Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BATTERY CELL, HOUSING OF SUCH A BATTERY CELL, BATTERY HAVING A MULTIPLICITY OF SUCH BATTERY CELLS, AND METHOD FOR PRODUCING SUCH A HOUSING
Document Type and Number:
WIPO Patent Application WO/2022/101062
Kind Code:
A1
Abstract:
A housing for a battery cell, in particular in the form of a rechargeable lithium-ion cell, is proposed, having a housing body for accommodating the battery cell, which housing body is based on aluminium or the alloys thereof. In order to ensure that, in the event of thermal runaway of the battery cell, the surroundings are protected against the hot gases that are generated, and the risk of fire is reduced, in a simple and inexpensive manner without a significant increase in the weight of the battery cell, the invention provides that the housing body is surrounded on the outside, at least in certain regions, by a foil which is composed of metal or metal composite and which has a melting point of at least 1200°C and a thickness of 10 µm to 150 µm and which is gas-tight in the event of thermal runaway of the battery cell. The invention furthermore relates to method for producing such a housing, and to a battery cell equipped with such a housing, and to a battery that comprises a cell assembly composed of a multiplicity of such battery cells.

Inventors:
BERGER THOMAS (DE)
FROHBERG JENS (DE)
FANZ PATRIK (DE)
Application Number:
PCT/EP2021/080456
Publication Date:
May 19, 2022
Filing Date:
November 03, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FRAUNHOFER GES FORSCHUNG (DE)
International Classes:
B32B15/12; H01M10/052; H01M50/103; H01M50/105; H01M50/119; H01M50/124; H01M50/131; H01M50/133; H01M50/136; H01M50/211; H01M50/30
Domestic Patent References:
WO2018083052A12018-05-11
Foreign References:
DE102014005980A12014-11-06
EP3557651A22019-10-23
EP0899799A21999-03-03
EP3442052A12019-02-13
DE102017008838A12018-03-01
DE102014225462A12016-06-16
US20110210954A12011-09-01
DE102012223551A12014-06-18
DE102014201856A12015-08-06
DE102014214810A12016-02-04
DE102013200700A12014-07-24
DE102014005980A12014-11-06
Attorney, Agent or Firm:
LICHTI PATENTANWÄLTE PARTNERSCHAFT MBB (DE)
Download PDF:
Claims:
Patentansprüche Gehäuse für eine Batteriezelle (10) , insbesondere in Form einer Lithium-Ionen-Zelle, mit einem Gehäusekörper (4) auf der Basis von Aluminium oder dessen Legierungen zur Aufnahme der Batteriezelle, dadurch gekennzeichnet, dass der Gehäusekörper (4) außenseitig zumindest bereichsweise von einer Folie (1) aus Metall oder Metallverbund mit einem Schmelzpunkt von wenigstens 1200 °C und einer Dicke von 10 pm bis 150 pm umgeben ist, welche im Falle eines thermischen Durchgehens (thermal runaway) der Batteriezelle (10) gasdicht ist. Gehäuse nach Anspruch 1, dadurch gekennzeichnet, dass die Folie (1) aus Metall oder Metallverbund eine Dicke zwischen 10 pm und 125 pm, insbesondere zwischen 10 pm und 100 pm, vorzugsweise zwischen 10 pm und 75 pm, aufweist . Gehäuse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Folie (1) aus Metall oder Metallverbund aus Stahl oder Edelstahl gefertigt ist. Gehäuse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Folie (1) aus Metall oder Metallverbund

- auf den Gehäusekörper (4) auflaminiert ist; oder

- um den Gehäusekörper (4) herum gefaltet ist, wobei die einander zugewandten Randabschnitte der gefalteten Folie (1) aus Metall oder Metallverbund gasdicht miteinander verschweißt sind. Gehäuse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei dem Gehäusekörper (4) um eine flexible Gehäusefolie auf Aluminiumbasis einer Pouch-Zelle handelt, welche im Wesentlichen vollflächig von der Folie (1) aus Metall oder Metallverbund umgeben ist . Gehäuse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei dem Gehäusekörper (4) um einen formstabilen Gehäusekörper (4) auf der Basis von Aluminium oder Aluminiumschaum handelt, welcher zumindest mantelseitig und bodenseitig von der Folie (1) aus Metall oder Metallverbund umgeben ist, wobei der Gehäusekörper (4) insbesondere einen Deckel aufweist. Gehäuse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es ein zum Abführen von im Falle eines thermischen Durchgehens (thermal runaway) der Batteriezelle (10) erzeugten Gasen ausgebildetes Sicherheitsventil (11) aufweist. Batteriezelle (10) , insbesondere Lithium-Ionen-Zelle, gekennzeichnet durch ein Gehäuse nach einem der Ansprüche 1 bis 7. Batterie (20) , umfassend wenigstens einen Zellenverbund aus einer Mehrzahl an Batteriezellen (10) nach Anspruch 8. Batterie nach Anspruch 9, dadurch gekennzeichnet, dass die Batteriezellen (10) des Zellenverbundes zum Abführen von im Falle eines thermischen Durchgehens (thermal runaway) einer jeweiligen Batteriezelle (10) erzeugten Gasen ausgebildete Sicherheitsventile (11) aufweisen, wobei die Sicherheitsventile (11) der Batteriezellen (10) in eine oder mehrere Ableitung (en) (12, 13) eines

Abblassystems einmünden. Batterie nach Anspruch 10, dadurch gekennzeichnet, dass die eine oder mehreren Ableitung (en) (12, 13) des Abblassystems aus einem den Zellenverbund aufnehmenden Batteriegehäuse (21) ausmünden. Batterie nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass

- der gesamte Zellenverbund aus der Mehrzahl an Batteriezellen (10) und/oder

- Gruppen von Batteriezellen des Zellenverbundes und/ oder

- das Batteriegehäuse (21) zusätzlich zumindest bereichsweise von einer weiteren Folie aus Metall oder Metallverbund mit einem Schmelzpunkt von wenigstens 1200°C und einer Dicke von 10 pm bis 150 pm umgeben ist. Verfahren zur Herstellung eines Gehäuses für eine Batteriezelle (10) , insbesondere in Form einer Lithium- lonen-Zelle, mit einem Gehäusekörper (4) auf der Basis von Aluminium oder dessen Legierungen zur Aufnahme der Batteriezelle (10) , dadurch gekennzeichnet, dass auf den Gehäusekörper (4) außenseitig zumindest bereichsweise eine Folie (1) aus Metall oder Metallverbund mit einem Schmelzpunkt von wenigstens 1200°C und einer Dicke von 10 pm bis 150 pm aufgebracht wird, welche im Falle eines thermischen Durchgehens (thermal runaway) der Batteriezelle gasdicht ist. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass eine Folie (1) aus Metall oder Metallverbund mit einer Dicke zwischen 10 pm und 125 pm, insbesondere zwischen 10 pm und 100 pm, vorzugsweise zwischen 10 pm und 75 pm, verwendet wird, welche insbesondere aus Stahl oder Edelstahl gefertigt ist. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Folie (1) aus Metall oder Metallverbund auf einen flächigen Rohling des Gehäusekörpers (4) auflaminiert wird, wonach der mit der auf laminierten Folie (1) aus Metall oder Metallverbund versehene flächige Rohling des Gehäusekörpers (4) zu dem Gehäuse geformt wird. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass

