Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
Apparatus for thermolysis waste plastics and method for thermolysis waste plastics
Document Type and Number:
WIPO Patent Application WO/2010/116211
Kind Code:
A1
Abstract:
The subject of the invention is apparatus and method for thermolysis of waste plastics especially for receiving of hydrocarbon products. Apparatus for thermolysis of waste plastics consisting feeding system, thermolysis reactor, external circulation loop and product collecting system according to the invention is characterized in that collecting and two-step product separation system is involving condenser (6), product cooling system (3), light fraction receiver (26) with gaseous product removing system (27), crude heavy fraction receiver (21) and vacuum evaporator (7). Plastic waste thermolysis method is characterized in that product vapors are removed continuously from reactor and conducted to condenser in which condensation of vapors is carried out and product mixture separation to light oil conducted to light oil receiver from which the gaseous products are received and liquid products are conducted to light oil tank and for further processing and crude heavy which through heat exchanger and crude heavy oil receiver is pumped to vacuum evaporator in which next step of separation of crude heavy oil to and heavy oil is obtained.

Inventors:
FRACZAK DARIA (PL)
SAMARDAKIEWICZ BARTLOMIEJ (PL)
Application Number:
PCT/IB2009/052879
Publication Date:
October 14, 2010
Filing Date:
July 02, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BL LAB SP Z O O (PL)
International Classes:
C10G1/10; C10B53/07
Foreign References:
US5286374A1994-02-15
US5811606A1998-09-22
US6150577A2000-11-21
US20030050519A12003-03-13
Other References:
None
Attorney, Agent or Firm:
KORGA, Leokadia (Gliwice, PL)
Download PDF:
Claims:
Apparatus for thermolysis waste plastics and method for thermolysis waste plastics

Claims

1. Apparatus for thermolysis of waste plastics consisting feeding system, thermolysis reactor, external circulation loop and product collecting system characterized in that collecting and two-step product separation system is involving condenser (6), product cooling system (3), light fraction receiver (26) with gaseous product removing system (27), crude heavy fraction receiver (21) and vacuum evaporator (7).

2. Apparatus according to claim 1 characterized in that light products cooling system has two steps and consists two serial connected heat exchangers (24) and (25) and crude heavy product cooler system has at least one heat exchanger (22).

3. Apparatus according to claims 1 and 2 characterized in that heat exchanger (24) is cooled by oil, heat exchanger (25) is cooled by water and heat exchanger (22) is cooled by oil.

4. Apparatus according to claim 1 characterized in that condenser (6) is a direct contact condenser.

5. Apparatus according to claims 1 or 4 characterized in that condenser (6) is connected to the condensate circulation system (16).

6. Apparatus according to claims 1 and 5 characterized in that cooling medium in direct contact condenser (6) is a cooled product condensate.

7. Apparatus according to claims 1 and 4 characterized in that condenser (6) has built-in start-up heater (23).

8. Apparatus according to claims 1 and 7 characterized in that start-up heater (23) is a electrical heater.

9. Apparatus according to claim 1 characterized in that condensate circulation system (16) consists of circulation pump (VT), at least two three-way valves (18), (19) and heat exchanger (20).

10. Apparatus according to claim 1 characterized in that circulation pump Q7) is a vortex pump.

11. Apparatus according to claims 1 and 10 characterized in that circulation pump QZ) is cooled by oil.

12. Apparatus according to claim 1 characterized in that product stream is pressed by pump (28) from light oil receiver (26) to light oil tank (30).

13. Apparatus according to claims 1 and 9 characterized in that crude heavy oil receiver (2Y) is connected by pipeline through heat exchanger (22) with condenser condensate circulation system (16).

14. Apparatus according to claims 1 and 8 characterized in that crude heavy oil receiver (2Y) has heated walls and stirrer (31 ).

15. Apparatus according to claims 1 and 13 characterized in that product is pressed by pump (32) from crude heavy oil receiver (2Y) through three-way valve (33) where it is divided on stream conducted to crude heavy oil tank (34) and stream conducted to vacuum evaporator (7).

16. Apparatus according to claim 15 characterized in that crude heavy oil heater (35) is situated before vacuum evaporator (7) and following three-way valve.

17. Apparatus according to claim 16 characterized in that crude heavy oil heater (35) is heated by oil.

18. Apparatus according to claims 1 and 15 characterized in that vacuum evaporator (7) is a wiped film evaporator.

19. Apparatus according to claim 18 characterized in that the wiped film evaporator (7) is heated and cooled by oil.

20. Apparatus according to claims 1 and 15 characterized in that vacuum evaporator (7) and transfer pump (36} are followed by wax tank (38) and second transfer pump (37) is followed by heavy oil tank (39).

