Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUS AND METHOD FOR MAKING A FLEXIBLE PACKAGE
Document Type and Number:
WIPO Patent Application WO/2015/179384
Kind Code:
A1
Abstract:
An apparatus for forming a flexible package can include a forming box having a first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, and one or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package. The apparatus can also include a first flap folding bar disposed upstream and adjacent a first end of the forming box, and one or more first flap folding bar actuators operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material.

Inventors:
SANFILIPPO JOHN E (US)
SANFILIPPO JAMES J (US)
SORIA FRANCISCO JAVIER (US)
RADENOVIC MILORAD (US)
GOLOTA GEORGE (US)
Application Number:
PCT/US2015/031556
Publication Date:
November 26, 2015
Filing Date:
May 19, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CLEAR LAM PACKAGING INC (US)
International Classes:
B65B61/24; B65B9/20; B65B9/213; B65B61/28
Domestic Patent References:
WO2012098085A12012-07-26
Foreign References:
EP0085349A21983-08-10
EP2468634A12012-06-27
EP2586718A12013-05-01
US3332198A1967-07-25
Attorney, Agent or Firm:
COYNE, Michael, E. et al. (Gerstein & Borun LLP233 S. Wacker Drive, 6300 Willis Towe, Chicago IL, US)
Download PDF:
Claims:
WHAT IS CLAIMED:

1. An apparatus for forming a flexible package, comprising:

a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends, one or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package, a first flap folding bar disposed upstream and adjacent the first end of the forming box, and one or more first flap folding bar actuators operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar is disposed over the first end of the forming box.

2. The apparatus of claim 1, wherein:

the first portion of the forming box comprises a first substantially planar surface extending between first and second mating ends, the second portion of the forming box comprises second and third substantially planar surfaces joined together at a first corner, and a third mating end joined to the third substantially planar surface at a second corner, the third mating end having a complementary shape to a shape of the first mating end; and the third portion of the forming box comprises fourth and fifth substantially planar surfaces joined together at a third corner, and a fourth mating end joined to the fifth substantially planar surface at a fourth corner, the fourth mating end having a complementary shape to a shape of the second mating end, wherein optionally the first, second, third and fourth mating ends are angled.

3. The apparatus of claim 2, wherein the second and third portions comprise fifth and sixth mating ends, respectively, the fifth and six mating ends having complementary shapes.

4. The apparatus of any one of claims 1 to 3, further comprising a conveyor disposed beneath the forming box, adjacent to the second end of the forming box, such that a package contacts the conveyor when disposed in the forming box.

5. An apparatus for forming a flexible package, comprising:

a forming box having a first end and an oppositely disposed second end, wherein: the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends, the first portion includes a first surface defining the first wall, the second portion includes second and third surfaces joined at a first corner, the second surface defining a portion of the fourth wall and the third surface defining the third wall, the third portion includes fourth and fifth surfaces joined at a second corner, the fourth surface defining a remaining portion of the fourth wall and the fifth surface defining the third wall, and one or both of the third surface and the fifth surface includes at least one ejector extending from an end of the third surface or fifth surface disposed adjacent to the first surface; one or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package, the at least one ejector being configured to engage the package and force the package out of the forming box when the forming box is actuated to the third position; a first flap folding bar disposed upstream and adjacent the first end of the forming box; and one or more first flap folding bar actuators operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar is disposed over the first end of the forming box.

6. The apparatus of claim 5, wherein the first surface of the first portion includes at least one aperture to receive the at least one ejector when the forming box is in the second position.

7. The apparatus of claim 5 or 6, further comprising a plate disposed beneath the forming box such that a package rests on the plate when disposed in the forming box.

8. The apparatus of claim 7, further comprising a conveyor and/or chute disposed downstream of the plate.

9. The apparatus of any one of claims 5 to 8, wherein the forming box comprises at least one ejector projecting from the third surface and at least one ejector projecting from the fifth surface.

10. The apparatus of any one of the preceding claims, wherein the one or more forming box actuators comprise linear motors, servos, and/or air cylinders.

11. The apparatus of any one of the preceding claims, wherein the one or more flap folding bar actuators comprise linear motors, servos and/or air cylinders.

12. The apparatus of any one of the preceding claims further comprising a second flap folding bar disposed upstream of the first flap folding bar and one or more second flap folding bar actuators operatively coupled to the second flap folding bar to actuate the second flap folding bar in a direction transverse to the transport path between a first position in which the second flap folding bar does not engage a package disposed in the transport path, and a second position in which the second flap folding bar engages a flap portion of a package disposed in the transport path.

13. The apparatus of any one of the preceding claims, wherein the first flap folding bar actuators further actuate the first flap folding bar in a direction parallel to the transport path, such that the first flap folding bar is actuated to the second position in which at least a portion of the flap folding bar is disposed over the first end of the forming box and shifted downstream toward the first end of the forming box.

14. The apparatus of any one of the preceding claims, comprising a first forming box actuator operatively coupled to the second portion and a second forming box actuator operatively coupled to the third portion, wherein the forming box is actuated between the first, second, and third positions by actuation of the second and third portions.

15. The apparatus of any one of the preceding claims, further comprising at least one heater operatively coupled to the forming box to heat one or more regions of the forming box.

16. The apparatus of any one of the preceding claims, wherein one or more of the first, second, and third portions comprises one or more fluid inlets fluidly coupled to one or more fluid channels fluidly coupled to one or more fluid outlets, the one or more fluid outlets are disposed at the first and/or second ends of the forming box along a surface of the one or more of the first, second, and third portions.

17. The apparatus of claim 16, wherein the fluid inlets, fluid channels, and fluid outlets are configured to receive a heated fluid.

18. The apparatus of claim 16, wherein the fluid inlets, fluid channels, and fluid outlets are configured to receive a cooling fluid.

19. The apparatus of any one of claims 15 to 18, wherein the heater comprises a cartridge heater.

20. The apparatus of any one of the preceding claims, further comprising a cooling element.

21. The apparatus of claim 20, wherein the cooling element comprises a thermo electric cooler.

22. The apparatus of any one of the preceding claims, further comprising a volume adjuster disposed upstream of the first flap folding bar, wherein the volume adjuster comprises a transition box, a plate disposed within an interior of the transition box, and an actuator operatively coupled to the plate to actuate the plate in a direction transverse to the transport path.

23. The apparatus of claim 22, further comprising a guide box disposed between the volume adjuster and the first flap folding bar.

24. The apparatus of claim 22 or 23, wherein the forming box and the first flap folding bar are coupled to a first frame and the volume adjuster is coupled to a second frame.

25. The apparatus of any one of the preceding claims, further comprising a forming tube disposed upstream of the first flap folding bar and a pre-creasing device disposed along a portion of the forming tube, wherein the pre-creasing device comprises a first plate and a second plate disposed in facing relationship to the first plate, wherein one of the first plate or the second plate is disposed adjacent the forming tube and a pre-creaser actuator operatively coupled to one or both of the first plate and the second plate to actuate the first plate and/or the second plate towards and engagement with the other plate, wherein the first plate comprises one or more projections and the second plate comprises one or more apertures for receiving the one or more projections when the first and second plates is actuated into engagement with each other.

26. The apparatus of claim 25, wherein the first plate further comprises one or more apertures and the second plate further comprises one or more projections.

27. The apparatus of any one of the preceding claims, wherein the first flap folding bar comprises one or more vents arranged to direct a cooling and/or heating gas towards the package when the package is disposed in the forming box.

28. The apparatus of claim 27, wherein the first flap folding bar further comprises one or more vent channels, each vent channel comprising one or more vents.

29. The apparatus of claim 12, wherein the second flap folding bar comprises one or more vents arranged to direct cooling and/or heating gas towards the package when the package is disposed upstream of the second flap folding bar.

30. The apparatus of claim 29, wherein the second flap folding bar further comprises one or more vent channels, each vent channel comprising one or more vents.

31. The apparatus of any one of claim 27 to 30, further comprising a cooling and/or heating gas supply source fluidly coupled to the vents.

32. The apparatus of claim 31, wherein the supply source is a manifold attached to a surface of the flap folding bar opposite the vents.

33. A system for making a flexible package, comprising:

a packaging machine comprising a forming tube and at least one seal bar for forming a sealed package; and the apparatus of any one of claims 1 to 32 disposed downstream of the at least one seal bar; and optionally, a pre-creasing device disposed along a portion of the forming tube upstream of the at least one seal bar, wherein the pre-creasing device comprises a first plate and a second plate disposed in facing relationship to the first plate, wherein one of the first plate or the second plate is disposed adjacent the forming tube and a pre-creaser actuator operatively coupled to one or both of the first plate and the second plate to actuate the first plate and/or the second plate towards and in engagement with the other plate, wherein the first plate comprises one or more projections and the second plate comprises one or more apertures for receiving the one or more projections when the first and second plates is actuated into engagement with each other.

34. The system of claim 33, wherein the first plate further comprises one or more apertures and the second plate further comprises one or more projections.

35. The system of claim 33 or 34, wherein the apparatus further comprises a frame and the packaging machine is configured to receive the frame.

36. A system for making a flexible package, comprising:

a forming tube around which a flexible material is folded, a first plate disposed adjacent a surface of the forming tube such that the flexible material passes over the first plate, a second plate disposed in line with the first plate and an actuator operatively coupled to the second plate to actuate the second plate towards the first plate; wherein: the first plate comprises one or more first plate projections and/or one or more first plate apertures, the second plate comprises one or more second plate apertures and/or one or more second plate projections, wherein the first plate apertures receive the second plate projections and the second plate apertures receive the first plate projections, and when the second plate is actuated towards the first plate, the flexible material is folded over the one or more first plate and/or second plate projections forming a crease in the flexible material.

37. The system of claim 36, wherein the first plate comprises first and second projections spaced a distance substantially equal to a width of a package to be formed from the flexible material.

38. The system of claim 36 or 37, wherein the second plate further comprises one or more projections and the first plate comprises one or more apertures for receiving the one or more projections, and when the second plate is actuated towards the first plate, the flexible materials is folded over the one or more projections of the second plate in a region of a pull tab, forming a crease at the pull tab.