- die Folie (1) aus Metall oder Metallverbund zu einem der Bodenfläche des Gehäusekörpers (4) entsprechenden Folienabschnitt (lb) und zu einem der Mantelfläche des Gehäusekörpers (4) entsprechenden Folienabschnitt

(la) vorgeformt wird,

- wonach der der Bodenfläche des Gehäusekörpers (4) entsprechende Folienabschnitt (lb) und/oder der der Mantelfläche des Gehäusekörpers (4) entsprechende Folienabschnitt (la) in ein Fließpresswerkzeug eingelegt wird bzw. werden,

- wonach ein Rohling des Gehäusekörpers (4) mittels eines Stempels in das mit dem der Bodenfläche des Gehäusekörpers (4) entsprechenden Folienabschnitt

(lb) und/oder mit dem der Mantelfläche des Gehäuse-

28 körpers (4) entsprechenden Folienabschnitt (la) bestückte Fließpresswerkzeug eingeformt wird, wobei die einander zugewandten Randabschnitte des der Bodenfläche des Gehäusekörpers (4) entsprechenden Folienabschnittes (lb) und des der Mantelfläche des Gehäusekörpers (4) entsprechenden Folienabschnittes (la) vor dem Einlegen derselben in das Fließpresswerkzeug oder nach dem Fließpressen des Gehäusekörpers (4) gasdicht miteinander verschweißt werden. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Folie (1) aus Metall oder Metallverbund zumindest gemäß der Boden- und der Mantelfläche des Gehäusekörpers (4) gefaltet wird, wonach die einander zugewandten Randabschnitte der gefalteten Folie (1) aus Metall oder Metallverbund gasdicht miteinander verschweißt werden. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass der Gehäusekörper (4) als formstabiler Gehäusekörper (4) auf der Basis von Aluminium oder Aluminiumschaum erzeugt und mit einem Deckel verschlossen wird, welcher insbesondere mit einem zum Abführen von im Falle eines thermischen Durchgehens (thermal runaway) der Batteriezelle (10) erzeugten Gasen ausgebildeten Sicherheitsventil (11) versehen wird.

29

Description:
Batteriezelle, Gehäuse einer solchen Batteriezelle, Batterie mit einer Mehrzahl an solchen Batteriezellen und Verfahren zur Herstellung eines solchen Gehäuses

Die Erfindung betrifft ein Gehäuse für eine Batteriezelle, insbesondere in Form einer Lithium-Ionen-Zelle, mit einem Gehäusekörper auf der Basis von Aluminium oder dessen Legierungen zur Aufnahme der Batteriezelle . Ferner betrifft die Erfindung eine Batteriezelle, insbesondere Lithium- Ionen-Zelle, mit einem Gehäusekörper auf der Basis von Aluminium oder dessen Legierungen, welcher die Batteriezelle aufnimmt . Des Weiteren bezieht sich die Erfindung auf ein Verfahren zur Herstellung eines Gehäuses für eine Batteriezelle, insbesondere in Form einer Lithium-Ionen-Zelle, mit einem Gehäusekörper auf der Basis von Aluminium oder dessen Legierungen zur Aufnahme der Batteriezelle, sowie auf eine Batterie, welche wenigstens einen Zellenverbund aus einer Mehrzahl an Batteriezellen der vorgenannten Art umfasst .

Batteriezellen der vorstehend genannten Art sind insbesondere in Form von wiederaufladbaren Akkumulatorzellen in verschiedenen Ausgestaltungen bekannt und gelangen zur Speicherung von elektrischer Energie in einer Vielzahl von Anwendungsgebieten zum Einsatz . Zu diesem Zweck haben sich vornehmlich wiederaufladbare Lithium-Ionen-Zellen bewährt , welche sich durch eine hohe Energiespeicherdichte und folglich auch durch eine hohe volumetrische Energiedichte und ein vergleichsweise geringes Gewicht sowie durch eine hohe Zyklenstabilität und eine geringe Selbstentladung auszeichnen . Derartige Batteriezellen umfassen ein Gehäuse auf der Basis von Aluminium oder dessen Legierungen, welches die eigentliche Batteriezelle aufnimmt , die üblicherweise zwei Elektroden in Form einer Kathode und einer Anode umfasst , welche in dem Gehäusekörper mit einem Elektrolyt in elek- trisch leitender Verbindung stehen und in der Regel mittels eines Separators vor einem direkten Kontakt miteinander geschützt sind . Dabei kann je nach Anwendungsfall insbesondere eine Mehrzahl solcher Batteriezellen elektrisch in Reihe und/oder parallel zu einem Zellenverbund zusammengeschaltet und in einem gemeinsamen Außengehäuse untergebracht sein .

Während als Elektrodenmaterialien gattungsgemäßer Batteriezellen beispielsweise Nickel, Kobalt etc . einschließlich deren Legierungen für die Anode sowie beispielsweise Graphit für die Anode zum Einsatz gelangen, ist das Gehäuse häufig aus Aluminium oder dessen Legierungen gefertigt , bei welchen z . B . Magnesium, Silicium, Mangan, Kupfer, Zinn und Zink Verwendung finden können, wobei Aluminium nicht nur kostengünstig ist , sondern eine Vielzahl an vorteilhaften Eigenschaften aufweist . So besitzt Aluminium eine vergleichsweise geringe spezifische Dichte von nur etwa 2 , 7 g/cm 3 , was in einem geringen Gewicht des Gehäuses und somit der gesamte Batteriezelle resultiert , wie es insbesondere für die Anwendung solcher Batteriezellen in der Elektromobilität wünschenswert ist . Darüber hinaus weist Aluminium eine hohe spezifische elektrische Leitfähigkeit und erweist sich gegenüber den chemischen Bedingungen einer Batteriezelle als hoch korrosionsbeständig, wobei das aus Aluminium oder dessen Legierungen gefertigte Gehäuse insbesondere elektrisch leitend mit der Kathode in Verbindung stehen kann, um es auf dem elektrischen Potenzial der Kathode zu halten . Schließlich erweisen sich Aluminium und dessen Legierungen als sehr gut (um) formbar, so dass das Gehäuse mit einem hohen Aspektverhältnis und dünnen Wandstärken z . B . einfach und schnell in einem einzigen Fertigungsschritt erzeugt werden kann, wie beispielsweise mittels Fließpressverfahren, wie dem Rückwärtsfließpressen oder dergleichen . Aufgrund dieser Eigenschaften reicht der Anwendungsbereich von Batteriezellen, insbesondere in Form von wiederaufladbaren Lithium-Ionen-Zellen, von Notebooks , Laptops , Kameras sowie anderen elektrischen und/oder elektronischen Geräten bis hin zur Anwendung als Energiespeicher in der Elektromobilität , wie z . B . für den Antrieb von Hybrid- oder reinen Elektrofahrzeugen, E-Bikes und dergleichen . Wie bereits erwähnt , können die hierbei zum Einsatz kommenden Batterien aus einzelnen oder insbesondere aus einer Mehrzahl an gattungsgemäßen Batteriezellen gebildet sein, welche seriell und/oder parallel zu einem oder mehreren Zellenverbunden zusammengeschaltet sind .