21. Apparatus according to claim 1 characterized in that three-way valve (40) is followed by heavy oil tank.

22. Plastic waste thermolysis method in inert gas atmosphere in which wastes are continuously fed to extruder and plasticized and then depolymerized in thermolysis reactor characterized in that product vapors are removed continuously from reactor and conducted to condenser in which condensation of vapors is carried out and product mixture separation to light oil involving hydrocarbon fractions with chain length up to C15, conducted to light oil receiver from which the gaseous products are received and liquid products are conducted to light oil tank and for further processing and crude heavy oil involving hydrocarbon fractions with chain length more than C15, which through heat exchanger and crude heavy oil receiver is pumped to vacuum evaporator in which next step of separation of crude heavy oil to wax involving hydrocarbon fractions with chain length more than C24 and heavy oil involving hydrocarbon fractions with chain length in range C15-C24, which are collected in wax tank and heavy oil tank and conducted for further processing takes place, is obtained.

23. Method according to claim 22 characterized in that powder additives in form of metals' salts or oxides are added to waste plastics.

24. Method according to claim 23 characterized in that additives are salts or oxides of metals of 1 , 2, 6, 12 or 13 group of periodic table.

25. Method according to claim 24 characterized in that as a salts are used Na2CO3 or CaCO3 or MgCO3 or any mixture of them.

26. Method according to claims 24 or 25 characterized in that as a oxides are used ZnO or CaO or MgO or FeO or Fβ2θ3 or AI2O3 or any mixture of them.

27. Method according to claims 22 and 23 characterized in that thermolysis process is carried out in 390 to 430 0C.

28. Method according to claims 22 and 23 characterized in that wastes are plasticized in extruder in 250 to 370 0C.

29. Method according to claims 22 and 23 characterized in that part of heavy oil stream is returned to condenser feeding stream and part is returned to the condenser through heat exchanger as a cooling medium and rest of the heavy oil is conducted through heat exchanger to crude heavy oil receiver.

Description:
Apparatus for thermolysis waste plastics and method for thermolysis waste plastics

This invention provides an apparatus for thermolysis of the plastic waste and a method for thermolysis of the waste plastics especially to get hydrocarbon products.

From patent PL 196880 it is known method for getting hydrocarbon oils consisted on putting into intake hopper of extruder or other feeding device the milled plastic with cracking catalyst which are transported to bottom part of reactor in which in temperature 380 - 500 0 C polymeric chains' cracking and producing light hydrocarbons takes place. Those light hydrocarbons are passing to air cooler from which vapor-liquid mixture is transported to separator from which the liquid phase is returned into cracking reactor and gaseous phase is conducted to water-cooled condenser followed by cracking gas tank. The liquid phase is separated on gasoline fraction conducted into tank and diesel oil conducted into tank in distillation column. Direction of conducting of cracked plastic and heating fumes is countercurrent. Waste plastic cracking reactor is characterized in that in top of reactor is tube heat exchanger connected with gas or fuel oil burners and liquid plastic level measuring device is installed over heat exchanger. In the bottom of reactor under heat exchanger wall the revision hutch is situated.

From US Patent description No US 4944867 there is known a process for obtaining oil, gas and other products from waste plastics based on depolymerization of waste in a retort with a stream of retort gases. Hot gases are injected at an intermediate point of the retort and a stream of cold gaseous are injected at the bottom of the retort. The depolymerization gases are removed and directed to a cyclone for separation of heavy liquid components from a gaseous stream. The gaseous stream is then purified and compressed with a portion of the compressed stream being heated and reinjected as the stream of hot gases into retort. The other portion of the compressed stream of gases is cooled and a liquid component consisting primarily of water and heavy oil is separated therefrom in a spray tower. The water portion is separated from the oil and recirculated to the spray tower while part of the oily portion is separated for reuse outside the process with remainder being recycled to the cyclone. A portion of the compressed gases from the cyclone is cooled and injected into the bottom of the retort as the stream of cold gases.

From patent application P - 383709 description, applied for protection on 7 November 2007, it is known the apparatus and method for depolymehzation of waste plastics, especially polyolefins, with removing reaction leftovers and residues. Apparatus consisted of feeding conveyor, pyrolysis reactor and discharging section is characterized by gas engaging stabilizer equipped with mixer and working in close loop at least one external pyrolysis reactor with screw or ribbon mixer and pipe that closes the loop. Depolymerization process is carried out with inert gas presence and characterized by reactor enforced dual flow in which one of mixing directions is used as well to discharge the reaction residue.