39. A system for making a flexible package, comprising:

a forming tube, one or more seal bars disposed downstream of the forming tube and operatively coupled to one or more seal bar actuators to actuate the seal bars to engage a flexible material folded about the forming tube and form a seal, and a volume adjuster disposed downstream the one or more seal bars, the volume adjuster comprising a plate operatively coupled to a volume adjuster actuator that actuates the plate towards the flexible material to apply a pressure to the flexible material prior to or substantially simultaneously as the one or more seal bars are actuated to engage the flexible material.

40. The system of claim 39, wherein the volume adjuster actuates the plate towards the flexible material about 100 ms prior to the one or more seal bars being actuated to engage the flexible material.

41. The system of claim 39 or 40, wherein the volume adjuster comprises a package transition box sized to receive a package formed from the flexible material, wherein the plate is disposed within the package transition box, adjacent a wall of the package transition box.

42. The system of any one of claims 39 to 41, wherein the volume adjuster actuator is an air cylinder.

43. The system of any one of claims 39 to 42, further comprising a gas nozzle disposed in the forming tube and configured to apply a gas for inflating a package prior to sealing the flexible material defining the package, wherein the gas nozzle is disposed upstream of the volume adjuster.

44. A method of making a flexible package, comprising:

actuating first, second, and third portions of a forming box to a first position for receiving a sealed package having a first seal extending substantially perpendicularly from a first panel of the sealed package; receiving a package in the forming box; actuating the first, second, and third portions of the forming box to a second position in which the first, second, and third portions engage the sealed package to retain the seal package; actuating a first flap folding bar to fold the first seal towards the sealed package such that the seal is disposed in substantially the same plane as the first panel; actuating the first, second, and third portions of the forming box to a third position to release the package.

45. The method of claim 44, wherein the sealed package further comprises a second seal extending from a second panel of the sealed package substantially perpendicularly from the sealed package, and the method further comprises, before receiving the sealed package in the forming box, actuating a second flap folding bar to engage the second seal and fold the second seal toward the sealed package such that the seal is disposed in substantially the same plane as the second panel.

46. The method of claim 45, wherein actuating the second flap folding bar comprises moving the second flap folding bar in a direction parallel to the second panel.

47. The method of claim 46, wherein actuating the second flap folding bar further comprises moving the second flap folding bar towards the second panel after moving the second flap folding bar in a direction parallel to the second panel.

48. The method of claim 45, wherein actuating the second flap folding bar further comprises moving the second flap folding bar towards the second panel and moving the second flap folding bar in a direction parallel to the second panel.

49. The method of any one of claims 44 to 48, wherein actuating the first flap folding bar comprises moving the first flap folding bar in a direction parallel to the first panel.

50. The method of any one of claims 44 to 48, wherein actuating the first flap folding bar further comprises moving the first flap folding bar downstream toward the first panel after moving the first flap folding bar in a direction parallel to the first panel.

51. The method of any one of claims 44 to 48, wherein actuating the first flap folding bar further comprises moving the first flap folding bar downstream toward the first panel and in a direction parallel to the first panel.

52. The method of claim 44, wherein actuating the first flap folding bar comprises moving the first flap folding bar in an oblique motion relative to a plane containing the first panel such that the first flap folding bar is moved towards the first panel and in a direction parallel to the first panel.

53. The method of claim 45, wherein actuating the second flap folding bar comprises moving the second flap folding bar in an oblique motion relative to a plane containing the second panel such that the second flap folding bar is moved towards the second panel and in a direction parallel to the second panel.

54. The method of any one of claims 44 to 53, wherein:

the first portion comprises a first substantially planar surface extending between first and second mating ends, the second portion comprises second and third substantially planar surfaces joined together at a first corner, and a third mating end joined to the third substantially planar surface at a second corner, the third mating end having a complementary shape to a shape of the first mating end, the third portion comprises fourth and fifth substantially planar surfaces joined together at a third corner, and a fourth mating end joined to the fifth substantially planar surface at a fourth corner, the fourth mating end having a complementary shape to a shape of the second mating end, and the third and fourth mating ends contact the package when the first, second, and third portions of the forming box are actuated to the third position to force the package out of the forming box.

55. The method of claim 54, wherein the first and second mating ends are angled, and the third and fourth mating ends are angled at an angle complementary to the angle of the first and second mating ends, respectively.

56. The method of any one of claims 44 to 55, wherein:

the first portion comprises a first surface extending defining the first wall of the forming box, the second portion comprises second and third surfaces joined together at a first corner, the third surface defining the second wall of the forming box, and the second surface defining a portion of the fourth wall of the forming box, the third portion comprises fourth and fifth surfaces joined together at a third corner, the fifth surface defining the third wall of the forming box, and the fourth surface defining a remaining portion of the fourth wall of the forming box, and one or both of the third surface and/or the fifth surface includes at least one ejector extending perpendicularly to the third surface and/or the fifth surface, the at least one ejector contacting the package when the first, second, and third portions of the forming box are actuated to the third position to force the package out of the forming box.

57. A seal jaw, comprising:

a first engagement bar comprising a first sealing surface; a second engagement bar comprising a second sealing surface; and one or more compressive bands disposed on one or both of the first and second sealing surfaces.

58. The seal jaw of claim 57, wherein the first engagement bar comprises one or more channels in the first sealing surface and one or more compressive bands disposed in the one or more channels.

59. The seal jaw of claim 57, wherein the first and second engagement bars each comprise a plurality of channels in the first and second sealing surfaces, respectively, and the first engagement bar comprises one or more compressive bands disposed in one or more of the plurality of channels.

60. The seal jaw of claim 59, wherein the second engagement bar comprises one or more compressive bands disposed in one or more of the plurality of channels, and the compressive bands of the second engagement bar are not aligned with the compressive bands of the first engagement bar.

61. The apparatus of claim 7, further comprising a forming member, wherein the forming member is a protrusion upwardly extending from a top surface of the plate.

62. The apparatus of claim 61, wherein the forming member includes a perimeter portion and a central portion, and wherein the perimeter portion at least partially surrounds the central portion.

63. The apparatus of claim 62, wherein the perimeter portion completely surrounds the central portion.

64. The apparatus of claim 62, wherein the perimeter portion includes one or more segments that gradually decrease in height from the central portion to the top surface of the plate.

65. The apparatus of claim 64, wherein a top surface of the central portion is planar.

66. The apparatus of claim 7, wherein the plate includes one or more vent holes 90 that allow for heated and/or cooled gas to flow through the vent holes.

67. The apparatus of claim 66, one or more vent holes are disposed in a venting channel

92.

68. The apparatus of claim 61, wherein the forming member is displaceable relative to the top surface of the plate from a first position to a second position.

Description:
APPARATUS AND METHOD FOR MAKING A FLEXIBLE PACKAGE

BACKGROUND

FIELD OF THE DISCLOSURE

[0001] The disclosure relates to apparatus, systems, and methods for making a flexible package.

BRIEF DESCRIPTION OF RELATED TECHNOLOGY

[0002] Vertical form, fill, and seal (VFFS) packaging machines are commonly used in the snack food industry for forming, filling, and sealing bags of nuts, chips, crackers and other products. Such packaging machines take a packaging film or flexible material from a roll and form the flexible material into a vertical tube around a product delivery cylinder. One disadvantage of these packages is that the resulting filled package is not rigid enough to allow the stacking of one package on top of another in a display. Additionally, such conventional packages do not retain their shape, particularly after the package is opened and product is removed.

BRIEF SUMMARY OF THE INVENTION

[0003] An apparatus for forming a flexible package includes a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends. One or more forming box actuators are operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package. A first flap folding bar is disposed upstream and adjacent the first end of the forming box. One or more first flap folding bar actuators are operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar is disposed over the first end of the forming box.

[0004] An apparatus for forming a flexible package includes a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends. The first portion includes a first surface defining the first wall, and the second portion includes second and third surfaces joined at a first corner, the second surface defining a portion of the fourth wall and the third surface defining the third wall. The third portion includes fourth and fifth surfaces joined at a second corner, the fourth surface defining a remaining portion of the fourth wall and the fifth surface defining the third wall. One or both of the third surface and the fifth surface includes at least one ejector extending from an end of the third surface or fifth surface disposed adjacent to the first surface. One or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package, the at least one ejector being configured to engage the package and force the package out of the forming box when the forming box is actuated to the third position. A first flap folding bar is disposed upstream and adjacent the first end of the forming box. In addition, one or more first flap folding bar actuators are operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar is disposed over the first end of the forming box.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Figure 1A is a schematic illustration a system including an apparatus for forming a flexible package in accordance with an embodiment of the disclosure;

[0006] Figure IB is a close-up schematic illustration of the apparatus of Figure 1 A;

[0007] Figure 2A is a schematic illustration of a system including an apparatus for forming a flexible package in accordance with another embodiment of the disclosure;

[0008] Figure 2B is a close-up schematic illustration of the apparatus of Figure 2A;

[0009] Figure 3 is a top view of a forming box in accordance with an embodiment of the disclosure;

[0010] Figure 4 is a top view of a forming box in accordance with an embodiment of the disclosure, shown in a first position for receiving a package; [0011] Figure 5 is a top view of a forming box in accordance with an embodiment of the disclosure, shown in a second position for retaining a package;

[0012] Figure 6 is a top view of a forming box in accordance with an embodiment of the disclosure, shown in a third position for releasing a package;

[0013] Figure 7A is a top view of a volume adjuster in accordance with an embodiment of the disclosure, showing the plate in a non-actuated position for receiving a package within the volume adjuster;

[0014] Figure 7B is a top view of the volume adjuster of Figure 7A, showing the plate in an actuated position for engaging a package received within the volume adjuster;

[0015] Figures 7C and 7D are perspective views of the volume adjuster of Figure 7A, showing the plate in a non-actuated position for receiving a package within the volume adjuster;

[0016] Figure 7E and 7F are perspective views of the volume adjuster of Figure 7B, showing the plate in an actuated position for engaging a package received within the volume adjuster;

[0017] Figures 8A-8G are schematic illustrations of a first portion of a forming box having heating/cooling in accordance with an embodiment of the disclosure;

[0018] Figures 9A-9H are schematic illustrations of a second portion of a forming box having heating/cooling in accordance with an embodiment of the disclosure;

