Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUS AND METHOD FOR APPLYING EXTRUDED SEALING MEANS TO A SURFACE
Document Type and Number:
WIPO Patent Application WO/2015/092644
Kind Code:
A1
Abstract:
An apparatus is disclosed for forming annular doses of plasticised material supplied from an extruder, in which the doses are applied to a surface of a capsule and the seals of the capsules are then compression-formed; the apparatus comprises one tubular wall that has a longitudinal axis and is axially movable for closing an annular outlet from which the plasticised material exits with a component that is normal to the longitudinal axis, the tubular wall having a cutting edge that shears the plasticised material during the closing movement in such a manner as to separate the annular dose, which forms outside the outlet, from the material that remains inside the outlet.

Inventors:
ALBONETTI DANILO (IT)
SALLIONI ANDREA (IT)
Application Number:
PCT/IB2014/066903
Publication Date:
June 25, 2015
Filing Date:
December 15, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SACMI (IT)
International Classes:
B29C43/08; B29C31/04; B29C43/34; B29C48/09; B29C48/30; B29C48/32; B65D41/00; B65D41/02; B65D41/16; B65D41/18
Domestic Patent References:
WO2011023399A12011-03-03
WO2009130578A22009-10-29
WO2013017968A22013-02-07
Foreign References:
DE3804464C11989-06-08
US4274822A1981-06-23
US20120171381A12012-07-05
Other References:
"Food Processing: Principles and Applications", 28 February 2008, JOHN WILEY & SONS, ISBN: 978-0-47-028997-6, article J. SCOTT SMITH ET AL: "Package closures", pages: 123 - 123, XP055182870
Attorney, Agent or Firm:
VILLANOVA, Massimo et al. (Viale Corassori 54, Modena, IT)
Download PDF:
Claims:
CLAIMS

1. Apparatus (2) for applying a sealant to a surface (S) of an object, said apparatus comprising:

at least one annular channel (8) for supplying plasticised material, said annular channel having at least one longitudinal axis (X);

one annular outlet (9) of said annular channel (8) shaped in such a manner that the outlet direction of the plasticised material has at least one radial component that is normal to said longitudinal axis (X);

at least one core (10) that bounds internally said annular channel (8); at least one tubular wall (11) that bounds externally said annular channel (8), said tubular wall (11) and said core (10) being movable in relation to one another with the possibility of adopting at least one open position and a closing position of said annular outlet (9); in said closing position, said tubular wall (11) having at least one annular plug surface (12) that interacts with one annular plug seat (13) arranged on said core (10) to close said annular outlet (9) forming one annular dose (D) with the plasticised material that has exited said annular outlet; in said closing position, said plug surface (12) being in contact with said plug seat (13) with a radial width (Y), i.e. a width component measured in a direction that is normal to said longitudinal axis (X), that is non- null; in said open position, said annular outlet (9) having a side bounded by said plug surface (12) and an opposite side bounded by said plug seat (13); driving means for performing opening and closing cycles of said annular outlet (9) to form at every cycle at least one annular dose (D);

means for depositing the annular dose (D) on the surface (S) of the object, said depositing means comprising supporting means (19) for supporting the object having the surface (S) with the possibility of adopting a receiving position in which it is near said annular outlet (9) so that the annular dose (D) that has just been formed is in contact with the surface (S);

compression- forming means (21 ; 22) for moulding the annular dose (D) on the surface (S) of the object;

characterised in that:

said radial width (Y) of said plug surface (12) contacting said plug seat (13) is less than 0.2 mm; and said tubular wall (11) has at least one annular internal distal surface (14) that is contiguous with said plug surface (12) inside said annular channel (8), in said closing position said internal distal surface (14) being spaced away from said core (10), at least one part of said internal distal surface (14) facing axially, i.e. in a direction that is parallel to said longitudinal axis (X), to an internal surface (16) of said core that is contiguous with said plug seat (13) inside said annular channel (8), defining in said closing position one annular gap (15) that is interposed between said internal distal surface (14) and said internal surface (16) inside said annular channel (8).

2. Apparatus according to claim 1, wherein said annular gap (15) has an axial width (A), i.e. the width component measured in a direction parallel to said longitudinal axis (X), which increases towards the interior, growing optionally in a continuous gradual manner.

