240 bereitstellt. Bevorzugt sind zwei derartige Gasanschlüsse vorhanden, von denen beispielsweise einer eine C0 2 -Zufuhr ermöglicht, und der andere eine Möglichkeit zur Gasentnahme bietet.

Vorzugsweise gegenüber von den Sensoren und Gasanschlüssen ist eine Tür 250 vor handen, die gasdicht schließend ausgeführt ist. Alternativ dazu kann beispielsweise auch ein abnehmbarer Deckel o.ä. vorgesehen sein. Die Öffnung des Deckels oder der Tür 250 sollte einen Querschnitt haben, der groß genug ist, dass der Kultivierungsbehälter 110 problemlos eingesetzt werden kann.

Um eine Kontamination der Laborumgebung durch das Einbringen des Wärmeraums 100 in das Labor zu vermeiden, ist es von Vorteil, wenn der Wärmeraum vor dem Verbringen in das Labor gereinigt und in eine Verpackung gegeben wird, in der dieser sterilisiert werden kann. Die Verpackung besteht zumindest teilweise aus einer semipermeablen Membran, die gasdurchlässig, aber hinreichend feinporig ist, so dass keine Keime hindurchkönnen. Das Ste rilisieren kann dann z.B. in bekannter Weise durch Begasen mit Ethylenoxid erfolgen.

Fig. 3 zeigt den Kultivierungsbehälter 110. Dieser wird in den Wärmeraum eingesetzt und kann daraus wieder entnommen werden. Der Kultivierungsbehälter weist für die Sensoren mindestens einen abdichtbaren Durchlass 310 auf, der in Kommunikation mit der Atmosphäre im Kultivierungsbehälter steht. Dieser Durchlass 310 ist vorzugsweise an seiner Innenseite durch einen Sterilfilter 320 abgedeckt, so dass der Kultivierungsbehälter gegen Kontaminatio nen von außen geschützt ist. Die Sensoren des Wärmeraums sind so angeordnet, dass sie beim Einsetzen des Kultivierungsbehälters 110 in den Wärmeraum in die jeweiligen abdichtba ren Durchlässe des Kultivierungsbehälters eingebracht werden. Dadurch können sie Daten über die Zustände im Inneren des Kultivierungsbehälters 110 liefern. Der Kultivierungsbehälter weist auch mindestens einen abdichtbaren Gas-Ein- und/oder Auslass 330 auf, der an den mindestens einen Gasanschluss im Innenraum des Wärmeraums angepasst ist. Jeder dieser Gas-Ein- und/oder Auslässe besitzt vorzugsweise einen Sterilfilter 340, so dass der Kultivie rungsbehälter 110 gegen Kontaminationen von außen geschützt ist, aber auch, damit eine Kontamination aus dem Kultivierungsbehälter in die Umgebung nicht erfolgen kann. Dies kann z.B. erforderlich sein, wenn sich infektiöses Material in der Zellkultur befindet. Vorzugsweise sind jeweils ein Gas-Einlass und ein Gas-Auslass vorhanden, wodurch sich ein Gasaustausch im Inneren des Kultivierungsbehälters leichter verwirklichen lässt. Des Weiteren besitzt der Kultivierungsbehälter 110 eine Öffnung, durch die beispiels weise Probenträger mit Zellkulturen in den Kultivierungsbehälter eingebracht oder daraus ent nommen werden können. Diese Öffnung kann mittels eines Deckels oder einer Tür 350 ver schlossen werden. Der Verschluss durch den Deckel oder die Tür 350 sollte so ausgeführt sein, dass der Kultivierungsbehälter 110 gasdicht gegen die Umgebung abgeschlossen wird. Im Inneren des Kultivierungsbehälters ist ferner vorgesehen, ein Wasserreservoir 120 unter zubringen.

Um das Ziel zu erreichen, eine sterile Umgebung für die Inkubation von Zellkulturen zu gewährleisten, ist vorgesehen, dass der Kultivierungsbehälter 110 vor seiner Benutzung ge reinigt und sterilisiert wird. Hierbei ist es von Vorteil, wenn es sich bei dem Kultivierungsbehäl ter 110 um einen Einwegartikel handelt. Die für Kontaminationen besonders kritischen Ele mente, nämlich die Durchlässe 310 für die Sensoren, die Gas-Ein- bzw. Auslässe 330 sowie die zugehörigen Sterilfilter 320, 340 sind Teil des Kultivierungsbehälters. Sie werden also mit geliefert, mit sterilisiert und auch mit entsorgt.

Auch für den Kultivierungsbehälter 110 bietet es sich an, eine spezielle Verpackung zum Sterilisieren vorzusehen, z.B. mit einer semipermeablen Membran. Als Sterilisierungsverfah ren können unterschiedliche Verfahren angewendet werden, z.B. Gamma-Bestrahlung oder Begasung mit Ethylenoxid, oder auch thermische Verfahren.