[0019] Figures 10A-10H are schematic illustrations of a third portion of a forming box having heating/cooling in accordance with an embodiment of the disclosure;

[0020] Figure 11 is a schematic illustration of a packaging machine having a pre-creasing device in accordance with an embodiment of the disclosure;

[0021] Figures 12A-12E are various views of the pre-creasing device of Figure 11;

[0022] Figures 13A-13E are various views of a first plate of a pre-creasing device in accordance with an embodiment of the disclosure for creasing both a fold line which defines an edge of the package and a pull tab;

[0023] Figures 14A-14E are various views of a second plate of a pre-creasing device in accordance with an embodiment of the disclosure for creasing both a fold line which defines an edge of the package and a pull tab; [0024] Figures 15A-15D are various views of a first plate of a pre-creasing device in accordance with an embodiment of the disclosure for creasing a fold line which defines an edge of the package;

[0025] Figures 16A-16D are various views of a second plate of a pre-creasing device in accordance with an embodiment of the disclosure for creasing a fold line which defines an edge of the package;

[0026] Figure 17A is a schematic illustration of a seal packaged that can be processed by the apparatus in accordance with an embodiment of the disclosure, illustrating opposed first and second seals extending substantially perpendicularly to a panel of the package;

[0027] Figure 17B is a schematic illustration of the sealed package of Figure 17A in which the seals have been folded over to be disposed in substantially the same plane as the panel;

[0028] Figure 18A is a perspective view of a forming box assembly in accordance with an embodiment of the disclosure;

[0029] Figure 18B is a front view of the forming box assembly of Figure 18 A;

[0030] Figure 18C is a top view of the forming box assembly of Figure 18 A;

[0031] Figure 18D is side view of the forming box assembly of Figure 18 A;

[0032] Figures 19A-19D are top views of a forming box in accordance with an embodiment of the disclosure, in (A) the package receiving position, (B) the package retaining position, (C) the package ejecting position, and (D), the package ejected position;

[0033] Figures 20A-20D are perspective views of the forming box of Figures 19A-19D, in (A) the package receiving position, (B) the package retaining position, (C) the package ejecting position, and (D), the package ejected position;

[0034] Figure 21 is a schematic drawing of a contoured package;

[0035] Figures 22A-22E are schematic drawings of a first portion of a forming box having contoured surfaces in accordance with an embodiments of the disclosure;

[0036] Figures 23A-23D are schematic drawings of a second portion of a forming box having contoured surfaces in accordance with an embodiment of the disclosure; [0037] Figures 24A-24D are schematic drawings of a third portion of the a forming box having contoured surfaces in accordance with an embodiment of the disclosure;

[0038] Figures 25A-C are various views of an articulating tucker in a non-articulated position in accordance with an embodiment of the disclosure;

[0039] Figures 25D-F are various views of the articulating tucker in an articulated position in accordance with an embodiment of the disclosure; and

[0040] Figure 26 A is a schematic drawing of a seal jaw in accordance with an embodiment of the disclosure;

[0041] Figure 26B is a schematic drawing of an engagement bar showing the sealing surface of the seal jaw of Figure 26 A;

[0042] Figure 26C is a side view of the seal jaw of Figure 26 A, showing the engagement bars in the open position;

[0043] Figure 26D is a side view of the seal jaw of Figure 26 A, showing the engagement bars in the closed position with the sealing surfaces in contact;

[0044] Figure 26E is a side view of the seal jaw of Figure 26 A, showing the engagement bars in the closed position with additional force applied to compress the compressive bands on the sealing surface;

[0045] Figures 27A and 27B are schematic drawings of a packaging machine in accordance with an embodiment of the disclosure;

[0046] Figures 28A and 28B are schematic drawings of a packaging machine in accordance with an embodiment of the disclosure;

[0047] Figure 29A is a top perspective view of a cubing apparatus in accordance with an embodiment of the disclosure;

[0048] Figure 29B is a bottom view of the cubing apparatus of Figure 29A;

[0049] Figure 29C is a zoomed-in image of vent holes on the flap folding bar of the cubing apparatus of Figure 29B; [0050] Figure 30A is a bottom view of a cubing apparatus in accordance with another embodiment of the disclosure;

[0051] Figure 30B is a bottom perspective view of the cubing apparatus of Figure 30A;

[0052] Figure 30C is a zoomed-in image of vent holes and venting channels on the flap folding bar of the cubing apparatus of Figure 30A;

[0053] Figure 30D is a front view of the cubing apparatus of Figure 30A;

[0054] Figure 30E is a side view of the cubing apparatus of Figure 30A;

[0055] Figures 31A to 31H are various views of an embodiment of a stationary plate and forming box;

[0056] Figures 32A to 32D are various views of an embodiment of a stationary plate and forming box;

[0057] Figures 33A to 33F are various views of an embodiment of a stationary plate and forming box;

[0058] Figures 34A to 34H are various views of an embodiment of a stationary plate and forming box;

[0059] Figure 35A is a cross- sectional view of a forming member and a stationary plate in a first position; and

[0060] Figure 35B is a cross-sectional view of the forming member and the stationary plate of Figure 35A in a second position.

DETAILED DESCRIPTION

[0061] Flexible stackable packages and equipment for making such packages having a generally cubed shape have been disclosed in, for example, U.S. Patent No. 8,602,244, the disclosure of which is incorporated herein by reference. The apparatus, systems, and methods of various embodiments of the disclosure can advantageously allow for formation of such flexible stackable packages with improved rigidity and/or improved shape, for example, a cubed shaped.

[0062] As described in detail below, the apparatus, systems, and methods of the disclosure can produce a flexible package in which first and second seals (also referred to as leading and trailing seals) are folded over and disposed generally in the same plane of the panel of the package from which they extend. The disclosed apparatuses can also advantageously allow for significantly increased processing speeds in forming such products, as well as the ability to convert conventional packaging machines into machines capable of forming such flexible packages.

[0063] The apparatus 10 in accordance with an embodiment of the disclosure can be adapted to function with known packaging machines, including, but not limited to vertical form fill seal (VFFS) packaging machines, horizontal form, fill and seal (HFFS) machines, sequential assembly machines and the like. As used herein, the "transport path" refers to the path of the flexible material as it is transported through the conventional packaging machine during operation for making a flexible package. In various embodiments, the apparatus 10 can be provided on a frame assembly that is portable, allowing the apparatus 10 to be moved into and out of configuration with the conventional packaging machine. The frame assembly and/or components of the apparatus 10 can be adjustable to accommodate different packaging machine configurations and heights.

[0064] Referring to Figures 1A and IB, in accordance with an embodiment of the disclosure, an apparatus 10 for making a flexible package can include a forming box 12 and a first flap folding bar 20. The apparatus 10 can receive a sealed flexible package for further processing, for example, such as folding over a seal extending perpendicularly from the sealed package such that it is disposed in substantially the same plane as the panel of the sealed package from which the seal extends.

[0065] Referring to Figures 3-6, in accordance with an embodiment, the forming box 12 can include a first portion 14, a second portion 16, and a third portion 18. It is contemplated herein that the forming box 12 can be divided into any suitable number of portions. It has been advantageously found that division of the forming box 12 into three portions can increase processing time by providing a forming box 12 that can quickly actuate to accept the package and release the package, thereby increasing package forming speeds. For ease of references, a forming box 12 having three portions will be discussed herein. However, it should be understood that other numbers of portions are contemplated herein and such additional portions may result in additional positions in which the forming box 12 can be actuated for receiving, retaining, and releasing the package after the flap folding process. The portions of the forming box 12 cooperate to define one or more walls of the forming box 12. For example, first, second, and third portion 14, 16, 18 can cooperate to define a forming box 12 having four walls. The forming box 12 can have any suitable size and shape depending on the size and shape of the package to be formed. For example, when the package to be formed is designed to have substantially square edges, the forming box 12 can be designed to have substantially square edges. Such design can facilitate in providing a package having substantially square edges by applying a pressure to the package to retain the squared shape during flap folding.

[0066] The forming box 12 can actuate between a first position for receiving a package (shown in Figure 4), a second position for retaining the package during flap folding (shown in Figure 5), and a third position for releasing the package from the forming box (shown in Figure 6). Figure 6 illustrates the start of the third position for releasing the package from the forming box. The second and third positions actuate further away from each other to provide a space through which the package can be passed out of the forming box. The apparatus 10 can include one or more forming box 12 actuators to actuate portions of the forming box 12 to the various positions. In accordance with an embodiment, the actuators can be operatively coupled to one or more of the portions of the forming box 12. For example, in an embodiment, actuators are coupled to the second and third portions 16, 18 of the forming box 12 to actuate the second and third portions 16, 18 while the first portion 14 remains stationary. In yet another embodiment, only one of the portions may actuate or all three portions can be actuated.

[0067] The forming box 12 has a first end and an oppositely disposed second end. The first end is disposed adjacent to the first flap folding bar 20. In an embodiment, the forming box 12 can be open at both the first and second ends. For example, the forming box 12 can be open at the second end and a conveyor 36 can be disposed beneath the second end. The package can reside on the conveyor when it is received in the forming box 12. In another embodiment, the forming box can be closed at the second end. For example, the forming box 12 can include a plate or other member forming a bottom surface of the forming box 12 at the second end. The bottom member can be, for example, an additional fourth portion of the forming box 12 that actuates into and out of position for receiving, retaining, and releasing a package. In an embodiment, the bottom member of the forming box 12 can be operatively coupled to an actuator that actuates the bottom member from a closed position in which the bottom surface forms a bottom surface of the forming box 12 and an open position in which the bottom surface is disposed away from the forming box 12, such that the second end is open. [0068] In an embodiment, the forming box 12 comprises first and second portions defining four walls of the forming box 12 and a third portion defining a bottom wall of the forming box 12 at the second end. In operation, the forming box 12 can actuate from a first position in which the third portion defines a bottom wall of the forming box 12 and the first and second portions are separated to receive the package, a second position in which the first and second portions actuate towards each other to retain the package during flap folding, with the third portion maintaining a bottom surface, and a third position in which the first and second portions separate and the third portion 18 is disposed away from the second end to release the package.

[0069] Referring to Figure 3, in accordance with an embodiment, the first portion 14 can include a first surface 38, which can be a planar or substantially planar surface, extending between first and second mating surfaces 40, 42. The mating surfaces 40, 42 can be angled. Alternatively, the mating surfaces 40, 42 can be substantially planar.