3. Apparatus according to claim 1 or 2, wherein said annular gap (15) has a radial width (R), i.e. the width component measured in a normal direction to said longitudinal axis (X), which increases towards the interior, growing optionally in a continuous gradual manner.

4. Apparatus according to any preceding claim, wherein said internal distal surface (14) of the tubular wall and said internal surface (16) of the core are two annular surfaces that are tilted with respect to said longitudinal axis (X) with different tilts from one another.

5. Apparatus according to claim 4, wherein said two tilted annular surfaces are curved surfaces with curvatures that differ from one another.

6. Apparatus according to any preceding claim, wherein said tubular wall (11) and said core (10) are axially movable in relation to one another in the direction of said longitudinal axis (X).

7. Apparatus according to any preceding claim, wherein said radial width (Y) is less than 0.1 mm, or less than 0.05 mm, or less than 0.04 mm, or less than 0.03 mm, or less than 0.02 mm, for example said radial width is 0.01 mm ± 50%.

8. Apparatus according to any preceding claim, wherein said plug surface (12) and said plug seat (13) are frustoconical-shaped, in particular coaxial with said longitudinal axis (X).

9. Apparatus according to any preceding claim, wherein said tubular wall (11) has at least one annular external distal surface (17) that is contiguous with said plug surface (12) and is shaped in such a manner as to define, in said closing position, in collaboration with an annular external surface (18) of said core that is contiguous with said plug seat (13), an annular groove that is open towards the exterior.

10. Apparatus according to any preceding claim, wherein said apparatus comprises blowing means having at least one annular blow emission mouth arranged around said annular outlet (9) to extract the annular dose (D) pushing it towards the surface (S) of the object.

11. Apparatus according to any preceding claim, wherein said apparatus comprises annular piston thrusting means (20) arranged around said annular outlet (9) to thrust the annular dose (D) towards the surface (S) of the object.

12. Apparatus according to any preceding claim, wherein said tubular wall (11) has at least one cutting edge arranged for cutting the plasticised material during the closing movement of said annular outlet (9) to separate the annular dose (D) outside the outlet (9) from the plasticised material that remains inside said annular gap (15).

13. Apparatus according to claim 12, wherein said cutting edge is arranged on said plug surface (12) or is arranged adjacent to said plug surface (12).

14. Forming machine comprising a plurality of apparatuses (2) made according to any preceding claim and arranged on a rotating carousel (3) or on several carousels connected in line.

15. Method for applying a sealant to a surface (S) of an object by means of an apparatus or a machine according to any preceding claim, said method comprising:

supplying a continuous flow of plasticised material through said annular channel (7) as far as said annular outlet (9);

continuing to supply said continuous flow, making an annular portion of the plasticised material exit said annular outlet (9), with said annular outlet in the open position, through the effect of a supply pressure of the plasticised material upstream of said annular channel (8);

subsequently, closing said annular outlet (9) in such a manner that said exited annular portion is separated from the plasticised material that remains inside said annular outlet (9);

performing opening and closing cycles of said annular outlet (9) in such a manner as to form at each cycle at least one annular dose (D); separating the annular dose (D) that has exited said annular channel (8) from the rest of the material remaining inside the annular channel (8);

depositing the annular dose (D) that has exited said annular channel (8) on the surface (S); wherein, optionally, the annular dose (D) that has just exited adheres to said surface (S) and is then separated from said tubular wall (11) and/or from said core (10) moving away said object;

compression forming the annular dose (D) on said surface (S), in particular for forming a seal.

16. Method according to claim 15, wherein said continuous flow of plasticised material through said annular channel (8) comes from a constant flow extruder main conduit (5); the frequency of the opening and closing cycles of said annular outlet (9) being optionally constant.

17. Method according to claim 15 or 16, wherein said plasticised material traverses said annular outlet (9) at a temperature below 250 °C and at a pressure below 30 bar.

18. Method according to any one of claims 15 to 17, wherein said plasticised material traverses said annular outlet (9) at a temperature above 150 °C and at a pressure above 20 bar.

19. Method according to any one of claims 15 to 18, wherein the average closing speed of said annular outlet (9) is below 1 m/sec.

20. Method according to claim 19, wherein the average closing speed of said annular outlet (9) is comprised between 0.1 and 1 m/sec.