Das Gehäuse von Batteriezellen kann hierbei im Übrigen einerseits im Wesentlichen massiv bzw . formstabil sein, um die Batteriezelle vor äußeren Einwirkungen zu schützen und insbesondere die mechanische Stabilität der Batteriezelle sicherzustellen, um unterschiedlichen mechanischen Belastungen, wie Stößen, Vibrationen und Beschleunigungskräften, standzuhalten, ohne dass sich das Gehäuse über die Lebensdauer der Batteriezelle in einem kritischen Maße verformt . Batteriezellen mit solchem formstabilen Gehäuse kommen daher insbesondere im Bereich der Elektromobilität zum Einsatz . Andererseits kann das Gehäuse von Batteriezellen eine nachgiebig flexible Gehäusefolie auf Aluminiumbasis umfassen, welche unter Bildung des Gehäuses im Wesentlichen zu einem Beutel verschweißt ist . Derartige Batteriezellen werden auch als "Pouch-Zellen" bezeichnet und finden z . B . in elektrischen und/oder elektronischen Geräten Verwendung .

Als problematisch erweist es sich bei gattungsgemäßen Batteriezellen indes , wenn die Batteriezelle beschädigt wird und es insbesondere zu einem zellinternen Kurzschluss von Anode und Kathode kommt . Dies kann beispielsweise der Fall sein, wenn ein elektrisch leitender Fremdkörper das Gehäuse durchdringt und in die Batteriezelle eindringt oder das Gehäusestark verformt wird, z . B . anlässlich eines Unfalls eines mit einem Zellenverbund aus einer Mehrzahl an Batteriezellen ausgestatteten Fahrzeugs , wenn der die Kathode von der Anode elektrisch isolierende Separator beschädigt wird, z . B . aufgrund mechanischer Einwirkungen oder Schmelzen infolge einer Überhitzung, oder wenn es infolge chemischer Prozesse in der Batteriezelle zu einer Kurzschlussbildung kommt . In den allermeisten Fällen sind diese Prozesse selbstverstärkend, wobei zusätzlich zu der in der Batteriezelle gespeicherten elektrischen Energie, welche in Wärme umgesetzt wird, selbstverstärkende chemische Prozesse einsetzen, welche ihrerseits kurzfristig erhebliche Wärmemengen generieren . Solche Prozessketten werden auch als "thermisches Durchgehen" ("thermal runaway" , TR) bezeichnet , wobei neben einer sehr großen, sehr schnell freigesetzten Wärmemenge erhebliche Mengen an gesundheitsschädlichen Gasen und Dämpfen erzeugt werden . Mit zunehmend nickelreicheren Elektrodenmaterialien, welche zudem zunehmend kompakt in dem zur Verfügung stehenden Aufnahmevolumen des Gehäuses verpackt sind, steigt die Reaktionsgeschwindigkeit im Falle eines solchen thermischen Durchgehens weiter an . Die Reaktionszeit für das thermische Durchgehen kann sich von wenigen Sekunden auf Bruchteile von Sekunden reduzieren, so dass die freigesetzte Wärme innerhalb dieses kurzen Zeitraums nicht abgeleitet werden kann . Dies führt häufig zu einer Erhitzung des Elektrodenstapels bis zur Rotglut , wobei das Gehäuse auf der Basis von Aluminium oder dessen Legierungen, welche einen Schmelzbereich bis maximal etwa 660 ° C aufweisen, praktisch vollständig aufschmelzen kann . Entsprechendes gilt für hochenergetische Pouch-Zellen der vorgenannten Art . Flüssiges Metall, heiße Gase und Bestandteile des Elektrodenstapels werden im Falle eines thermi- sehen Durchgehens folglich unkontrolliert freigesetzt und im Falle einer Batterie mit einem Zellenverbund aus einer Mehrzahl an Batteriezellen an benachbarte Batteriezellen entlassen, was zumeist zu Ereignissen führt , welche weitere Batteriezellen oder den gesamten Zellenverbund in einen "thermal runaway" treiben . Diese Kettenreaktion kann zur völligen Zerstörung eines gesamten Zellenverbundes sowie zu einer erheblichen Gefährdung von Menschen und in der Umgebung befindlichen Gegenständen führen, zumal sich infolge des verdampfenden Elektrolyts ein Überdruck in dem Gehäuse der Batteriezelle oder des Zellenverbundes aus mehreren Batteriezellen bildet .

Während den Bedingungen eines thermischen Durchgehens bislang nur Batteriezellengehäuse aus Stahl standzuhalten vermögen, finden aus den weiter oben genannten Gründen in der Praxis nahezu ausschließlich Batteriezellengehäuse auf der Basis von Aluminium ( legierungen) Verwendung . Um die während eines thermischen Durchgehens erzeugten heißen Gase und Dämpfe, welche auch Elektrodenbestandteile und schmelzflüssiges Metall aus der Batteriezelle mit sich schleppen können, kontrolliert aus der Batteriezelle zu entlassen, kommen Entlastungssysteme zum Einsatz , welche eine an dem Gehäuse angeordnete Berst scheibe, ein Überdruckventil oder dergleichen umfassen, an welche ( s ) sich außenseitig der Batteriezelle eine Ableitung anschließt und welche ( s ) beim thermischen Durchgehen der Batteriezelle für eine schnelle Abführung der heißen Gase und Dämpfe aus der Batteriezelle über die Ableitung dienen soll . Allerdings vermag auch dies in den meisten Fällen ein zumindest teilweises Versagen des Gehäuses nicht zu verhindern, so dass die Heißgase auch in die unmittelbare Umgebung der Batteriezelle sowie insbesondere an benachbarte Batteriezellen eines Zellenverbundes abgeführt werden, welche dann ihrerseits ein thermisches Durchgehen erleiden und es zu der vorbeschriebenen Kettenreaktion und dem hiermit einhergehenden Gefährdungspotenzial kommt , infolgedessen z . B . ein mit einem solchen Zellenverbund aus einer Mehrzahl an Batteriezellen ausgestattetes (Elektro) fahrzeug innerhalb von nur weniger Sekunden in Brand geraten kann . In Bezug auf in Form von Pouch-Zellen ausgestalteter Batteriezellen ist gegenwärtig noch gar keine Maßnahme bekannt , um das unkontrollierte Entlassen von heißen Gasen, Dämpfen und geschmolzenen Zellbestandteilen im Falle eines thermischen Durchgehens zu verhindern .

Die DE 10 2012 223 551 Al beschreibt ein formstabiles Gehäuse für eine Batteriezelle, insbesondere in Form einer Lithium-Ionen-Zelle, bei welchem ein unkontrolliertes thermisches Durchgehen der Batteriezelle durch einen laminatförmigen Aufbau des Gehäuses mit mehreren Schichten verhindert werden soll . Das Gehäuse der Batteriezelle umfasst hierbei eine erste, zweite und dritte Materialschicht , wobei die erste und zweite Materialschicht aus einem metallischen Werkstoff , insbesondere auf der Basis von Aluminium, Kupfer oder Edelstahl, gebildet sind und zwischen sich die dritte Materialschicht aus einem elektrisch isolierenden Material, insbesondere in Form eine keramischen Werkstoffes , aufnehmen . Allerdings erweist sich ein solcher laminatförmiger Aufbau aus mindestens drei Materialschichten insbesondere in herstellungstechnischer Hinsicht als aufwändig und teuer . Zudem erweist sich die keramische Zwischenschicht gegenüber mechanischen Belastungen, wie Stößen und Vibrationen, welchen sie insbesondere im Falle eines Einsatzes in Fahrzeugen fortwährend ausgesetzt ist , als nur bedingt widerstandsfähig .