[0070] In accordance with an embodiment, the second portion 16 can include second and third surfaces 44, 46, which can be planar or substantially planar surfaces, joined by a corner 48. The second portion 16 can further include a mating surface 52 joined to the third surface 46 by a corner 50. Similarly, the third portion 18 can include fourth and fifth surfaces 56, 58, which can be planar or substantially planar surfaces, joined by a corner 60, and a mating surface 64 joined to the fifth surface 58 by a corner 62. The mating surfaces 52, 64 can have a shape

complementary to a shape of the mating surfaces 40, 42, respectively, of the first portion 14. For example, the mating surfaces 52, 64 can be angled at an angle complementary to the angle of the first and second mating surface 40, 42, respectively, of the first portion 14, or be substantially planar to mate with the mating surfaces 40, 42 of the first portion 14. When the forming box 12 is in the second position, the mating surfaces 52, 64 contact the mating surface 40, 42 such that the first surface 38 of the first portion 14 and the mating surfaces 40, 42, 52, 64 define a wall of the forming box 12. For example, the complementary shape of the mating portions 40, 42, 52,

64, can allow the portions to cooperate to define a planar or substantially planar wall. The mating surfaces 52, 64 of the second and third portions 16, 18 being joined to the third and fifth surfaces 46, 58 by a corner can advantageously provide a package releasing aid when the forming box 12 is actuated to the third position. For example, the mating surfaces 52, 64 can contact the package when the second and third portions 16, 18 are actuated to the third position, forcing the package away from the first portion 14 and out of the forming box 12. [0071] The second and fourth surfaces 44, 56 of the second and third portions 16, 18, respectively can each terminate in mating portions 54, 66 that can have complementary shapes such that the mating surfaces 54, 66 can contact each other to define a wall of the forming box 12 when the forming box 12 is in the second position. In alternative embodiments, the second and fourth surfaces 44, 56 of the forming box 12 can be sized such that a gap remains between the mating surfaces 54, 56 when the forming box 12 is in the second position.

[0072] Referring to Figures 18A-18D, in yet another embodiment of the disclosure, the forming box 12 can include one or more ejectors 102 to aid in releasing the package (not shown) from the forming box 12 after sealing. As described above, the forming box 12 can include any suitable number of portions. By way of example only, description herein will be made with reference to three actuating portions 14, 16, 18. In an embodiment, the first portion 14 can include a first surface 38 extending between first and second ends 40, 42. The second portion 16 can include second 44 and third surfaces 46 joined at a corner 48. The third portion 18 can include fourth 56 and fifth 58 surfaces joined at a corner 60. The first surface 38 defines a first wall of the forming box 12, the third surface 46 defines a second wall of the forming box 12, the second surface 44 defines a portion of the fourth wall of the forming box 12, the fifth surface 58 defines a third wall of the forming box 12, and the fourth surface 56 defines the remaining portion of the fourth wall of the forming box 12.

[0073] The third surface 46 and/or the fifth surface 58 can include one or more ejectors 102 extending perpendicularly from the surface. For example, the one or more ejectors 102 can extend from an end of the third surface 46 and/or fifth surface 58 that is adjacent to the first portion 14. Referring to Figure 18B, in some embodiments, the first portion 14 can include one or more apertures 104 disposed in the first surface 38 to receive the one or more ejectors 102. Referring to Figure 20B, the apertures 104 can be arranged such that when in the forming box 12 is in the second, closed position, the ejectors 102 reside within the apertures 104 and a substantially planar first wall is defined. Referring to Figures 19C, 19D, 20C, and 20D, when the forming box 12 is actuated to the third position for releasing the package, the ejectors 102 contact the package (not shown) and aid in forcing the package out of the forming box 12.

[0074] The one or more ejectors 102 can take a variety of forms and shapes, including, but not limited to, pins, pegs, posts, finger-like extensions, and combination thereof. The ejectors 102 can be permanently or removably attached to the second and/or fourth surface 44, 54 of the second and third portions 16, 18, respectively, or can be formed integral with the portion from which it extends. For example, the ejector 102 can include threads and be received in a threaded hole disposed in the portion, thereby providing an ejector that is removable. In various embodiments, the ejectors 102 extend from the third and/or fifth surface 46, 58 at an angle other than a 90° angle, for example, angled relative to the surface 46, 58 about 90° to about 135 °. The ejectors 102 can have a length extending from the third and/or fifth surface 46, 58 of about 0.5 inches to about 4 inches, about 1 inch to about 2 inches, about 2 inches to about 4 inches, about 0.5 inches to about 1 inch. Other lengths are also contemplated herein. The length of the ejectors can depend on the package size to be formed using the forming box. For example, for smaller packages, the length of the ejectors can be less than about 1 inch and for larger packages the length of the ejectors can be greater than about 2 inches.

[0075] The forming box 12 can include any suitable number of ejectors 102. For example, the forming box 12 can include one ejector 102 extending from the third or fifth surface 46, 58. In yet another embodiment, the forming box 12 can include one ejector 102 extending from the third surface 46 and one ejector 102 extending from the fifth surface 58. In yet another embodiment, the forming box 12 can include two ejectors 102 extending from the third surface 46 and two ejectors 102 extending from the fifth surface 58. For example, one or both of the third and fifth surfaces 46, 58 can include 1 to 12 ejectors, 2 to 10 ejectors, 4 to 8 ejectors, 3 to 7 ejectors, 4 to 12 ejectors, and 6 to 10 ejectors. Other suitable numbers of ejectors include, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 ejectors. Use of more than 12 ejectors is also contemplated herein. The selection of the suitable number of ejectors can depend, for example, on the package size. For example, it may be required to utilize a larger number of ejectors for wider packages so that the package is evenly engaged by the ejectors along the width of the package. In embodiments including ejectors 102 extending from the third surface 46 and the fifth surface 58, the surfaces can include the same or different numbers of ejectors.

[0076] Referring to Figure 18C, in various embodiments, the apparatus or system for making the flexible package can include a stationary plate 106 disposed beneath the forming box 12, adjacent the second end. When a package is received in the forming box 12, the package resides on the stationary plate 106. Advantageously, in such embodiments, a conveyor need not be disposed beneath the forming box 14 to aid in releasing the package from the forming box 12. It has been surprisingly and beneficially discovered that the ejectors 102 can engage the package and provide enough force to push the package out of the forming box 12 when the forming box 12 is actuated to the third position. In various embodiments, the package can be pushed across a stationary plate 106 and onto a take away conveyor for further processing, such as boxing. In other embodiments, as illustrated in Figure 18 A, the package can be pushed across the stationary plate 106 to a chute 108 or other means of transporting the package for further operation, such as boxing. By eliminating the need for a conveyor to be disposed beneath the forming box, the complexity of coordinating the timing of a conveyor speed with the actuation and folding operations associated with the forming box can be eliminated.

[0077] It is also contemplated herein that more complex systems such as an actuating plate disposed beneath the forming box can be used as opposed to a stationary plate. The plate may actuate in a direction transverse to the transport path such that it is disposed beneath the forming box when a package is to be received in the forming box and actuate away from the forming box once the package is released from the forming box. The plate may also or alternatively actuate in a direction parallel to the transport path, towards any away from the forming box second end, to provide improved pressure against the package when the package is retained in the forming box for flap folding, while allowing for release of the pressure during receipt of the package and ejection of the package from the forming box. One or more plate actuators may be coupled to the plate to actuate the plate in the various positions.

[0078] In some embodiments, the stationary plate 106 may include a forming member 250, as illustrated in Figures 31A to 34D. As illustrated in Figure 3 IE, the forming member 250 may have a raised portion or a protrusion upwardly extending from a top surface 251 of the stationary plate 106. In some embodiments, the forming member 250 may include a perimeter portion 252 and a central portion 254, and the perimeter portion 252 may at least partially surround the central portion 254. In some embodiments, the perimeter portion 252 completely surrounds the central portion 254.

[0079] The perimeter portion 252 of the forming member 250 may include one or more segments that forms or cooperates to form a shape (or two or more shapes) that generally corresponds to a shape (or two or more shapes) of a perimeter of bottom portion of a package that is received in the forming box 12. For example, the perimeter portion 252 may include one segment that forms an oval or circular shape. In other embodiments, the perimeter portion 252 may include a plurality of segments that cooperate to form a polygonal shape, such as a rectangular shape or a square shape. The perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be positioned on the top surface 251 of the stationary plate 106 such that each of the segments of the perimeter portion 252 are disposed within (i.e., inside) a perimeter formed by the forming box 12 (e.g., the first, second and third portions 14, 16, 18 of the forming box 12) when the forming box 12 is in the second position (and when viewed normal to the top surface 251 of the stationary plate 106).

[0080] The perimeter portion 252 may have any suitable cross- sectional shape or combination of shapes. More specifically, the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be tapered and may gradually decrease in height (i.e., distance normal to the top surface 251 of the stationary plate 106) from the central portion 254 to the top surface 251 of the stationary plate 106. In some embodiments, the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be normal to the top surface 251 of the stationary plate 106. Any other shape or combination of shapes is contemplated. In some embodiments, a cross-sectional shape of the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be uniform (or substantially uniform) along the entire perimeter portion 252. In other embodiments, one or more portions of the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may have a cross- sectional shape that varies.

[0081] Still referring to Figure 3 IE, a perimeter of the central portion 254 may be defined by an edge portion 255 having a shape that corresponds to the shape of the perimeter portion 252 when viewed normal to the top surface 251 of the stationary plate 106. A top surface 256 of the central portion 254 may have any suitable shape or combination of shapes. For example, the top surface 256 of the central portion 254 may be planar or substantially planar (when viewed in a direction parallel to the top surface 251 of the stationary plate 106) and may be disposed at a desired vertical distance (i.e., a distance normal or substantially normal to the top surface 251 of the stationary plate 106) from the top surface 251 of the stationary plate 106. The vertical distance may correspond to a distance that allows a top surface of the central portion 254 to contact a surface of a bottom portion of a package that is received in the forming box 12. In some embodiments, the top surface 256 of the central portion 254 may be contoured or partially contoured. In some embodiments, all or a portion of the forming member 250 may be formed as a unitary part with the stationary plate 106. In other embodiments, all or a portion of the forming member 250 may be coupled to the stationary plate 106 (e.g., by mechanical fasteners or by welding). The skilled person would recognize that the forming member 250 may be formed on or coupled to an actuating plate instead of a stationary plate 106.

