Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BIODEGRADABLE MICROCAPSULE SYSTEMS
Document Type and Number:
WIPO Patent Application WO/2021/116432
Kind Code:
A1
Abstract:
A first aspect of the invention relates to microcapsules for use in an area with stringent requirements, said microcapsules being selected from among detergents and cleaning agents, cosmetic products, adhesive systems, paints and dispersions and coating materials, and comprising a core material and a shell, the shell consisting of at least a first and a second layer with differing chemical compositions, and the shell having a biodegradability, measured in accordance with OECD 301 F, of at least 40%. The invention further relates to a product containing microcapsules, said product being selected from the group consisting of an adhesive system; a cosmetic product; a pharmaceutical product; a coating material, in particular a coated paper; a heat accumulator coating; an autogenous healing coating or an anti-corrosion coating; and a coating of functional packaging materials.

Inventors:
KIND CHRISTIAN (DE)
HILDEBRAND JEANETTE (DE)
LAST KLAUS (DE)
MEIER CLAUDIA (DE)
Application Number:
PCT/EP2020/085804
Publication Date:
June 17, 2021
Filing Date:
December 11, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KOEHLER SE AUGUST PAPIERFABRIK (DE)
International Classes:
A61K8/11; A61K9/50; B01J13/02; B01J13/14; B01J13/22; F28D20/02
Domestic Patent References:
WO2009075652A12009-06-18
WO2002057010A12002-07-25
WO2009126742A22009-10-15
WO2015014628A12015-02-05
WO2018114056A12018-06-28
WO2014016395A12014-01-30
WO2011075425A12011-06-23
WO2011120772A12011-10-06
WO2014032920A12014-03-06
WO2010079466A22010-07-15
WO2014036082A22014-03-06
WO2017143174A12017-08-24
WO2014044840A12014-03-27
WO2010003762A12010-01-14
WO2013037575A12013-03-21
Foreign References:
US20170182472A12017-06-29
US2800457A1957-07-23
EP2689835A12014-01-29
Attorney, Agent or Firm:
ULLRICH & NAUMANN (DE)
Download PDF:
Claims:
A n s p r ü c h e

1. Mikrokapseln zur Anwendung in einem Hochanforderungsgebiet, ausgewählt aus Wasch- und Reinigungsmitteln, Kosmetikprodukten, Klebstoffsystemen, Lacke und Dispersionen, Beschichtungsmaterialien, umfassend ein Kernmaterial und eine Schale, wobei die Schale aus mindestens einer ersten und einer zweiten Schicht besteht, deren chemische Zusammensetzungen sich unterscheiden, und wobei die Schale eine Bioabbaubarkeit gemessen nach OECD 301 F von mindestens 40 % aufweist.

2. Die Mikrokapseln nach Anspruch 1, wobei die Schale eine Bioabbaubarkeit gemessen nach OECD 301 F von mindestens 50 % aufweist, bevorzugt mindestens 60 %, besonders bevorzugt mindestens 70 %.

3. Die Mikrokapseln nach einem der vorherigen Ansprüche, wobei die Mikrokapsel eine Dichtheit aufweist, die einen Austritt von höchstens 80 Gew.-% des eingesetzten Kernmaterials nach Lagerung übereinen Zeitraum 12 Wochen bei einer Temperatur von 0 bis 40 °C gewährleistet, bevorzugt höchstens 75 Gew.- %, besonders bevorzugt höchstens 70 Gew.-%.

4. Die Mikrokapseln nach einem der vorherigen Ansprüche, wobei die erste Schicht eine oder mehrere bioabbaubare Komponenten enthält, wobei die bioabbaubaren Komponenten ausgewählt sind aus der Gruppe bestehend aus Proteinen wie Gelatine; Polysacchariden wie Alginat, Gummi arabicum, Chitin, oder Stärke; phenolischen Makromolekülen wie Lignin; Polyglucosaminen wie Chitosan, Polyvinylestern, wie Polyvinylalkohole und Polyvinylacetat; Phosphazenen und Polyestern wie Polylactid oder Polyhydroxyalkanoat, wobei die die erste Schicht insbesondere Gelatine und/oder Alginat enthält.

5. Die Mikrokapseln nach Anspruch 4, wobei die erste Schicht ein oder mehrere Aushärtungsmittel aufweist, bevorzugt aus der Gruppe besetehend aus einem Aldehyd, wie Glutaraldehyd, Formaldehyd oder Glyoxal, einem Tannin, einem Enzym wie Transglutaminase und einem organischen Anhydrid wie Maleinsäureanhydrid, wobei das Aushärtungmittel besonders bevorzugt Glutaraldehyd oder Glyoxal ist.

6. Die Mikrokapseln nach einem der vorherigen Ansprüche, wobei die erste Schicht eine oder mehrere anorganische Komponenten enthält, insbesondere anorganische Salze wie Calciumcarbonat oder Polysilikate.

7. Die Mikrokapseln nach einem der vorherigen Ansprüche, wobei die zweite Schicht aus einer oder mehreren Komponenten, ausgewählt aus der Gruppe bestehend aus einer aldehydischen Komponente, einem aromatischen Alkohol, einer Aminkomponente, einer Acrylat-Komponente und einer Isocyanat- Komponente aufgebaut ist.

8. Die Mikrokapsel nach Anspruch 7, wobei die zweite Schicht eine aldehydische Komponente ausgewählt aus der Gruppe bestehend aus Formaldehyd, Glutaraldehyd, Succinaldehyd, Furfural, und Glyoxal enthält, und bevorzugt der Anteil der aldehydischen Komponente für die Polykondensation bezogen auf das Gesamtgewicht der zweiten Schale im Bereich von 5 bis 50 Gew.-% bevorzugt im Bereich von 10 bis 30 Gew.-%, besonders bevorzugt im Bereich von 15 bis 20 Gew.-% liegt.

9. Die Mikrokapseln nach Anspruch 7 oder 8, wobei die zweite Schicht einen aromatischen Alkohol ausgewählt aus der Gruppe bestehend aus Resorcin, Phloroglucin und Aminophenol enthält, und bevorzugt der Anteil des aromatischen Alkohols bezogen auf das Gesamtgewicht der zweiten Schicht im Bereich von 1,0 bis 20 Gew.-%, bevorzugt im Bereich von 5 bis 15 Gew.-%, besonders bevorzugt im Bereich von 9 bis 13 Gew.-% liegt.

10 Die Mikrokapseln nach einem der Ansprüche 7 bis 9, wobei die zweite Schicht eine Aminkomponente ausgewählt aus der Gruppe bestehend aus Melamin, Melaminderivaten und Flarnstoff und Kombinationen davon enthält, und bevorzugt der Anteil der Aminkomponente bezogen auf das Gesamtgewicht der zweiten Schicht im Bereich von 20 Gew.-% bis 85 Gew.-%, bevorzugt im Bereich von 40 Gew.-% bis 80 Gew.-%, besonders bevorzugt im Bereich von 55 Gew.-% bis 70 Gew.-% liegt. 11. Die Mikrokapseln nach einem der vorherigen Ansprüche, wobei die zweite Schicht an der Innenseite der ersten Schicht angeordnet ist.

12. Die Mikrokapseln nach einem der vorherigen Ansprüche, wobei der Anteil der zweiten Schicht an der Schale bezogen auf das Gesamtgewicht der Schale höchstens 30 Gew.-% beträgt, bevorzugt höchstens 25 Gew.-% besonders bevorzugt höchstens 20 Gew.-% beträgt.

13. Die Mikrokapseln nach einem der vorherigen Ansprüche, wobei die zweite Schicht eine durchschnittliche Dicke im Bereich von 0,01 miti bis 1 miti, bevorzugt 0,02 miti bis 0,5 miti, besonders bevorzugt 0,05 miti bis 0,30 miti aufweist.

14. Die Mikrokapseln nach einem der vorherigen Ansprüche, wobei die Mikrokapsel eine dritte Schicht aufweist, die an der Außenseite der ersten Schicht angeordnet ist und die eine Komponente ausgewählt aus Aminen, organischen Salzen, anorganischen Salzen, Alkoholen, Ethern, Polyphosphazenen, und Edelmetallen enthält, wobei der Anteil der dritten Schicht an der Schale bezogen auf das Gesamtgewicht der Schale höchstens 35 % beträgt, bevorzugt höchstens 25 Gew.-%, besonders bevorzugt höchstens 15 Gew.-% beträgt.

15. Die Mikrokapseln nach einem der vorherigen Ansprüche, wobei das Kernmaterial ausgewählt ist aus der Gruppe bestehend aus Duftstoffen, Aromen, Phasenwechselmaterialen, kosmetischen Wirkstoffen, pharmazeutischen Wirkstoffen, Katalysatoren, Initiatorsystemen, Klebstoffkomponenten und hydrophoben Reaktivkomponenten.

16. Ein Erzeugnis, enthaltend Mikrokapseln gemäß einem der Ansprüche 1 bis 15, wobei das Erzeugnis ausgewählt ist aus der Gruppe bestehend aus einem einem Klebstoffstoffsystem; einem Kosmetikprodukt; einem pharmazeutischen Produkt; einem Beschichtungsmaterial, insbesondere einem beschichteten Papier; einer Wärmespeicherbeschichtung, eine Selbstheilungsbeschichtung oder einer Korrosionsbeschichtung; und derartige Mikrokapseln enthaltende Beschichtungen für funktionelle Verpackungsmaterialien. 17. Ein Verfahren zur Herstellung von Mikrokapseln gemäß Anspruch 1, gekennzeichnet durch die folgenden Schritte: a) Herstellen einer ÖI-in-Wasser-Emulsion durch Emulgierung eines Kernmaterials in einer wässrigen Phase in Anwesenheit der wandbildenden Komponente(n) der inneren, zweiten Schalenschicht, gegebenenfalls unter Zugabe von Schutzkolloiden; b) Abscheidung und Aushärtung der wandbildenden Komponente(n) der inneren, zweiten Schalenschicht, wobei die wandbildende(n) Komponente(n) der inneren, zweiten Schalenschicht insbesondere eine aldehydische Komponente, eine Aminkomponente und ein aromatischer Alkohol sind; c) Zugabe der wandbildenden Komponente(n) der mittleren, ersten Schalenschicht, gefolgt von Abscheidung und Aushärtung, wobei die wandbildende(n) Komponenten der mittleren, ersten Schalenschicht insbesondere Proteine und/oder Polysaccharide sind; und d) gegebenenfalls Zugabe der wandbildenden Komponente(n) der äußeren, dritten Schalenschicht, gefolgt von Abscheidung und Aushärtung, wobei die wandbildende(n) Komponente(n) der äußeren, dritten Schalenschicht insbesondere eine Aminkomponente ist.