From patent application No P - 381533, applied for protection on 15 January 2007, involving method of separation polyolefinic waste plastics destructive treatment products there is known two-step vapor condensation. In the first step of separation product vapors are partly condensed in the column using cooled fraction, favorably medium fraction, fed in such a portion that vapor temperature after first step of condensation is about 250 - 300 0 C and at the same time condensed heavy fraction is collected. In the second step of condensation product vapors are cooled in cooler to 110 - 130 0 C and cooled mixture is rectified in the column and vapors from top of the column are condensed in cooler and separated on gaseous phase, water phase and liquid hydrocarbon phase in separator. That liquid hydrocarbon phase is partly returned to the column as a reflux and partly collected as a light fraction. Steam is injected to the rectification column in amount 10% in proportion to amount of processed destruction products. Residue is received from the bottom of column and is partly returned to the column as a reflux and partly collected as a medium phase after cooling.

From patent application No P-386410, applied for protection on 31 October 2008, it is known apparatus for thermolysis of waste plastics, especially polyolefins, and method of thermolysis with continuous feeding and continuous discharging carbonizable substances and reaction leftovers. Apparatus includes plastic feeding system, pyrolysis reactor, discharging system according to the invention is characterized in that after the plastic feeding system the extruder and pyrolysis reactor which height is at least 1 ,5 time bigger than its diameter are situated. Pyrolysis reactor is equipped with dual high speed propeller. Method for thermolysis of plastic waste especially polyolefins with presence of inert gas according to the claim is characterized that plastic waste are continuously fed to the extruder where are plasticized from 180 0 C up to the temperature of the reactor later, and are fed to the pyrolysis reactor where at 350 - 450 0 C at agitator's 30 - 1500 rpm the thermolysis is carried out with continuous two step fractional condensation where light product boiling below 180 0 C goes to storage tank with cold jacket and heavy product boiling above 180 0 C is conducted to hot jacket tank.

Principal aim of the invention is an apparatus and method for thermolysis of plastic waste, especially polyolefins, carried out continuously with continuous conducting removing of products and residue streams in which condensation is carried out to get three separated hydrocarbon fractions.

Apparatus for thermolysis of waste plastics consisting feeding system, thermolysis reactor, external circulation loop and product collecting system according to the invention is characterized in that collecting and two-step product separation system is involving condenser, product cooling system, light fraction receiver with gaseous product removing system, crude heavy fraction receiver and vacuum evaporator.

Favorably light product cooling system has two steps and consists two serial connected heat exchangers and crude heavy product cooler system has at least one heat exchanger.

Favorably heat exchangers in light product cooling system are cooled by oil and water and heat exchanger in crude heavy product cooling system is cooled by oil.

Favorably condenser is a direct contact condenser.

Favorably condenser is connected to the condensate circulation system.

Favorably cooling medium in direct contact condenser is cooled product condensate.

Favorably condenser has built-in start-up heater.

Favorably start-up heater is a electrical heater.

Favorably condensate circulation system consists of circulation pump, at least two three-way valves and heat exchanger.

Favorably circulation pump is a vortex pump.

Favorably circulation pump is cooled by oil. Favorably product stream is pressed by pump from light oil receiver to light oil tank. Favorably crude heavy oil receiver is connected by pipeline through heat exchanger with condenser condensate circulation system. Favorable crude heavy oil receiver has heated walls and stirrer. Favorably product is pressed by pump from crude heavy oil receiver through three- way valve where it is divided on stream conducted to crude heavy oil tank and stream conducted to vacuum evaporator.

Favorably crude heavy oil heater is situated before vacuum evaporator and following three-way valve.

Favorably crude heavy oil heater is heated by oil. Favorably vacuum evaporator is a wiped film evaporator. Favorably the wiped film evaporator is heated and cooled by oil. Favorably vacuum evaporator and transfer pump are followed by wax tank and second transfer pump is followed by heavy oil tank. Favorably three-way valve is followed by heavy oil tank.

Plastic waste thermolysis method in inert gas atmosphere in which wastes are continuously fed to extruder and plasticized and then depolymerized in thermolysis reactor according to the invention is characterized in that product vapors are removed continuously from reactor and conducted to condenser in which condensation of vapors is carried out and product mixture separation to light oil involving hydrocarbon fractions with chain length up to C15, conducted to light oil receiver from which the gaseous products are received and liquid products are conducted to light oil tank and for further processing and crude heavy oil involving hydrocarbon fractions with chain length more than C15, which through heat exchanger and crude heavy oil receiver is pumped to vacuum evaporator in which next step of separation of crude heavy oil to wax involving hydrocarbon fractions with chain length more than C24 and heavy oil involving hydrocarbon fractions with chain length in range C15-C24, which are collected in wax tank and heavy oil tank and conducted for further processing takes place, is obtained.