Der DE 10 2014 201 856 Al ist ein Gehäuse für eine Batteriezelle zu entnehmen, welches einen Gehäusekörper aus Aluminium oder Aluminiumlegierungen sowie ein diesen umge- bendes Sondergehäuse aus einem elektrisch isolierenden Material, insbesondere in Form eines Hot-Melt-Kunst stof fes , umfasst . Während das elektrisch isolierende Sondergehäuse dazu dient , für die übliche Zusammenschaltung von Batteriezellen zu einem Zellenverbund keine weiteren I solationsmaßnahmen vornehmen zu müssen, ist der Gehäusekörper zur Verhinderung eines thermischen Durchgehens der Batteriezelle mit einem Sicherheitsventil ausgestattet , welches mit einem Anschlussterminal in Verbindung steht , um beim thermischen Durchgehen erzeugte Gase aus der Batteriezelle ableiten zu können . Wie bereits oben angedeutet , vermag dies allein ein thermisches Durchgehen der Batteriezelle jedoch nicht zu verhindern, da nach wie vor die Gefahr besteht , dass der Gehäusekörper auf Aluminiumbasis zumindest bereichsweise schmilzt und Heißgase unkontrolliert an benachbarte Batteriezellen eines Zellenverbundes gelangen können, wogegen auch das aus Kunststoffen gefertigte Sondergehäuse, welches den Gehäusekörper umgibt , keinen Schutz zu bieten vermag .

DE 10 2014 214 810 Al offenbart ein weiteres formstabiles Gehäuse einer Batteriezelle mit einem laminat förmigen Aufbau aus einer Mehrzahl an Schichten, welche mehrere Verbundschichten sowie mindestens eine Diffusionssperrschicht und mindestens eine Verstärkungsschicht umfassen . Während die Verbundschichten einen Kunststoff in Form eines Thermoplasten oder eines Duroplasten umfassen, besteht die Diffusionssperrschicht aus metallischen Materialien, insbesondere aus Aluminium, Mangan, Chrom oder Wolfram . Die Verstärkungsschicht des Gehäuses ist aus Papier oder Pappe gefertigt und mit einem aushärtbaren Vergussmaterial, wie z . B . Harzen, Silikonen oder Klebstoffen getränkt . Das Batteriegehäuse bietet jedoch keinerlei Schutz vor einem thermischen Durchgehen und erweist sich hinsichtlich seines vielschichtigen Aufbaus als relativ aufwändig und teuer . Aus der DE 10 2013 200 700 Al ist ein Gehäuse für eine Batteriezelle bekannt , welches aus einem Aluminiumschaum besteht und zumindest außenseitig mit einer I solierung versehen ist , um für die erforderliche Gas- und Flüssigkeitsdichtigkeit des Aluminiumschaumes zu sorgen . Die I solierung kann in Form eines auf den Aluminiumschaum aufgebrachten Paneels , eines Lackes oder eines Kunststofffolie ausgestaltet sein, bietet jedoch keinerlei Schutz gegen ein thermisches Durchgehen der Batteriezelle .

Schließlich beschreibt die DE 10 2014 005 980 Al eine Batterie und ein zugehöriges Batteriegehäuse, welches zur Aufnahme von herkömmlichen Batteriezellen der Batterie dient , welche insbesondere zu einem Zellenverbunde zusammengeschaltet sind . Das Batteriegehäuse weist eine Wandung auf der Basis von Aluminium auf und ist mit einer vollständigen oder teilweisen Umhüllung und/oder Auskleidung aus Stahl, insbesondere mit einer Dicke zwischen 0 , 1 mm und 5 mm, versehen, um ein thermisches Durchgehen der Batterie zu verhindern . Indes kommt es auch hier im Falle einer Beschädigung und eines hiermit einhergehenden thermischen Durchgehens einer der Batteriezellen der Batterie zu einer Kettenreaktion, in deren Folge die Gefahr besteht , dass der gesamte Zellenverbund der Batteriezellen eine solchen "thermal runaway" erleidet , wobei es äußerst fraglich erscheint , ob das Batteriegehäuse einer solchen thermischen, chemischen und mechanischen Belastung standzuhalten vermag .

Der Erfindung liegt die Aufgabe zugrunde, eine Batteriezelle, ein Gehäuse einer solchen Batteriezelle sowie eine wenigstens einen Zellenverbund aus einer Mehrzahl an solchen Batteriezellen umfassende Batterie der eingangs genannten Art unter zumindest weitestgehender Vermeidung der vorgenannten Nachteile auf einfache und kostengünstige Weise dahingehend weiterzubilden, dass die Auswirkungen eines thermischen Durchgehens ("thermal runaway" ) vermindert werden und insbesondere verhindert werden kann, dass im Falle eines thermischen Durchgehens der Batteriezelle benachbarte Batteriezellen eines Zellenverbundes der Batterie in Mitleidenschaft gezogen werden und ihrerseits ein thermisches Durchgehen erleiden . Sie ist ferner auf ein Verfahren zur Herstellung eines solchen Gehäuses für eine Batteriezelle gerichtet , welches insbesondere eine einfache und kostengünstige Serienfertigung gewährleistet .

Der erste Teil dieser Aufgabe wird bei einer Batteriezelle der eingangs genannten Art bzw . bei einem Gehäuse einer solchen Batteriezelle erfindungsgemäß dadurch gelöst , dass der Gehäusekörper außenseitig zumindest bereichsweise von einer Folie aus Metall oder Metallverbund mit einem Schmelzpunkt von wenigstens 1200 ° C und einer Dicke von 10 pm bis 150 pm umgeben ist , welche im Falle eines thermischen Durchgehens (thermal runaway) der Batteriezelle gasdicht ist .

Zur Lösung dieser Aufgabe sieht die Erfindung darüber hinaus eine Batterie vor, welche wenigstens einen Zellenverbund aus einer Mehrzahl an solchen Batteriezellen umfasst .

In verfahrenstechnischer Hinsicht sieht die Erfindung zur Lösung dieser Aufgabe bei einem Verfahren zur Herstellung eines Gehäuses für eine Batteriezelle der eingangs genannten Art ferner vor, dass auf den Gehäusekörper außenseitig zumindest bereichsweise eine Folie aus Metall oder Metallverbund mit einem Schmelzpunkt von wenigstens 1200 ° C und einer Dicke von 10 pm bis 150 pm aufgebracht wird, welche im Falle eines thermischen Durchgehens (thermal runaway) der Batteriezelle gasdicht ist .