Für eine Verwendung des Kultivierungsbehälters 110 in einer Reinraumumgebung ist es zudem von Vorteil, wenn die gesamte Herstellung des Kultivierungsbehälters, einschließlich der sterilen Verpackung, selbst in einem Reinraum erfolgt. Die fertige Komponente (also Kulti vierungsbehälter 110 in der Sterilverpackung) kann dann noch mit einer reinraumtauglichen Umverpackung (z.B. Kunststoffbeutel) versehen werden.

In Fig. 4 ist als weitere Komponente der erfindungsgemäßen Vorrichtung ein Wasserre servoir 120 schematisch dargestellt. Dieses muss in der Realität nicht unbedingt quaderförmig ausgeführt sein. Eine zylindrische oder blasenförmige Ausgestaltung sind beispielsweise ebenfalls vorstellbar. Das Wasserreservoir 120 weist vorzugsweise an mindestens einem Teil seiner Oberfläche eine semipermeable Membran 410 auf, z.B. eine Tyvek-Folie oder ähnli ches. Die semipermeable Membran ermöglicht es, dass gasförmiger Wasserdampf aus dem Wasserreservoir in die Atmosphäre im Kultivierungsbehälter entweicht, das flüssige Wasser aus dem Wasserreservoir jedoch nicht auslaufen kann.

Bevor das Wasserreservoir in den Kultivierungsbehälter eingesetzt wird, ist die semi permeable Membran vorzugsweise durch eine Folie 420, z.B. eine wasser- und gasdichte Kunststofffolie, versiegelt. Durch den Pfeil in Fig. 4 wird das Entfernen dieser versiegelnden Folie 420 vor dem Einsetzen des Wasserreservoirs angedeutet.

Besonders vorteilhaft ist es, wenn das Wasserreservoir 120 so ausgelegt ist, dass es separat, als Einweg-Reservoir, in den Kultivierungsbehälter 110 eingebracht werden kann. Das Wasserreservoir 120 kann in diesem Fall bereits bei der Herstellung mit Wasser befüllt werden. Bevorzugt wird dabei steriles Reinstwasser verwendet.

Um das Ziel zu erreichen, eine sterile Umgebung für die Inkubation zu gewährleisten, ist es von Vorteil, wenn das Wasserreservoir 120 vor seiner Benutzung von außen sterilisiert wird. Das Wasserreservoir kann zu diesem Zweck - wie auch die anderen Komponenten Wärmeraum 100 und Kultivierungsbehälter 110 - in einer Verpackung zum Sterilisieren unter gebracht werden, z.B. in einer Verpackung mit einer semipermeablen Membran. Als Sterilisa tionsverfahren können dabei unterschiedliche Verfahren angewendet werden, z.B. Gamma- Bestrahlung oder Begasung mit Ethylenoxid.

Für eine Verwendung des Wasserreservoirs 120 in einer Reinraumumgebung ist es zu dem von Vorteil, wenn die gesamte Herstellung des Wasserreservoirs, inklusive des Wassers und der sterilen Verpackung, in einem Reinraum erfolgt und die gesamte Komponente (also Wasserreservoir 120, Wasser, Wasserdampfdurchlässige Membran 410, Versiegelung 420 und Sterilverpackung) noch einmal in einem reinraumtauglichen Behältnis (z.B. Kunststoff- Beutel) verpackt wird.

Die oben beschriebene Vorrichtung bietet folgende Vorteile gegenüber dem Stand der Technik:

Dadurch, dass der Gaseinlass des Kultivierungsbehälters derart an den Wärmeraum angepasst ist, dass ein Gasaustausch zwischen Wärmeraum und Kultivierungsbehälter nicht stattfindet, ist eine Kontamination des Sterilfilters aus dem Bereich des Wärmeraums nicht möglich. Der Gas-Ein- bzw. Auslass lässt lediglich Gas vom Gasanschluss zum Kultivierungs behälter durch.

In gleicher Weise ist der Gasauslass des Kultivierungsbehälters derart an den Wärme raum angepasst, so dass ein Gasaustausch zwischen Kultivierungsbehälter und Wärmeraum unterbunden ist. Auf diese Weise ist eine Kontamination des Wärmeraums aus dem Bereich des Kultivierungsbehälters nicht möglich.

Des Weiteren bietet die erfindungsgemäße Vorrichtung den Vorteil, dass sich die Senso ren außerhalb des Kultivierungsbehälters befinden und somit nicht von den Proben im Kultivie rungsbehälter kontaminiert werden können, da sie hiervon durch einen Sterilfilter getrennt sind.