Favorably powder additives in form of metals' salts or oxides are added to waste plastics.

Favorably additives are salts or oxides of metals of 1 , 2, 6, 12 or 13 group of periodic table. Favorably as a salts are used Na 2 CO 3 or CaCO 3 or MgCO 3 or any mixture of them. Favorably as a oxides are used ZnO or CaO or MgO or FeO or Fe 2 O 3 or AI 2 O 3 or any mixture of them.

Favorably thermolysis process is carried out in 390 to 430 0 C.

Favorably wastes are plasticized in extruder in 250 to 370 0 C.

Favorably part of heavy oil stream is returned to condenser feeding stream and part is returned to the condenser through heat exchanger as a cooling medium and rest of the heavy oil is conducted through heat exchanger to crude heavy oil receiver.

Main advantage of the invention is designing relatively small size process equipment for continuous conversing waste plastics into products with high repeatability of properties which can be directly sold or be processed thereafter. Process can be carried out without catalyst or using additives for process stabilizing depending on assumed target parameters and capacity of individual products. Such a flexibility of the process gives possibility of accommodation of the process for requirements for properties of light oil, heavy oil and wax as well as requirements coming out from changeability of feedstock stream which is waste by design.

Using extruder as a feedstock feeder made possible reduction temperature difference between feedstock and reaction mixture for level ensuring stability of system work, reducing its energy consumption and reducing amount of produced unwanted byproducts such as coke. External circulation loop reduced contact time of reaction mixture with main heating point, which is electrical heater by forcing liquid moving. That gave streamlining of heating with simultaneous significant reduction of coke amount.

Two-step product separation process causes separation on three products with high level repeatability of properties. Crude heavy oil circulation in condenser improves capacity of separation. Using wiped film evaporator gives effective separation of heavy oil and wax without additional secondary degradation of products which cannot be avoided in distillation for example.

Products obtained from the process in form of light oil, heavy oil and wax can be direct commercial products or be intermediate products ready for further processing, for example in hydrorefining for getting high-purity products. Gaseous product obtained from light oil receiver can be used as a fuel gas and after burning be a source of heat for heating hot oil used in process. The object of the invention is reconstructed in example on the fig - scheme of the system for thermolysis of polyolefins.

Example of implementation caused below do not limit possibilities of use of the invention.

I system implementation

Apparatus for thermolysis according to the invention consists of granulate or leaf- shaped plastic feeding system 1 from which the feedstock is fed to extruder 8. Initial plasticized in extruder 8 and heated up to 300 - 330 0 C granulate is conducted to reactor 2 in which thermolysis process is carried out. Reactor 2 has dual high-speed propeller 4J_. Plasticized polymer thermolysis process is carried out in temperature 390 - 430 0 C with agitators 200 - 700 rpm. Plasticized polymer is conducted by circulation pump IJ. and forced to external recirculation loop 4 through three-way valve 12 and flux heater 13. Residue receiving is obtained in receiving system 5 through three-way valve Yλ and through residue cooling heat exchanger 15 to the tank 14. Product vapors are continuously removed from reactor 2 to condenser 6 in which vapor condensation and product mixture separation on light oil involving hydrocarbon fraction with chain length up to C15, conducted to light oil receiver 26 from which gaseous products are received and liquid products are conducted to light oil tank 30 and further processing and on crude heavy oil involving hydrocarbon fractions with chain length more than C15, are obtained. Receive and two-step product separation system consists the condenser 6, separation products cooling system 3, light fraction receiver 26 with gaseous products removing system 27, crude heavy fraction receiver 2J_ and vacuum evaporator 7. Light products cooling system has two steps and consists two connected in series heat exchanger 24 and 25. Crude heavy products cooling system has one oil-cooled heat exchanger 22. Heat exchanger 24 is cooled by oil and heat exchanger 25 is cooled by water. Condenser 6 is a direct contact condenser and has inside electrical start-up heater 23. Cooling medium in direct contact condenser 6 is a cooled condensate of product. Condenser 6 is connected with condensate circulation system 16 which consists of oil-cooled vortex circulation pump X7_, two three-way valves 18 and 19 and heat exchanger 20. Product stream is pumped from light oil receiver 26 by pump 28 through three-way valve 29 to light oil tank 30. Crude heavy oil involving hydrocarbon fractions with chain length more than C15 is pumped through heat exchanger 22 and crude heavy oil receiver 2J_ to crude heavy oil tank 34 or vacuum evaporator 7 in which next separation of crude heavy oil to wax involving hydrocarbon fractions with chain length more than C24 and heavy oil involving hydrocarbon fractions with chain length in range C15 - C24 is obtained. Crude heavy oil receiver 2J_ is connected with condenser condensate circulation system 16 by pipeline through heat exchanger 22. Crude heavy oil receiver 2J_ has heated walls and stirrer 3J_. Product is pumped by pump 32 from crude heavy oil receiver 2J. through three-way valve 33 where is divided on stream conducted to crude oil receiver tank 34 and stream conducted to vacuum evaporator 7. Before vacuum evaporator and following a three-way valve 33 is hot oil heated crude heavy oil heater 35. Vacuum evaporator 7 is oil cooled and oil heated wiped film evaporator. Vacuum evaporator 7 is followed by transfer pump 36 followed by wax tank 38 and transfer pump 37 followed by three-way valve 40 and heavy oil tank 39.