Überraschenderweise wurde gefunden, dass bereits eine sehr dünne Folie aus Metall oder Metallverbund mit einem Schmelzpunkt von wenigstens 1200 ° C und einer Dicke von nur etwa 10 pm bis etwa 150 pm, welche außenseitig auf den Gehäusekörper der Batteriezelle auf Aluminiumbasis aufgebracht ist , einem thermischen Durchgehen der Batteriezelle selbst dann standzuhalten vermag, wenn der Gehäusekörper aufschmilzt , indem aus dem Gehäusekörper unkontrolliert entweichende heiße Gase und Dämpfe, schmelzflüssiges Metall des Gehäusekörpers selbst und/oder Bestandteile des Elektrodenstapels von der Folie zurückgehalten werden, so dass insbesondere im Falle einer Batterie mit einem Zellenverbund aus mehreren derartiger Batteriezellen benachbarte Batteriezellen nicht ihrerseits thermisch durchgehen und insbesondere die Möglichkeit besteht , die entweichenden Komponenten kontrolliert abführen zu können, wie es weiter unten im Einzelnen beschrieben ist . Die erfindungsgemäße dünne Folie aus Metall oder Metallverbund vermag dabei der hohen thermischen und/oder chemischen Beanspruchung, welche zwar mehr oder minder spontan, aber über einen relativ kurzen Zeitraum auf das Gehäuse der Batteriezelle einwirkt , im Falle eines thermischen Durchgehens der Batteriezelle standzuhalten, so dass eine Kontamination der Umgebung folglich weitestgehend vermieden und die Gefahr eines Brandes einer mit der erfindungsgemäßen Batteriezelle oder mit einem Zellenverbund bzw . -stapel mit einer Mehrzahl an solchen Batteriezellen versehenen Batterie erheblich vermindert wird . Das erfindungsgemäße Gehäuse der Batteriezelle, welches lediglich aus dem Gehäusekörper auf Aluminiumbasis und der ihn außenseitig umgebenden Folie aus Metall oder Metallverbund aufgebaut sein kann, erweist sich hierbei nicht nur als äußerst einfach und kostengünstig gegenüber den laminatart igen Ausgestaltungen der Gehäuse gemäß dem eingangs beschriebenen Stand der Technik, sondern besitzt ein sehr geringes Gewicht , welches durch die erf indungsge- mäße Folie aus Metall oder Metallverbund geringer Dicke praktisch nicht erhöht wird, so dass sich erfindungsgemäße Batteriezellen bzw . hiermit ausgestattete Batterien in besonderem Maße - wenngleich freilich nicht ausschließlich - zum Einsatz in der Elektromobilität anbietet , wo das Gesamtgewicht des Fahrzeugs aus ökonomischen sowie aus Umweltgründen möglichst gering gehalten werden sollte .

Gemäß einer vorteilhaften Ausgestaltung kann vorgesehen sein, dass die Folie aus Metall oder Metallverbund eine Dicke zwischen etwa 10 pm und etwa 125 pm, insbesondere zwischen etwa 10 pm und 100 pm, vorzugsweise zwischen etwa 10 pm und etwa 75 pm, beispielsweise zwischen etwa 10 pm und etwa 60 pm, aufweist . In verfahrenstechnischer Hinsicht kann in diesem Zusammenhang demnach vorzugsweise vorgesehen sein, dass eine Folie aus Metall oder Metallverbund mit einer Dicke zwischen etwa 10 pm und etwa 125 pm, insbesondere zwischen etwa 10 pm und 100 pm, vorzugsweise zwischen etwa 10 pm und etwa 75 pm, beispielsweise zwischen etwa 10 pm und etwa 60 pm, verwendet wird .

Die Folie aus Metall oder Metallverbund kann grundsätzlich aus beliebigen Metall- oder Metallverbundwerkstoffen gefertigt sein, welche einen hinreichenden Schmelzpunkt von wenigstens etwa 1200 ° C besitzen . In vorteilhafter Ausgestaltung können solche Metall- oder Metallverbundwerkstoffe eine Dichte von wenigstens etwa 5 g/cm 3 , insbesondere von wenigstens etwa 6 g/cm 3 , vorzugsweise von wenigstens etwa 7 g/cm 3 und höchst vorzugsweise von wenigstens etwa 7 , 5 g/cm 3 , aufweisen . In weiterhin vorteilhafter Ausgestaltung kann die Folie aus Metall oder Metallverbund von einer Metallfolie aus Stahl oder Edelstahl gebildet sein, welche z . B . Legierungselemente in Form von Nickel, Zink, Titan, Chrom, Molybdän, Wolfram und dergleichen enthalten kann . Stattdessen kann die Folie aus Metall oder Metallverbund z . B . auch von einer Metallverbundfolie gebildet sein, wie beispielsweise in Form einer Metallfaser-Verbundfolie, bei welcher die Metallkomponente in Faserform in eine hochtemperaturfeste Kunststoffmatrix eingebettet ist .

Gemäß einer Ausführungsvariante des erfindungsgemäßen Gehäuses der Batteriezelle kann vorgesehen sein, dass die Folie aus Metall oder Metallverbund auf den Gehäusekörper auflaminiert ist . Dies bietet insbesondere den Vorteil, dass der Gehäusekörper mit der Folie aus Metall oder Metallverbund im Wesentlichen vollflächig fest verbunden ist , womit die elektrische und auch die thermische Leitfähigkeit ( z . B . zwecks einer Kühlung der Batteriezelle während ihres Betriebs ) zwischen den vorgenannten Gehäusekomponenten optimiert wird .

In verfahrenstechnischer Hinsicht kann in diesem Zusammenhang vorgesehen sein, dass die Folie aus Metall oder Metallverbund auf einen flächigen Rohling des Gehäusekörpers auflaminiert wird, wonach der mit der auf laminierten Folie aus Metall oder Metallverbund versehene flächige Rohling des Gehäusekörpers zu dem Gehäuse geformt wird . Für das Auf laminieren der Folie aus Metall oder Metallverbund auf den Gehäusekörper können grundsätzlich beliebige, als solche aus dem Stand der Technik bekannte Techniken zum Einsatz gelangen, wie beispielsweise Heiß- oder Kaltlaminierungsprozesse, wobei z . B . ein einseitig an der Folie aus Metall oder Metallverbund angebrachter Klebstoff oder ein aushärtbares Harz eine Stoff schlüssige Verbindung zwischen dem Gehäusekörper und der Folie aus Metall oder Metallverbund zu erzeugen vermag . Darüber hinaus kann die Folie aus Metall oder Metallverbund beispielsweise mittels Walzplattierens , galvanischen Beschichtens , Flammspritzen oder dergleichen auf den flächigen Rohling des Gehäusekörpers auflaminiert werden . Der mit der auf laminierten Folie aus Me- tall oder Metallverbund versehene Rohling des Gehäusekörpers kann sodann, z . B . durch Tiefziehen, zu dem Gehäuse umgeformt werden .

Darüber hinaus kann in verfahrenstechnischer Hinsicht in diesem Zusammenhang vorgesehen sein, dass die Folie aus Metall oder Metallverbund zunächst zu einem der Bodenfläche des Gehäusekörpers entsprechenden Folienabschnitt und zu einem der Mantelfläche des Gehäusekörpers entsprechenden Folienabschnitt vorgeformt wird, wobei die Folienabschnitte z . B . durch Schneiden, Stanzen, Laserschneiden, Wasserstrahlschneiden oder dergleichen zugeschnitten und insbesondere der der Mantelfläche des Gehäusekörpers entsprechende Folienabschnitt gemäß der Mantelfläche vorgefaltet und zu einem Hohlkörper verschweißt wird . Alternativ ist es beispielsweise auch denkbar, dass der der Mantelfläche des Gehäusekörpers entsprechende Folienabschnitt aus einem Endlosschlauch der Folie aus Metall oder Metallverbund erzeugt wird, indem der Endlosschlauch zu dem jeweiligen Folienabschnitt abgelängt und entsprechend der Mantelfläche des Gehäusekörpers vorgefaltet wird . Sodann wird bzw . werden der der Bodenfläche des Gehäusekörpers entsprechende Folienabschnitt und/oder der der Mantelfläche des Gehäusekörpers entsprechende Folienabschnitt in ein Fließpresswerkzeug eingelegt , wonach ein Rohling des Gehäusekörpers auf der Basis von Aluminium oder dessen Legierungen mittels eines Stempels in das mit dem der Bodenfläche des Gehäusekörpers entsprechenden Folienabschnitt und/oder mit dem der Mantelfläche des Gehäusekörpers entsprechenden Folienabschnitt bestückte Fließpresswerkzeug eingeformt wird . Hierbei bei einem solchen Fließpressverfahren, welches vorzugsweise in Form des Rückwärt s-Fließpressens zur Anwendung gelangen kann, kommt es zu einer im Wesentlichen vollflächigen und festen Verbindung des Gehäusekörpers mit der Folie aus Me- tall oder Metallverbund unter Bildung des erfindungsgemäßen Gehäuses . Schließlich können die einander zugewandten Randabschnitte des der Bodenfläche des Gehäusekörpers entsprechenden Folienabschnittes und des der Mantelfläche des Gehäusekörpers entsprechenden Folienabschnittes vor dem Einlegen derselben in das Fließpresswerkzeug oder nach dem Fließpressen des Gehäusekörpers gasdicht miteinander verschweißt werden .