21. Method according to claim 20, wherein the average closing speed of said annular outlet (9) is comprised between 0.5 m/sec and 1 m/sec.

22. Method according to any one of claims 15 to 21, wherein said plasticised material is selected from a group of materials that includes: polyethylene copolymers such as, for example, LLDPE, LDPE, metocene; styrene block copolymers, for example two or three-block copolymers or branched copolymers, for example S-B-S, S-I-S, S-EB- S; polypropylene mixtures, for example EDPM, EDR; dynamic vulcanised products of polypropylene and EPDM; dynamic vulcanised products of polypropylene and butyl rubber; dynamic vulcanised products of polypropylene and natural rubber; dynamic vulcanised products of polypropylene and nitrile rubber.

Description:
APPARATUS AND METHOD FOR APPLYING EXTRUDED SEALING MEANS TO A SURFACE Background of the invention

[0001] The invention relates to a method and an apparatus for forming annular doses, in particular for forming an annular dose made of plasticised material supplied by an extruder and applying the dose that has just been formed to a surface.

[0002] Specifically, but not exclusively, the invention can be used to apply a seal to a surface, for example to form seals inside capsules (made of metal or plastics) to close containers. The invention can be further used to apply an annular dose to a flat element (for example a disc), made in particular of metal or plastics that can then be inserted, as a sealant, into a more complex device. It is possible, in other uses of the invention, to apply the annular dose (acting as a sealant) to a cardboard element intended, for example, to form a container or a portion of a container, or directly to a container, for example made of plastics or metal. The annular dose could also be inserted, according to another use of the invention, directly into a mould to obtain an object therefrom (for example a cap consisting of a wall of plastics and a central metal disc provided with a seal obtained from the annular dose) or also with different functions from the closing function.

[0003] The prior art comprises the patent publication US 2012/0171381 Al, which shows an apparatus made in accordance with the preamble to claim one, for forming an annular dose of plasticised material to be deposited on the surface of a cap for containers to give rise to the sealing washer. In such an apparatus the dose is separated and expelled by virtue of the great closing velocity of the mould that makes the material squeeze out.

[0004] This known apparatus nevertheless has numerous limits and drawbacks.

[0005] Firstly, the material that forms the annular dose is pressed out at high pressure, with a possible localised increase of the temperature and consequent deterioration of the material and/or adhesion of the material to the conduit surfaces.

[0006] Secondly, in order to press out the material, low viscosity has to be maintained and it is thus necessary to work at relatively high temperatures.

[0007] Further, whilst on the one hand using high-viscosity materials causes very high working pressure, on the other hand using low-viscosity materials causes problems of leakage of the material from the seals.

[0008] Another drawback is that the annular dose, by squeezing out at high speed from the mould, can get deformed in a manner that is not easily controllable.

Summary of the invention [0009] One object of the invention is to remedy one or more of the aforesaid limits and drawbacks of the prior art.

[0010] Another object is to make an apparatus for forming an annular dose of plasticised material to be deposited on a surface.

[0011] A further object is to devise a method for forming an annular dose of plasticised material to be deposited on a surface.

[0012] One advantage is to separate the annular dose from a continuous flow of plasticised material supplied by an extruder.

[0013] One advantage is that the plasticised material can exit an annular extruder outlet, forming the annular dose, at a relatively low pressure.

[0014] One advantage is to avoid a localised increase of the temperature of the material in the outlet zone with the consequent deterioration of the material and/or adhesion of the material to the conduit surfaces.

[0015] One advantage is to enable effective working even at high viscosity and thus at relatively low temperatures.

[0016] One advantage is to enable effective working of both high and low- viscosity materials.

[0017] One advantage is to avoid leakage problems of the plasticised material.

[0018] One advantage is to form annular doses of the desired form in a manner that is repeatable with precision.

[0019] One advantage is to provide an apparatus that is constructionally simple and cheap.

[0020] Such objects and advantages and still others, are achieved by the apparatus and/or by the method according to one or more of the claims set out below.

[0021] In one example, an apparatus for forming annular doses comprises a tubular wall that has a longitudinal axis and is axially movable for closing an annular outlet from which the plasticised material exits with a component that is normal to the longitudinal axis, the tubular wall having a cutting edge that shears the plasticised material during the closing movement in such a manner to separate the annular dose, which is formed outside the outlet, from the material that remains inside the outlet.