[0082] In some embodiments, such as that illustrated in Figures 35A and 35B, the central portion 254 and the perimeter portion 252 of the forming member 250 may be displaceable relative to the stationary plate 106. Specifically, the forming member 250 may displace (e.g., vertically displace along an axis normal to the top surface 251 of the stationary plate 106) from a first position 260 (illustrated in Figure 35 A) to a second position 261 (illustrated in Figure 35B) that is different than the first position 260. In some embodiments, the first position 260 may be a position in which the top surface 256 of the central portion 254 is a desired vertical distance Dl from the top surface 251 of the stationary plate 106, and the second position 261 may be a position in which the top surface 256 of the central portion 254 is coplanar with (or substantially coplanar with) the top surface 251 of the stationary plate 106. In other embodiments, such as that illustrated in Figure 35B, the second position 261 may be a position in which a vertical distance D2 between the top surface 256 of the central portion 254 and the top surface 251 of the stationary plate 106 may be a vertical distance D2 that is less than the desired vertical distance Dl between the top surface 256 of the central portion 254 and the top surface 251 of the stationary plate 106. In still other embodiments, the second position 261 may be a position in which the top surface 256 of the central portion 254 is vertically below the top surface 251 of the stationary plate 106. The skilled person would recognize that such configurations allows a package to be ejected from the forming box 12 (e.g., using the one or more ejectors of Figures 18A-18D previously discussed) without interference from the forming member 250.

[0083] In use, when a package is received into the forming box 12, a surface of a bottom portion of a package may be at least partially engaged (or contacted) by the top surface 256 of the central portion 254 and a perimeter portion (that may surround the surface of the bottom portion) of the bottom portion of the package may be at least partially engaged or contacted by the segment(s) forming the perimeter portion 252. In embodiments in which the forming member 250 displaces relative to the stationary plate 106, this position of the top surface 256 corresponds to the first position 260 of Figure 35A. So disposed, the forming member 250 maintains the shape of the bottom portion of the package when the package is in the forming box 12, thereby minimizing or eliminating deformation of the bottom portion of the package, if desired. Alternatively, the forming member 250 may also crease the edges of the bottom portion of the package (for example, by leaving a gap proximate to the edges so when a flap folder, e.g., the first flap folding bar 20, applies downward pressure to the package, the internal package pressure pushes the edges into the gap and "over-bends" the edges). In embodiments in which the forming member 250 displaces relative to the stationary plate 106, the forming member may displace to the second position 261 (e.g., of Figure 35B) after the forming member 250 creases the edges of the bottom portion of the package but prior to (or during) the ejection of the package from the forming box 12.

[0084] As with the embodiment described above, the forming box 12 can include one or more forming box actuators to actuate portions of the forming box to the various positions. In accordance with an embodiment, the actuators can be operatively coupled to one or more of the portions of the forming box. For example, in an embodiment, actuators are coupled to the second and third portions 16, 18 of the forming box 12 to actuate the second and third portions 16, 18 while the first portion 14 remains stationary. In yet another embodiment, only one of the portions may actuate or all three portions can be actuated.

[0085] In any of the embodiments of the forming box disclosed herein, the forming box actuators can be any known type of actuator. For example, in an embodiment, the forming box actuators are linear motors. Other types of actuators include, but are not limited to, air cylinders, linear servos, electric cylinders, hydraulic cams, hydraulic cylinders, and combinations thereof.

[0086] Any of the actuators describe herein can be any known type of actuator including, but not limited to, linear servos, air cylinders, linear motors, electric cylinders, hydraulic cams, hydraulic cylinders, and combinations thereof.

[0087] In operation, in any embodiment of the forming box described herein, a sealed package can be received into the forming box 12 when the forming box 12 is in the first position. In the first position, the first, second, and third portions 14, 16, 18 are separated slightly to allow the package to be received within the forming box 12 and accommodate any potential offset in the package path that may occur during the package transport process, but prevent the package from passing through the forming box 12. The forming box 12 then actuates to the second position in which the first, second, and third portions 14, 16, 18 close with the mating surface in contact or substantially in contact with one another, as described above. The forming box 12 is sized such that the package is retained within the first, second, and third portions 14, 16, 18 when the forming box 12 is in the second position. For example, in an embodiment, the forming box 12 can be sized such that the first, second, and third portions 14, 16, 18 apply a pressure to the panel of the package when the forming box 12 is in the second position.

[0088] In various embodiments, the package to be received in the forming box 12 is a sealed package having at least one seal that extends perpendicularly or substantially perpendicularly from a panel of the package. The package can be received in the forming box 12 such that at least one first seal extends perpendicularly or substantially perpendicularly from the first end of the forming box 12. Once the package is received in the forming box 12, the first flap folding bar 20 can be actuated to the second position in which the first flap folding bar 20 is shifted in a direction parallel to the transport path of the package (and flexible material in a packaging machine) across the first end of the forming box 12 and engages the at least one first seal to force the seal over towards the panel of the package. In various embodiments, the first flap folding bar 20 can actuate across the forming box 12 and down towards the forming box 12 to apply added pressure to fold the first seal against the panel of the package. In an embodiment, the first flap folding bar 20 can be actuated in a direction transverse to the transport path (across the forming box 12) and then in a direction parallel to the transport path (towards the forming box 12). In other embodiments, the first flap folding bar 20 can be actuated in a direction transverse to the transport path and in a direction parallel to the transport path substantially simultaneously.

[0089] In various embodiments, the first flap folding bar 20 and the forming box 12 can actuate. For example, the flap folding bar 20 can be operatively coupled to an actuator that actuates the first flap folding bar 20 in a direction transverse to the transport path and the forming box 12 can be operatively coupled to an actuator that actuates the forming box 12

(including the package retained therein) in a direction parallel to the transport path, towards the first flap folding bar 20. In other embodiments, the first flap folding bar 20 can be stationary and the forming box 12 can be operatively coupled to one or more actuators that actuate the forming box 12 in a direction transverse to the transport path and parallel to the transport path towards the first flap folding bar 20. In such embodiments, the first flap folding bar 20 can reside outside of the transport path and the forming box 12 can be actuated into engagement with the first flap folding bar 20 once the package is received to contact the flap of the at least one seal with the first flap folding bar 20 for folding.

[0090] In some embodiments, the seal can be attached to the panel of the package by the applied pressure from the first flap folding bar 20 and the residual heat remaining in the at least one first seal from the sealing operation. In other embodiments or additionally, the first flap folding bar 20 can be heated to apply both heat and pressure to attach the seal to the panel. Alternatively or additionally, the first flap folding bar 20 can be cooled or include cooling structures to cool the heated seal once it has been folded over towards the side of the package. For example, referring to Figures 29A-29C, the first flap folding bar can include one or more vent holes 90 that allow for heated and/or cooled gas to flow through the vent holes 90 and towards the surface of the package. In an embodiment, the vent holes 90 can be in fluid communication with a manifold 94 or other supply source for supplying the heating or cooling medium. For example, as shown in Figure 29A, a cooling manifold 94 can be attached to a surface of the flap folding bar. 20 Alternatively, the supply source can be separate from and fluidly coupled to the vent holes 90. Any structures necessary for fluidly coupling the supply source to the vent holes and/or controlling the supply of cooling or heating medium can be used, including, but not limited to, supply inlets, supply lines, and control valves. As illustrated in Figures 29A to 29C and 30A to 30E, the vent holes 90 can be disposed on a bottom surface of the flap folding bar 20 to direct the cooling or heating medium towards the package residing in the forming box 12 during the flap folding operation. In an embodiment, as shown in Figures 30A-30E, the flap folding bar 20 can include one or more venting channels 92 having one or more vent holes 90 disposed in the venting channel 92. For example, in one embodiment, the flap folding bar can include a series of vent channels oriented parallel to one another along the surface of the flap folding bar. The vent channels can include the same or a different number of vents. As with the embodiment shown in Figures 29A to 29C, the venting channels 92 and vent holes 94 can direct cooling or heating medium towards the package during the flap folding operation. Any suitable number and arrangement of vent holes 90 and/or venting channels 94 can be used. For example, the vent holes can be arranged in a region to localize the application of the heat and/or cooling medium to the package. For example, the flap folding bar can include differing numbers of vent holes (density of vent holes) in various portions to direct more or less heating and/or cooling medium to different regions of the package. Heating and/or cooling medium can be directed to the package through the vent holes during all or any portion of the flap folding aperture.

[0091] In an embodiment, during operation, a heating medium, for example, a heating gas can be directed to the package as the flap folding bar is actuated to engage and fold over the seal. The heating gas can aid in heating the flexible material forming the seal and/or the outer surface of the package to allow for or aid in formation of a heat seal between seal and the outer surface of the package.

[0092] In an embodiment, during operation, the cooling medium, for example a cooling gas, can be directed to the package after the flap folding bar has engaged and folded over the seal. For example, the flap folding bar can be actuated to engage and fold over the seal and then the cooling gas can be flowed through the vent holes to cool the flexible material while the flap folding bar is still engaged with the package. Alternatively, the cooling gas can be flowed through the vent holes and directed to the package concurrently or substantially concurrently with retracting the flap folding bar from engagement with the flap, after the flap folding operation. Cooling during or after the flap folding operation can advantageously aid in setting a hot tack seal to attach the flap to the outer surface of the package. Cooling can also aid in preventing wrinkling in the seal in downstream operations by cooling the seal in place prior to the downstream operations. Cooling can also aid in preventing the seal from detaching from the outer surface of the package in downstream operations by cooling the seal and setting the attachment of the seal to the outer surface, for example, a heat seal, before such downstream operations.

[0093] The flap folding bar can remain actuated over forming box for any suitable duration to allow for contact of the package with the heating or cooling medium. For example, the flap folding bar can remain in the actuated position while the package is ejected from the forming box. Alternatively, the flap folding bar can actuate to engage the package, and then retract prior to or substantially concurrently with the ejection of the package from the forming box. Heating and/or cooling by flowing a medium through the flap folder and out the vent holes can occur at any time during the flap folding process.