18. Verfahren nach Anspruch 17, wobei die Verfahrensschritte in einem Reaktor durchgeführt werden.

Description:
BIOABBAUBARE MIKROKAPSELSYSTEME

GEBIET DER ERFINDUNG

Die Erfindung betrifft stabile Mikrokapseln mit umweltverträglichen Wandmaterialien zur Verwendung in Anwendungsgebieten mit hoher Anforderung an die Dichtheit und Stabilität der Mikrokapseln.

HINTERGRUND DER ERFINDUNG

Die Mikroverkapselung ist eine vielseitig nutzbare Technologie. Sie bietet Lösungen für zahlreiche Innovationen - von der Papierindustrie bis hin zu Haushaltsprodukten erhöht die Mikroverkapselung die Funktionalität unterschiedlichster aktiver Sub stanzen. Verkapselte Aktivstoffe können wirtschaftlicher eingesetzt werden und verbessern die Nachhaltigkeit und Umweltverträglichkeit vieler Produkte.

Allerdings sind die polymeren Wandmaterialien der Mikrokapseln selbst in sehr unterschiedlichem Grad umweltverträglich. In Selbstdurchschreibepapier werden schon lange auf dem Naturprodukt Gelatine basierende und somit vollständig bioabbaubare Mikrokapselwände eingesetzt. Ein schon in den 1950er Jahren entwickeltes Verfahren zur Gelatineverkapselung ist in US 2,800,457 offenbart. Seitdem wurde eine Vielzahl an Variationen in Bezug auf Materialien und Ver fahrensschritte beschrieben. Außerdem werden bioabbaubare bzw. enzymatisch abbaubare Mikrokapselwände eingesetzt, um den enzymatischen Abbau als Verfahren zur Freisetzung des Kernmaterials zu verwenden. Solche Mikrokapseln sind beispielsweise in WO 2009/126742 A1 oder WO 2015/014628 A1 beschrieben.

Solche Mikrokapseln sind jedoch für viele industrielle Anwendungen und Haus haltsprodukte nicht geeignet. Denn Naturstoff-basierte Mikrokapseln erfüllen die für z.B. Wasch- und Reinigungsmittel, Klebstoffsystemen, Lacke und Dispersionen geforderte Diffusionsdichtigkeit, die chemische Resistenz und die Temperatur beständigkeit und auch die geforderte Beladung mit Kernmaterial nicht.

In diesen sogenannten Hochanforderungsgebieten werden klassisch organische Polymere wie Melamin-Formaldehyd-Polymere (siehe z.B. EP 2 689 835 A1 , WO 2018/114056 A1 , WO 2014/016395 A1 , WO 2011/075425 A1 oder

WO 2011/120772 A1); Polyacrylate (siehe z.B. WO 2014/032920 A1 ,

WO 2010/79466 A2); Polyamide; Polyurethan oder Polyharnstoffe (siehe z.B. WO 2014/036082 A2 oder WO 2017/143174 A1) eingesetzt. Die aus solchen organischen Polymeren aufgebauten Kapseln verfügen über die benötigte Diffusionsdichtigkeit, Stabilität und chemische Resistenz. Diese organischen Polymere sind allerdings nur in sehr geringen Maße enzymatisch bzw. biologisch abbaubar.

Im Stand der Technik sind verschiedene Ansätze beschrieben, bei denen Biopolymere als zusätzliche Komponente mit den organischen Polymeren der Mikrokapselschale zur Anwendung in Hochanforderungsgebieten kombiniert werden, allerdings nicht mit der Zielsetzung, bioabbaubare Mikrokapseln zu erzeugen, sondern vorrangig die Freisetzungs-, Stabilitäts-, oder Oberflächeneigenschaften der Mikrokapseln zu verändern. Beispielsweise wird in WO 2014/044840 A1 ein Verfahren zur Herstellung von zweischichtigen Mikrokapseln beschrieben mit einer inneren Polyharnstoff-Schicht und einer äußeren Gelatine-enthaltenden Schicht. Dabei wird die Polyharnstoff-Schicht durch Polyaddition an der Innenseite der durch Koazervation erhaltenden Gelatine-Schicht erzeugt. Die so erhaltenen Kapseln weisen gemäß Beschreibung aufgrund der Polyharnstoffschicht die nötige Stabilität und Dichtigkeit für den Einsatz in Wasch- und Reinigungsmitteln auf und zusätzlich durch die Gelatine eine Klebrigkeit, um sie an Oberflächen anzuheften. Konkrete Stabilitäten und Resistenzen werden nicht erwähnt. Nachteilig an Poly harnstoffkapseln ist jedoch die unvermeidliche Nebenreaktion der Kernmaterialien mit den zur Erzeugung des Harnstoffs verwendeten Diisocyanaten, die dem ölbasierten Kern beigemischt werden müssen.

Andererseits sind im Stand der Technik auch auf Biopolymeren basierende Mikrokapseln beschrieben, die durch Hinzufügung einer Schutzschicht eine verbesserte Dichtigkeit oder Stabilität gegenüber Umwelteinflüssen oder eine gezielte Einstellung eines verzögerten Freisetzungsverhaltens erreichen. Beispielsweise beschreibt die WO 2010/003762 A1 Partikel mit einem Kern-Schale-Schale Aufbau. Im Inneren eines jeden Partikels befindet sich als Kern ein schwer wasserlöslicher oder wasserunlöslicher organischer Wirkstoff. Die den Kern direkt umhüllende Schale enthält ein biologisch abbaubares Polymer und die äußere Schale mindestens ein Metall- oder Halbmetalloxid. Mit diesem Aufbau wird zwar eine bioabbaubare Schale erhalten. Die Mikrokapseln werden dennoch gemäß WO 2010/003762 A1 in Lebens mitteln, Kosmetika oder pharmazeutischen Mitteln eingesetzt, sind für die erfindungsgemäßen Hochanforderungsgebiete jedoch aufgrund mangelnder Dichtheit nicht verwendbar.

ZUSAMMENFASSUNG DER ERFINDUNG

Die vorliegende Erfindung basiert unter anderem auf der Entdeckung, dass mittels eines Mehrschichtaufbaus der Schalen, Mikrokapseln erzeugt werden können, die im Wesentlichen bioabbaubar sind und dennoch ausreichende Stabilität und Dichtigkeit aufweisen, um in Hochanforderungsgebieten wie Wasch- und Reinigungsmitteln eingesetzt werden zu können. Dies wird dadurch erreicht, dass eine erste stabilität- und strukturverleihende Schicht den Hauptanteil der Kapselschale ausmacht, die aus natürlich vorkommenden und gut bioabbaubaren Materialien, wie Gelatine oder Alginat bzw. aus ubiquitär in der Natur vorhandenen Materialien besteht. Diese erste Schicht wird mit einer zweiten dichtigkeitsverleihenden Schicht kombiniert, die aus bekannten für Mikroverkapselung eingesetzten Materialien, wie Melamin- Formaldehyd oder Meth(acrylat) bestehen kann. Die zweite Schicht kann sowohl auf der Außenseite der ersten Schicht als auch auf der Innenseite der ersten Schicht angeordnet sein. Bevorzugt ist die zweite Schicht an der Innenseite der ersten Schicht angeordnet. Den Erfindern ist es gelungen, die dichtigkeitsverleihende zweite Schicht in einer bisher nicht darstellbaren geringen Wandstärke auszugestalten und dennoch eine ausreichende Dichtigkeit zu gewährleisten wie in Beispiel 5 gezeigt. Damit wird der Anteil an der Gesamtwand sehr gering gehalten, so dass die Mikrokapselwand eine Bioabbaubarkeit gemessen nach OECD 301 F von mindestens 40 % aufweist wie in den Beispielen 6 und 7 gezeigt.

Somit betrifft die Erfindung gemäß einem ersten Aspekt Mikrokapseln zur Anwendung in einem Hochanforderungsgebiet, ausgewählt aus Wasch- und Reinigungsmitteln, Kosmetikprodukten, Klebstoffsystemen, Lacke und Dispersionen, Beschichtungs materialien, umfassend ein Kernmaterial und eine Schale, wobei die Schale aus mindestens einer ersten und einer zweiten Schicht besteht, deren chemische Zusammensetzungen sich unterscheiden, und wobei die Schale eine Bioab baubarkeit gemessen nach OECD 301 F von mindestens 40 % aufweist. Aufgrund der Robustheit bzw. Dichtigkeit dieser bioabbaubaren Kapsel kann diese in einer Vielzahl von Produkten eingesetzt werden. Folglich betrifft die Erfindung gemäß einem zweiten Aspekt ein Erzeugnis, enthaltend Mikrokapseln gemäß dem ersten Aspekt wobei das Erzeugnis ausgewählt ist aus der Gruppe bestehend aus einem einem Klebstoffstoffsystem; einem Kosmetikprodukt; einem pharmazeutischen Produkt; einem Beschichtungsmaterial, insbesondere einem beschichteten Papier; einer Wärmespeicherbeschichtung, eine Selbstheilungsbeschichtung oder einer Korrosionsbeschichtung; und derartige Mikrokapseln enthaltende Beschichtungen für funktionelle Verpackungsmaterialien.

Ferner betrifft die Erfindung in einem dritten Aspekt die Verwendung von Mikrokapseln gemäß dem ersten Aspekt zur Fierstellung eines Erzeugnisses gemäß dem zweiten Aspekt.

Schließlich betrifft die Erfindung in einem vierten Aspekt ein Verfahren zur Fierstellung von Mikrokapseln gemäß dem ersten Aspekt 1 , gekennzeichnet durch die folgenden Schritte: a) Fierstellen einer ÖI-in-Wasser-Emulsion durch Emulgierung eines Kernmaterials in einer wässrigen Phase in Anwesenheit der wandbildenden Komponente(n) der inneren, zweiten Schalenschicht, gegebenenfalls unter Zugabe von Schutzkolloiden; b) Abscheidung und Aushärtung der wandbildenden Komponente(n) der inneren, zweiten Schalenschicht, wobei die wandbildende(n) Komponente(n) der inneren, zweiten Schalenschicht insbesondere eine aldehydische Komponente, eine Aminkomponente und ein aromatischer Alkohol sind; c) Zugabe der wandbildenden Komponente(n) der mittleren, ersten Schalenschicht, gefolgt von Abscheidung und Aushärtung, wobei die wandbildende(n) Komponenten der mittleren, ersten Schalenschicht insbesondere Proteine und/oder Polysaccharide sind; und d) gegebenenfalls Zugabe der wandbildenden Komponente(n) der äußeren, dritten Schalenschicht, gefolgt von Abscheidung und Aushärtung, wobei die wandbildende(n) Komponente(n) der äußeren, dritten Schalenschicht insbesondere eine Aminkomponente ist; sowie die dadurch erhaltenen Mikrokapseln. FIGUREN

Fig. 1 zeigt eine lichtmikroskopische Aufnahme der erfindungsgemäßen Kapseln MK 1 in einer 50-fachen und einer 500-fachen Vergrößerung aufgenommen mit einem Olympus BX 50 Mikroskop.

