Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPLICATOR AND APPLICATION METHOD
Document Type and Number:
WIPO Patent Application WO/2015/155121
Kind Code:
A1
Abstract:
The invention relates to an applicator and to a method for the application and the embossing micro-profiling of a fluidic medium (6) on a substrate (5), in particular in the non-aerospace sector, and a corresponding application device having such an applicator. The applicator (2) has a female die (22) which circulates and has an embossing profile (25), a pressing means (32) for the female die (22) and a stabilization device (15), in particular a curing device, for the applied medium (6). The applicator (2) also has a hollow supporting body (27), which surrounds the female die (22) at a distance, forming an interspace (31), the pressing means (32) being arranged in the interspace (31). In addition to the applicator, the application device has a handling device (3) for a relative movement between the applicator (2) and a workpiece (4).

Inventors:
STURM THOMAS (DE)
HUBER HELMUT (DE)
Application Number:
PCT/EP2015/057347
Publication Date:
October 15, 2015
Filing Date:
April 02, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KUKA SYSTEMS GMBH (DE)
International Classes:
B05D3/06; B05C1/08; B29C59/04; B29C59/02; F15D1/00
Foreign References:
US5480596A1996-01-02
US20120070623A12012-03-22
DE102006004644A12007-08-09
EP2650922A12013-10-16
DE102006004644A12007-08-09
EP2137053B12013-11-27
Attorney, Agent or Firm:
PATENTANWÄLTE ERNICKE & ERNICKE (DE)
Download PDF:
Claims:
PATENTANSPRÜCHE

1. ) Applikator für den Auftrag und die prägende

Mikroprofilierung eines fluidischen Mediums (6) auf einem Untergrund (5) im Non-Aerospace-Bereich, wobei der Applikator (2) eine umlaufend bewegte Matrize

(22) mit einem Prägeprofil (25), ein Andrückmittel

(32) für die Matrize (22), und eine

Stabilisierungseinrichtung (15), insbesondere

Aushärteeinrichtung, für das aufgetragene Medium (6) aufweist, dadurch g e k e n n z e i c h n e t, dass der Applikator (2) einen hohlen Stützkörper (27) aufweist, den die Matrize (22) unter Bildung eines Zwischenraums (31) mit Abstand umgibt, wobei das Andrückmittel (32) im Zwischenraum (31) angeordnet ist .

2. ) Applikator nach Anspruch 1, dadurch

g e k e n n z e i c h n e t, dass die

Stabilisierungseinrichtung (15) in oder an dem

Stützkörper (27) angeordnet ist.

3. ) Applikator nach Anspruch 1 oder 2, dadurch

g e k e n n z e i c h n e t, dass der Applikator (2) einen eigenen Antrieb (44) für die umlaufende

Bewegung der Matrize (22) aufweist.

4. ) Applikator nach Anspruch 1, 2 oder 3, dadurch

g e k e n n z e i c h n e t, dass der Applikator (2) einen Anschluss (18) für eine Handhabungseinrichtung (3) , insbesondere für einen Industrieroboter (73) aufweist .

5. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass der

Stützkörper (27) rohrförmig ausgebildet ist und einen formstabilen Mantel (28) aufweist.

6. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass der

Stützkörper (27) an einem Gestell (13) des

Applikators (2) drehbar gelagert (43) und mit der

Matrize (2) drehschlüssig verbunden ist.

7. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass der

Stützkörper (27) mit dem Antrieb (44) gekoppelt ist.

8. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass der

Antrieb (44) Steuer- oder regelbar ist.

9. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass das

Andrückmittel (32) von innen und auf die umgebende Matrize (22) eine Andrückkraft ausübt.

10. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass das

Andrückmittel (32) als verformbares und den

Zwischenraum (31) ausfüllendes Druckmittelpolster (33) ausgebildet ist.

11. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass das

Druckmittelpolster (33) ein fluidisches Druckmedium (35) , insbesondere Druckgas, in einer dichtenden, biegeelastischen Umhüllung (34) aufweist.

12. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass das

Druckmittelpolster (33) , insbesondere die Umhüllung

(34), mit dem Stützkörper (27) und mit der Matrize (22) drehfest verbunden ist.

13.) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass das

Andrückmittel (32), insbesondere das

Druckmittelpolster (33), ein Steuermittel (38) zur

Steuerung oder Regelung der inneren Andrückkraft auf die Matrize (22) aufweist.

14. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass die

Matrize (22) als biegeelastische endlose Ringbahn (23) ausgebildet ist.

15. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass das

Prägeprofil (25) auf der Außenseite (24) des

Matrizenmaterials oder auf einer außenseitigen

Beschichtung der Matrize (22) angeordnet ist. 16.) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass die

Stabilisierungseinrichtung (15) ein

Stabilisierungsmittel (50) emittiert, wobei der Mantel (28) des Stützkörpers (27), das Andrückmittel (32) und die Matrize (22) für das

Stabilisierungsmittel (50) durchlässig sind.

17.) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass die

Stabilisierungseinrichtung (15) als Lichtquelle

(49), insbesondere UV-Lampe, und das

Stabilisierungsmittel (50) als Licht, insbesondere UV-Licht, ausgebildet sind. 18.) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass der

Applikator (2), insbesondere der Stützkörper (27), randseitig eine lokale Sperre (29) für das

emittierte Stabilisierungsmittel (50) aufweist.

19.) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass der

Applikator (2) eine Zuführeinrichtung (16) für das fluidische Medium (6) aufweist.

20. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass die

Zuführeinrichtung (16) eine reversierend bewegliche Auftragdüse (56) mit einer Fahrachse (80) aufweist, die entlang der Längsachse der Matrize (22)

ausgerichtet ist.

21. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass die reversierende Auftragdüse (56) abwechselnd einen Auftragshub und einen Leerhub gegenüber einer rotierenden Verteilwalze (57) oder der umlaufend bewegten Matrize (22) ausführt.

22. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass das fluidische Medium (6) als aushärtbarer Lack

ausgebildet ist.

23. ) Applikator nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass der

Applikator (2) eine Reinigungseinrichtung (17) aufweist .

24.) Applikationseinrichtung für den Auftrag und die

prägende Mikroprofilierung eines fluidischen Mediums (6) auf einem Untergrund (5) im Non-Aerospace-

Bereich, wobei die Applikationseinrichtung (1) einen Applikator (2) und eine Handhabungseinrichtung (3) für eine Relativbewegung zwischen dem Applikator (2) und einem Werkstück (4) aufweist, dadurch

g e k e n n z e i c h n e t, dass der Applikator (2) nach mindestens einem der Ansprüche 1 bis 23

ausgebildet ist. Applikationseinrichtung nach Anspruch 24, dadurch g e k e n n z e i c h n e t, dass die

Handhabungseinrichtung (3) derart ausgebildet und gesteuert ist, dass sie den Applikator (2) entlang des Untergrunds (5) bewegt und ihn dabei mit einer solchen Kraft gegen den Untergrund (5) anpresst, dass die umlaufend bewegte Matrize (22) sich im Andrückbereich (26) verformt und flächig an den Untergrund (5) und dessen Kontur anschmiegt. Applikationseinrichtung nach Anspruch 24 oder 25, dadurch g e k e n n z e i c h n e t, dass die

Handhabungseinrichtung (3) einen mehrachsigen programmierbaren Industrieroboter (73) , insbesondere

Gelenkarmroboter, aufweist. Applikationseinrichtung nach Anspruch 24, 25 oder 26, dadurch g e k e n n z e i c h n e t, dass die Handhabungseinrichtung (3) einen beweglichen Träger

(74) mit einer oder mehreren Bewegungsachsen für den Industrieroboter (73) aufweist. Applikationseinrichtung nach einem der Ansprüche 24 bis 27, dadurch g e k e n n z e i c h n e t, dass die Handhabungseinrichtung (3) zwei oder mehr am Boden verfahrbare Träger (74) mit jeweils einem omnidirekt ional verfahrbaren Fördergerät (79) und einem Industrieroboter (73) aufweist, wobei die Industrieroboter (73) einen Tragbalken (78) an beiden Enden halten und ihn in Kooperation gemeinsam sowie in abgestimmten Bewegungen relativ zum Werkstück (4) führen und der Applikator (2) am

Tragbalken (78) verfahrbar gelagert und ggf.

gesteuert angetrieben ist. 29.) Applikationseinrichtung nach einem der Ansprüche 24 bis 28, dadurch g e k e n n z e i c h n e t, dass die Applikationseinrichtung (1) eine

Erfassungseinrichtung (11) für die Position und Ausrichtung des Applikators (2) im Prozess und/oder für die Prozessqualität und/oder die Anpresskraft am

Untergrund (5) aufweist.