Als in verfahrenstechnischer Hinsicht einfach und günstig hat es sich hierbei insbesondere bewährt , wenn nur der der Mantelfläche des Gehäusekörpers entsprechende Folienabschnitt in das Fließpresswerkzeug eingelegt wird, wonach der Rohling des Gehäusekörpers mittels des Stempels in das mit dem der Mantelfläche des Gehäusekörpers entsprechenden Folienabschnitt bestückte Fließpresswerkzeug eingeformt wird . Sodann kann der der Bodenfläche des Gehäusekörpers entsprechende Folienabschnitt auf den Boden des Gehäusekörpers aufgelegt oder vorzugsweise auch, z . B . in der weiter oben beschriebenen Weise, auflaminiert werden, wonach die einander zugewandten Randabschnitte des der Bodenfläche des Gehäusekörpers entsprechenden Folienabschnittes und des der Mantelfläche des Gehäusekörpers entsprechenden Folienabschnittes - also nach dem Fließpressen des Gehäusekörpers - gasdicht miteinander verschweißt werden .

Für das Verschweißen der einander zugewandten Randabschnitte der Folienabschnitte für den Boden und die Mantelfläche des Gehäusekörpers kommen beliebige, als solche aus dem Stand der Technik bekannte Techniken in Betracht , wie beispielsweise Laserschweißen oder -löten, Widerstandsschweißen, Ultraschallschweißen, Wolf ram-Inertgasschweißen (WIG) , Metallschutzgasschweißen (MSG) , wie z . B . Metallschweißen mit inerten Gasen (MIG) oder Metallschweißen mit aktiven bzw . reaktionsfähigen Gasen (MAG) , und dergleichen . Anstelle einer Auf laminierung der Folie aus Metall oder Metallverbund auf den Gehäusekörper eines erfindungsgemäßen Gehäuses der Batteriezelle kann ferner vorgesehen sein, dass die Folie aus Metall oder Metallverbund um den Gehäusekörper herum gefaltet ist , wobei die einander zugewandten Randabschnitte der gefalteten Folie aus Metall oder Metallverbund gasdicht miteinander verschweißt sind . Der vorgefertigte Gehäusekörper der Batteriezelle ist in diesem Fall von der um ihn herumgefalteten und verschweißten Folie aus Metall oder Metallverbund nach Art einer Hülle aufgenommen, wobei die Folie aus Metall oder Metallverbund nicht notwendigerweise zusätzlich mit dem Gehäusekörper verbunden sein muss , sondern letzterer auch lose in die zu einer Hülle geformte Folie eingesteckt sein kann .

In verfahrenstechnischer Hinsicht kann in diesem Zusammenhang vorgesehen sein, dass die Folie aus Metall oder Metallverbund zumindest gemäß der Boden- und der Mantelfläche des Gehäusekörpers gefaltet wird, wonach die einander zugewandten Randabschnitte der gefalteten Folie aus Metall oder Metallverbund gasdicht miteinander verschweißt werden . Während letzteres wiederum mittels beliebiger, als solcher bekannter Techniken geschehen sind, wie einige weiter oben exemplarisch aufgeführt sind, kann aus der Folie aus Metall oder Metallverbund in diesem Fall z . B . zunächst ein Zuschnitt erzeugt werden, wie beispielsweise mittels Schneidens , Stanzens , Laserschneidens , Wasserstrahlschneidens oder anderer bekannter Schneideverfahren . Der Zuschnitt kann sodann entsprechend der Boden- und der Mantelfläche des Gehäusekörpers der Batteriezelle gefaltet werden, wobei er entweder um den Gehäusekörper herum gefaltet oder in einem separaten Arbeitsgang entlang entsprechender Faltlinien vorgefaltet werden kann, z . B . mittels einer Falt- oder Biegemaschine, wonach der Gehäusekörper in die auf diese Weise gebildete Folienhülle eingesteckt werden kann . Die einander zugewandten Randabschnitte der gefalteten Folie aus Metall oder Metallverbund werden schließlich unter Bildung des fertigen, aus dem Gehäusekörper und der Folie aus Metall oder Metallverbund aufgebauten Gehäuses der Batteriezelle gasdicht miteinander verschweißt .

Bei dem Gehäusekörper der erfindungsgemäßen Batteriezelle kann es sich einerseits um eine flexible Gehäusefolie auf Aluminiumbasis einer Pouch-Zelle handeln welche im Wesentlichen vollflächig von der Folie aus Metall oder Metallverbund umgeben ist . Hinsichtlich des Materials der flexiblen Gehäusefolie auf Aluminiumbasis der Pouch-Zelle, wie sie als solches aus dem Stand der Technik bekannt ist , kann es sich in üblicher Weise z . B . um eine Aluminiumfolie oder um eine Aluminium-Kunststoff-Verbundfolie handeln .

Stattdessen kann es sich bei dem Gehäusekörper der erfindungsgemäßem Batteriezelle insbesondere um einen formstabilen Gehäusekörper auf der Basis von Aluminium oder Aluminiumschaum handeln, welcher zumindest mantelseitig und bodenseitig von der Folie aus Metall oder Metallverbund umgeben ist . Wie bereits angedeutet , können derartige Batteriezellen insbesondere in Reihe und/oder parallel zu einem Zellenverbund zusammengeschaltet sein, wie er in vielen Anwendungsgebieten, wie beispielsweise in der Elektromobilität , verbreitet zum Einsatz gelangt . Handelt es sich bei dem Gehäusekörper der erfindungsgemäßen Batteriezelle um einen formstabilen Gehäusekörper, welcher aus Aluminium oder dessen Legierungen einschließlich hieraus erzeugten Schäumen gebildet ist , so kann in vorteilhafter Ausgestaltung ferner vorgesehen sein, dass der Gehäusekörper einen Deckel aufweist , welcher zum z . B . stirnseitigen Verschließen des Gehäusekörpers dient , nachdem er mit den Elektroden, dem Elektrolyt und gegebenenfalls dem Separator be- stückt worden ist . Der Deckel kann seinerseits aus Aluminium oder dessen Legierungen gefertigt und beispielsweise gleichfalls außenseitig mit einer erfindungsgemäßen Metallfolie versehen sein, oder der Deckel kann insbesondere auch aus hochtemperaturfesten Materialien, wie Stahl, Edelstahl und dergleichen gebildet sein .