Fig. 2 zeigt eine lichtmikroskopische Aufnahme der Referenz-Mikrokapsel MK 2 (Melamin-Formaldehyd) in einer 50-fachen und einer 500-fachen Vergrößerung aufgenommen mit einem Olympus BX 50 Mikroskop.

Fig. 3 zeigt eine lichtmikroskopische Aufnahme der Referenz-Mikrokapsel MK 3 (Gelatine-Alginat) in einer 50-fachen und einer 500-fachen Vergrößerung aufgenommen mit einem Olympus BX 50 Mikroskop.

Fig. 4 zeigt ein Diagramm des Verlaufs des biologischen Abbaus der erfindungsgemäßen Mikrokapsel MK 1 über 28 Tage (als durchgezogene Linie dargestellt) (a) zeigt das Ergebnis nach OECD301F. Als Positivkontrolle ist der Abbau von Ethylenglycol in Form einer gestrichelten Linie dargestellt (b) zeigt das Ergebnis nach OECD302C. Als Positivkontrolle ist der Abbau von Anilin in Form einer gestrichelten Linie dargestellt.

Fig. 5 zeigt einen Vergleich des Verlaufs des biologischen Abbaus über 28 Tage der erfindungsgemäßen Mikrokapsel MK 1, der MF-Referenz-Mikrokapsel MK 2 und der Gelatine/Alginat-Referenz-Mikrokapsel MK 3. Dargestellt ist eine Messung nach OECD301F für die ersten 10 Tage des biologischen Abbaus. Weiterhin ist das Zeitfenster eingezeichnet, in welchem die erfindungsgemäße Mikrokapsel MK 1 einen Abbaugrad von 60 % erreicht.

Fig. 6 zeigt eine lichtmikroskopische Aufnahme der erfindungsgemäßen Kapseln MK 4 in einer 50-fachen und einer 500-fachen Vergrößerung aufgenommen mit einem Olympus BX 50 Mikroskop.

Fig. 7 zeigt ein Diagramm des Verlaufs des biologischen Abbaus nach OECD 301 F über 60 Tage nach Waschung der erfindungsgemäßen Mikrokapsel MK 1 über die Zeit sowie der MF-Referenz-Mikrokapsel MK 2 und der Gelatine/Alginat-Referenz-Mikrokapsel MK 3. Als Positivkontrolle ist sowohl der Abbau von Ethylenglycol in Form einer gestrichelten Linie dargestellt, als auch der Abbau von Walnussschalen-Mehl in Form einer gepunkteten Linie.

DETAILLIERTE BESCHREIBUNG DER ERFINDUNG

Definitionen

„Biologische Abbaubarkeit“ bezeichnet das Vermögen organischer Chemikalien, biologisch, also durch Lebewesen oder deren Enzyme zersetzt zu werden. Im Idealfall verläuft dieser chemische Metabolismus vollständig bis zur Mineralisierung, kann aber auch bei abbaustabilen Transformationsprodukten stehen bleiben. Allgemein anerkannt sind die Richtlinien zur Prüfung von Chemikalien der OECD, die auch im Rahmen der Chemikalienzulassung verwendet werden. Die Tests der OECD- Testserie 301 (A-F) weisen einen raschen und vollständigen biologischen Abbau (ready biodegradability) unter aeroben Bedingungen nach. Unterschiedliche Testmethoden stehen für gut oder schlecht lösliche sowie für flüchtige Substanzen zur Verfügung. Insbesondere wird im Rahmen der Anmeldung der manometrischer Respirationstest (OECD 301 F) verwendet. Die grundsätzliche biologische Abbaubarkeit (inherent biodegradability) kann über die Messnorm OECD 302 bestimmt werden, beispielsweise den MITI-I I-Test (OECD 302 C).

„Bioabbaubar“ oder „biologisch abbaubar“ im Sinne der vorliegenden Erfindung werden Mikrokapselwände bezeichnet, die eine Bioabbaubarkeit gemessen nach OECD 301 F von mindestens 40 % aufweisen oder gemessen nach OECD 302 C (MITI-Il-Test) von mindestens 20 % aufweisen und somit eine inhärente oder grundsätzliche Abbaubarkeit aufweisen. Dies entspricht dem Grenzwert für die OECD 302 C gemäß „Revised Introduction to the OECD Guidlines for testing of Chemicals, section 3, Part 1 , dated 23 March 2006“. Ab einem Grenzwert von mindestens 60 % gemessen nach OECD 301 F werden Mikrokapselwände vorliegend auch als rasch bioabbaubar bezeichnet. „Dichtheit“ gegenüber einem Stoff, Gas, einer Flüssigkeit, Strahlung o. Ä., ist eine Eigenschaft von Materialstrukturen. Die Begriffe „Dichtheit“ und „Dichtigkeit“ werden erfindungsgemäß synonym verwendet. Dichtheit ist ein relativer Begriff und bezieht sich immer auf vorgegebene Rahmenbedingungen.

„Hochanforderungsgebiete“ in Sinne der Erfindung sind Anwendungsgebiete mit hoher Anforderung an die Dichtheit und Stabilität der Mikrokapseln.

Der Begriff „(Meth)Acrylat" bezeichnet in dieser Erfindung sowohl Methacrylate wie Acrylate.

Unter dem Begriff "Mikrokapseln" werden erfindungsgemäß Partikel verstanden, die einen inneren Raum oder Kern enthalten, der mit einem festen, gelierten, flüssigen oder gasförmigen Medium gefüllt ist und von einer kontinuierlichen Hülle (Schale) aus filmbildenden Polymeren umschlossen (verkapselt) ist. Diese Teilchen besitzen vorzugsweise kleine Abmessungen. Die Begriffe „Mikrokapseln“, „Kern-Schale- Kapseln“ oder einfach „Kapseln“ werden synonym verwendet.

Als „Mikroverkapselung“ wird ein Herstellungsverfahren bezeichnet, bei dem kleine und kleinste Portionen fester, flüssiger oder gasförmiger Substanzen mit einer Hülle aus polymeren oder anorganischen Wandmaterialien umgeben werden. Die so erhaltenen Mikrokapseln können einen Durchmesser von einigen Millimetern bis unter 1 pm haben.

Die erfindungsgemäße Mikrokapsel weist somit eine mehrschichtige Schale auf. Die das Kernmaterial der Mikrokapsel umhüllende Schale wird regelmäßig auch als „Wand“ oder „Hülle“ bezeichnet.

Die erfindungsgemäßen Mikrokapseln mit einer mehrschichtigen Schale können auch als mehrschalige Mikrokapseln bzw. mehrschaliges Mikrokapseln-System bezeichnet werden, da die einzelnen Schichten auch als individuelle Schalen angesehen werden können. „Mehrschichtig“ und „mehrschalig“ werden somit synonym verwendet.

.Wandbildner“ sind die Komponenten, die die Mikrokapselwand aufbauen. Mikrokapseln

Gemäß einem ersten Aspekt betrifft die Erfindung Mikrokapseln, umfassend ein Kernmaterial und eine Schale, wobei die Schale aus mindestens einer ersten und einer zweiten Schicht besteht, deren chemische Zusammensetzungen sich unterscheiden und wobei die Schale eine Bioabbaubarkeit gemessen nach OECD 301 F von mindestens 40 % aufweist. Gemessen nach OECD 302 C weisen die erfindunggemäßen Mikrokapseln eine Bioabbaubarkeit von mindestens 20 % auf.

Wie in den Beispielen 6 und 7 gezeigt, sind die erfindungsgemäßen Mikrokapselschalen aufgrund des hohen Anteils an natürlichen Komponenten biologisch abbaubar gemäß OECD.

Gemäß einer Ausführungsform enthält die erste Schicht der Mikrokapseln eine oder mehrere bioabbaubare Komponenten als Wandbildner. Diese erste Schicht bildet den stabilitätsgebenden Hauptbestandteil der Mikrokapselschale und gewährleistet so die hohe Bioabbaubarkeit nach OECD 301 F von mindestens 40 %. Als Wandbildner für die erste Schicht geeignete bioabbaubare Komponenten sind Proteine wie Gelatine; Polysaccharide wie Alginat, Gummi arabicum, Chitin, oder Stärke; phenolische Makromoleküle wie Lignin; Polyglucosamine wie Chitosan, Polyvinylester wie Polyvinylacetat und Polyvinylalkohole, insbesondere hochverseifte und vollverseifte Polyvinylalkohole; Phosphazene und Polyester wie Polylactid oder Poly- hydroxyalkanoat. Diese Aufzählung der konkreten Komponenten in den einzelnen Stoffklassen ist nur beispielhaft und soll nicht als limitierend verstanden werden. Dem Fachmann sind geeignete natürliche Wandbildner bekannt. Ferner sind dem Fachmann die verschiedenen Verfahren zur Wandbildung, beispielsweise Koazervation oder Grenzflächenpolymerisation bekannt.

Diese bioabbaubaren Komponenten können für die jeweilige Anwendung ent sprechend ausgewählt werden, um mit dem Material der zweiten Schicht eine stabile Mehrschichtschale auszubilden. Die zweite Schicht kann sowohl auf der Außenseite der ersten Schicht als auch auf der Innenseite der ersten Schicht angeordnet sein. Bevorzugt ist die zweite Schicht an der Innenseite der ersten Schicht angeordnet. Zudem können die bioabbaubaren Komponenten ausgewählt werden um beispielsweise - wenn auf der Innenseite angeordnet - eine Kompatibilität mit dem Kernmaterial zu gewährleisten oder - wenn an der Außenseite angeordnet - eine Kompatibilität mit den chemischen Gegebenheiten des Anwendungsgebiets zu erreichen. Die bioabbaubaren Komponenten können beliebig kombiniert werden, um die Bioabbaubarkeit oderauch beispielsweise Stabilität und chemische Resistenz der Mikrokapsel zu beeinflussen.