30.) Verfahren für den Auftrag und die prägende

Mikroprofilierung eines fluidischen Mediums (6) auf einem Untergrund (5) im Non-Aerospace-Bereich mittels eines Applikators (2), der das fluidische Medium (6) mit einer umlaufend bewegten Matrize (22) mit einem Prägeprofil (25) auf dem Untergrund (5) aufträgt, wobei die Matrize (22) von einem

Andrückmittel (32) gegen den Untergrund (5) gedrückt wird und wobei das aufgetragene Medium (6) mit einer Stabilisierungseinrichtung (15), insbesondere

Aushärteeinrichtung, stabilisiert, insbesondere ausgehärtet wird, dadurch

g e k e n n z e i c h n e t, dass der Applikator (2) einen hohlen Stützkörper (27) aufweist, den die Matrize (22) unter Bildung eines Zwischenraums (31) mit Abstand umgibt, wobei das Andrückmittel (32) im Zwischenraum (31) angeordnet ist.

Verfahren nach Anspruch 30, dadurch

g e k e n n z e i c h n e t, dass das Andrückmittel (32) von innen auf die umgebende Matrize (22) eine steuerbare oder regelbare Andrückkraft ausübt.

32. ) Verfahren nach Anspruch 30 oder 31, dadurch

g e k e n n z e i c h n e t, dass die Matrize (22) von einem eigenen Antrieb (44) umlaufend bewegt wird .

33. ) Verfahren nach Anspruch 30, 31 oder 32, dadurch

g e k e n n z e i c h n e t, dass die umlaufend bewegte Matrize (22) mit dem Prägeprofil (25) das fluidische Medium (6) von einer Zuführeinrichtung (16) aufnimmt und mit der Umlauf- oder Drehbewegung zum Untergrund (5) bewegt und es am Andrückbereich (26) auf den Untergrund (5) überträgt, wobei das Profil (7) durch die Einwirkung der Zustell- oder Andrückkraft geprägt wird.

34. ) Verfahren nach einem der Ansprüche 30 bis 33,

dadurch g e k e n n z e i c h n e t, dass das

Andrückmittel (32) als verformbares und den

Zwischenraum (31) ausfüllendes Druckmittelpolster (33) ausgebildet ist, dessen innere Andrückkraft auf die Matrize (22) gesteuert oder geregelt wird.

35. ) Verfahren nach einem der Ansprüche 30 bis 34,

dadurch g e k e n n z e i c h n e t, dass der

Applikator (2) von einer Handhabungseinrichtung (3), insbesondere einem Industrieroboter (73) , entlang des Untergrunds (5) bewegt und dabei mit einer gesteuerten oder geregelten Kraft gegen den

Untergrund (5) angepresst wird.

36. ) Verfahren nach einem der Ansprüche 30 bis 35,

dadurch g e k e n n z e i c h n e t, dass die

Matrize (22) im Andrückbereich (26) an eine nicht ebene Kontur, insbesondere eine konvexe und konkave Wölbung, des Untergrunds (5) formangepasst wird.

37. ) Verfahren nach einem der Ansprüche 30 bis 36, dadurch g e k e n n z e i c h n e t, dass der flächige Andrückbereich (26) in seiner Größe, insbesondere in seiner Erstreckung in Prozess- oder Vorschubrichtung, auf das Stabilisierungs- bzw.

Aushärteverhalten des Mediums (6) angepasst wird.

38. ) Verfahren nach einem der Ansprüche 30 bis 37,

dadurch g e k e n n z e i c h n e t, dass Medium (6) auf einer rotierenden Verteilwalze (57) oder auf der umlaufend bewegten Matrize (22) mittels einer entlang der Längsachse der Matrize (22) reversierend bewegten Auftragdüse (56) aufgetragen wird. 39.) Verfahren nach einem der Ansprüche 30 bis 38,

dadurch g e k e n n z e i c h n e t, dass Medium (6) in spiralförmigen und in Umfangsrichtung dicht aneinander anschließenden Auftragstreifen auf der Verteilwalze (57) oder der Matrize (22) appliziert wird .

Description:
BESCHREIBUNG

Applikator und Applikationsverfahren

Die Erfindung betrifft einen Applikator und ein

Applikationsverfahren für den Auftrag und die prägende Mikroprofilierung eines fluidischen Mediums im Non- Aerospace-Bereich mit den Merkmalen im Oberbegriff des Verfahrens- und Vorrichtungshauptanspruchs.

Ein solcher Applikator ist aus der DE 10 2006 004 644 AI bekannt. Der Applikator trägt einen aushärtbaren Lack auf einer Substratoberfläche auf und prägt ihn dabei auch an seiner Oberfläche, wodurch der Lack eine Mikrostruktur erhält. Ein solcher Lack mit Mikrostruktur wird auch als riblet bezeichnet. Der Applikator besitzt eine umlaufend bewegbare Matrize mit einem Prägeprofil und wird von einem Roboter gegen den Untergrund, insbesondere die sogenannte Substratoberfläche, angedrückt und an dieser

entlangbewegt. Der Applikator hat eine mit Überdruck aufpumpbare Walze, auf deren Außenumfang die Matrize fest aufgezogen ist und durch den Gasdruck gespannt wird. In der Walze ist eine auf den Andrückbereich gerichtete Aushärteeinrichtung angeordnet.

Es ist Aufgabe der vorliegenden Erfindung, eine

verbesserte Applikationstechnik aufzuzeigen.

Die Erfindung löst diese Aufgabe mit den Merkmalen im Verfahrens- und Vorrichtungshauptanspruch.

Die beanspruchte Applikationstechnik, d.h. der Applikator und das Applikationsverfahren sowie auch eine

Applikationseinrichtung, haben verschiedene Vorteile. Mit der Applikationstechnik kann das fluidische Medium, z.B. ein aushärtbarer Lack, mit engeren Toleranzen für die Schichtdicke und für die durch Prägen geschaffene Mikrostruktur aufgebracht werden. Die Haltbarkeit des aufgebrachten Mediums und die technische bzw.

physikalische Wirkung der Mikrostruktur können wesentlich verbessert werden. Eine solche Mikrostruktur auf einem Lack kann z.B. auf der Karosseriehaut bzw.

Karosserieoberfläche eines Kraftfahrzeugs, z.B. eines Hochgeschwindigkeitszugs, aber auch eines

Straßenfahrzeugs, eines Rennfahrzeugs oder dgl . , für verringerte Luftwiderstände und für erhebliche

Treibstoffeinsparungen sorgen. Gleiches gilt z.B. für einen Rumpf, eine Tragfläche oder andere wasserbenetzte Teile von Schiffen. Je exakter die Mikrostruktur definiert und gebildet werden kann, desto größer sind die

erzielbaren Effekte.

Der Applikator mit dem hohlen Stützkörper erlaubt eine bessere und genauere Aufnahme und Führung der Matrize, wodurch der mit der Matrize bewirkte Auftrag des

fluidischen Mediums verbessert wird. Insbesondere können exakte Randkanten des in Bahnen aufgelegten fluidischen Mediums gebildet werden. Dies sorgt für einen optimalen Anschluss benachbarter Auftragbahnen.

Der beanspruchte Applikator sorgt außerdem im

Andrückbereich der Matrize am Untergrund für einen

gleichen Anpressdruck. Ein Herauspressen von Lack an den Matrizenrändern kann verhindert werden, wobei auch die besagten scharfen Kanten am Matrizenrand gebildet werden. Der Applikator erlaubt ferner eine wesentlich verbesserte Formanpassung der Matrize im Andrückbereich an die in vielen Fällen nicht ebene Kontur des Untergrunds.