[0094] In various embodiments, any one or more of the features of heating and/or cooling described above with respect to the first flap folding bar can be incorporated into the second flap folding bar. In such embodiments, cooling and/or heating can be initiated during the flap folding operation while the package is retained above the second flap folding bar. The vents and/or vent channels can be incorporated into the second flap folding bar so as to direct the cooling or heating medium towards the package. For example, in various embodiments, the second flap folding bar actuates to engage a seal of the package while the package is disposed upstream of the second flap folding bar. In such embodiments, the vents and/or vent channels can be located on the upstream surface (top surface) of the second flap folding bar.

[0095] In other embodiments, the first seal can be folded by the actuation of the first flap folding bar 20, but not attached to the panel. In such embodiments, the at least one first seal can be retained in substantially the same plane as the panel by the fold imparted by the actuation of the first flap folding bar 20. In yet other embodiments, the first flap can be attached to the panel by application of an adhesive prior to or during the flap folding operation.

[0096] The first flap folding bar can further include a sealing structure extending from one or both ends of the flap folding bar. The sealing member can engage the edges of the packages as the flap folding bar is actuated to fold the flap, which can apply a pressure to the edges of the package for forming a seal at the edges of the package. The sealing member of the flap folding bar can be heated, for example, to impart a heat seal at the edges of the package when the flap folding bar is actuated to engage the flap. Alternatively or additionally, the forming box can be heated to heat the edges of the package, as described in detail below.

[0097] In an embodiment, the first flap folding member can be arranged with the heating and/or sealing member such that the heating and/or sealing member folds the flexible material into the forming box. In various embodiments, the heating and/or sealing member can be mounted to the flap folder and the forming box may be mounted in a position such that the heating and/or sealing member mounted to the flap folder clamps the flexible material against an edge of the forming box to form and/or seal the edge. The forming box and/or the heating and/or sealing member can be thermally insulated from the flap folder. The heating and/or sealing member can be attached to the flap folder with a spring bias. The heating and/or sealing member can be integrally formed into the flap folder.

[0098] Alternatively or additionally, similar to the first flap folding bar 20, the stationary plate 106 and/or the forming member 250 can be cooled or include cooling structures to cool the heated seal once it has been folded over towards the side of the package. For example, the stationary plate 106 may include the one or more vent holes 90 of Figures 29A-29C that allow for heated and/or cooled gas to flow through the vent holes 90 and towards the surface of the package. In an embodiment, the vent holes 90 can be in fluid communication with a manifold (or other supply source) for supplying the heating or cooling medium. Alternatively, the supply source can be separate from and fluidly coupled to the vent holes 90. Any structures necessary for fluidly coupling the supply source to the vent holes 90 and/or controlling the supply of cooling or heating medium can be used, including, but not limited to, supply inlets, supply lines, and control valves. The vent holes 90 can be disposed on any suitable surface of the stationary plate 106 and/or the forming member 250 to direct the cooling or heating medium towards the package residing in the forming box 12 during the flap folding operation. In an embodiment, the stationary plate 106 and/or the forming member 250 can include one or more venting channels 92 (illustrated in Figures 30A to 30E) having one or more vent holes 90 disposed in the venting channel 92. For example, in one embodiment, the stationary plate 106 and/or the forming member 250 can include a series of vent channels oriented parallel to one another along a surface of the stationary plate 106 and/or the forming member 250 (e.g., the top surface 251 of the stationary plate 106). The vent channels 92 can include the same or a different number of vents. As with the embodiment shown in Figures 29A to 29C, the venting channels 92 and vent holes 94 can direct cooling or heating medium towards the package while the package is disposed on the stationary plate 106. Any suitable number and arrangement of vent holes 90 and/or venting channels 94 can be used. For example, the vent holes can be arranged in a region to localize the application of the heat and/or cooling medium to the package. For example, the stationary plate 106 and/or the forming member 250 can include differing numbers of vent holes (density of vent holes) in various portions to direct more or less heating and/or cooling medium to different regions of the package. Heating and/or cooling medium can be directed to the package through the vent holes during all or any portion of the forming process while the package is disposed within the forming box 12.

[0099] In an embodiment, during operation, a heating medium, for example, a heating gas can be directed to the package as the package is disposed on the stationary plate 106 and/or the forming member 250. The heating gas can aid in heating the flexible material forming the seal and/or the outer surface of the package to allow for or aid in formation of a heat seal between seal and the outer surface of the package. Heated gas can also help to define the shape of the package by preferentially creating shape memory in the edges. In an embodiment, during operation, the cooling medium, for example a cooling gas, can be directed to the package as the package is disposed on the stationary plate 106 and/or the forming member 250. For example, the cooling gas can be flowed through the vent holes 90 and directed to the package while the package is disposed on the stationary plate 106 and/or the forming member 250. Cooling can advantageously aid in preventing wrinkling of the seals along the bottom portion of the package, in downstream operations by cooling the seal in place prior to the downstream operations.

Heating and/or cooling by flowing a medium through the stationary plate 106 and/or the forming member 250. and out the vent holes can occur at any time during the forming process while the package is in the forming box 12. The skilled person would also recognize that a first portion of the stationary plate 106 may be heated and a second portion of the stationary plate 106 may be cooled. The skilled person would also recognize that an actuating plate may be cooled in a manner identical to that described for the stationary plate 106.

[00100] In various embodiments, a plate, for example a stationary plate or actuating plate disposed below the forming box as described above can include a sealing structure to engage the edges of the package at the bottom of the forming box to impart a seal at the edges as described above with respect to the first flap folding bar. The sealing structure of the plate can be heated, for example, to impart a heat seal. Alternatively or additionally, the forming box can be heated to heat the edges. When the package is provided into the forming box, the edges of the package can align with the sealing structure of the plate and pressure applied by the first flap folding bar can force the package downward to apply pressure at the sealing structures of the plate.

Alternatively or additionally, the plate can actuate upstream towards the package to apply pressure with the sealing structure at the edges of the package and form the seal.

[00101] In various embodiments, it can be desired to form a package having a contour shape as illustrated in Figure 21. As shown in Figure 21, the side edges of the package are contoured. To aid in achieving the contour shape, the forming box can include one or more contoured surfaces corresponding to the contour edges of the package. That is when a package is received in the forming box, the contour edges of the package or to be defined in the package are arranged in line with the contour surfaces of the portions of the forming box. It is contemplated herein that the contour surfaces of the forming box can be applied to any embodiment of the foregoing box disclosed herein, including one with or without ejectors and/or apertures.

[00102] Referring to Figures 22A to 22E, the first portion 14 can include opposed first and second contoured surfaces 110, 112 at the top and bottom ends of the first portion 14. Any suitable contour can be used depending on the shape of the package desired. In the embodiment illustrated in Figures 22A to 22E, the first portion 14 is illustrated with two convex contours at the top and bottom ends of the first portion 14. When a package is engaged by the forming box, the contours will contact the sides of the package to aid in providing a concave contour shape to the package edges.

[00103] Referring to Figures 23 A to 23D and 24A to 24D, the second and third portions 16, 18 can also include contoured surfaces. For example, the second and fourth portions 44, 56 of the second and third portions 16, 18, respectively, can each include contoured surfaces 114, 116 disposed at the top and bottom ends of the second and third portions 16, 18, respectively. As with the first portion 14, the location of the contoured surfaces corresponds to contoured edges formed or to be formed in the package. That is, when the package is received in the forming box, contour edges of the package align with the contoured surfaces 114, 116 of the second and third portions 16, 18.

[00104] The contoured surfaces can be formed along any of the surfaces of the forming box 12, depending on the contours to be imparted to the package. For example, if contours are only desired on subset of the edges of the package, then contoured surfaces could be provided on only a subset of the portions and/or at a subset of the ends of the portions. For example, if it is desired to provide contours only on two edges of the package, the first portion may include only the contoured surfaces, or alternatively, the second and third portions 16, 18 can include the contoured surfaces with the first portion having substantially linear or non-contoured surfaces.

[00105] It is also contemplated herein that the contoured surfaces on the first, second, and third portions 14, 16, 18 can have the same contour or different contours shapes and/or dimensions. The contour provided on the surface of the portions can be determined by the desired package configuration and contours to be imparted therein. In various embodiments, the contour surfaces can have a size and shape corresponding to the contoured edges to be formed on the package. In other embodiments, the contour surfaces can have an exaggerated size and shape as compared to the contoured edges to be formed on the package to over-bend the contoured edges of the packages, which can aid in retaining the contoured shape in the package. It is also contemplated herein that the top and/or bottom edge of the first, second, and third portions can be extended into the interior of the forming box, without a contour provided thereon, which can beneficially over-bend the edges of the package. This is can aid in retaining well-defined and/or creased edges in the package even when a non-contoured or straight-line shape is desired.

[00106] In an embodiment, the forming box can be heated and/or chilled to aid in forming and defining the shape of the package. For example, the forming box 12 can include a heater to heat all or selected portions of the forming box. For example, portions of the forming box 12 contacting and/or adjacent to the fold lines of the package can be heated and/or cooled to aid in further defining the fold lines/edges of the package. The forming box 12 can additionally or alternatively include a chiller and/or cooling channels 72 to aid in rapidly setting seals and folds formed in prior package processing steps.

[00107] Referring to Figures 8 A to 10H, for example, the forming box of any of the foregoing embodiments can include one or more heaters 68 and/or one or more fluid heating/chilling lines.

In the embodiment of Figures 8A to 10H, a forming box 12 that does not include ejectors 102 is shown in the figures. However, it is contemplated herein that any of the embodiments of the forming box, including ones with one or more ejectors and/or contour surfaces can include the heating and/or chilling lines. The one or more fluid heating/chilling lines can include one or more fluid inlets or ports 70, one or more fluid channels 72, and one or more fluid outlets 74 for receiving a heating or cooling fluid, such as a heated or cooled gas or liquid. For example, the one or more fluid outlets 74 can be disposed along a surface of one or more of the first, second, and third portions 14, 16, 18 at the first end and/or the second end. In an embodiment, a heated gas can flow through the one or more fluid outlets 74 to locally heat the package at a fold line.