In einer Ausführungsform des ersten Aspekts weist die Schale der Mikrokapseln eine Bioabbaubarkeit von 50 % nach OECD 301 F auf. In einerweiteren Ausführungsform weist die Schale der Mikrokapsel eine Bioabbaubarkeit von mindestens 60 % (OECD 301 F) auf. In einer weiteren Ausführungsform beträgt die Bioabbaubarkeit mindestens 70 % (OECD 301 F). Nach OECD 302 C kann die erfindungsgemäße Mikrokapsel eine Bioabbaubarkeit von mindestens 25 % aufweisen. Gemäß einer Ausführungsform beträgt die Bioabbaubarkeit mindestens 30 % (OECD 302 C). Gemäß einer weiteren Ausführungsform beträgt die Bioabbaubarkeit mindestens 40 % (OECD 302 C). Die Bioabbaubarkeit ist jeweils gemessen über einen Zeitraum von 28 Tagen. Im verlängerten Abbauverfahren („enhanced ready biodegredation“) wird die Bioabbaubarkeit über einen Zeitraum von 60 Tagen gemessen (siehe Opinion on an Annex XV dossier proposing restrictions on intentionally-added microplastics of June 11 , 2020 ECHA/RAC/RES-0-0000006790-71-01/F). Bevorzugt werden die Mikrokapseln vor der Bestimmung der Bioabbaubarkeit mittels Waschen von gelösten Rückständen befreit. In einer Ausführungsform wird die Kapseldispersion nach Fierstellung durch dreimaliges Zentrifugieren und Redispergieren in Wasser gewaschen. Dafür wird die Probe zentrifugiert. Nach Absaugen des Klarüberstandes wird mit Wasser aufgefüllt und der Bodensatz durch Schütteln redispergiert. Bei der Messung der Bioabbaubarkeit können verschiedene Referenzproben eingesetzt werden, wie das schnell abbaubare Ethylenglycol oder naturbasiertes Wallnussschalen-Mehl mit dem typischen stufenartigen Abbau eines komplexen Stoffgemisches. Die erfindingsgemäße Mikrokapsel zeigt eine ähnliche, bevorzugt bessere Bioabbaubarkeit über einen Zeitraum von 28 oder 60 Tagen als das Wallnussschalen-Mehl.

Ein erfindungsgemäß hoher Wert der Bioabbaubarkeit wird zum einen durch die verwendeten Wandbildner zum anderen aber durch den erfindungsgemäßen Aufbau der Schale erreicht. Denn der Einsatz eines bestimmten Prozentsatzes natürlicher potentiell bioabbaubarer Komponenten führt nicht automatisch zu einem entsprechenden Wert der Bioabbaubarkeit. Dies ist abhängig davon, wie die potentiell bioabbaubaren Komponenten in der Schale vorliegen.

Gemäß einer bevorzugten Ausführungsform enthält die erste Schicht Gelatine. Gemäß einer weiteren bevorzugten Ausführungsform enthält die erste Schicht Alginat. Gemäß einer weiteren bevorzugten Ausführungsform enthält die erste Schicht Gelatine und Alginat. Wie im Ausführungsbeispiel gezeigt, sind sowohl Gelatine als auch Alginat geeignet für die Herstellung erfindungsgemäßer Mikrokapseln mit hoher Bioabbaubarkeit und hoher Stabilität. Weitere geeignete Kombinationen natürlicher Komponenten in der ersten Schicht sind Gelatine und Gummi arabicum.

Gemäß einer Ausführungsform enthält die erste Schicht ein oder mehrere Aushärtungsmittel. Erfindungsgemäße Aushärtungsmittel sind Aldehyde wie beispielsweise Glutaraldehyd, Formaldehyd und Glyoxal sowie Tannine, Enzyme wie Transglutaminase und organische Anhydride wie Maleinsäureanhydrid. Bevorzugt ist das Aushärtungsmittel Glutaraldehyd auf Grund seiner sehr guten Vernetzereigenschaft. Weiterhin bevorzugt ist das Aushärtungsmittel Glyoxal auf Grund seiner guten Vernetzereigenschaften und, im Vergleich zu Glutaraldehyd, niedrigeren toxikologischen Einstufung. Durch die Verwendung von Aushärtungsmitteln wird eine höhere Dichtigkeit der aus natürlichen Wandbildern bestehenden ersten Schicht erreicht. Zudem reduzieren die Aushärtungsmittel die Klebrigkeit der Schicht und damit die Neigung zur Agglomeration. Allerdings führen Aushärtungsmittel zu einer reduzierten Bioabbaubarkeit der natürlichen Polymere. Aufgrund der Kombination der ersten Schicht mit der zweiten Schicht als Diffusionsbarriere, kann die Menge an Aushärtungsmittel in der ersten Schicht gering gehalten werden, was wiederum zur leichten Bioabbaubarkeit der Schicht beiträgt. Gemäß einer Ausführungsform liegt der Anteil des Aushärtungsmittels an der ersten Schicht unterhalb von 25 Gew.-%. Soweit nicht explizit anders definiert, beziehen sich die Anteile der Bestandteile der Schichten auf das Gesamtgewicht der Schicht, d.h. das Gesamttrockengewicht der zur Herstellung verwendeten Bestandteile, ohne Berücksichtigung der in der Herstellung verwendeten Bestandteile, die nicht bzw. nur geringfügig in die Schicht eingebaut werden, wie Tenside und Schutzkolloide. Oberhalb dieses Wertes können die erfindungsgemäße Bioabbaubarkeit nach OECD 301 F nicht gewährleistet werden. Bevorzugt liegt der Anteil des Aushärtungsmittels an der ersten Schicht im Bereich von 5 - 15 Gew.-%. Dieser Anteil führt zur effektiven Vernetzung der Gelatine und führt in einer quantitativen Reaktion dazu, dass möglichst wenig Restmonomer entsteht. Der Bereich 9 bis 12 Gew.-% ist besonders bevorzugt, er sorgt für den benötigten Vernetzungsgrad und für eine stabile Umhüllung der zweiten Schale, um die ansonsten empfindliche Diffusionsbarriere abzupuffern und mit weiteren Barriereeigenschaften auszurüsten und hat nur wenig Restaldehyd, der in einer nachgeschalteten alkalischen Einstellung der Slurry über eine Aldolreaktion abgebaut wird.

In einer Ausführungsform enthält die erste Schicht Gelatine und Glutaraldehyd. Nach einer weiteren Ausführungsform enthält die erste Schicht Gelatine, Alginat und Glutaraldehyd. In einer zusätzlichen Ausführungsform enthält die erste Schicht Gelatine und Glyoxal. Nach einerweiteren Ausführungsforn enthält die erste Schicht Gelatine, Alginat und Glyoxal. Die genaue chemische Zusammensetzung der ersten Schicht ist nicht entscheidend. Sie muss lediglich für eine ausreichende Stabilität der Mikrokapselwand und das für die jeweilige Anwendung geforderte Freisetzungsverhalten gewährleisten. Wesentlich ist, dass sie nur geringe Mengen oder bevorzugt keine unnatürlichen persistenten Komponenten aufweist. Folglich kann die erste Schicht auch alternativ oder zusätzlich zu den bioabbaubaren Komponenten eine oder mehrere anorganische Komponenten als Wandbildner enthalten. Anorganische Komponenten als Wandbildner können insbesondere Calciumcarbonate oder Polysilikate sein. Diese sind besonders geeignet, da diese als ubiquitäre Bestandteile umweltfreundlich sind. Da also keine Notwendigkeit besteht, diese anorganische Komponenten abzubauen, werden sie erfindungsgemäß als vollständig bioabbaubar angesehen, auch wenn die Kriterien nach OECD 301 bzw. OECD 302 nicht auf diese Komponenten anwendbar sind.

Die zweite Schicht wird erfindungsgemäß auch als dichtigkeitsverleihende Schicht oder Diffusionsbarriere bezeichnet. Denn trotz der geringen Wandstärke der zweiten Schicht weisen die Mikrokapseln eine hohe Dichtigkeit auf. Wie in Beispiel 5 gezeigt, ist die Dichtigkeit ausreichend für den Einsatz in einem Flochanforderungsgebiet. Gemäß einer Ausführungsform weist die zweite Schicht eine durchschnittliche Dicke im Bereich von 0,01 miti bis 1 miti auf. Eine höhere Schichtdicke als 1 pm würde den Anteil der Komponenten der zweiten Schicht an der Gesamtkapselwand zu stark erhöhen und somit keine ausreichende Bioabbaubarkeit mehr gewährleisten. Mit einer Schichtdicke von weniger als 0,01 miti wäre die zweite Schicht keine ausreichende Diffusionsbarriere mehr. Somit wären die Mikrokapseln für die Hochan forderungsgebiete ungeeignet. Mit einer Schichtdicke von 0,02 miti oder mehr weist die zweite Schicht für die meisten Anwendungsbereiche eine ausreichende Dichtheit auf. Für eine leichte Bioabbaubarkeit der Mikrokapsel sollte die Wandstärke der zweiten Schicht höchstens 0,5 miti betragen. Besonders bevorzugt liegt die Wandstärke der zweiten Schicht im Bereich von 0,05 miti bis 0,30 miti. In diesem Bereich wird eine optimale Dichte bei leichter Bioabbaubarkeit erreicht.

Die zweite Schicht enthält bevorzugt als Wandbildner eine oder mehrere Komponenten, ausgewählt aus der Gruppe bestehend aus einer aldehydischen Komponente, einem aromatischen Alkohol, einer Aminkomponente, einer Acrylat- Komponente. Herstellungsverfahren zur Erzeugung von Mikrokapseln mit diesen Wandmaterialien sind dem Fachmann bekannt. Zur Herstellung der zweiten Schicht kann ein Polymer, ausgewählt aus einem Polykondensationsprodukt einer aldehydischen Komponente mit einem oder mehreren aromatischen Alkoholen, und/oder Aminkomponenten verwendet werden.

Wie in den Ausführungsbeispielen 1 und 4 gezeigt, kann die erfindungsgemäß geringe Wandstärke der zweiten Schicht insbesondere mit einer aromatische Alkohole oder m-Aminophenol enthaltenden Melamin-Formaldehyd-Schicht erreicht werden. Folglich umfasst die zweite Schicht bevorzugt eine aldehydische Komponente, eine Aminkomponente und einen aromatischen Alkohol.

Der Einsatz von Amin-Aldehyd-Verbindungen in der zweiten Schicht, insbesondere Melamin-Formaldehyd, hat den Vorteil, dass diese Verbindungen eine hydrophile Oberfläche mit einem hohen Anteil an Hydroxyfunktionalität ausbilden, die damit eine ausgezeichnete Kompatibilität mit den auf Wasserstoffbrücken ausgerichteten Komponenten der ersten Schicht, wie bioabbaubare Proteine, Polysaccharide, Chitosan, Lignine und Phosphazene aber auch anorganischen Wandmaterialien wie CaC0 3 und Polysiloxanen aufweisen. Genauso können Polyacrylate, insbesondere aus den Komponenten Styrol, Vinylverbindungen, Methylmethacrylat, und 1 ,4- Butandiolacrylat, Methacrylsäure, durch Initiierung z.B. mit t-Butyl-hydroperoxid in einer radikalisch induzierten Polymerisation (Polyacrylate) als Mikrokapselwand erzeugt werden, die eine hydrophile Oberfläche mit einem hohen Anteil an Hydroxyfunktionalität ausbilden, die deshalb genauso kompatibel mit den erfindungsgemäßen Komponenten der ersten Schicht sind.