Brief description of the drawings

[0022] The invention can be better understood and implemented with reference to the attached drawings that illustrate some embodiments by way of non-limiting example. [0023] Figure 1 is a schematic section, in a vertical elevation, of an example of a machine, of rotating carousel type, for forming annular doses in plasticised material, according to the present invention.

[0024] Figure 2 is a section, in a vertical elevation, of a detail of figure 1 in which a forming apparatus is shown, according to the invention, in an open operating configuration of the annular extruding nozzle.

[0025] Figure 3 is the section in figure 2 with the apparatus in a closed operating configuration of the annular extruding nozzle.

[0026] Figure 4 is the section in figure 3 with the apparatus in an operating configuration depositing the annular dose on a surface.

[0027] Figure 5 is a section of figure 4 with the apparatus in an operating configuration removing the surface from the extruding nozzle.

[0028] Figure 6 is a section, in a vertical elevation, of a second embodiment of a forming apparatus according to the invention, in an open operating configuration of the annular extruding nozzle.

[0029] Figure 7 is the section in figure 6 with the apparatus in a closed operating configuration of the annular extruding nozzle and a simultaneously deposit operating configuration of the annular dose on a surface.

[0030] Figure 8 is the section in figure 7 with the apparatus in an operating configuration removing the surface from the extruding nozzle.

[0031] Figure 9 is an enlarged detail of figure 6.

[0032] Figure 10 is an enlarged detail of figure 7.

[0033] Figure 11 is an enlarged detail of figure 8.

[0034] Figure 12 shows the section of figure 10 without the plasticised material for showing the outlet zone better.

[0035] Figure 13 shows an enlarged detail of figure 12.

[0036] Figures 14 to 16 show three steps of compression- forming the annular dose to make a seal.

Detailed description

[0037] In this description, similar elements that are common to the various embodiments illustrated have been indicated by the same numbering.

[0038] With 1 a machine as a whole has been indicated for forming annular doses D and for applying the annular doses to a surface S. The machine 1 comprises a plurality of forming apparatuses 2 for forming annular doses arranged angularly spaced apart from one another on a rotating carousel 3. The carousel 3 may rotate, for example, around a vertical rotation axis. The machine 1 further comprises an extruder 4 for supplying plasticised material to the rotating carousel 3. The extruder 4 may comprise an extruding screw (with rotation speed of the screw, in a closed or open loop, controlled by the programmable electronic control means). The extruder 4 may comprise (downstream of the extruding screw) a stabilising device (for example comprising volumetric pump means) which, by stabilising the oscillations of the flowrate of the plasticised material, permits an almost constant flowrate of the material. The machine 1 is in particular usable for forming seals inside capsules for closing containers.

[0039] In figure 1 the supply path of the plasticised material from the extruder 4 is visible. This path comprises a first path part (fixed part outside the carousel) in which the material is supplied in a plasticised form up to the carousel 3 by means of a main conduit 5. In a second path part (rotating part inside the carousel) the material is supplied to the different forming apparatuses 2 by means of a plurality of secondary conduits 6 that branch off from the main conduit 5. Each secondary conduit 6 then ends with an annular nozzle 7 from which the annular dose D exits. The fixed part and the rotating part of the path of the plasticised material in the extruder 4 may be connected together by a connecting device (of known type), for example a rotating distributor.

[0040] Each single forming apparatus 2, in particular each annular extruding nozzle 7, may comprise at least one annular channel 8 for supplying plasticised material. This annular channel 8 may communicate, for example in a derivation ratio, with a secondary conduit 6.

[0041] The annular channel 8 may have at least one longitudinal axis X (for example a vertical longitudinal axis X or a longitudinal axis X parallel to the rotation axis of the carousel 3). The annular channel 8 may comprise, as in this example, at least one channel portion of a substantially cylindrical tubular shape.

[0042] Each forming apparatus 2, in particular each annular extruding nozzle 7, may comprise an annular outlet 9 arranged at the end of the annular channel 8. The annular outlet 9 may be shaped in such a manner that the exit direction of the annular portion of extruded plasticised material has at least one radial component that is normal to the aforesaid longitudinal axis X.

[0043] Each forming apparatus 2, in particular each annular extruding nozzle 7, may comprise at least one core 10 (central or internal) that internally bounds the annular channel 8 and/or may comprise at least one tubular wall 11 (peripheral or external) that externally bounds the annular channel 8.