Insbesondere können konvexe und konkave Wölbungen des Untergrunds kompensiert und gleichmäßig mit dem geprägten Medium beschichtet werden. Solche Konturen kommen z.B. an Karosserieoberflächen, an Flügeln von Windrädern oder dgl. vor . Bei dem beanspruchten Applikator hat die Matrize eine höhere Standzeit und Lebensdauer als beim Stand der

Technik. Die Prägeprofilierung kann an der Außenseite des Matrizenmaterials angeordnet sein. Alternativ kann sie an einer dünnwandigen und biegeelastischen Beschichtung auf der Matrizenaußenseite angebracht sein. Eine solche

Beschichtung, z.B. auch in Folienform, kann eine deutlich höhere Standzeit vermitteln und kann z.B. aus Glas oder einem anderen geeigneten Werkstoff bestehen. Dies führt ebenfalls zu einer erhöhten Lebensdauer der Matrize. Die Matrize kann ggf. auch aus einem dünnwandigen,

biegeelastischen Glaskörper mit Prägeprofilierung

bestehen. Die Matrize kann außerdem bei Bedarf gewechselt werden .

Die Ausbildung des Applikators mit dem Stützkörper und dem im Zwischenraum angeordneten Andrückmittel ist für eine exakte Führung und Positionierung der Matrize von

besonderem Vorteil. Außerdem erleichtert sie den

Matrizenwechsel. Dieser kann insbesondere automatisiert werden .

Der Applikator kann eine integrierte

Stabilisierungseinrichtung aufweisen, die für eine

Stabilisierung, insbesondere Verfestigung, des auf dem Untergrund aufgetragenen fluidischen Mediums und der eingeprägten Mikrostruktur sorgt. Die

Stabilisierungseinrichtung kann insbesondere als

Aushärteeinrichtung in unterschiedlichsten Varianten ausgebildet sein. Sie kann in oder an einem bevorzugt hohlen Stützkörper angeordnet sein und beaufschlagt das gerade aufgetragene Medium im Andrückbereich der Matrize. Mit einer entsprechenden Handhabungseinrichtung kann der Applikator mit der Matrize derart an den Untergrund angepasst werden, dass sich ein flächiger Andrückbereich ergibt. In diesem Andrückbereich wirkt die

Stabilisierungsvorrichtung mit einem emittierten Stabilisierungsmittel, z.B. mit UV-Licht, und härtet beispielsweise das aufgetragene Medium aus. Der flächige Andrückbereich kann dabei in seiner Größe, insbesondere in seiner Erstreckung in Prozess- oder Vorschubrichtung, auf das Stabilisierungs- bzw. Aushärteverhalten des Mediums angepasst werden. In diesem flächigen Andrückbereich wird die Matrize gegen den Untergrund und das aufgetragene Medium mitsamt ihrem Prägeprofil angedrückt. Beim

Stabilisieren bzw. Aushärten wird dadurch die

Mikrostruktur des aufgetragenen Mediums optimal gesichert und fixiert .

Der Stützkörper ist in der bevorzugten Ausführungsform drehbar gelagert und ist dabei an seinen Mantelbereich mit der Matrize drehschlüssig verbunden. Die drehschlüssige

Verbindung kann über das Andrückmittel geschaffen werden, welches vorzugsweise als Druckmittelpolster ausgebildet ist. Die Andrückkraft kann über ein Stellmittel gesteuert oder geregelt werden. Sie kann einerseits an die

Betriebserfordernisse und an die prozessgünstige Form der Andrückfläche angepasst werden. Andererseits kann sie deutlich verringert werden, um einen Matrizenwechsel zu erleichtern . Die Matrize kann vorteilhafterweise mit einem eigenen

Antrieb am Applikator umlaufend angetrieben werden. Dies kann mittelbar über einen Antrieb des drehbaren

Stützkörpers und dessen drehschlüssige Verbindung mit der Matrize erfolgen. Alternativ kann ein Direktantrieb der Matrize vorhanden sein. Durch den eigenen Antrieb kann die Umlaufbewegung der Matrize zusätzlich zu der durch den Applikatorvorschub bewirkten Abwälzbewegung der Matrize beeinflusst werden. Der Antrieb kann hierfür in geeigneter Weise gesteuert oder auch geregelt werden. Diese

Antriebsanordnung hat eigenständige erfinderische

Bedeutung und kann auch in Verbindung mit einem

konventionellen Applikator, z.B. mit dem Applikator aus dem Eingangs genannten Stand der Technik, kombiniert werden .

Das fluidische Medium wird der Matrize mittels einer

Zuführeinrichtung zugeführt, die eine Auftragdüse und ggf. eine Verteilwalze zur Mediumübertragung auf die Matrize aufweist. Die Zufuhr und die Dosierung des Medienauftrags auf die Verteilwalze oder direkt auf die Matrize kann mittels einer stationärer Auftragdüsen oder mit einer bevorzugt einzelnen und mittels einer Fahrachse längs der Matrize reversierend verfahrbaren Auftragdüse erfolgen. Der Auftrag erfolgt hierbei vorzugsweise in einem

Auftraghub und einem anschließenden Leerhub in

Gegenrichtung. Hierbei wird das Medium in spiralförmigen Auftragstreifen auf der Verteilwalze oder der Matrize appliziert, die in Umfangsrichtung dicht oder ggf. mit geringfügiger Überlappung aneinander anschließen.

Diese Form der Auftragsverteilung und Dosierung des

Mediums auf der Verteilwalze hat Vorteile, weil die

Schicht- und Mediendicke in Längsrichtung der Verteilwalze und dementsprechend auch in Längsrichtung der Matrize gleichmäßig ist. Dies ist für die gleichmäßige

Prägestruktur und den Riblet-Effekt am Werkstück von besonderem Vorteil. Die an den Stoßstellen der

spiralförmigen Auftragstreifen eventuell in

Umfangsrichtung auftretenden Medien- und

Schichtverdickungen sind für den Medienauftrag am

Werkstück unschädlich. Hierfür kommt es auf die

gleichmäßige Schichtdicke in Längsrichtung der Matrize und in Querrichtung zur Auftragbahn auf dem Werkstück an. Mit der Fahrbahnauftragdüse können Überlappungsstellen in Matrizenlängsrichtung wie bei den stationären Sprühkegeln vermieden werden.

In den Unteransprüchen sind weitere vorteilhafte

Ausgestaltungen der Erfindung angegeben. Die Erfindung ist in den Zeichnungen beispielsweise und schematisch dargestellt. Im Einzelnen zeigen:

Figur 1 : eine schematische Ansicht eines Landfahrzeugs mit einer Applikationseinrichtung und einem Applikator,

Figur 2: eine schematische Seitenansicht des

Applikators,

Figur 3 und 4: Stirnansichten des Applikators gemäß

Pfeilen III und IV von Figur 2, Figur 5: einen Längsschnitt durch den Applikator von

Figur 2,

Figur 6: ein abgebrochenes und vergrößertes Detail VI von Figur 5,

Figur 7 bis 10: Schemadarstellungen von Auftragbahnen eines fluidischen Mediums und Teilen des Applikators , Figur 11: eine Variante des Applikators,

Figur 12 bis 16: eine bevorzugte Ausführungsform des

Applikators in verschiedenen Ansichten, Figur 17: eine Variante des Applikators mit einer

verfahrbaren Auftragdüse und

Figur 18 : eine Variante der Handhabungseinrichtung für den Applikator. Die Erfindung betrifft einen Applikator (2) und ein

Applikationsverfahren. Die Erfindung betrifft ferner eine Applikationseinrichtung (1) .

Die Erfindung bezieht sich auf Anwendungen in beliebigen technischen Bereichen mit Ausnahme des Aerospace-Bereichs. Diese Bereiche werden als Non-Aerospace-Bereiche

bezeichnet. Derartige Non-Aerospace-Bereiche können z.B. Verkehrsmittel, insbesondere Land- oder Wasserfahrzeuge, z.B. Straßen- oder Schienenfahrzeuge oder Schiffe sein. Zu den Non-Aerospace-Bereichen zählen auch Flügel von

Windrädern, Turbinen- oder Gebläseschaufeln oder dgl.. Außerdem können unbewegliche Gegenstände, insbesondere Gebäude oder andere Immobilien, zu den Non-Aerospace- Bereichen gehören. Dies kann z.B. windbelastete Wände bzw. Fassaden, insbesondere von Hochhäusern, betreffen.

Der Applikator (2) dient dazu, ein fluidisches Medium (6) auf einen Untergrund (5) aufzutragen und dabei das

aufgetragene Medium (6) zu prägen, wodurch es an seiner freien Oberfläche ein Profil (7) erhält. Das Profil (7) ist vorzugsweise eine Mikrostruktur mit Erhebungen und Tälern, die eng tolerierte Maße haben können. Der Auftrag erfolgt vorzugsweise bahnförmig, wobei der Applikator (2) und der Untergrund (5) relativ zueinander bewegt werden. Dies wird mittels einer Handhabungseinrichtung (3) der Applikationseinrichtung (1) bewirkt.