In einer bevorzugten Ausführungsform ist somit ein Wandbildner der zweiten Schicht eine aldehydische Komponente. Gemäß einer Ausführungsform ist die aldehydische Komponente der zweiten Schicht ausgewählt aus der Gruppe bestehend aus Formaldehyd, Glutaraldehyd, Succinaldehyd, Furfural und Glyoxal. Mit all diesen Aldehyden wurden schon erfolgreich Mikrokapseln hergestellt (siehe WO 2013 037 575 A1), so dass davon ausgegangen werden kann, dass damit ähnlich dichte Kapseln wie mit Formaldehyd erhalten werden.

Basierend auf den Untersuchungen der vorliegenden Erfindung sollte der Anteil der aldehydischen Komponente für die Wandbildung bezogen auf das Gesamtgewicht der zweiten Schale im Bereich von 5 Gew.-% bis 50 Gew.-% liegen. Es wird davon ausgegangen, dass außerhalb dieser Grenzen keine ausreichend stabile und dichte, dünne Schicht erhalten werden kann. Bevorzugt liegt die Konzentration der aldehydischen Komponente in der zweiten Schicht im Bereich von 10 Gew.-% bis 30 Gew.-%. Besonders bevorzugt liegt die Konzentration der aldehydischen Komponente in der zweiten Schicht im Bereich von 15 Gew.-% bis 20 Gew.-%.

Als Aminkomponente in der zweiten Schicht kommen insbesondere Melamin, Melaminderivate und Flarnstoff oder Kombinationen davon in Frage. Geeignete Melaminderivate sind veretherte Melaminderivate sowie methylolierte Melaminderivate. Melamin in der methylolierten Form ist dabei bevorzugt. Die Aminkomponenten können beispielsweise in Form von alkylierten Mono- und Polymethylol-Flarnstoff-Vorkondensationsprodukten oder partiell methylolierten Mono- und Polymethylol-1 ,3,5 triamono- 2,4,6 Triazin-Vorkondensationsprodukten wie Luracoll SD ® (von BASF) eingesetzt werden. Gemäß einer Ausführungsform ist die Aminkomponente Melamin. Gemäß einer alternativen Ausführungsform ist die Aminkomponente eine Kombination von Melamin und Flarnstoff.

Die aldehydische Komponente und die Aminkomponente können in einem Molverhältnis im Bereich von 1 :5 bis 3:1 vorliegen. Beispielsweise kann das Molverhältnis 1 :5, 1 :4,5, 1 :4, 1 :3,5, 1 :3, 1 :2,5, 1 :2, 1 :1 ,8, 1 :1 ,6, 1 :1 ,4, 1 ;1 ,3, 1 :1 ,2, 1 :1 , 1 ,5:1 , 2:1 , 2,5:1 , oder 3:1 sein. Bevorzugt liegt das Molverhältnis im Bereich von 1 :3 bis 2:1. Besonders bevorzugt kann das Molverhältnis der aldehydischen Komponente und der Aminkomponente im Bereich von 1 :2 bis 1 :1 liegen. Die aldehydische Komponente und die Aminkomponente werden in der Regel im Verhältnis von etwa 1 :1 ,3 eingesetzt. Dieses Molverhältnis erlaubt eine vollständige Reaktion der beiden Reaktionspartner und führt zu einer hohen Dichtigkeit der Kapseln. Es sind beispielsweise auch Aldehyd-Amin-Kapselwände bekannt mit einem Molverhältnis von 1 :2. Diese Kapseln haben den Vorteil, dass der Anteil des hochvernetzenden Aldehyds, insbesondere Formaldehyd sehr gering ist. Allerdings weisen diese Kapseln eine geringere Dichtigkeit auf als die Kapseln mit einem Verhältnis von 1 :1 ,3. Kapseln mit einem Verhältnis von 2:1 weisen eine erhöhte Dichtigkeit auf, haben jedoch den Nachteil, dass die Aldehyd-Komponente teilweise unreagiert in der Kapselwand und der Slurry vorliegt.

In einer Ausführungsform liegt der Anteil der Aminkomponenten (bspw. Melamin und/oder Harnstoff) in der zweiten Schicht bezogen auf das Gesamtgewicht der zweiten Schicht im Bereich von 20 Gew.-% bis 85 Gew.-%. Beispielsweise kann der Anteil der Aminkomponente bei 20 Gew.-%, 25 Gew.-%, 30 Gew.-%, 35 Gew.-%, 40 Gew.-%, 45 Gew.-%, 50 Gew.-%, 55 Gew.-%, 60 Gew.-%, 65 Gew.-%, 70 Gew.-%, 75 Gew.-%, 80 Gew.-% oder 85 Gew.-% liegen. In einer bevorzugten Ausführungsform liegt der Anteil der Aminkomponente in der zweiten Schicht bezogen auf das Gesamtgewicht der zweiten Schicht im Bereich von 40 Gew.-% bis 80 Gew.-%. Besonders bevorzugt liegt der Anteil der Aminkomponente im Bereich von 55 bis 70 Gew.-%.

Mit dem aromatischen Alkohol ist es möglich die Wandstärke der aus der Amin- Komponente und der Aldehyd-Komponente aufgebauten zweiten Schicht stark zu reduzieren um dennoch eine Schicht zu erhalten, die die notwendige Dichtheit aufweist und zumindest in Kombination mit der ersten Schicht stabil genug ist. Die aromatischen Alkohole verleihen der Wand eine erhöhte Dichtheit, da ihre stark hydrophobe Aromatenstruktur das Hindurchdiffundieren niedermolekularer Substanzen erschwert. Wie in den Beispielen dargestellt eignet sich als aromatischer Alkohol besonders Phloroglucin, Resorcin oder m-Aminophenol. Folglich ist der aromatische Alkohol in einer Ausführungsform ausgewählt aus der Gruppe bestehend aus Phloroglucin, Resorcin und Aminophenol. In Kombination mit der Amin- und der Aldehyd-Komponente wird der aromatische Alkohol in einem Molverhältnis zur Aldehyd-Komponente im Bereich von (Alkohol :Aldehyd) 1 :1 bis 1 :20, bevorzugt im Bereich von 1 :2 bis 1 :10 eingesetzt.

In einer Ausführungsform liegt der Anteil des aromatischen Alkohols in der zweiten Schicht bezogen auf das Gesamtgewicht der zweiten Schicht im Bereich von 1 ,0 Gew.-% bis 20 Gew.-%. Beispielsweise kann der Anteil des aromatischen Alkohols 1 ,5 Gew.-%, 2,0 Gew.-%, 2,5 Gew.-%, 3,0 Gew.-%, 4,0 Gew.-%, 5,0 Gew.- %, 6 Gew.-%, 7 Gew.-%, 8 Gew.-%, 9 Gew.-%, 10 Gew.-%, 11 Gew.-%, 12 Gew.-% 13 Gew.-%, 14 Gew.-%, 15 Gew.-%, 16 Gew.-%, 17 Gew.-%, 18 Gew.-%, 19 Gew.-% oder 20 Gew.-% liegen. Aufgrund ihrer aromatischen Struktur geben die aromatischen Alkohole der Kapselwand eine Färbung, die mit dem Anteil des aromatischen Alkohols zunimmt. Eine solche Färbung ist in einer Vielzahl von Anwendungen unerwünscht. Zudem sind die aromatischen Alkohole oxidations anfällig, was zu einer Veränderung der Färbung im Laufe der Zeit führt. Dadurch kann die unerwünschte Färbung der Mikrokapseln schlecht mit einem Farbstoff ausgeglichen werden. Deshalb sollten die aromatischen Alkohole nicht oberhalb von 20,0 Gew.-% eingesetzt werden. Unterhalb von 1 ,0 Gew.-% ist kein Effekt bezüglich der Dichtigkeit nachweisbar. In einer bevorzugten Ausführungsform liegt der Anteil des aromatischen Alkohols in der zweiten Schicht bezogen auf das Gesamtgewicht der zweiten Schicht im Bereich von 5,0 Gew.-% bis 15,0 Gew.-%. Bis zu einem Prozentsatz von 15,0 Gew.-% ist die Färbung in den meisten Anwendungen tolerierbar. In einer besonders bevorzugten Ausführungsform liegt der Anteil des aromatischen Alkohols in der zweiten Schicht bezogen auf das Gesamtgewicht der zweiten Schicht im Bereich von 7,0 Gew.-% bis 13,0 Gew.-%. Insbesondere liegt der Anteil des aromatischen Alkohols in der zweiten Schicht im Bereich von 9,0 Gew.-% bis 13,0 Gew.-%.

In einerweiteren Ausführungsform kann die Aldehydkomponente der zweiten Schicht zusammen mit einem aromatischen Alkohol wie Resorcin, Phloroglucin oder m-Aminophenol als wandbildende Komponente(n) verwendet werden, d.h. unter Verzicht auf die Aminkomponente(n).

In einer Ausführungsform enthält die zweite Schicht der Mikrokapseln Melamin, Formaldehyd und Resorcin. In einer Ausführungsform enthält die zweite Schicht der Mikrokapseln Melamin, Harnstoff, Formaldehyd und Resorcin. In einer bevorzugten Ausführungsform enthält die zweite Schicht der Mikrokapseln Melamin im Bereich von 25 bis 40 Gew.-%, Formaldehyd im Bereich von 15 bis 20 Gew.-% und Resorcin im Bereich von 0,1 bis 12 Gew.-% und gegebenfalls Harnstoff im Bereich von 15 bis 20 Gew.-%. Die Anteile beziehen sich auf die für die Wandbildung der Schicht eingesetzten Mengen und sind bezogen auf das Gesamtgewicht der zweiten Schicht ohne Schutzkolloid.