Wie ebenfalls bereits angedeutet , kann das Gehäuse zweckmäßigerweise ein zum Abführen von im Falle eines thermischen Durchgehens (thermal runaway) der Batteriezelle erzeugten Gasen ausgebildetes Sicherheitsventil aufweisen, wie beispielsweise in Form eines Überdruckventils , einer Berstscheibe oder -membran oder dergleichen . Das oder die Sicherheitsventil (e ) können dabei an dem Gehäusekörper selbst oder - soweit vorhanden - vorzugsweise an dem diesen verschließenden Deckel angeordnet sein . Mittels eines solchen Sicherheitsventils besteht die Möglichkeit , die im Falle eines thermischen Durchgehens der Batteriezelle erzeugten Gase, Dämpfe und geschmolzenen Feststoffe derart aus der Batteriezelle sowie insbesondere auch aus einem Zellenverbund einer Batterie mit einer Mehrzahl an solchen Batteriezellen abzuführen, dass die jeweils benachbarten Batteriezellen möglichst wenig thermisch und/oder chemisch belastet werden und nicht ihrerseits thermisch durchgehen . Eine Kettenreaktion ("Propagation" ) sowie die hiermit einhergehende Brandgefahr lässt sich folglich verhindern oder zumindest erheblich verringern . Durch die erfindungsgemäße Folie aus Metall oder Metallverbund wird zugleich sichergestellt , dass die heißen Gase und Dämpfe nur über das geöffnete Sicherheitsventil entweichen können, wohingegen ein Versagen des Gehäusekörpers , welches zu einem unkontrolliertes Abblasen der Batteriezelle führte, durch die Folie aus Metall oder Metallverbund verhindert wird . Sofern mehrere Batteriezellen zu einem Zellenverbund einer Batterie zusammengeschaltet sind, können die Sicherheitsventile der Batteriezellen insbesondere in eine oder mehrere Ableitungen eines Abblassystems einmünden, so dass im Falle eines thermischen Durchgehens einer oder mehrerer Batteriezellen des Zellenverbundes die übrigen Batteriezellen intakt bleiben und die Gefahr eines Brandes in der Umgebung, wie beispielsweise in einem mit einer solchen Batterie ausgestatteten Kraftfahrzeug, minimiert wird . Dementsprechend kann in vorteilhafter Ausgestaltung einer erfindungsgemäßen Batterie vorgesehen sein, dass die Batteriezellen des Zellenverbundes zum Abführen von im Falle eines thermischen Durchgehens (thermal runaway) einer jeweiligen Batteriezelle erzeugten Gasen ausgebildete Sicherheitsventile aufweisen, wobei die Sicherheitsventile der Batteriezellen in eine oder mehrere Ableitung (en) eines Abblassystems einmünden .

Die eine oder mehreren Ableitung (en) des Abblassystems münden vorteilhafterweise aus einem den Zellenverbund aufnehmenden Batteriegehäuse der Batterie aus , um die Gefahr einer Schädigung der übrigen Batteriezellen des Zellenverbundes zu minimieren, wobei auch die Umgebung außerhalb des Batteriegehäuses der Batterie lediglich den aus der jeweils beschädigten Batteriezelle ausgetretenen Gasen exponiert wird .

Darüber hinaus kann in vorteilhafter Ausgestaltung vorgesehen sein, dass

- der gesamte Zellenverbund aus der Mehrzahl an Batteriezellen und/oder

- Gruppen von Batteriezellen des Zellenverbundes und/oder

- das Batteriegehäuse zusätzlich zumindest bereichsweise von einer weiteren Folie aus Metall oder Metallverbund mit einem Schmelzpunkt von wenigstens 1200 ° C und einer Dicke von 10 pm bis 150 pm umgeben ist . Bei einer Batterie mit einem solchen Zellenverbundes aus einer Mehrzahl an erfindungsgemäßen Batteriezellen kann es sich demnach als sinnvoll erweisen, den gesamten Zellenverbund und/oder Gruppen von Batteriezellen desselben und/oder das Batteriegehäuse selbst mit einer weiteren Folie aus Metall oder Metallverbund mit einem Schmelzpunkt von wenigstens 1200 ° C und einer Dicke von etwa 10 pm bis etwa 150 pm zu umgeben, um auf sehr einfache und kostengünstige Weise für einen zusätzlichen Schutz sowohl des Zellenverbundes der Batterie als auch der Umgebung vor einem thermischen Durchgehen einzelner Batteriezellen zu sorgen, ohne das Gesamtgewicht der Batterie in nennenswerter Weise zu erhöhen .

In verfahrenstechnischer Hinsicht kann in diesem Zusammenhang folglich vorgesehen sein, dass der Gehäusekörper einer jeweiligen Batteriezelle als formstabiler Gehäusekörper auf der Basis von Aluminium oder Aluminiumschaum erzeugt und mit einem Deckel verschlossen wird, welcher insbesondere mit einem zum Abführen von im Falle eines thermischen Durchgehens (thermal runaway) der Batteriezelle erzeugten Gasen ausgebildeten Sicherheitsventil versehen wird . Wie bereits erwähnt , ist es allerdings auch denkbar, wenn das oder die Sicherheitsventil (e ) an dem Gehäusekörper angeordnet werden, wobei die erfindungsgemäße Folie aus Metall oder Metallverbund in diesem Fall zweckmäßigerweise mit einer entsprechenden Aussparung versehen werden kann .

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen . Dabei zeigen :

Fig . 1 eine schematische perspektivische Ansicht einer Ausführungsform einer zumindest gemäß der Boden- und der Mantelfläche eines nicht zeichnerisch wiedergegebenen Gehäusekörpers einer Batteriezelle (ebenfalls nicht zeichnerisch dargestellt ; vgl . hierzu die Fig . 4 und 5 ) zu einer Folienhülle vorgefalteten Folie aus Metall oder Metallverbund;

Fig . 2 eine Draufsicht auf einen Zuschnitt der Folie aus Metall oder Metallverbund, aus welcher die Folienhülle gemäß der Fig . 1 vorgefaltet worden ist ;

Fig . 3 eine stark schematisierte Ansicht zur Veranschaulichung der Herstellung eines Gehäusekörpers einer Batteriezelle auf Aluminiumbasis mit einer hierauf auf laminierten Folie aus Metall oder Metallverbund mittels des Rückwärt s-Fließpress- verf ährens ;

Fig . 4 eine schematische Schnittansicht einer Batterie mit einer Mehrzahl an erfindungsgemäßen Batteriezellen, deren Sicherheitsventile in eine gemeinsame Ableitung einmünden, welche aus dem Batteriegehäuse ausmündet ; und

Fig . 5 eine der Fig . 4 entsprechende schematische Schnittansicht einer Batterie mit einer Mehrzahl an erfindungsgemäßen Batteriezellen, deren Sicherheitsventile in je eine separate Ableitung einmünden, welche aus dem Batteriegehäuse ausmünden .