The package can be locally heated while the forming box 12 engages the package by actuating into the second position and the first flap folding bar 20 begins to actuate. A cooling gas can then be applied to the package through the one or more fluid outlets 74 or a different set of fluid outlets 74 to chill the package while the first flap folding bar 20 is applying a pressure to the package. In another embodiment, the forming box 12 can include a heater, such as a cartridge heater, to locally heat one or more of the portions of the forming box 12, for example, in regions corresponding to a fold line or edge of the package. The portions of the forming box and/or cooling/heating channels can be formed of a thermally conductive material, such as aluminum, to allow heat transport through the forming box 12. The forming box 12 can alternatively or additionally include a cooler, for example, a thermo-electric cooler to locally cool portions of the package to set folds and creases in the package.

[00108] In embodiments including a heater, the forming box 12 can further include fluid inlets, fluid channels 72, and fluid outlets 74 for flow of a chilling fluid to set the folds and edges after heating for example, by the cartridge heater. Additional components, such as

thermocouples and temperature sensors can be included to regulate the temperature of the forming box 12.

[00109] In various embodiments, the forming box 12 can be heated to soften the material to aid in forming folds and/or seals in the package. The temperature will depend on the type of material, the speed of operation, and the product contained therein. Generally, the flexible material can be heated to a temperature greater than a heat deflection temperature of the flexible material, but less than a melting point and/or distortion point of the flexible material. For example, the forming box can be heated to a temperature of about 70 °F to about 350 °F.

[00110] During cooling, the forming box 12 can be cooled to any desirable temperature, including room temperature or below room temperature. For example, the forming box can be cooled to a temperature of about 33 °F to about 77 °F. Cooling temperatures to set a seal or a fold will depend on the type of material, the speed of operation, and the product contained therein.

[00111] The temperature of the forming box 12 can be heated and then cooled to set any folds or seals formed in the flexible material. Alternatively, the forming box 12 can be heated only and cooling can be achieved in a separate operation or by normal convention/radiative processes. For example, cooling fluid can be circulated about the package after it is released from the forming box 12, for example, by directing cooled gas towards the package as travels along the conveyor. In yet another embodiment, the forming box 12 can be cooled only. Cooling can be used to chill the residual heat in the package to set folds and seals formed in the flexible package and/or to aid in setting a seal attaching the at least one extending seal to the panel, for example, where the first flap folding bar 20 is heated. [00112] Referring to Figures 2A and 2B, the apparatus 10, can further include a second flap folding bar 22 disposed upstream the first flap folding bar 20. The package can include a second seal extending perpendicularly or substantially perpendicularly from a panel opposite the panel from which the at least one first seal extends. The second flap folding bar 22 can be operatively coupled to at least one second flap folding bar actuator that actuates the second flap folding bar 22 in a direction transverse to the transport path. One or more actuators can also actuate the second flap folding bar 22 in a direction parallel to the transport path. For example, in operation, a sealed package can be transported to the second flap folding bar 22. The second flap folding bar 22 can be actuated to engage the second seal and fold the second seal over towards the panel of the package from which it extends. As with the first flap folding bar 20, the flap folding operation can attach the seal to the panel or the flap folding operation can form a fold that keeps the flap retained in substantially the same plane as the panel. The second flap folding bar 22 can be heated to aid in attaching the second seal to the panel. The second seal can alternatively be attached by residual heat remaining in the second seal after the sealing operation and/or by an adhesive applied prior to or during the flap folding operation.

[00113] The package can be received at the second flap folding bar 22 after the package is sealed and released from the sealing components. Alternatively, the second flap folding bar 22 can engage the package after the second seal is formed, but prior to or substantially

simultaneously as the first seal is being formed.

[00114] In embodiments in which the apparatus 10 does not include a second flap folding bar 22, the second flap folding bar 22 can be a part of the packaging machine upstream of the apparatus 10, such that the apparatus 10 receives a seal package in which one seal is folded over and disposed in substantially the same plane as the panel from which is extends and optionally attached to the panel.

[00115] The apparatus 10 can include one or more additional components. Referring to Figures 18A and 18B, the apparatus 10 can be provided on a lift assembly 120 that can allow the height of the apparatus to be adjusted, thereby allowing the apparatus to be adaptable to a variety of packaging machine platforms. The lift assembly 120 can control the height of the components of the apparatus, including the forming box and any flap folding bars. The lift assembly 120 can be configured to control the height of the components as a single unit so the relative spacing the components is not affected by the height adjustment. Alternatively or additionally, lift assemblies can be provided to the individual components to allow for individual adjustment of the components of the apparatus, such as the forming box, the stationary plate, the flap folding bars, and any one or more of the components.

[00116] Referring to Figures 1A to 2B, for example, the apparatus 10 can include a volume adjuster 24 disposed upstream of the first flap folding bar 20 and the second flap folding bar 22, if present. Referring to Figures 7A-7F, the volume adjuster 24 can include a package transition box 28 and a plate 26 disposed within the package transition box 28. In various embodiments, the volume adjuster 24 can include opposed actuating plates that actuate towards one another to apply a pressure to the package. In yet another embodiment, the volume adjuster 24 can include stationary plates and actuating plates. The plates of any of the foregoing embodiments can have any suitable size and shape. For example, the plates can be sized and shaped to substantially correspond to the size and shape of the panel of the package, which is contacted by the plate 26 such that a substantially even force is applied across the package panel. In other embodiments, the plate 26 can be sized to be smaller than the package to apply a force in a selected and targeted location of the package.

[00117] An actuator can be operatively coupled to the one or more plates to actuate the plate 26 from a first position in which the plate 26 is disposed adjacent to an internal wall of the package transition box 28 to a second position in which the plate 26 is moved transverse to the transport path towards and opposed internal wall of the package transition box 28. In operation, the package is received in the package transition box 28 and the plate 26 is actuated to contact a panel of the package to apply a pressure to the package and release a portion of the air contained within the package. The plate 26 can be actuated substantially simultaneously with the sealing operation to seal the package or the plate 26 can be actuated before the sealing operation is performed to seal the package. In embodiments in which the plate 26 is actuated before the sealing operation is performed, the plate 26 can remain engaged with the package until sealing is complete. For example, the plate can be actuated about 100 ms before the sealing operation is performed. In other embodiments, the plate can be actuated substantially simultaneously with the start of the sealing operation, with the plate being actuated into position prior to complete sealing of the package. [00118] The packaging machine can include a gas nozzle (not shown) disposed for example on or at the end of the forming tube 2 and configured to apply a gas for inflating the flexible material that is being configured into the package. The gas can also provide the package with a modified gas atmosphere depending on the product to be contained therein. Such gas inflation devices are well known in the art. Inflation of the package can be coordinated with the volume adjuster 24, such that the package can be inflated and then deflated to the desired volume by actuation of the plate 26 of the volume adjuster 24 just prior to or substantially simultaneously with sealing the package. Inflation and volume reduction by the volume adjusters can also aid in tucking the flexible material inwardly to form the leading and trailing seals.

[00119] In various embodiments, the volume adjuster 24 is separate from the apparatus 10. For example, the volume adjuster 24 can be attached to a frame member 34 that can be incorporated or attached to a conventional packaging machine. In such embodiments, the volume adjuster 24 can be disposed downstream of a seal bar station, which is conventionally disposed downstream of a forming tube 2. In other embodiments, the volume adjuster 24 is a component of the apparatus 10 and can be attached to the frame 32 of the apparatus 10.

[00120] Referring again to Figures 1A, IB, 2A, and 2B, the apparatus 10 can further include a guide box 30 disposed upstream the first flap folding bar 20. In embodiments including the second flap folding bar 22, the guide box 30 can be disposed between the first and second flap folding bars 20, 22. The second flap folding bar 22 can either be part of the packaging machine or part of the apparatus 10 in embodiments including a guide box 30. The guide box 30 is sized such that the package can easily pass through the guide box 30 with little to no resistance. The guide box 30 can aid in transitioning the package between the second flap folding bar 22 and the first flap folding bar 20 to keep the package in the proper orientation during the transition.

[00121] Referring to Figures 11 and 12A to 12E, in accordance with an embodiment of the disclosure, a pre-creasing device 76 can be used when forming the flexible material into the package. The pre-creasing device 76 can include a first plate 78 and a second plate 80 in facing relationship with the first plate 78. One of the plates can be disposed against the forming tube 2, such that the flexible material passes over the plate. The plate disposed against the forming tube 2 can include a stripper plate to aid in removing the flexible material from the plate after the creasing so the flexible material can move down the transport path. For ease of reference, the pre-creasing device 76 will be described herein with reference to the first plate 78 being disposed adjacent the forming tube 2. The first and second plates 78, 80 can include one or more projections and/or one or more apertures.

[00122] Referring to Figures 15A to 16D, for example, the first plate 78 can include one or more first plate projections 82 and the second plate 80 can include one or more second plate apertures 88 for receiving the first plate projections 82. In operation, the flexible material passes over at least the first plate 78 (or plate disposed against the forming tube), the plates 78, 80 are actuated towards each other to force the flexible material into contact with the projections and forcing the projections into engagement with the corresponding apertures, thereby creasing the flexible material at the location of the projections. Actuation of the plates towards each other can be achieved by actuation of one or both plates. Either one or both of the plates can be operatively coupled to one or more actuators to actuate the plates into engagement to crease the flexible materials. The projections can provide a crease in the flexible material at a region of a fold line of the flexible material that defines an edge of the package when the flexible material is configured into the package. In this embodiment, the first plate 78 is configured to be disposed adjacent the forming tube 2. Alternatively, the second plate 80 can include one or more second plate projections 86 and the first plate 78 can include one or more first plate apertures 84 for receiving the second plate 80 projections.