Das fluidische Medium (6) kann in unterschiedlicher Weise ausgebildet sein. Es kann eine flüssige oder pastöse, ggf. auch schaumige, Konsistenz haben und kann aus

unterschiedlichen Materialien bestehen. Im gezeigten

Ausführungsbeispiel ist das fluidische Medium (6) als Lack ausgebildet, der aus einer oder mehreren Komponenten bestehen kann. Das fluidische Medium (6), insbesondere der Lack, kann entsprechend der DE 10 2006 004 644 AI

ausgebildet sein. Das Werkstück (4) und der Untergrund (5) können ebenfalls in unterschiedlicher Weise ausgebildet sein. Im gezeigten Ausführungsbeispiel von Figur 1 ist das Werkstück (4) ein Verkehrsmittel, insbesondere ein Landfahrzeug. Der

Untergrund (5) ist die Außenhaut des Verkehrsmittels (4) .

Diese kann eine ebene oder gewölbte Form haben. In den gezeigten Ausführungsbeispielen dienen der Applikator (2) und die Applikationseinrichtung (1) dazu, das

Verkehrsmittel (4) an der Außenseite zu lackieren.

Das aufgetragene fluidische Medium (6) bedarf einer

Stabilisierung. Dies kann eine Verfestigung sein, die z.B. durch Aushärten des Mediums (6) erreicht wird. Je nach Art des Mediums (6) und des Einsatzzweckes kann es andere Formen von Stabilisierung geben.

Die Mikrostruktur (7) auf der freien Medienoberfläche kann unterschiedlich ausgebildet sein und unterschiedlichen Zwecken dienen. Bei einem Verkehrsmittel (4), insbesondere einem Land- oder Wasserfahrzeug, ist eine Ausbildung in der Art einer Haifischhaut von Vorteil. In Figur 7 bis 10 ist eine solche Mikrostruktur (7) schematisch dargestellt. Die Erhebungen und Vertiefungen können sich profilartig längs der Auftragrichtung bzw. der Auftragbahn (8)

erstrecken. Mit einer solchen Mikrostruktur (7) bzw.

Riblet kann bei einem Verkehrsmittel (4) der

Luftwiderstand und damit der Treibstoffverbrauch

verringert werden. Bei Wasserfahrzeugen lässt sich der Strömungswiderstand im Wasser reduzieren. Wände und Fassaden oder andere Teile von Hochhäusern oder dgl . können von einer Minderung der reibungsbedingten Windlast profitieren. Flügel oder

Propeller von Windmaschinen, Turbinen- oder

Ventilatorschaufeln oder dgl. können von den strömungs- und reibungsbedingten Verlusten entlastet werden. Die Verluste von Maschinen zur Umwandlung oder Erzeugung von Fluidkraft, insbesondere Wind oder Wasserkraft, können gemindert und die Wirkungsgrade der Strömungsmaschinen gesteigert werden. Der Applikator (2) stellt in den gezeigten

Ausführungsbeispielen ein Auftragwerkzeug für das

fluidische Medium (6) dar. Zur Erzeugung der genannten Relativbewegung wird in den Ausführungsbeispielen der Applikator (2) von der Handhabungseinrichtung (3) relativ zu einem ortsfesten Werkstück (4) bewegt. Die kinematische Zuordnung kann bei einer anderen Ausführungsvariante umgekehrt sein. Die in Figur 1 gezeigte

Handhabungseinrichtung (3) besteht z.B. aus einem

mehrachsigen Industrieroboter (73) , der den Manipulator (2) zum Medienauftrag hält und führt. Der Industrieroboter (73) kann eine beliebige Zahl und Anordnung von

rotatorischen und/oder translatorischen Roboterachsen haben und besitzt eine Robotersteuerung (nicht

dargestellt) . Vorzugsweise ist der Industrieroboter (73) als Gelenkarmroboter oder Knickarmroboter mit fünf oder mehr Achsen ausgebildet.

Der Industrieroboter (73) kann stationär angeordnet sein. Bei großvolumigen Werkstücken (4) kann der

Industrieroboter (73) an oder auf einem Träger (74) in beliebiger, insbesondere hängender oder stehender Lage, angeordnet sein. Der Träger (74) kann beweglich sein, wobei er eine oder mehrere steuerbare Bewegungsachsen mit entsprechenden Antrieben aufweist, die in Figur 1

schematisch durch Pfeile dargestellt sind. Der Träger (74) kann z.B. eine auf dem Boden verfahrbare Hubbühne sein. Die Hubbühne kann ein omnidirektional auf dem Boden verfahrbares und auch drehbares Fördergerät (79)

aufweisen, auf dem eine zumindest in der Höhe und ggf. auch in weiteren Achsen verstellbare Hubvorrichtung angeordnet ist. Ein solches Fördergerät (79) kann

entsprechend der EP 2 137 053 Bl ausgebildet sein und mehrere Mecanumräder aufweisen. Es kann lenkbar sein und per Fernsteuerung verfahren werden. Alternativ kann es eigenständig einen vorprogrammierten Fahrweg abfahren und dabei zu Steuerungszwecken sowie zur Kollisionsvermeidung die aktuelle Fahrumgebung erfassen. Figur 18 zeigt eine konstruktive Ausführungsform des Trägers (74).

Der Träger (74) kann z.B. in den drei translatorischen Raumachsen beweglich sein. Er kann außerdem räumliche Drehachsen aufweisen. Ferner kann er gemeinsam und in abgestimmter Weise mit dem Industrieroboter (73) bewegt werden, wobei er z.B. an die besagte Robotersteuerung oder an eine andere übergeordnete Steuerung angeschlossen ist. Die Applikationseinrichtung (1), die in den

Ausführungsbeispielen eine Auftrageinrichtung bildet, kann eine Erfassungseinrichtung (11) aufweisen, die

unterschiedlichen Zwecken dienen kann. Sie kann einerseits zur exakten Positionierung und Ausrichtung des Applikators (2) im Prozess dienen bzw. diese überwachen. Hierfür kann die Erfassungseinrichtung (11) z.B. die in Figur 1 gezeigte Messeinrichtung (71) aufweisen, die mit einer oder mehreren Messmarken (72), z.B. sog. 6D-Probes, am Applikator (2) zusammenwirkt und hierüber die Position und Ausrichtung des Applikators (2) im Raum während des

Prozesses und während der besagten Relativbewegung

erfasst. Die Messeinrichtung (71) kann z.B. eine digitale Messkamera oder einen Lasertracker oder eine andere geeignete Messeinheit aufweisen. Die Messeinrichtung (71) arbeitet bevorzugt berührungslos und optisch.

Der Industrieroboter (73) kann mit dem Applikator (2) über eine Wechselkupplung verbunden sein. Er kann dadurch bedarfsweise den Applikator (2) wechseln und einen anderen Applikator (2) oder ein anderes Werkzeug aufnehmen. Die Applikationseinrichtung (1) kann außerdem die in Figur 1 schematisch dargestellte Wechseleinrichtung (48) für eine Matrize (22) des Applikators (2) aufweisen, die im

Arbeitsbereich des Industrieroboters (73) angeordnet ist und nachfolgend näher beschrieben wird. Eine erste bevorzugte Ausführungsform des Applikators (2) ist in Figur 2 bis 16 dargestellt. Der Applikator (2) weist eine Auftrageinrichtung (14) für das fluidische Medium (6) und eine Stabilisierungseinrichtung (15) für das Medium (6) auf, die z.B. als Aushärteeinrichtung ausgebildet ist. Der Applikator (2) kann ferner eine

Zuführeinrichtung (16) für das fluidische Medium (6) und ggf. auch eine Reinigungseinrichtung (17) aufweisen.