[0044] The tubular wall 11 and the core 10 may be moved reciprocally (in a direction that is vertical and/or parallel to the rotation axis of the carousel and/or parallel to the longitudinal axis X of the annular channel 8) with the possibility of adopting at least one open position (figures 2, 6, 9) and a closed position (3, 7, 10) of the annular outlet 9. In particular, the tubular wall 11 may be movable (axially, in a direction parallel to the longitudinal axis X thereof) with respect to the rotating frame of the carousel 3.

[0045] In a closed position, the tubular wall 11 may have, as in this example, at least one annular obturator surface 12 that interacts in contact with an annular obturator seat 13 arranged on the core 10 to close the annular outlet 9. The closure (in contact) of the obturator surface 12 against the annular obturator seat 13 causes the material exiting the annular outlet to be separated from the material remaining inside, thus forming an annular dose D with the material outside the outlet.

[0046] In the open position, the annular outlet 9 may have one (upper) side bounded by the obturator surface 12 and an opposite (lower) side bounded by the annular obturator seat 13. In the enlargement of figure 13, the (upper) obturator surface 12 and the annular obturator seat 13 are shown in a closed position (in reciprocal contact). The two opposite (upper and lower) sides may have, for example, the same shape (for example circular) and the same dimensions (same diameter) so as to be substantially superimposable on one another in an axial direction.

[0047] Each apparatus 2 may comprise, for example, driving means for moving the tubular wall 11 and/or core 10 (in the specific case only the tubular wall 11) so as to perform opening and closing cycles of the annular outlet 9 in order to form at each cycle at least one annular dose D. Such driving means may comprise, for example, cam means (not shown). Such cam means may comprise, in particular, at least one (fixed) cam profile, for example a profile that extends substantially in an arc that is coaxial with the rotation axis of the carousel 3. This cam means may comprise, in particular, at least one cam follower associated with the closing movable element (tubular wall or core) and coupled with the aforesaid cam profile. The cam follower may comprise, for example, rolling means (roller) that is slidable on the cam profile.

[0048] The tubular wall 11 may have, as in this example, at least one cutting edge that is arranged for shearing the plasticised material during the closing movement of the annular outlet 9 so as to separate the annular dose D, which is formed outside the outlet, from the plasticised material which remains inside the outlet.

[0049] The tubular wall 11 may have, for example, at least one annular internal distal surface 14 that is adjacent to (contiguous with) the obturator surface 12. In the closed position the internal distal surface 14 may be at a non-nil (axial) distance from the core 10 so as to define an annular gap 15 that is interposed axially, in a direction that is parallel to the longitudinal axis X, between the internal distal surface 14 and an internal surface 16 of the core adjacent to (contiguous with) the annular obturator seat 13.

[0050] The aforesaid cutting edge may, in particular, separate the annular dose D from the material that remains inside the aforesaid annular gap 15.

[0051] The annular cutting edge may be arranged, as in this case, on the obturator surface 12 or in a position (immediately) adjacent thereto.

[0052] The annular gap 15 may have an axial width A (where "axial width" means the width component measured in a direction that is parallel to the longitudinal axis X) that increases proceeding towards the interior of the annular nozzle 7. This axial width A may grow, in particular, in a continuous gradual manner.

[0053] The annular gap 15 may have a radial width R (where by "radial width" the width component is meant that is measured in a direction that is normal to the longitudinal axis X) that grows proceeding inside the annular nozzle 7. This radial width R may grow, in particular, in a continuous gradual manner.

[0054] The internal distal surface 14 of the tubular wall 11 and the internal surface 16 of the core 10 may be two annular surfaces that are tilted with respect to the longitudinal axis X, in particular with tilts that are different from one another. These two tilted annular surfaces may be, as in the disclosed example, two curved surfaces with curves that are different from one another.

[0055] In the reciprocal closing and opening movement of the annular outlet 9, the tubular wall 11 and the core 10 may be axially movable in relation to one another in the direction of the aforesaid longitudinal axis X.