11 system implementation

Apparatus for thermolysis according to the invention consists of granulate or leaf- shaped plastic feeding system 1 from which the feedstock is fed to extruder 8. Prior to extruder there is a feedstock belt feeder 9 and powder additives screw feeder IQ. Na2CO3, CaCO3, MgCO3 or any mixture of them are used as a additives. Initial plasticized in extruder 8 and heated up to 300 - 330 0 C granulate is conducted to reactor 2 in which thermolysis process is carried out. Reactor 2 has dual high-speed propeller 4J_. Plasticized polymer thermolysis process is carried out in temperature 390 - 430 0 C with agitators 200 - 700 rpm. Plasticized polymer is conducted by circulation pump IJ. and forced to external recirculation loop 4 through three-way valve 12 and flux heater 13. Residue receiving is obtained through three-way valve

12 and through residue cooling heat exchanger 15 to the tank 14. Product vapors are continuously removed from reactor 2 to condenser 6 in which vapor condensation and product mixture separation on light oil involving hydrocarbon fraction with chain length up to C15, conducted to light oil receiver 26 from which gaseous products are received and liquid products are conducted to light oil tank 30 and further processing and on crude heavy oil involving hydrocarbon fractions with chain length more than C15, are obtained. Receive and two-step product separation system consists the condenser 6, separation products cooling system 3, light fraction receiver 26 with gaseous products removing system 27, crude heavy fraction receiver 2J_ and vacuum evaporator 7. Light products cooling system has two steps and consists two connected in series heat exchanger 24 and 25. Crude heavy products cooling system has one oil-cooled heat exchanger 22. Heat exchanger 24 is cooled by oil and heat exchanger 25 is cooled by water. Condenser 6 is a direct contact condenser and has inside electrical start-up heater 23.

Cooling medium in direct contact condenser 6 is a cooled condensate of product. Condenser 6 is connected with condensate circulation system 16 which consists of oil-cooled vortex circulation pump X7_, two three-way valves 18 and 19 and heat exchanger 20. Product stream is pumped from light oil receiver 26 by pump 28 through three-way valve 29 to light oil tank 30. Crude heavy oil involving hydrocarbon fractions with chain length more than C15 is pumped through heat exchanger 22 and crude heavy oil receiver 2J_ to crude heavy oil tank 34 or vacuum evaporator 7 in which next separation of crude heavy oil to wax involving hydrocarbon fractions with chain length more than C24 and heavy oil involving hydrocarbon fractions with chain length in range C15 - C24 is obtained. Crude heavy oil receiver 2J_ is connected with condenser condensate circulation system 16 by pipeline through heat exchanger 22. Crude heavy oil receiver 2J_ has heated walls and stirrer 3J_. Product is pumped by pump 32 from crude heavy oil receiver 2J. through three-way valve 33 where is divided on stream conducted to crude oil receiver tank 34 and stream conducted to vacuum evaporator 7. Before vacuum evaporator and following a three-way valve 33 is hot oil heated crude heavy oil heater 35. Vacuum evaporator 7 is oil cooled and oil heated wiped film evaporator. Vacuum evaporator 7 is followed by transfer pump 36 followed by wax tank 38 and transfer pump 37 followed by three-way valve 40 and heavy oil tank 39. Part of heavy oil is returned to the condenser feeding stream and part is returned to the condenser 6 through heat exchanger 20 as a cooling medium to the condenser 6 and residue is conducted through heat exchanger to the crude heavy oil receiver 2J_.