Der Applikator (2) besitzt ein Gestell (13), an dem ein Anschluss (18) für die Verbindung mit dem Abtriebselement der Handhabungseinrichtung (3) , insbesondere des

Industrieroboters (73) angeordnet ist. Das Gestell (13) kann als Gehäuse (19) ausgebildet sein oder ein solches schützendes Gehäuse aufweisen. Das Gestell (13) kann außerdem eine nachfolgend erläuterte und in Figur 12 bis

16 dargestellte Trageinrichtung (20) für Gerätekomponenten aufweisen, die einen Matrizenwechsel erleichtert und auch dessen Automatisierung erlaubt. Der Applikator (2) weist eine umlaufend bewegte Matrize (22) auf, die an ihrer Außenseite (24) ein Prägeprofil (25) aufweist, mit dem das fluidische Medium (6) beim Auftrag auf dem Untergrund (5) mit einer Andrückkraft mechanisch geprägt wird und das Profil (7) bzw. die

Mikrostruktur erhält. Die Matrize (22) ist als

biegeelastische und endlose Ringbahn (23) ausgebildet. Sie ist dabei vorzugsweise zug- und dehnfest ausgebildet. Sie kann aus einem beliebig geeignetem Material, z.B. einem Kunststoff, insbesondere Silikon, bestehen. Bei einer dehnfesten Ausbildung kann das Prägeprofil (25) eine exakt vorgegebene und im Auftrage- und Prägeprozess beibehaltene Anordnung und Ausbildung haben. Bei weniger hohen Toleranzanforderungen kann die Matrize (22) eine gewisse Zug- und Dehnelastizität haben. Die geschlossene Ringbahn (23) kann die Form eines Rohres oder einer Hülse haben. In den gezeigten Ausführungsbeispielen ist dabei deren

Querschnittsgeometrie in der Ausgangsstellung kreisrund.

Alternativ sind andere Formgebungen möglich, auf die nachfolgend noch eingegangen wird.

Das Prägeprofil (25) kann direkt auf der Außenseite (24) der Matrize (22) bzw. der Ringbahn (23) angeordnet sein. Das Prägeprofil (25) kann dabei in beliebig geeigneter Weise in die Außenfläche (24) eingearbeitet sein. In einer anderen alternativen Ausführungsform kann die Matrize (22) an der Außenseite (24) eine Beschichtung aufweisen, die z.B. aus Glas oder einem anderen widerstandsfähigen

Werkstoff besteht und die das besagte Prägeprofil (25) an ihrer eigenen Außenseite trägt.

Der Applikator (2), insbesondere dessen Auftrageinrichtung (14), weist ferner einen Stützkörper (27) auf, der

innerhalb der Matrize (22) mit einem radialen oder quer gerichteten Abstand angeordnet ist. Die Matrize (22) umgibt den Stützkörper (27), wobei sie ihn vorzugsweise allseitig umschließt. Durch den besagten Abstand wird ein Zwischenraum (31) gebildet. Der Applikator (2),

insbesondere die Auftrageinrichtung (14), weist ferner ein Andrückmittel (32) für die Matrize auf. Das Andrückmittel (32) ist im Zwischenraum (31) angeordnet und wirkt von innen auf die umgebende Matrize (22) und übt auf diese eine Andrückkraft aus .

Beim Medienauftrag wird der Applikator (2) von der

Handhabungseinrichtung (3) , insbesondere von dem

programmierbarem Industrieroboter (73) mit einer

definierten und einstellbaren Kraft gegen den Untergrund (5) gedrückt. Hierbei kontaktiert die Matrize (22) mit ihrer Außenseite den Untergrund (5) und verformt sich durch die Zustell- oder Andrückkraft. Sie flacht sich dadurch im Kontaktbereich ab und bildet einen flächigen Andrückbereich (26) . Dieser schmiegt sich eng an den evtl. konturierten Untergrund (5) an. Figur 3 und 4 zeigen diese Ausbildung.

Die umlaufend und insbesondere drehend um eine quer gerichtete Achse bewegte Matrize (22) nimmt mit dem

Prägeprofil (25) das fluidische Medium (6) von einer

Zuführeinrichtung (16) auf, bewegt es mit der Umlauf- oder Drehbewegung gemäß Pfeil in Figur 4 zum Untergrund (5) und überträgt es am Andrückbereich (26) auf den Untergrund (5), wobei auch das Profil (7) durch die Einwirkung der Zustell- oder Andrückkraft geprägt wird. Bei der besagten Relativbewegung mit der in Figur 4 durch einen Pfeil symbolisierten Prozessrichtung oder Vorschubrichtung wälzt die umlaufend bewegte Matrize (22) auf dem Untergrund (5) bei einem Vorschub ab. Im Andrückbereich (26) erfolgt auch die Stabilisierung des aufgetragenen und profilierten Mediums (6) mit der nachfolgend erläuterten

Stabilisierungseinrichtung (15).

Die besagte Umlaufbewegung der Matrize (22) wird durch die Relativbewegung bzw. den Vorschub in Prozessrichtung (12) durch Reibkontakt und Abwälzen auf dem Untergrund (5) erzeugt. In der gezeigten und bevorzugten Ausführungsform weist der Applikator (2) zusätzlich einen eigenen Antrieb (44) für die umlaufende Bewegung der Matrize (22) auf. Der Antrieb (44) ist steuerbar oder regelbar und kann

ebenfalls mit der besagten Steuerung, insbesondere der Robotersteuerung, verbunden sein. In den gezeigten

Ausführungsformen ist der Stützkörper (27) am Gestell (13) des Manipulators (2) mit einer Lagerung (40) drehbar gelagert. Der Stützkörper (27) ist mit der Matrize (22) drehschlüssig verbunden. Die drehschlüssige Verbindung kann z.B. durch das nachfolgend näher erläuterte

Andrückmittel (32) gebildet werden. In den gezeigten Ausführungsbeispielen ist der Antrieb (44) mit dem

Stützkörper (27) gekoppelt, so dass die Matrize (22) mittelbar angetrieben und über den Drehschluss bei der Drehung des Stützkörpers (27) mitgenommen wird.

Wie Figur 2 bis 6 verdeutlichen, ist der Stützkörper (27) in den gezeigten Ausführungsformen rohrförmig ausgebildet und weist einen formstabilen Mantel (28) auf. Der

Stützkörper (27) hat dabei vorzugsweise eine zylindrische Form mit einem kreisrunden Querschnitt, wobei er sich um eine gestellfeste zentrale Achse (30) dreht. Der

formstabile Mantel (28) kann die vom Andrückmittel (32) ausgeübten Andrückkräfte auf die Matrize (22) abstützen. Der Stützkörper (27) ist vorzugsweise hohl ausgebildet und hat die vorerwähnte bevorzugte Zylinder- oder Rohrform. Im Innenraum des hohlen Stützkörpers (27) wird die

Stabilisierungseinrichtung (15) aufgenommen. Diese

emittiert ein Stabilisierungsmittel (50) zum

Andrückbereich (26) und zu dem dort gerade aufgetragenem fluidischen Medium (6) . In den gezeigten

Ausführungsbeispielen wird das als Lack ausgebildete

Medium (6) ausgehärtet. Die Stabilisierungseinrichtung (15) weist hierfür eine Lichtquelle (49) auf, die z.B. als UV-Lampe ausgebildet ist. Das Stabilisierungsmittel (50) bzw. die durch Pfeile symbolisierten Lichtstrahlen

durchdringen den Mantel (28) des Stützkörpers (27), den Zwischenraum (31) mit dem Andrückmittel (32) und die

Matrize (22), die entsprechend lichtdurchlässig

ausgebildet sind.

Das in Richtung zum Untergrund (5) emittierte Licht (50) wirkt vorzugsweise auf der gesamten oder zumindest auf einem Großteil der Andrückfläche (26) und härtet das zwischen Matrize (22) und Untergrund (5) befindliche fluidische Medium (6) aus. Durch die Andrückfläche (26) ergibt sich bei der Relativbewegung in Vorschubrichtung (12) eine Einwirkdauer des Stabilisierungsmittels (50), die für eine hinreichende Stabilisierung, insbesondere Verfestigung des Mediums (6) und des Profils bzw. der Mikrostruktur (7) sorgt. Die restliche Stabilisierung, insbesondere Verfestigung bzw. Aushärtung kann nach dem

Medienauftrag an der Luft erfolgen.