[0056] The obturator surface 12, which may be in contact with the obturator seat 13 in a closed position, may have, in particular, a radial obturator width Y (i.e. the width component of the surface 12 measured in a direction that is normal to the longitudinal axis X) that is less than 0.2 mm, or less than 0.1 mm, or less than 0.05 mm, or less than 0.04 mm, or less than 0.03 mm, or less than 0.02 mm, for example a radial obturator width Y that is the same as 0.01 mm ± 50%.

[0057] The obturator surface 12 and the obturator seat 13 may be, as in this specific example, joined surfaces that are both joined in a troncoconical manner. In particular, the obturator surface 12 and the annular obturator seat 13 may be in the form of revolution surfaces that are coaxial with the longitudinal axis X of the annular channel 8.

[0058] The tubular wall 11 may have, as in this case, at least one annular external distal surface 17 that is adjacent to (contiguous with) the obturator surface 12 and shaped in such a manner as to define, in a closed position and in collaboration with an annular external surface 18 of the core 10 adjacent to the annular obturator seat 13, an annular groove that is (radially) open to the exterior.

[0059] It is possible to provide the use of (movable) supporting means 19 for supporting an object, in particular a capsule for containers, having the surface S on which to deposit the annular dose D, which supporting means 19 may be able to adopt a receiving position (for example as in figure 10) in which it is near the annular outlet 9 in such a manner that the annular dose D that has just been formed is in contact with a surface S of the object supported and can adhere to this surface. The supporting means 19 may further be able to adopt a detached position (figure 11) in which it is far from the annular outlet 9 in such a manner that the annular dose D that adheres to the surface S of the object is detached from the nozzle. This surface S may be preventively activated (by heating and/or by a layer of primer and/or by other adhesion-promoting means) to favour this detachment.

[0060] The supporting means 19 (for example means of known type and for this reason not illustrated in greater detail) may be moved by driving means that guides the movement towards and away from the annular outlet 9 (of the extruder nozzle 7). This driving means may comprise, for example, cam means (not shown). Such cam means may comprise, in particular, at least one (fixed) cam profile, for example a profile that extends substantially in a circumferal arch that is coaxial with the rotation axis of the carousel 3. This cam means may comprise, in particular, at least one cam follower coupled with the aforesaid cam profile and associated with the supporting means 19 that carries the surface on which to deposit the dose. The cam follower may comprise, for example, a rolling means (roller) that is slidable on the cam profile.

[0061] The apparatus 2 may comprise (as in the example illustrated in figures 2 to 5) annular piston pushing means 20 arranged around the annular outlet 9 to push (downwards) the annular dose D to a surface S (below). The (vertical) movement of the pushing means 20 may be commanded by driving means (of known type), for example by cam means similar to what is disclosed above, or by fluid actuating means.

[0062] The apparatus 2 may comprise blowing means having an annular mouth for blowing a jet that are arranged around the annular outlet 9 to push the annular dose D to a surface S. This blowing means may comprise an annular conduit that may be, for example, integrated into the annular piston pushing means 20. It is possible, in other examples that are not shown, to provide blowing pushing means without piston pushing means or, vice versa, piston pushing means without blowing pushing means.

[0063] The apparatus 2 may comprise, or may be operationally associated (for example connected in a processing line) with compression forming means for forming the annular dose D after the annular dose D has been separated and deposited on the surface S. This compression forming means may be arranged, in particular, on a further carousel (not illustrated) arranged downstream of the apparatus 2 that forms and applies the annular doses D.

[0064] This compression forming means (shown schematically in Figures 14 to 16) may comprise punch means having, for example, first punch means (an external annular punch 21) that presses the annular dose D and second punch means (a central punch 22) that presses against the surface S. The first and second punch means (punches 21 and 22) may be movable (axially slidable) in relation to one another. The first punch means (annular punch 21) may further be movable (axially slidable) with respect to a peripheral (tubular) support 23. It is possible to provide first elastic means 24 applied to the first punch means and/or second elastic means 25 applied to the second punch means.

[0065] It is possible to provide for the compression forming means comprising third elastic means (not shown) applied to supporting means of the surface S (for example a lower support that supports the capsule during moulding).

[0066] The compression forming means may comprise actuating means for generating the compression forming force. Such actuating means (for example cam driving means similar to those disclosed previously or fluid actuating means, in particular linear-action actuating means) may be applied to the (lower) support that carries the surface S. The (upper) punch means may be (as in this specific example) devoid of actuating means.