Zur Herstellung der zweiten Schicht aus einer aldehydischen Komponente, einer Aminkomponente und einem aromatischen Alkohol kann des Weiteren ein Schutzkolloid eingesetzt werden. Ein geeignetes Schutzkolloid ist die 2-Acrylamido- 2-methyl-propansulfonsäure (AMPS, kommerziell erhältlich als Lupasol ® PA 140, BASF) oder deren Salze. Der Anteil des Schutzkolloids an den zur Herstellung der zweiten Schicht verwendeten Komponenten kann im Bereich von 10 bis 30 Gew.-% bezogen auf das Gesamttrockengewicht der eingesetzten Bestandteile liegen. Gemäß einer Ausführungsform liegt der Anteil des Schutzkolloids an den zur Herstellung der zweiten Schicht verwendeten Komponenten im Bereich von 15 bis 25 Gew.-%. Das Schutzkolloid kann zu einem gewissen niedrigen Prozentsatz auch in der fertigen Mikrokapselschale enthalten sein. Die Bestimmung des Anteils des Schutzkolloids in der zweiten Schicht ist technisch schwierig. Zudem ist der Anteil nur gering. Folglich werden die anderen Anteile der anderen Bestandteile so dargestellt, als wäre das Schutzkolloid nicht enthalten.

Bei den optional für die Ausbildung der dünnen zweiten Schicht (Diffusionsbarriere) verwendeten (Meth)Acrylat-Polymeren kann es sich um Homo- oder Copolymere von Methacrylat-Monomeren und/oder Acrylat-Monomeren handeln. Die (Meth)Acrylat- Polymere sind z.B. Homo- oder Copolymere, bevorzugt Copolymere, eines oder mehrerer polar funktionalisierter (Meth)Acrylat-Monomere, wie sulfonsäuregruppen haltige, carbonsäuregruppen-haltige, phosphor-säuregruppen-haltige, nitrilgruppen haltige, phoshonsäure-haltige, ammoniumgruppen-haltige, amingruppen-haltige oder nitratgruppen-haltige (Meth)Acrylat-Monomere. Die polaren Gruppen können dabei auch in Salzform vorliegen.

(Meth)Acrylat-Copolymere können beispielsweise aus zwei oder mehr (Meth)Acrylat- Monomeren bestehen (z.B. Acrylat + 2-Acrylamido-2-methyl-propansulfonsäure) oder aus einem oder mehreren (Meth)Acrylat-Monomeren und einem oder mehreren von (Meth)Acrylat-Monomeren verschiedenen Monomeren (z.B. Methacrylat + Styrol).

Beispiele für (Meth)Acrylat-Polymere sind Homopolymere von sulfonsäuregruppen haltigen (Meth)Acrylaten (z.B. 2-Acrylamido-2-methyl-propansulfonsäure oder dessen Salze (AMPS), oder deren Copolymere, Copolymere von Acrylamid und (Meth)Acrylsäure, Copolymere von Alkyl-(Meth)Acrylaten und N-Vinylpyrrolidon (kommerziell erhältlich als Luviskol ® K15, K30 oder K90, BASF), Copolymere von (Meth)Acrylaten mit Polycarboxylaten oder Polystyrolsulfonaten, Copolymere von (Meth)Acrylaten mit Vinylethern und/oder Maleinsäureanhydrid, Copolymere von (Meth)Acrylaten mit Ethylen und/oder Maleinsäureanhydrid, Copolymere von (Meth)Acrylaten mit Isobutylen und/oder Maleinsäureanhydrid, oder Copolymere von (Meth)Acrylaten mit Styrol-Maleinsäureanhydrid.

Bevorzugte (Meth)Acrylat-Polymere sind Homo- oder Copolymere, bevorzugt Copolymere, von 2-Acrylamido-2-methyl-propansulfonsäure oder dessen Salzen (AMPS). Bevorzugt sind Copolymere von 2-Acrylamido-2-methyl-propansulfonsäure oder dessen Salzen, z.B. Copolymere mit einem oder mehreren Comonomeren aus der Gruppe der (Meth)Acrylate, der Vinylverbindungen wie Vinylester oder Styrole, der ungesättigten Di- oder Polycarbonsäuren wie Maleinsäureester, oder der Salze von Amylverbindungen oder Allylverbindungen.

Im Gegensatz zu bekannten bioabbaubaren Mikrokapseln weisen die erfin dungsgemäßen Mikrokapseln eine hohe Dichtheit auf. Gemäß einer Aus führungsform weisen die Mikrokapseln eine Dichtheit auf, die einen Austritt von höchstens 80 Gew.-% des eingesetzten Kernmaterials nach Lagerung über einen Zeitraum von 12 Wochen bei einer Temperatur von 0 bis 40 °C gewährleistet.

Neben dem Schalenmaterial ist die Dichtheit auch von der Art des Kernmaterials abhängig. Die Dichtheit der erfindungsgemäßen Mikrokapseln wurde erfindungs gemäß für das Duftöl Weiroclean der Fa. Kitzing bestimmt, da dieses Duftöl in seinen chemischen Eigenschaften repräsentativ für mikroverkapselte Duftöle ist. Weiroclean weist die folgenden Komponenten auf (mit Anteil bezogen auf das Gesamtgewicht): 1-(1 ,2,3,4,5,6,7,8-Octahydro-2,3,8,8-tetramethyl-2-naphthalenyl) ethanone 25-50 %

Benzoic Acid, 2-hydroxy-, 2-hexyl ester 10-25 %

Phenylmethyl benzoate 5-10 %

3-Methyl-4-(2,6,6-trimethyl-2-cyclohexenyl)-3-buten-2-one 1 -5 %

3,7-Dimethyl-6-octen-1-ol 1-5 %

3-Methyl-5-phenylpentanol 1-5 %

2.6-Dimethyloct-7-en-2-ol 1-5 %

4-(2,6,6-Trimethylcyclohex-1-eneyl)-but-3-ene-2-one 1-5 %

3a,4,5,6,7,7a-Hexahydro-4,7-methano-1H-inden-6-yl Propanoate 1-5 %

2-tert-Butylcyclohexyl acetate 1 -5 %

2-Heptylcyclopentanone 1-5 %

Pentadecan-15-olide 1-5 %

2H-1-Benzopyran-2-one 0,1-1 %

2.6-Di-tert-butyl-p-cresol 0,1-1 %

4-Methyl-3-decen-5-ol 0,1-1 %

2, 4-Dimethyl-3-cyclohexen-1 -carboxaldehyde 0,1-1 %

[(2E)-3,7-dimethylocta-2,6-dienyl] acetate 0,1-1 %

Allyl hexanoate 0,1-1 %

2-Methylundecanal 0,1-1 %

10-Undecenal 0,1-1 % cis-3,7-Dimethyl-2,6-octadienyl ethanoate 0,1-1 %

3,7,11-Trimethyldodeca-1 ,6,10-trien-3-ol 0,1-1 %

Undecan-2-one 0,1-1 %

Als Kernmaterial kommt eine Vielzahl unterschiedlicher Materialien in Frage, unter anderem Duftstoffe, Aromen, Phasenwechselmaterialen, kosmetischen Wirkstoffe, pharmazeutischen Wirkstoffe, Katalysatoren, Initiatorsysteme, Klebstoffkompo- nenten und hydrophobe Reaktivkomponenten. Das Kernmaterial ist gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Mikrokapseln hydrophob. Das Kernmaterial kann fest oder flüssig sein. Insbesondere ist es flüssig. Bevorzugt handelt es sich um ein flüssiges hydrophobes Kernmaterial. In einer bevorzugten Ausführungsform handelt es sich bei dem Kernmaterial um einen Duftstoff. Besonders bevorzugt handelt es sich um für die Mikroverkapselung optimierte Duftöle für den Wasch und Reinigungsmittelbereich, wie beispielsweise die Duftformulierung Weiroclean (Kurt Kitzing GmbH). Die Dichtigkeit der Kapselwand kann mit der Wahl der Schalenkomponenten beeinflusst werden. Gemäß einer Ausführungsform weisen die Mikrokapseln eine Dichtheit auf, die einen Austritt von höchstens 75 Gew.-%, höchstens 70 Gew.-%, höchstens 65 Gew.-%, höchstens 60 Gew.-%, höchstens 55 Gew.-% höchstens 50 Gew.-%, höchstens 45 Gew.-%, höchstens 40 Gew.-% des eingesetzten Kernmaterials bei Lagerung über einen Zeitraum von 12 Wochen bei einer Temperatur von 0 bis 40 °C gewährleistet. Dabei werden die Mikrokapseln in einer der Zielanwendung entsprechenden Modellformulierung gelagert. Die Mikrokapseln sind darüber hinaus auch in dem Produkt, in dem sie verwendet werden, lagerstabil. Beispielsweise in Waschmitteln, Weichspülern, Kosmetikprodukten, Klebstoff systemen, Lacken und Dispersionen, oder in Schichtmaterialien, beispielsweise beschichteten Papieren. Dem Fachmann sind die Richtrezepturen dieser Produkte bekannt. Typischerweise liegt der pH Wert in der Umgebung der Mikrokapseln bei der Lagerung im Bereich von 2 bis 10.

Die zweite Schicht kann auf der Innen- oder der Außenseite der ersten Schicht angeordnet sein. Gemäß einer Ausführungsform, ist die zweite Schicht an der Innenseite der ersten Schicht angeordnet. Eine solche Anordnung hat den Vorteil, dass die Dichtigkeitsverleihende Schicht zusätzlich als chemische Schutzschicht zwischen der bioabbaubaren ersten Schicht und dem Kernmaterial dienen kann. Dies ist vor allem in Fällen wichtig, in denen das Kernmaterial das bioabbaubare Material der ersten Schicht chemisch angreifen kann. Bei diesem Aufbau besteht das Problem, dass bei der Verkapselung zunächst die sehr dünne zweite Schicht als Templat ausgebildet werden muss. Dies wurde vorliegend durch die Auswahl der geeigneten Wandbilder und Zusatzstoffe gelöst. Ein Vorteil der Templatstrategie, also der Herstellung der Kapsel beginnend mit dem Aufbau der sehr dünnen zweiten Schicht als Templat, liegt darin, dass bei dieser Herstellung die als Wandbildner eingesetzten Komponenten in der kontinuierlichen Wasserphase vorgelegt werden können, wodurch ein minimaler Kontakt zum Kernmaterial beim Aufbau der Hülle gegeben ist. Die Komponenten der zusätzlichen ersten Schicht können dann ohne Interaktion mit dem Kernmaterial als erste Schicht abgeschieden werden. Die erfindungsgemäßen Mikrokapselschalen weisen mindestens zwei Schichten auf, d.h. sie können z.B. zweischichtig, dreischichtig, vierschichtig, oder fünfschichtig sein. Bevorzugt sind die Mikrokapseln zwei- oder dreischichtig.