Die Stabilisierungseinrichtung (15), insbesondere die Lichtquelle (49), kann in dem hohlen Stützkörper (27) angeordnet und aufgenommen sein. Sie kann dabei starr mit dem Gestell (13) verbunden sein. Sie kann aber auch an ein oder beiden Stirnenden des Stützkörpers (27) axial vorstehen. Die Stabilisierungseinrichtung (15),

insbesondere die Lichtquelle (49), weist eine

Energieversorgung (51) auf. Sie kann auch eine Entsorgung (52) für Schadstoffe haben, z.B. für das beim Aushärten entstehende Ozon. Die Entsorgung (52) kann z.B. eine Absaugung beinhalten. Die Energieversorgung (51) und die Entsorgung (52) können mit entsprechenden

Zusatzeinrichtungen am Industrieroboter (73) oder an anderer Stelle verbunden sein. Zur Steuerung der

Stabilisierungseinrichtung (15), insbesondere der

Lichtquelle (49), können verschiedene Mess- und

Steuergeräte vorhanden sein. Beispielsweise sind ein Feuchtemesser (53) , insbesondere ein Hygrometer, und ein Thermometer (54) vorhanden. Sie sind bei der in Figur 12 bis 16 dargestellten konstruktiven Ausführungsform des Applikators (2) dargestellt. Das Andrückmittel (32) kann in unterschiedlicher Weise ausgebildet sein. Es ist in dem z.B. ringförmigen

Zwischenraum (31) zwischen dem Mantel (28) des

Stützkörpers (27) und der Matrize (22) bzw. der Ringbahn (23) angeordnet. In den gezeigten Ausführungsbeispielen ist das Andrückmittel (32) als verformbares und den

Zwischenraum (31) ausfüllendes Druckmittelpolster (33) ausgebildet. Das Druckmittelpolster (33) kann in unterschiedlicher Weise ausgebildet sein. In den gezeigten Ausführungsbeispielen weist es ein fluidisches Druckmedium (35) in einer dichtenden und biegeelastischen Umhüllung (34) auf. Das Druckmedium (35) ist z.B. ein Druckgas, insbesondere Druckluft. Der Innendruck im

Druckmittelpolster (33) ist dabei signifikant höher als der Umgebungsdruck, so dass das Druckmittelpolster (33) von innen eine Andrückkraft gegen die umgebende Matrize

(22) entwickelt.

Das Druckmittelpolster (33) ist mit dem Stützkörper (27) und mit der Matrize (22) drehfest verbunden. Hierüber wird die Antriebs- und Drehbewegung des Antriebs (44) vom

Stützkörper (27) über das Druckmittelpolster (33) auf die Matrize (22) übertragen. Die drehfeste Verbindung zwischen Druckmittelpolster (33) und umgebender Matrize (22) erfolgt durch Reibung und Kraft schluss . Alternativ oder zusätzlich kann durch eine entsprechende Konturierung der Kontakt flächen auch Formschluss bestehen. Die drehfeste Verbindung wird insbesondere über die Umhüllung (34) des Druckmittelpolsters (33) geschaffen.

Wie Figur 5 und 6 in der Detaildarstellung verdeutlichen, ist die Umhüllung (34) schlauchförmig ausgebildet. Sie besteht aus einem geeigneten biegeelastischen Material, z.B. einer Kunst Stofffolie . Die Umhüllung (34) ist

außerdem zug- und dehnelastisch. Die Biegesteifigkeit und z.B. die Wandstärke der Matrize (22) bzw. der Ringbahn

(23) ist dabei höher als die Biegesteifigkeit der

Umhüllung (34) .

Die Umhüllung (34) besteht z.B. aus einem ringförmigen Zuschnitt, dessen Ränder umgeklappt und mit dem Mantel (28) des Stützkörpers (27) fest und dicht verbunden, z.B. verklebt sind. Die schlauchartige Umhüllung (34) erhält dadurch einen in der Ausgangsform zylindrischen

Hüllenmantel (36), der den Umfang der Umhüllung (34) bildet. Ferner sind Seitenwände (37) vorhanden, die eine verformungsgünstige Ausbildung haben. Sie sind z.B. in der in Figur 6 gezeigten Weise Z- oder S-förmig gebogen.

Alternativ oder zusätzlich kann eine entsprechende

Materialausbildung im Seitenwandbereich vorhanden sein.

Die Umhüllung (34) und insbesondere der Hüllenmantel (36) kann sich dadurch im Andrückbereich (26) verformen und an den formsteifen Mantel (28) des Stützkörpers (27)

annähern. Unter dem Innendruck des Druckmediums (35), z.B. Druckluft, verformt sich die Umhüllung (34) anschließend wieder nach Außen. Hierdurch ergibt sich der in Figur 6 dargestellte Arbeitsbereich (a) . Der Arbeitsbereich und die dadurch mitbestimmte Breite des flächigen

Andrückbereichs (26) in Vorschubrichtung (12) kann über die von der Handhabungseinrichtung (3) ausgeübte

Zustellung und Anpressung des Applikators (2) und der Matrize (22) an den Untergrund (5) eingestellt und ggf. gesteuert oder geregelt werden. Dies kann auch in

Abhängigkeit von der benötigten Einwirkzeit des

Stabilisierungsmittels (50), z.B. des UV-Lichts, erfolgen.

Figur 3 bis 6 verdeutlichen die Lagerung (40) des

walzenartigen Stützkörpers (27) am Gestell (13). Hierfür ist im Innenraum des hohlen Stützkörpers (27) eine

Stützkonstruktion (41) angeordnet, die mit dem Gestell (13) starr verbunden und dort abgestützt ist. An der

Stützkonstruktion (41) sind Lagerflansche (42) befestigt, die an den stirnseitigen Randbereichen des Stützkörpers (27) angeordnet sind und die außenseitig ein Lager (43), z.B. ein flaches Ringlager, tragen. Dieses ist seinerseits mit dem Stützkörper (27) verbunden. An der

Stützkonstruktion (41) kann außerdem die

Stabilisierungseinrichtung (15), insbesondere die

Lichtquelle (49) befestigt und fest oder verstellbar positioniert sein. Der vorerwähnte Antrieb (44) ist am Gestell (13)

angeordnet. Er weist einen Motor (45), z.B. einen

Elektromotor, und einen Riementrieb (46) oder ein anderes geeignetes Übertragungsmittel auf, welches das Motorritzel mit einem Treibmittel (47) am Stützkörper (27) verbindet.

Das Treibmittel (47) kann z.B. von einem Zahnkranz am Außenumfang des zumindest in diesem Bereich zylindrischen Stützkörpers (27) gebildet werden und ist bevorzugt am hinteren Randbereich des Stützkörpers (27) angeordnet.

Das Andrückmittel (32) kann in seiner expansiven

Kraftwirkung gesteuert oder auch geregelt werden. Es weist hierfür ein geeignetes Steuermittel (38) auf, welches in Figur 5 angedeutet ist. Bei der gezeigten Ausbildung des Andrückmittels (32) mit einem Druckmittelpolster (33) kann das Steuermittel (38) ein steuerbares Ventil (39) und eine Druckmedienversorgung (nicht dargestellt) umfassen.

Hierüber kann das Druckmedium (35) , insbesondere ein

Druckgas, zugeführt oder abgelassen werden. Durch Zufuhr wird der Innendruck in der gewünschten Weise erhöht. Ein fluidisches, insbesondere gasförmiges Druckmedium (35) hat dabei den Vorteil, dass im Andrückbereich (26) ein

konstanter Druck und eine hieraus entstehende konstante Andrückkraft bestehen. Falls die Matrize (22) bzw. das Prägeprofil (25) verschlissen sind, kann die Matrize (22) ausgetauscht werden. Hierfür wird z.B. Druckmedium (35) abgelassen und der Innendruck des Druckmittelpolsters (33) verringert, so dass an der vorerwähnten Wechseleinrichtung (48) die Matrize (22) abgezogen und eine neue Matrize (22) aufgezogen und aufgesteckt werden kann.