In der Fig . 1 ist eine zu einer Folienhülle vorgefaltete Folie 1 aus Metall oder Metallverbund schematisch wiedergegeben, bei welcher es sich im vorliegenden Fall um eine Edelstahlfolie des Typs " 1 , 4404" mit einer Dicke von 50 m, einer Dichte von 7 , 95 g/cm 3 und einem Schmelzpunkt von etwa 1450 ° C handelt und welche für eine handelsübliche Batteriezelle mit einem formstabilen Gehäusekörper auf Aluminiumbasis vorgesehen ist , welche dem Fachmann insbesondere in Form von wiederaufladbaren Lithium-Ionen-Zellen wohlbekannt ist und daher keiner näheren Erläuterung bedarf . Die Folienhülle ist aus einem Zuschnitt der Folie 1 vorgefaltet worden, wie er exemplarisch in der Fig . 2 wiedergegeben ist , in welcher die möglichen Faltlinien strichliniert angedeutet sind . Die einander zugewandten Ränder der die Folienhülle bildenden Folie 1 sind ferner gasdicht miteinander verschweißt worden .

Wie in der Fig . 1 ferner erkennbar, vermag die Folienhülle den (nicht dargestellten) Gehäusekörper der Batteriezelle sowohl boden- als auch mantelseitig im Wesentlich vollständig zu umgeben, um das einerseits aus dem Gehäusekörper, andererseits aus der Folienhülle bestehende Gehäuse der Batteriezelle zu bilden . Bei dem vorliegenden Ausführungsbeispiel erstreckt sich die Folienhülle darüber hinaus über die in der Fig . 1 obere Stirnseite des Gehäusekörpers der Batteriezelle bzw . über einen Deckel desselben (nicht gezeigt ) , was gleichfalls durch Falten der Folie 1 entlang der entsprechenden Faltlinien erreicht worden ist . Die Folie 1 ist dabei einerseits mit ersten Aussparungen 2 , welche zur Kontaktierung der Elektroden der Batteriezelle dienen, andererseits mit einer zweiten Aussparung 3 versehen worden, welche zum Freilassen eines Sicherheitsventils ( z . B . in Form eines Überdruckventils , einer Berst scheibe, einer Berstmembran oder dergleichen; ebenfalls nicht gezeigt ) dient , um im Falle eines thermischen Durchgehens der Batteriezelle das Gehäuse gezielt über das dann geöffnete Sicherheitsventil zu entlasten und die entstehenden heißen Gase und Dämpfe insbesondere in eine sich außenseitig an das Sicherheitsventil anschließende Ableitung kontrolliert abführen zu können .

Die Fig . 3 zeigt eine stark schematisierte Ansicht zur Veranschaulichung der Herstellung eines formstabilen Gehäusekörpers 4 einer Batteriezelle auf Aluminiumbasis mit einer hierauf auf laminierten Folie 1 aus Metall oder Metallverbund mittels des Rückwärts-Fließpressverfahrens , wobei es sich bei der Folie 1 beispielsweise wiederum um eine solche handeln kann, wie sie oben unter Bezugnahme auf die Fig . 1 und 2 beschrieben ist . Wie in der Fig . 3 erkennbar, kann in diesem Fall beispielsweise ein der Mantelfläche des Gehäusekörpers 4 entsprechender Folienabschnitt la in ein nicht zeichnerisch dargestelltes Fließpresswerkzeug eingelegt werden, wobei der Folienabschnitt la im vorliegenden Fall entsprechend der Mantelfläche des Gehäusekörpers 4 vorgefaltet worden ist und seine einander zugewandten Längsränder gasdicht verschweißt worden sind . Sodann wird ein Rohling (nicht gezeigt ) des Gehäusekörpers 4 mittels eines Stempels (ebenfalls nicht gezeigt ) in das mit dem der Mantelfläche des Gehäusekörpers 4 entsprechenden Folienabschnitt la bestückte Fließpresswerkzeug eingeformt , wobei der Folienabschnitt la auf den hierdurch erzeugten Gehäusekörper 4 auflaminiert wird . Anschließend kann der mit dem mantelseitigen Folienabschnitt la versehene Gehäusekörper 4 dem Fließpresswerkzeug entnommen werden, wonach ein der Bodenfläche des Gehäusekörpers 4 entsprechende Folienabschnitt lb auf den Boden des Gehäusekörpers 4 aufgebracht wird und die einander zugewandten Randabschnitte des der Bodenfläche des Gehäusekörpers 4 entsprechenden Folienabschnittes lb und des der Mantelfläche des Gehäusekörpers 4 entsprechenden Folienabschnittes la unter Bildung des Gehäuses der Batteriezelle gasdicht miteinander verschweißt werden . Schließlich kann das nach oben offene Gehäuse mit den Elektroden, dem Elektrolyt und dem Separator bestückt und mit einem Deckel (nicht gezeigt ) verschlossen werden, welcher vorzugsweise wiederum mit einem Sicherheitsventil ausgestattet sein kann, wie es oben unter Bezugnahme auf die Fig . 1 uns 2 erläutert ist .

In der Fig . 4 ist eine Ausführungsform einer insgesamt mit dem Bezugszeichen 20 versehenen Batterie in einer schematischen Querschnittsansicht wiedergegeben, welche einen Zellenverbund aus einer Mehrzahl an Batteriezellen 10 in Form eines Stapels umfasst , welche jeweils mit einer in der Fig . 4 nicht nochmals im Einzelnen dargestellten Folienhülle, z . B . entsprechend jener der Fig . 1 und 2 , versehen und in einem Batteriegehäuse 21 untergebracht sind . Jede Batteriezelle 10 besitzt an ihrer in der Fig . 4 oberen Seite ein zum Abführen von im Falle eines thermischen Durchgehens (thermal runaway) einer jeweiligen Batteriezelle 10 erzeugten Gasen ausgebildetes Sicherheitsventil 11 , z . B . in Form einer Berstscheibe oder dergleichen, wobei die Sicherheitsventile 11 der Batteriezellen 10 des Zellenverbundes in eine gemeinsame Ableitung 12 eines Abblassystems einmünden, welche im Innern des Batteriegehäuses 21 angeordnet ist . Die Ableitung 12 des Abblassystems mündet aus der in der Zeichnungsebene hinteren Seite des Batteriegehäuses 21 aus diesem aus , um im Falle eines thermischen Durchgehens einer oder mehrerer der einzelnen Batteriezellen 10 die hierbei entstehenden Gase an die Umgebung abzuführen und eine Schädigung benachbarter Batteriezellen 10 zu verhindern . Der gesamte Zellenverbund aus der Mehrzahl an Batteriezellen 10 oder auch Gruppen von Batteriezellen des Zellenverbundes können zwecks einer noch höheren Sicherheit zusätzlich zumindest bereichsweise von einer weiteren Folie aus Metall oder Metallverbund mit einem Schmelzpunkt von wenigstens etwa 1200 ° C und einer Dicke von etwa 10 pm bis etwa 150 pm umgeben sein, wie z . B . gleichfalls mit einer Folie, wie sie oben unter Bezugnahme auf die Fig . 1 und 2 beschrieben ist . Entsprechendes gilt für das Batteriegehäuse 21 .

Die in der Fig . 5 dargestellte Ausführungsform einer Batterie 20 unterscheidet sich von jener gemäß der Fig . 4 vornehmlich dadurch, dass das Sicherheitsventil 11 einer jeweiligen Batteriezelle 10 in eine separate Ableitung 13 des Abblassystems einmündet , welche wiederum im Innern des Batteriegehäuses 21 angeordnet sind . Die Ableitungen 13 des Abblassystems münden gleichfalle aus dem Batteriegehäuse 21 aus , um im Falle eines thermischen Durchgehens einer oder mehrerer der einzelnen Batteriezellen 10 die hierbei entstehenden Gase an die Umgebung abzuführen und eine Schädigung benachbarter Batteriezellen 10 zu verhindern .