Gemäß einer Ausführungsform weist die Mikrokapsel eine dritte Schicht auf, die an der Außenseite der ersten Schicht angeordnet ist. In einerweiteren Ausführungsform ist die dritte Schicht auf der Außenseite der zweiten Schicht angordnet. Bevorzugt liegt in dieser Ausführungsform die zweite Sicht auf der Außenseite der ersten Schicht. Diese dritte Schicht kann eingesetzt werden um die Oberflächeneigenschaften der Mikrokapsel für eine bestimmte Anwendung anzupassen. Zu nennen wären hier die Verbesserung der Haftung der Mikrokapseln auf verschiedensten Oberflächen und eine Reduzierung der Agglomeration. Die dritte Schicht bindet zudem Restaldehydmengen, verringert damit den Gehalt an freien Aldehyden in der Kapseldispersion. Ferner kann sie zusätzliche (mechanische) Stabilität erbringen oder die Dichtigkeit weiter erhöhen. Abhängig von der Anwendung kann die dritte Schicht eine Komponente ausgewählt aus Aminen, organischen Salzen, anorganischen Salzen, Alkoholen, Ethern, Polyphosphazenen und Edelmetallen enthalten.

Edelmetalle erhöhen die Dichtigkeit der Kapseln und können der Mikrokapseloberfläche zusätzliche katalytische Eigenschaften verleihen oder die antibakterielle Wirkung einer Silberschicht. Organische Salze, insbesondere Ammoniumsalze, führen zu einer Kationisierung der Mikrokapseloberfläche, die dazu führt, dass diese besser an z.B. Textilien haftet. Auch Alkohole führen bei Einbindung über freie Hydroxylgruppen zur Bildung von H-Brücken, die ebenfalls bessere Anhaftung an Substrate erlauben. Eine zusätzliche Polyphosphazen-Schicht oder die Beschichtung mit anorganischen Salzen, bspw. Silikaten, führt zu einer zusätzlichen Erhöhung der Dichtigkeit ohne die Bioabbaubarkeit zu beeinflussen. Gemäß einer bevorzugten Ausführungsform enthält die dritte Schicht aktiviertes Melamin. Das Melamin fängt zum einen mögliche freie Aldehydanteile der ersten und/oder zweiten Schicht auf, erhöht die Dichtheit und Stabilität der Kapsel und kann zudem die Oberflächeneigenschaften der Mikrokapseln und damit das Anhaftungs- und Agglomerationsverhalten beeinflussen. Aufgrund der geringen Wandstärken beträgt der Anteil der zweiten Schicht an der Schale bezogen auf das Gesamtgewicht der Schale höchstens 30 Gew.-%. Für eine hohe Bioabbaubarkeit beträgt der Anteil höchstens 25 Gew.-% bezogen auf das Gesamtgewicht der Schale. Besonders bevorzugt beträgt der Anteil der zweiten Schicht höchstens 20 Gew.-%. Der Anteil der ersten Schicht an der Schale bezogen auf das Gesamtgewicht der Schale beträgt mindestens 40 Gew.-%, bevorzugt mindestens 50 Gew.-%, besonders bevorzugt mindestens 60 Gew.-%. Der Anteil der dritten Schicht an der Schale bezogen auf das Gesamtgewicht der Schale beträgt höchstens 25 Gew.-%, bevorzugt höchstens 20 Gew.-%, besonders bevorzugt höchstens 15 Gew.-% beträgt.

Die Größe der erfindungsgemäßen Mikrokapseln liegt im für Mikrokapseln üblichen Bereich. Dabei kann der Durchmesser im Bereich von 100 nm bis 1 mm liegen. Der Durchmesser ist abhängig von der genauen Kapselzusammensetzung und dem Herstellungsverfahren. Als Kennwert für die Größe der Kapseln wird regelmäßig das Peak-Maximum der Partikelgrößenverteilung verwendet. Bevorzugt liegt das Peak- Maximum der Partikelgrößenverteilung im Bereich von 1 pm bis 500 pm. Das Peak- Maximum der Partikelgrößenverteilung kann beispielsweise bei 1 pm, 2 pm, 3 pm, 4 pm, 5 pm, 10 pm, 15 pm, 20 pm, 30 pm, 40 pm, 50 pm, 60 pm, 70 pm, 80 pm, 90 pm, 100 pm, 120 pm, 140 pm, 160 pm, 180 pm 200 pm, 250 pm, 300 pm 350 pm, 400 pm, 450 pm oder 500 pm liegen. Gemäß einer besonders bevorzugten Ausführungsform haben die Mikrokapseln ein Peak-Maximum der Partikel größenverteilung von 10 pm bis 100 pm. Insbesondere liegt das Peak-Maximum der Partikelgrößenverteilung im Bereich von 10 pm bis 50 pm.

Erzeugnis enthaltend Mikrokapseln

Aufgrund der Robustheit bzw. Dichtigkeit dieser bioabbaubaren Kapsel kann diese in einer Vielzahl von Produkten eingesetzt werden. Folglich betrifft die Erfindung gemäß einem zweiten Aspekt ein Erzeugnis, enthaltend Mikrokapseln gemäß dem ersten Aspekt wobei das Erzeugnis ausgewählt ist aus der Gruppe bestehend aus einem einem Klebstoffstoffsystem; einem Kosmetikprodukt; einem pharmazeutischen Produkt; einem Beschichtungsmaterial, insbesondere einem beschichteten Papier; einer Wärmespeicherbeschichtung, für eine Selbstheilungsbeschichtung oder einer Korrosionsbeschichtung; und derartige Mikrokapseln enthaltende Beschichtungen für funktionelle Verpackungsmaterialien.

Ferner betrifft die Erfindung in einem dritten Aspekt die Verwendung von Mikrokapseln gemäß dem ersten Aspekt zur Herstellung eines Erzeugnisses gemäß dem zweiten Aspekt.

Mit anderen Worten können die Mikrokapseln in der Herstellung eines solchen Erzeugnisses eingesetzt werden. Folglich betrifft die Erfindung weiterhin die Verwendung der Mikrokapseln gemäß dem ersten Aspekt zur Herstellung des Erzeugnisses, wobei das Erzeugnis ausgewählt ist aus der Gruppe bestehend aus einem Klebstoffstoffsystem; einem Kosmetikprodukt; einem pharmazeutischen Produkt; einem Beschichtungsmaterial, insbesondere einem beschichteten Papier; einer Wärmespeicherbeschichtung, für eine Selbstheilungsbeschichtung oder einer Korrosionsbeschichtung; und derartige Mikrokapseln enthaltende Beschichtungen für funktionelle Verpackungsmaterialien.

Herstellungsverfahren

Verfahren zur Herstellung von Kern/Schale-Mikrokapseln sind dem Fachmann bekannt. In der Regel wird ein ölbasiertes nicht bzw. wenig wasserlösliches Kernmaterial in einer die Wandbildner enthaltenden wässrigen Phase emulgiert oder dispergiert. In Abhängigkeit von der Viskosität flüssiger Kernmaterialien kommen vom einfachen Rührer bis zum Hochleistungsdispergierer verschiedenste Aggregate zum Einsatz, die das Kernmaterial in feine Öltröpfchen verteilt. Dabei scheiden sich die Wandbildner aus der kontinuierlichen Wasserphase auf der Öltröpfchen-Oberfläche ab und können anschließend vernetzt werden.

Dieser Mechanismus wird genutzt bei der In-situ-Polymerisation von Amino- und Phenoplast-Mikrokapseln und bei der Koazervation wasserlöslicher Hydrokolloide.

Im Gegensatz dazu kommen bei der radikalischen Polymerisation öllösliche Acrylat- Monomere für die Wandbildung zum Einsatz. Darüber hinaus kommen Verfahren zum Einsatz, bei denen wasserlösliche und öllösliche Ausgangsstoffe an der Phasengrenze der Emulsionstropfen zur Reaktion gebracht werden, die die feste Schale bilden. Beispiele hierfür sind die Reaktion von Isocyanaten und Aminen bzw. Alkoholen zu Polyharnstoff- bzw. Polyurethanwänden (Grenzflächenpolymerisation), aber auch die Hydrolyse von Silikat-Präkursoren mit anschließender Kondensation unter Aus bildung einer anorganischen Kapselwand (Sol-Gel-Verfahren).

In einem vierten Aspekt betrifft die Erfindung ein Verfahren zur Herstellung von Mikrokapseln, umfassend einen Duftstoff als Kernmaterial und eine Schale, die aus drei Schichten besteht. Bevorzugt wird bei der Herstellung die als Diffusionsbarriere dienende sehr dünne zweite Schicht als Templat vorgelegt. Zum Aufbau dieser zweiten Schicht werden sehr geringe Anteile an Wandbildnern der genannten Art benötigt. Bevorzugt sind die empfindlichen Template nach der Tröpfchenbildung bei hohen Rührgeschwindigkeiten durch geeignete Schutzkolloide (z.B. AMPS) so mit einer elektrisch negativen Ladung ausgerüstet, dass weder Ostwaldreifung noch Koaleszenz auftreten können. Nach Herstellung dieser stabilen Emulsion kann bei nunmehr stark verminderter Rührgeschwindigkeit der Wandbildner, beispielsweise ein geeignetes Vorkondensat auf Aminoplastharzbasis in eine im Vergleich zum Stand der Technik sehr viel dünnere Schale (Schicht) ausbilden. Die Dicke der Schale kann insbesondere durch Zusatz eines aromatischen Alkohols, z.B. m-Aminophenol, noch weiter reduziert werden. Es folgt die Ausbildung einer produktionsfähigen Schalenstruktur, die unerwarteter Weise bei Zugabe von Proteinen wie Gelatine oder Alginat eine gute Affinität zu diesen aufzeigt und eine Abscheidung auf den Templaten ohne die erwarteten Probleme wie Gelierung des Ansatzes, Agglomerationsbildung und Unverträglichkeit des Strukturgebers aufzeigt.

Das Verfahren umfasst zumindest die folgenden Schritte: a) Herstellen einer ÖI-in-Wasser-Emulsion durch Emulgierung eines Kernmaterials in einer wässrigen Phase, gegebenenfalls unter Zugabe von Schutzkolloiden; b) Zugabe der wandbildenden Komponente(n) der inneren Schalenschicht, gefolgt von Abscheidung und Aushärtung, wobei die wandbildende(n) Komponente(n) der inneren Schalenschicht insbesondere eine aldehydische Komponente, eine Aminkomponente und ein aromatischer Alkohol sind; c) Zugabe der wandbildenden Komponente(n) der mittleren Schalenschicht, gefolgt von Abscheidung und Aushärtung, wobei die wandbildende(n) Komponenten der mittleren Schalenschicht insbesondere Proteine und/oder Polysaccharide sind; und d) gegebenenfalls Zugabe der wandbildenden Komponente(n) der äußeren Schalenschicht, gefolgt von Abscheidung und Aushärtung, wobei die wandbildende(n) Komponente(n) der äußeren Schalenschicht insbesondere eine Aminkomponente ist.