Figur 7 bis 10 verdeutlichen den Medienauftrag in mehreren Schritten und in abgebrochenen Schnittdarstellungen. Die Auftragbahnen (8) werden exakt parallel und mit einem definierten Abstand nebeneinander auf dem Untergrund (5) platziert. Die Auftragbahnen (8) können dabei über ihre Breite beim Auftrag vollständig oder teilweise stabilisiert werden. Figur 7 bis 8 verdeutlichen außerdem den Fall, dass die Breite der Matrize (22) größer als die Breite der Auftragbahn (8) sein kann, wobei sich auch das Prägeprofil (25) nur über einen Teilbereich der

Matrizenbreite erstreckt. An einem Randbereich der Matrize

(22) kann eine Sperre (29) umlaufend angeordnet sein, die den Durchtritt des Stabilisierungsmittels (50),

insbesondere des UV-Lichts, verhindert. Auf der

gegenüberliegenden Seite kann die Matrize (22) über das Prägeprofil (25) und den Auftragbereich seitlich hinaus stehen. Im Bereich der Sperre (29) wird das fluidische Medium (6) von der Matrize (22) mitgenommen und auf dem Untergrund aufgetragen, wobei es aber beim Auftrag nicht stabilisiert wird. Es entsteht hierdurch der in den

Zeichnungen dargestellte unverfest igte Bereich (10), der auch als Nassbereich bezeichnet wird. In den anderen Bereichen kann das aufgetragene fluidische Medium (6) stabilisiert und insbesondere ausgehärtet werden, wobei hier der in den Zeichnungen dargestellte verfestigte Strukturbereich (9) entsteht. Der unverfest igte Bereich (10) wird bei Applizierung der benachbarten Auftragbahn (8) stabilisiert und verfestigt bzw. ausgehärtet. Dies geschieht durch den der Sperre (29) axial

gegenüberliegenden und über das Prägeprofil (25) seitlich hinausstehendem Matrizenrand und dem dortigen Durchtritt des Stabilisierungsmittels (50) . Zugleich wird bei der nächsten Auftragbahn (8) wieder ein unverfest igter Bereich (10) gebildet. Bei der nachträglichen Verfestigung geht dieser Bereich (10) eine innige Verbindung mit den anderen zuvor verfestigten Strukturbereichen (9) ein. Die

aneinander grenzenden Randbereiche der Auftragbahnen (8) sind in Figur 7 bis 10 als Erhebungen ausgebildet.

Alternativ können hier Vertiefungen sein. Figur 11 zeigt eine Variante der Applikationseinrichtung (1) . Hier sind zwei oder mehr Applikatoren (2) in

Vorschubrichtung mit Versatz nebeneinander und hintereinander angeordnet. Sie befinden sich an einem gemeinsamen Halter (75) , der mit der

Handhabungseinrichtung (3) , insbesondere dem

Industrieroboter (73) durch einen Anschluss (18) verbunden ist. Der Halter (75) weist zwei oder mehr Halterarme (76) auf, die an den Enden mittels gelenkiger Anschlüsse oder dergleichen mit den Anschlüssen (18) der Applikatoren (2) verbunden sind. Die Relativstellung der Applikatoren (2) kann durch eine Stelleinrichtung (77) am Halter (75) verändert werden. Hierdurch können Neigung und ggf. auch Abstand der Halterarme (76) gezielt eingestellt und bedarfsweise verändert werden.

In Figur 12 bis 16 ist eine konstruktive Ausführungsform des Applikators (2) dargestellt. Dieser ist entsprechend der vorbeschriebenen Ausführungsbeispiele von Figur 2 bis 6 ausgebildet. In den konstruktiven Ausführungsformen sind zusätzlich die Zuführeinrichtung (16) und die

Reinigungseinrichtung (17) ersichtlich.

Die Zuführeinrichtung (16) ist mit einer externen

Medienversorgung (nicht dargestellt) verbunden oder kann einen mitgeführten Vorratsbehälter aufweisen. Sie besitzt eine Dosiereinrichtung (55) für den Medienauftrag. Hierfür sind z.B. mehrere längs der Achse (30) aufgereihte

Auftragdüsen (56) vorgesehen, die gesteuert oder geregelt eine Fluidmenge abgeben. Die Fluidübertragung an die

Matrize (22) kann über eine Verteilwalze (57) erfolgen, die zwischen den Auftragdüsen (56) und der Matrize (22) angeordnet ist, und die mit einem steuerbaren oder ggf. regelbaren Antrieb (58) versehen ist, welcher seinerseits mit der vorerwähnten Steuerung, insbesondere

Robotersteuerung, verbunden sein kann. Figur 14 zeigt die Anordnung und verdeutlicht schematisch die Übergabe des fluidischen Mediums (6) an die Matrize (22) und deren Prägeprofil (25) . Die Zuführeinrichtung (16) kann ferner eine

Entsorgungseinrichtung (59) für Medienrückstände

aufweisen. Diese weist z.B. einen Schaber oder ein anderes geeignetes Abtragsmittel auf, um Medienrückstände vom Mantel der Verteilwalze (57) abzulösen und in einem

Behälter oder dergleichen aufzufangen. Die

Entsorgungseinrichtung (59) kann ferner eine Absaugung (60) oder ein anderes Mittel zum Abtransport der

Medienrückstände aufweisen. Die Entsorgungungseinrichtung (59) kann ferner einen separaten Medienbehälter aufweisen, in dem in Prozesspausen Medium (6) abgegeben werden kann, um ein vorzeitiges Aushärten im Zuführbereich zu

vermeiden . Die Reinigungseinrichtung (17) kann mehrteilig ausgebildet sein. Sie weist z.B. ein Reinigungsmittel (61) für den Untergrund (5) auf. Dieses besteht z.B. aus einer

rotierend gelagerten Büste (62), die ggf. mit einem eigenen Antrieb Steuer- oder regelbar angetrieben wird. Der Bürste (62) kann eine Entsorgung (63) zugeordnet sein, die z.B. als Absaugung für die aufgenommenen

Schmutzpartikel oder dergleichen ausgebildet ist. Das Reinigungsmittel (61) für den Untergrund kann in

Vorschubrichtung (12) vor der Matrize (22) und unterhalb der Zuführeinrichtung (16) angeordnet sein.

Die Reinigungseinrichtung (17) kann ferner ein

Reinigungsmittel (64) für die Matrize (22) aufweisen.

Dieses kann an der in Vorschubrichtung (12) hinteren

Applikatorseite angeordnet sein. Es weist z.B. eine gegen die Außenseite (24) der Matrize (22) angestellte

walzenförmige Bürste (65) auf, die ebenfalls rotierend und ggf. Steuer- oder regelbar angetrieben ist. Der Bürste (65) kann eine Entsorgung (66) für die von der Matrize (22) abgelösten Medienrückstände zugeordnet sein, die z.B. als Absaugung ausgebildet ist. Ferner kann oberhalb der Bürste (65) eine elektrostatische Rolle (67) oder eine Adhäsionsrolle angeordnet und gegen die Matrize (22) außenseitig angestellt sein, welche weitere und evtl. noch anheftende Medienpartikel abnimmt und ggf. mit der

Entsorgung (66) verbunden ist.

Die Reinigungseinrichtung (17) kann ferner ein

Reinigungsmittel (68) für die Medienzuführung (16) aufweisen. Dies kann die vorgenannte

Entsorgungseinrichtung (59) oder eine andere Einrichtung sein.

Figur 12 bis 16 verdeutlichen außerdem weitere

Bestandteile der Erfassungseinrichtung (11) . Diese weist z.B. einen Belastungssensor (69) zur Erfassung der beim Medienauftrag wirkenden Zustell- und Andrückkraft auf. Der Belastungssensor (69) kann z.B. am Anschluss (18) oder an einer anderen geeigneten Stelle, ggf. auch am

Industrieroboter (73), angeordnet sein. Er kann als

Kraft /Momentensensor ausgebildet sein. Der

Belastungssensor (69) ist mit der Steuerung, insbesondere Robotersteuerung, verbunden.

Die Erfassungseinrichtung (11) kann ferner einen

Prüfsensor (70) aufweisen, der z.B. zur Qualitätsprüfung des aufgetragenen fluidischen Mediums (6) und ggf. auch zur Qualitätsprüfung der Mikrostruktur (7) eingesetzt wird. Er kann in Vorschubrichtung (12) an der

Applikatorrückseite angeordnet sein und mit dem Gestell (13) in geeigneter Weise verbunden sein. Der Sensor (70) ist z.B. als optischer Sensor, als Näherungsensor oder in anderer geeigneter Weise ausgebildet. Die

Erfassungseinrichtung (11) kann darüber hinaus einen oder mehrere weitere Sensoren für Betriebszustände oder

dergleichen der Auftrageinrichtung (1) und ihrer

Komponenten aufweisen. In Figur 17 ist eine weitere bevorzugte Ausführungsform des Applikators 2 dargestellt. Sie stimmt weitgehend mit der ersten Variante von Figur 2 bis 16 überein und

unterscheidet sich hiervon durch die Gestaltung der

Zuführeinrichtung (16) und insbesondere der

Dosiereinrichtung (55) für das Medium (6) . Figur 17 zeigt dabei eine ähnliche perspektivische Ansicht des

Applikators (2) wie Figur 13. Die Dosiereinrichtung (55) weist bei der zweiten Variante von Figur 17 eine vorzugsweise einzelne Auftragdüse (56) auf, die mittels einer Fahrachse (80) reversierend in den Pfeilrichtungen beweglich ist. Die vorzugsweise lineare Fahrachse (80) ist entlang der Längsachse bzw.