Ferner ist durch die Verwendung eines sterilisierten Kultivierungsbehälters eine Konta mination von Proben ausgeschlossen. Dies gilt insbesondere, wenn es sich bei dem Kultivie rungsbehälter um einen sterilisierten Einmal-Artikel handelt.

Durch die Verwendung von Reinstwasser, dass in einem sterilisierten Einweg-Reservoir in den sterilisierten Kultivierungsbehälter eingebracht wird, ist auch eine Kontamination durch das eingeführte Wasser ausgeschlossen. Diese Gefahr besteht auch nicht für den Fall, dass die relative Luftfeuchtigkeit so hoch ist, dass Wasser im Kultivierungsbehälter kondensiert, da alle Komponenten vor ihrer Benutzung sterilisiert wurden.

Glossar

Inkubator

Ein Inkubator, oder auch Brutschrank, ist ein Gerät, mit dem in der Biologie kontrollierte Außenbedingungen für verschiedene Entwicklungs- und Wachstumsprozesse geschaffen und erhalten werden können. Er dient der Schaffung und Erhaltung eines Mikroklimas mit eng ge regelten Luftfeuchtigkeits- und Temperatur-Bedingungen. Ein Inkubator verfügt über eine Zeit schaltuhr und einen Temperaturregler und unter Umständen eine Einstellung für die Regelung der zugeführten Frischluft. Die eingestellte Temperatur ist dabei auf das Temperaturoptimum der zu inkubierenden Mikroorganismen abgestimmt. Zur Kultivierung tierischer Zellen werden CO2- Inkubatoren verwendet. (Nach de.wikipedia.org/wiki/lnkubator_(Biologie))

Mikrotiterplatte / Microplate

Eine Mikrotiterplatte (engl microwell plate, von engl well für Schacht, oder auch microplate) ist ein multipler Probenträger. Die i.d.R. rechteckigen Mikrotiterplatten bestehen meist aus Kunststoff, für sehr spezielle Anwendungen auch aus Glas. Sie enthalten zwischen 6 (2x3) und 1536 (32x48) voneinander isolierte Näpfchen (Kavitäten, engl wells) in Reihen und Spalten. Die genauen Abmessungen (Längex Breitex Höhe) betragen gemäß ANSI- Standard auf Empfehlung der Society for Biomolecular Screening (SBS) 127,76 c 85,48 x 14,35 mm. Mikrotiterplatten werden für die unterschiedlichsten mikrobiologischen Arbeits gänge eingesetzt. Typische Einsatzbereiche sind die Zellzüchtung oder das Screening techni scher Bioreaktionen. Durch die große Anzahl der Kavitäten und die Verwendung gleicher Ty pen eignen sich Mikrotiterplatten für die parallele Kultivierung und Testung einer Vielzahl un terschiedlicher Proben. Bedingt durch die normierte Größe können fast alle Arbeitsgänge mit geeigneten Robotern automatisiert werden. (Nach de.wikipedia.org/wiki/Mikrotiterplatte)

Probenträger

Mikrobiologische Proben bzw. Zellkulturen werden in Behältern aufbewahrt, die hier als Probenträger bezeichnet werden. Je nach Art der Proben kann es sich dabei um die ver schiedensten Behälter handeln. Typischerweise finden jedoch Petrischalen oder Mikrotiterplat ten (sog. Microplates), teilweise auch Erlenmeyerkolben o.ä., Verwendung. Multiple Proben träger, beispielsweise Mikrotiterplatten, werden auch als Probenträgersysteme bezeichnet.

Sterilfilter Bei der Sterilfiltration werden Mikroorganismen aus dem Sterilisiergut durch Filtration abgeschieden. Als Filter werden meistens Membranen mit einem Porendurchmesser von 0,1 bis 0,22 pm verwendet. Sterilfiltration wird oftmals zur Sterilisierung hitzeempfindlicher Lösun gen, beispielsweise serumhaltiger Gewebekulturlösungen, eingesetzt. Hauptanwendungen sind die Sterilfiltration von wässrigen Lösungen, hitzeempfindlichen Nährlösungen, Vitaminlö sungen, Seren, Virusimpfstoffen, Plasmafraktionen und Proteinlösungen. (Nach https://de.wikipedia.0rg/wiki/Sterilisati0n#Sterilfiltrati0n )

Bezugszeichen

Wärmeraum

Kultivierungsbehälter

Wasserreservoir

Anschlüsse bzw. Verbindungselemente

Heizelement C0 2 -Sensor Halterung für Sensor Gasanschluss Tür des Wärmeraums

Durchlass für Sensor Sterilfilter für Sensor Gas-Ein- bzw. Auslass Sterilfilter für Gas-Ein- bzw. Auslass Tür des Kultivierungsbehälters semipermeable Membran Folie

zitierte Literatur zitierte Patentliteratur

WO 2015/172882 A1 WO 2011/130865 A2