[00123] Referring to Figures 13A to 14E, in yet another embodiment, the first plate 78 can include both first plate projections 82 and first plate apertures 84 and the second plate 80 can include both second plate projections 86 and second plate apertures 88, with the first and second plate projections 82, 86 and the first and second plate apertures 84, 88 arranged such that the first plate projections 82 are received in the second plate apertures 88 and the second plate projections 86 are received in the first plate apertures 84 when the plates are actuated into engagement with one another. The embodiment of Figures 13A to 14E illustrate first and second plates that include first plate projections 82 and corresponding second plate apertures 88 for forming a crease at a fold line of the flexible material that defines an edge of the package when the flexible material is configured into the package, and second plate projections 86 and first plate apertures 84 for forming a crease in a pull tab to bias the pull tab away from the flexible material. In this embodiment, the first plate 78 is configured to be disposed adjacent the forming tube 2. [00124] The first plate 78 and/or the second plate 80 are operatively coupled to an actuator. Any known actuators including, but not limited to, linear servos and air cylinders, can be used. The one or more actuator can actuate one or both of the plates into engagement with each other such that the flexible material is folded over the projections, defining a crease in the flexible material. The first and second plates 78, 80 and the projections/apertures contained thereon can be arranged such that a crease is defined in the flexible material at an edge of the package to be formed. Additionally, projections can be included on the plate disposed away from the forming tube 2, for example, in a region corresponding to a pull tab of a flap to form a crease in the pull tab to bias the pull tab away from the panel of flexible material. This can advantageously ease grasping of the pull tab when opening the package.

[00125] The pre-creasing device 76 can include a frame that is attachable to the frame of a packaging machine to place the pre-creasing device 76 in position along the forming tube 2.

[00126] In accordance with an embodiment, a system for making a flexible package from a flexible material can include a conventional packaging machine and an apparatus 10 in accordance with embodiments of the disclosure in which the second flap folding bar 22 is a part of the conventional packaging machine. In accordance with another embodiment, a system for making a flexible package from a flexible material can include a conventional packaging machine and the apparatus in accordance with embodiments of the disclosure in which the second flap folding bar 22 is part of the apparatus. The system of any of the embodiments herein can optionally include a volume adjuster 24, a guide box 30, a pre-creasing device 76, and other components, including but not limited to additional guides, pull belts, heaters, coolers, and conveyors.

[00127] Referring to Figures 25A to 25F, the packaging machine can further include tuckers for inwardly tucking a portion of the flexible material during sealing of the leading and trailing seals of the package. As is known in the art, the tuckers can be coupled to a frame and one or more actuators that actuate the tuckers transverse to the transport path of the flexible material to engage the flexible material while the leading and/or trailing seals are being formed. Optionally, the one or more actuators can actuate the tuckers to rotate once engaged with the flexible material to enhance the shape of the package by more tightly creasing the flexible material at the edges. For example, the articulating tuckers 200 can include a tuck portion 202 attached to a base 204 by a hinge or spring 206, that allows the tuck portion 202 to move upward and downward relative to the base 204. The base can be attached to a frame or other structure that actuates the tucker into and out of engagement with the flexible material as known in the art. In various embodiments, the articulating tuckers may be rotated by movement of the package during sealing of the leading and trailing seals and/or lifting of the package during sealing. The articulating tuckers may also be spring-loaded to articulate in a direction parallel to the transport path when engaged with the package. The articulating tuckers can be located above and/or below the seal jaw. In an embodiment, articulating tuckers disposed above the seal jaw can be articulated upward towards the package being formed above the seal jaw. Articulating tuckers disposed below the seal jaw can be articulated downward towards the package being formed below the seal jaw. In another embodiment, the articulating tuckers can be actuated towards the seal jaw. In an embodiment, articulating tuckers can be located above and below the seal jaw, with the tuckers located above the seal jaw articulating upward towards the upstream package, and the tuckers located below the seal jaw articulating downward towards the downstream package. In yet another embodiment, articulating tuckers can be located above and below the seal jaw, with the tuckers located above the seal jaw articulating upward towards the upstream package, and the tuckers located below the seal jaw articulating upward towards the downstream package. Figures 25A-C illustrate a tucker in a non-articulated position and Figures 25D-F illustrate a tucker in an articulated position.

[00128] Referring to Figures 26A to 26E, the packaging machine can include one or more seal jaws for forming the leading and trailing seals of the package. Conventionally, seal jaws are provided on packaging machines to impart a seal to close the package, such as at the leading and trailing edges of the flexible material. The thickness of the flexible material can affect the ability to form a seal, in particular, a hermetic seal. With conventional seal jaws, it may be necessary to use relatively thin flexible materials in order to achieve a sufficient seal, for example, by heat sealing. Additionally, it has been problematic with conventional seal jaws to achieve suitable seals, without leakage, where there are different numbers or layers of materials present in the sealing area. Different thickness of material may be present in the seal zone due to folding of the flexible material when configuring it into the package. For example, in the seal area, the flexible material can be presented with 2 plies and 4 plies side by side as a result of folds in the package. Conventional seal jaws heat sealing through such a sealing zone can provide ineffective seal in which a portion of the seal zone at the transition between the 2 plies and 4 plies region remains unsealed. Such a defect is conventionally known as a channel leaks. This results from a gap between the seal bars that can occur in the thinner region because of the presence of the thicker region of the material in the seal zone. Conventionally, the sealing pressure was increased in an attempt to avoid channel leaks by decreasing the width of the seal. This, however, limits the types of packaging and even the products that can be stored therein as certain products and/or package configurations may be required for a given seal width.

[00129] It has been surprisingly and beneficially discovered that providing seal jaws with one or more compressive bands disposed on the sealing surface of at least one of the engagements bars can provide an effective seal without channel leaks, regardless of the width of the seal to be formed. Referring to Figures 26A to 26E, the seal jaw 300 can include first and second engagement bars 302, 304 each coupled to an actuator (not shown) that actuates the engagements bars 302, 304 towards and away from one another. During operation, the flexible material, for example, the leading or trailing edges of a flexible material, is received between the engagement bars 302, 304, and the engagement bars are actuated together to engage the flexible material and apply pressure and optionally heat to impart a seal in the flexible material.

[00130] One or both of the engagement bars 302, 304 can include one or more compressive bands 306 disposed on the sealing surfaces of the engagement bars 302, 304. When one of the engagement bars includes a compressive band, the compressive band is aligned with the sealing surface of the other engagement bar, such that the compressive band of one engagement bar is aligned with the sealing surface of the opposed engagement bar during the sealing operation.

The sealing surface of the engagement bar can be a flat sealing surface, a ribbed sealing surface, or other textured surface. For example, the sealing surface can be machined to include channels and projections. The channels and projections can provide a wavy surface, a zigzag surface, sinusoidal surface, or any other shaped/textured surface. During operation, the engagement bars are closed together such that the flexible material disposed between the engagement bars is engaged and compressed between the compressive band and the sealing surface of the other engagement bar. In embodiments in which the sealing surface of the other engagement bar includes channels and projections, the compressive band can be aligned, for example, with a single projection of the sealing surface. In other embodiments, the compressive band can have width such that it is aligned to be contacted, through the flexible material, by two or more projections of the sealing surface of the other engagement bar. In various embodiments, both the engagement bars can include compressive bands 306 disposed on the sealing surfaces thereof. In such embodiments, the compressive bands can be arranged such that upon closing of the engagement bars, the compressive bands of one engagement bar are not aligned with the compressive band of the opposed engagement bar. As described above, the sealing surfaces of the engagement bars can each include projections and channels. The compressive bands of one engagement bar can be aligned with one or more projections of the opposed engagement bar in various embodiments. In a thicker region of the seal zone, for example, the one or more compressive bands are locally compressed to provide an increased compressive force in this region. In the thinner region, the one or more compressive bands remain less compressed or uncompressed, which allows the seal jaw to maintain contact between the seal bars despite the presence of the thicker region. That's, local compressive of the compressive bands in the thicker region of the seal zone, while having the band in an uncompressed or less compressed stat in the thinner region, prevents a gap between the engagement bars at the transition between the thick and thin regions of the seal zone, which in turn can prevent channel leaks. Additionally, because sealing pressure can be locally increased by the compressive nature of the compressive bands, the overall seal pressure can be reduced, which can reduce wear on the seal jaws.

[00131] As illustrated in Figures 26A to 26E, the engagement bars can include machined channels for receiving the compressive band. The machined channels can retain the compressive band by friction forces. Placement of the compressive bands in a machined channel can facilitate replacement of the bands once they become worn. For example, a machined channel formed in accordance with the Parker standard for dovetail grooves can be used when the compressive band is an o-ring. Other cross-sectional shapes for the machined channel can be used depending on the type and shape of the compressive band used. Other ways of attaching a compressive band to the engagement bar are also contemplated herein, including, for example, the use of adhesive to adhere the compressive band to the engagement bar. Adhesive can be used with or without a machined channel. The use of one or more compressive bands can extend the overall life of the seal jaws by reducing the wear on the sealing surfaces by allowing for reduced sealing pressures to be used, and/or by localizing increased sealing pressures on the compressive bands, themselves. While the compressive bands may be subject to wear, they can be easily and cost effectively replaced, leaving the seal jaw structure with a longer life span. [00132] The compressive band can be formed of any compressive material, for example, an elastomer such as silicon rubber. For example, the compressive band can be an o-ring. A commercially available elastomer that can be used can be Viton ® Fluoroelastomer (DUPONT). Other elastomeric materials can also be used as the compressive bands. In various embodiments, the seal jaw seals the flexible material by a heat seal. The elastomeric material can be selected so as to withstand the temperature necessary for imparting the heat seal. The compressive band can have any suitable width and length. For example, the compressive band can extend long the length of the entire engagement bar or a portion of the engagement bar. The engagement bar can include any suitable number of compressive bands. For example, the engagement bar can each include 1 to 10 compressive bands, 1 to 8 compressive band, 2 to 6 compressive bands, 3 to 5 compressive bands, and 4 to 8 compressive bands. Other suitable numbers of bands can include, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. When an engagement bar includes multiple compressive bands, the bands can be spaced across the sealing surface in any suitable manner. For example, in some embodiments, as illustrated in Figures 26 A to 26E, the seal jaw can include a separator or knife 308 embedded in one of the engagement bars, with the other engagement bar including a receiving slot 310. As discussed above, one or both of the engagement bars can include compressive bands. The engagement bars can include the same or a different number of compressive bands above and below the separator and receiving slot. The spacing and/or number of compressive bands on the sealing surface of an engagement bar can be used to define a shape or characteristic to the seal. For example, the compressive bands and/or machined channels can be used to form ridge features in the seals.

[00133] While various embodiments have been described above, the disclosure is not intended to be limited thereto. Variations can be made to the disclosed embodiments that are still within the scope of the appended aspect