[0067] During the step of moulding the seal, the surface S is brought near (lifted) to the (upper) punch means by the actuating means. In the specific case, first the central punch 22 will come into contact with the zone of the surface S that is inside the annular dose D (figure 15) so as to define and sealingly close (inwardly) a forming chamber of the seal. Then the annular punch 21 will compress the annular dose D to mould the seal (figure 16).

[0068] It is also possible to provide embodiments comprising valve means 26 for adjusting the flow of the plasticised material and/or thermal conditioning means (for example one or more resistances 27) for heating one or more apparatus parts in contact with the plasticised material.

[0069] In use, a continuous flow (at a continuous flow rate) of plasticised material is supplied that is divided to go towards the various nozzles 7 of the rotating machine 1 , passing through each annular extruder channel 8 up to the respective annular outlet 9. After this, continuing to supply the flow of material in a continuous manner, without in particular using check valves to prevent material return) an annular portion (of the desired volume) of the plasticised material is made to exit the annular outlet 9 in an open configuration in which the annular outlet 9 is in an open position. The material will leave the annular outlet (only) through the effect of the supply pressure of the plasticised material upstream of the annular channel 8, in particular through the pressure generated by the extruder 4 upstream of the carousel.

[0070] Subsequently, the annular outlet 9 is closed in such a manner that the annular portion that has left the nozzle 7 is separated from the rest of the plasticised material that remains inside the annular outlet 9.

[0071] Repeated opening and closing cycles of the annular outlet 9 are performed so as to form at each cycle at least one annular dose D. Each dose forming cycle is run at each revolution of the carousel 3.

[0072] The annular dose D that has left the annular channel 8 is separated from the rest of the material left inside the annular outlet 9 through the effect of the cut of the plasticised material made by the cutting edge of the tubular wall 11.

[0073] As has been seen, the annular dose D that has left the annular channel 8 is deposited on a surface S of a capsule for containers adhering to the aforesaid surface S. This capsule surface S is then removed, so the annular dose D is separated from the extruding nozzle 7 (in particular from the tubular wall 11 and/or from the core 10) by virtue of the fact that it adheres more to the capsule surface S than to the surfaces of the nozzle 7. [0074] As has been seen, the annular dose D is then compression-formed directly on the (capsule) surface S on which it was previously deposited, in particular for forming a seal of the capsule.

[0075] The continuous flow of plasticised material through the main extruder conduit 5 may be constant. The frequency of the opening and closing cycles of each obturator 7 may also be constant.

[0076] The plasticised material may traverse the annular outlet 9 at a temperature below 250 °C, in particular below 220 °C (and further, for example, above 150 °C) and/or at a pressure below 30 bar (and further, for example, above 20 bar). The average closing speed of the annular outlet 9 may be, in particular, lower than 1 m/sec (for example comprised between 0.1 and 1 m/sec, or between 0.5 m/sec and 1 m/sec).

[0077] The plasticised material may be selected, for example, from a group of materials that includes: polyethylene copolymers, such as, for example, LLDPE, LDPE, metocene; block styrene copolymers, for example two or three-block styrene copolymers, or branched copolymers, for example S-B-S, S-I-S, S-EB-S; polypropylene mixtures, for example EDPM, EDR; dynamic vulcanised polypropylene and EPDM products; dynamic vulcanised polypropylene and butyl rubber products; dynamic vulcanised polypropylene and natural rubber products; dynamic vulcanised polypropylene and nitrile rubber products.

[0078] The average exit speed of the plasticised material from the annular outlet 9 may be, for example, comprised between 5 and 100 mm/sec.

[0079] It is noted that the tubular wall 11 disclosed above defines a shearing ring having a relatively extremely thin cutting edge to enable clean and precise cutting of the material arranged at the annular outlet 9.

[0080] It is possible to obtain the same weight of annular doses D separated into the various opening and closing cycles (weight constancy), for example by the constancy of the total flowrate of the plasticised material conveyed by the extruder and the constancy of the shearing frequency (frequency of the opening and closing cycle of the annular outlet 9). The constancy of the flowrate of the plasticised material can be obtained by means of the control of the extruding screw (at a constant rotation rate) and/or by means of the use of a flowrate stabilising device (of known type).

[0081] It is further noted that it is possible to work the plasticised material at relatively low temperatures (and high viscosity).