Umlaufbewegungsachse der Matrize (22) ausgerichtet. Die Ausrichtung ist dabei auch entlang der Achse (30) des Stützkörpers (27) oder der Längsachse der Verteilwalze (57) . Die Auftragdüse (56) ist mittels eines justierbaren Düsenhalters (81) an der Fahrachse (80) befestigt. Die Fahrachse oder Linearachse (80) ist z.B. als

reversierender oder oszillierender Linearantrieb

ausgebildet. Die Fahrachse (80) ist steuerbar oder regelbar und kann z.B. einen elektromotorischen

Riementrieb oder Spindeltrieb, einen elektromagnetischen Linearantrieb, einen Zylinder oder dgl . aufweisen.

Die verfahrbare Auftragdüse (56) emittiert einen

Sprühkegel (82) auf den Mantel der Verteilwalze (57), die wie im ersten Ausführungsbeispiel von einem steuerbaren oder regelbaren Antrieb (58) rotierend bewegt wird. An den Stirnenden der Verteilwalze (57) können Abschirmbleche (83) angeordnet sein.

Die verfahrbare Auftragdüse (56) sorgt für einen

gleichmäßigen und dosierten Medienauftrag auf der

drehenden Verteilwalze (57) . Hierbei wird vorzugsweise stets nur in einer Fahrtrichtung beim Auftraghub der Fahrachse (80) ein Sprühkegel (82) emittiert, wobei die Medienemission bei der Rückfahrt im sog. Leerhub

abgeschaltet ist. Während des Leerhubs dreht die

Verteilwalze (57) weiter, so dass beim erneuten Auftraghub der Auftragdüse (56) der nächste spiralförmige

Auftragstreifen des Mediums (6) dicht an den vorherigen Auftragstreifen auf dem Walzenmantel anschließt. Die

Fahrbewegungen der Linearachse (80) sind dementsprechend an die Drehbewegungen der Verteilwalze (57) angepasst. Die Auftragstreifen können in Walzenumfangsrichtung gesehen mit dichtem Stoß oder ggf. auch mit geringfügiger

Überlappung appliziert werden. Die Verteilwalze (57) überträgt dann das fluidische Medium (6) an die Matrize (22) .

In Abwandlung der gezeigten Ausführungsformen mit der Verteilwalze (57) kann der Medienauftrag von der

stationären Reihenanordnung der Auftragdüsen (56) und/oder von der reversierend bewegten Auftragdüse (56) direkt auf die umlaufend bewegte Matrize (22) erfolgen.

In einer in Figur 18 dargestellten Variante kann die

Handhabungseinrichtung (3) zwei oder mehr am Boden

verfahrbare Träger (74) mit jeweils einem omnidirektional verfahrbaren Fördergerät (79) und einem Industrieroboter (73) aufweisen, wobei die Industrieroboter (73) einen Tragbalken (78) an beiden Enden halten und ihn in

Kooperation gemeinsam sowie in abgestimmten Bewegungen relativ zum Werkstück (4) führen. Der Applikator (2) ist dabei am Tragbalken (78) verfahrbar gelagert und ggf.

gesteuert angetrieben, wobei er eine Vorschubbewegung zum vorbeschriebenen Bahnauftrag des fluidischen Mediums (6) ausführt . Abwandlungen der gezeigten und beschriebenen

Ausführungsformen sind in verschiedener Weise möglich, insbesondere können die Merkmale der beschriebenen Ausführungsbeispiele und der genannten Abwandlungen beliebig miteinander kombiniert und ggf. auch ausgetauscht werden . In einer nicht dargestellten Variante kann der Stützkörper stationär angeordnet und am Gestell (13) gehalten sein, wobei die Matrize (22) umlaufend in der Art einer

Panzerkette um den Stützkörper umlaufend herumbewegt wird. Der Antrieb (44) kann auch direkt auf die Matrize (22) einwirken, die hierfür z.B. am Rand an geeigneten

Stützstellen ein Treibmittel (47) aufweist. Ferner kann die Stabilisierungseinrichtung (15) in oder an dem

Stützkörper (27) angeordnet sein. Ein stationärer

Stützkörper (27) kann hierfür entsprechend hohl

ausgebildet sein. Das Andrückmittel (32) ist bei

stationärem Stützkörper (27) und umlaufender Matrize in entsprechender Weise ausgebildet und kann die Roll- oder Umlaufbewegung ermöglichen. in Variation zu den gezeigten Ausführungsbeispielen kann ein Druckmedium (35) in anderer Weise ausgebildet sein, z.B. als anderes Fluid. Dies kann z.B. eine flüssige oder pastöse Konsistenz haben und z.B. aus einem Gel bestehen. Weitere Variationen sind hinsichtlich der Stabilisierung des fluidischen Mediums (6) möglich. Eine Stabilisierung, insbesondere Verfestigung oder Aushärtung kann auch auf anderem Wege, z.B. durch Wärmezufuhr, Bestrahlung,

elektrische Wechselfelder oder dergleichen erfolgen. Das Stabilierungsmittel (50) ist entsprechend ausgebildet. Auch die Durchlässigkeit des Stützkörpers (27), des

Zwischenraums (31) mit dem Andrückmittel (32) und der Matrize (22) ist dann entsprechend abgeändert und

angepasst . BEZUGSZEICHENLISTE

1 Applikationseinrichtung, Auftrageinrichtung

2 Applikator, Auftragwerkzeug

3 Handhabungseinrichtung

4 Werkstück, Verkehrsmittel

5 Untergrund, Außenhaut, Karosseriehaut

6 Medium, Lack

7 Mikrostruktur, Profil

8 Auftragbahn

9 verfestigter Strukturbereich

10 unverfestigter Bereich, Nassbereich

11 Erfassungseinrichtung

12 Prozessrichtung, Vorschubrichtung

13 Gestell

14 Auftrageinrichtung für Medium

15 Stabilisierungseinrichtung, Aushärteeinrichtung

16 Zuführeinrichtung für Medium

17 Reinigungseinrichtung

18 Anschluss Roboter

19 Gehäuse

20 Trageinrichtung

21 Tragarm, Schwenkarm

22 Matrize

23 Hülse, Ringbahn

24 Außenseite

25 Prägeprofil, Gegenprofil

26 Andrückbereich

27 Stützkörper, Walze

28 Mantel

29 Sperre, Abdeckung

30 Achse

31 Zwischenraum

32 Andrückmittel

33 Druckmittelpolster

34 Umhüllung, Schlauch

35 Druckmedium, Druckluft 36 Hüllenmantel, Schlauchmantel

37 Seitenwand

38 Steuermittel

39 Ventil

40 Lagerung

41 Stüt zkonstrukt ion

42 Lagerflansch

43 Lager, Ringlager

44 Antrieb

45 Motor

46 Riementrieb

47 Treibmittel, Zahnkranz

48 Wechseleinrichtung für Matrize

49 Lichtquelle, UV-Lampe

50 Stabilisierungsmittel , Lichtstrahl

51 Energieversorgung

52 Entsorgung, Absaugung

53 Feuchtemesser, Hygrometer

54 Thermometer

55 Dosiereinrichtung

56 Auftragdüse

57 Verteilwalze

58 Antrieb

59 Entsorgungseinrichtung Medienrückstände

60 Absaugung

61 Reinigungsmittel für Untergrund

62 Bürste

63 Entsorgung, Absaugung

64 Reinigungsmittel für Matrize

65 Bürste

66 Entsorgung, Absaugung

67 elektrostatische Rolle

68 Reinigungsmittel für Medienzuführung

69 Belastungs sensor, Kraft /Momentensensor

70 Sensor, Prüfsensor

71 Messeinrichtung, Messkamera, Lasertracker

72 Messmarke 73 Industrieroboter

74 Träger

75 Halter

76 Haltearm

77 Stelleinrichtung

78 Tragbalken

79 Fördergerät

80 Fahrachse, Linearachse

81 Düsenhalter

82 Sprühkegel

83 Abschirmb1ech

Arbeitsbereich