Alternativ können die Schritte a) und b) wie folgt durchgeführt werden: a) Herstellen einer ÖI-in-Wasser-Emulsion durch Emulgierung eines Kernmaterials in einer wässrigen Phase in Anwesenheit der wandbildenden Komponente(n) der inneren Schalenschicht, gegebenenfalls unter Zugabe von Schutzkolloiden; b) Abscheidung und Aushärtung der wandbildenden Komponente(n) der inneren Schalenschicht, wobei die wandbildende(n) Komponente(n) der inneren Schalenschicht insbesondere eine aldehydische Komponente, eine Aminkomponente und ein aromatischer Alkohol sind.

Dieses Verfahren kann entweder sequentiell oder als sogenanntes Eintopfverfahren durchgeführt werden. Beim sequentiellen Verfahren werden in einem ersten Verfahren nur die Schritte a) und b) bis zum Erhalt von Mikrokapseln mit nur der inneren Schicht als Schale (Intermediatsmikrokapseln) durchgeführt. Im Folgenden wird dann eine Teilmenge oder die Gesamtmenge dieser Intermediatsmikrokapseln in einen weiteren Reaktor überführt. In diesem werden dann die weiteren Reaktionsschritte durchgeführt. Beim Eintopf-Verfahren werden sämtliche Verfahrensschritte in einem Batch-Reaktor durchgeführt. Die Durchführung ohne Reaktorwechsel ist besonders zeitsparend.

Dazu sollte das Gesamtsystem auf das Eintopfverfahren abgestimmt sein. Die richtige Wahl der Feststoffanteile, die richtige Temperaturführung, die abgestimmte Zugabe an Formulierungsbestandteilen und die sequentielle Zugabe der Wandbildner ist auf diese Art möglich.

In einer Ausführungsform des Verfahrens umfasst das Verfahren die Herstellung einer Wasserphase durch Lösung eines Schutzkolloids, insbesondere Acrylamidosulfonat und einem methylierten Prä-Polymer in Wasser. Dabei wird das Prä-Polymer bevorzugt durch Umsetzung eines Aldehyds mit entweder Melamin oder Harnstoff erzeugt. Optional kann dabei Methanol zum Einsatz kommen.

Ferner kann in dem erfindungsgemäßen Verfahren eine Durchmischung der Wasserphase mittels Rühren und Einstellen einer ersten Temperatur erfolgen, wobei die erste Temperatur im Bereich von 30 °C bis 40 °C liegt. Im Anschluss kann ein aromatischer Alkohol, insbesondere Phloroglucin, Resorcin oder Aminophenol zur Wasserphase hinzugefügt und darin gelöst werden.

Alternativ kann in dem erfindungsgemäßen Verfahren die Herstellung einer Ölphase durch Mischung einer Duftstoffzusammensetzung oder eines Phasen wechselmaterials (PCM) mit aromatischen Alkoholen geschehen, insbesondere Phloroglucin, Resorcin oder Aminophenol. Alternativ können auch reaktive Monomere oder Diisocyanatderivate in die Duftstoffzusammensetzung eingebracht werden. Anschließend kann die Einstellung der ersten Temperatur erfolgen.

Ein weiterer Schritt kann die Herstellung eines Zwei-Phasen-Gemischs durch Zugabe der Ölphase zur Wasserphase und anschließender Erhöhung der Drehzahl sein.

Im Anschluss kann die Emulgierung durch Zugabe von Ameisensäure gestartet werden. Dabei bietet sich eine regelmäßige Bestimmung der Teilchengröße an. Ist die gewünschte Teilchengröße erreicht, kann die Zwei-Phasen-Mischung weiter gerührt werden und dabei eine zweite Temperatur zur Aushärtung der Kapselwände eingestellt werden. Die zweite Temperatur kann dabei im Bereich von 55 °C bis 65 °C liegen.

Im Anschluss kann die Zugabe einer Melamin-Dispersion zur Mikrokapsel-Dispersion und Einstellung einer dritten Temperatur erfolgen, wobei die dritte Temperatur bevorzugt im Bereich von 75 °C bis 85 °C liegt.

Ein weiterer geeigneter Schritt ist die Zugabe einer wässrigen Harnstoff-Lösung zur Mikrokapsel-Dispersion. Zur Herstellung der ersten Schale erfolgt die Zugabe der Mikrokapsel-Dispersion zu einer Lösung von Gelatine und Alginat. In diesem Fall würde im Anschluss eine Abkühlung auf 45 °C bis 55 °C erfolgen sowie ein Einstellen des pH der Mikrokapsel-Dispersion auf einen Wert im Bereich von 3,7 bis 4,3, insbesondere 3,9.

Die Mikrokapsel-Dispersion kann dann auf eine vierte Temperatur abgekühlt werden, wobei die vierte Temperatur im Bereich von 20°C bis 25°C liegt. Es kann im folgenden auf eine fünfte Temperatur abgekühlt werden, wobei die fünfte Temperatur in einem Bereich von 4 °C bis 17 °C liegt, insbesondere bei 8°C.

Im Anschluss würde der pH der Mikrokapsel-Dispersion auf einen Wert im Bereich 4,3 bis 5,1 eingestellt und Glutaraldehyd oder Glyoxal zugegeben werden. Die Reaktionsbedingungen, insbesondere Temperatur und pH-Wert, können je nach Vernetzer unterschiedlich gewählt werden. Die jeweils geeigneten Bedingungen kann der Fachmann beispielsweise aus der Reaktivität des Vernetzers ableiten. Durch die zugegebene Menge an Glutaraldehyd oder Glyoxal wird die Vernetzungsdichte der ersten Schicht beeinflusst und damit beispielsweise die Dichtigkeit und Abbaubarkeit der Mikrokapselschale. Entsprechend kann der Fachmann die Menge gezielt variieren, um das Eigenschaftsprofil der Mikrokapsel anzupassen. Zur Erzeugung der zusätzlichen dritten Schicht kann eine Melamin-Suspension, bestehend aus Melamin, Ameisensäure und Wasser hergestellt werden. Es folgt die Zugabe der Melamin- Suspension zu der Mikrokapsel-Dispersion. Schließlich würde der pH der Mikrokapsel-Dispersion auf einen Wert im Bereich von 9 bis 12 eingestellt werden, insbesondere 10 bis 11.

In einem fünften Aspekt betrifft die Erfindung Mikrokapseln mit einem Duftstoff als Kernmaterial und einer Schale, die drei Schichten umfasst, die durch ein Verfahren gemäß dem vierten Aspekt hergestellt sind. Dabei enthält die mittlere Schicht Gelatine und Alginat, die innere Schicht Melamin, Formaldehyd und einen aromatischen Alkohol und die äußere Schicht Melamin. BEISPIELE

Beispiel 1 - Herstellung einer erfindungsgemäßen Mikrokapsel mit einem Dreischichtaufbau

1.1 Materialien

Tabelle 1: Liste der zur Herstellung verwendeten Stoffe

1) Polymer auf Basis: Acrylamidosulfonat, Quelle: BASF

2) 1 ,3,5-Triazin-2,4,6-triamin, Polymer mit Formaldehyd, methyliert (Gehalt (W/W): >= 60 % - <= 80 %), in Wasser, Quelle: BASF

3) Cyanursäuretriamid (Melamin); Quelle: OCI Nitrogen BV

4) Zugabe richtet sich nach pH-Wert (siehe Herstellungsverfahren)

5) Glutaral; Glutaraldehyd; Glutardialdehyd (Gehalt (W/W): 50 %), Wasser (Gehalt (W/W): 50 %),

Quelle: BASF 6) Konzentration bezogen auf die angesäuerte Suspension

*Mengen der Komponenten beziehen sich auf die Handelsware und werden eingesetzt wie geliefert

1.2 Herstellungsverfahren

Zur Herstellung der Reaktionsmischung 1 wurden Lupasol PA140 und Luracoll SD mit Wasser Zugabe 1 in einem Becherglas eingewogen und mit einer 4 cm Dissolverscheibe vorgemischt. Das Becherglas wurde im Wasserbad fixiert, und mit der Dissolverscheibe bei 500 U/min bei 30°C verrührt bis eine klare Lösung entstand.

Sobald die Luracoll / Lupasol Lösung klar war und 30 - 40 °C erreicht hat, wurde die Parfümölmenge langsam zugegeben und dabei die Drehzahl so eingestellt (1100 U/min), dass damit die gewünschte Teilchengröße erzielt wird. Dann wurde der pH- Wert dieser Mischung durch Zugabe der Ameisensäure-Zugabe 1 angesäuert.

Es wurde 20 - 30 min emulgiert oder entsprechend verlängert bis die gewünschte Teilchengröße von 20 - 30 pm (Peak-Max) erreicht ist. Die Teilchengröße wurde mittels eines Beckmann-Coulter Gerätes (Laserbeugung, Fraunhofer Methode) bestimmt. Nach Erreichen der Teilchengröße wurde die Drehzahl so reduziert, dass eine schonende Durchmischung gewährleistet war.

Anschließend wurde die Resorcin-Lösung eingerührt und unter schonendem Rühren für 30 - 40 min präformiert. Nach Ablauf der Präformierungszeit wurde die Emulsionstemperatur innerhalb von 15 min auf 50 °C erhöht. Bei Erreichen dieser Temperaturwurde die Mischung übereinen Zeitraum von 15 min auf 60°C erhöht und diese Temperatur für weitere 30 min gehalten. Anschließend wurde mit Hilfe von 20%iger Ameisensäure die Melafin-Suspension Zugabe 1 auf einen pH-Wert von 4,5 eingestellt und über einen Zeitraum von 90 min zu der Reaktionsmischung zudosiert. Danach wurde die Temperatur für 30 min gehalten. Nach Ablauf der 30 min wurde innerhalb von 15 min die Temperatur zunächst auf 70 °C erhöht. Anschließend wurde die Temperatur innerhalb von 15 min auf 80 °C erhöht und für 120 min gehalten. Danach wurde die wässrige Harnstoff-Lösung zugegeben, die Wärmequelle abgeschaltet und die Reaktionsmischung 1 auf Raumtemperatur abgekühlt. In einem separaten Becherglas wurde Natriumsulfat in Wasser unter Rühren mit einem Flügelrührer bei 40-50 °C gelöst. Natriumalginat und Schweinehautgelatine werden langsam in das erhitzte Wasser eingestreut. Nachdem alle Feststoffe gelöst waren, wurde Reaktionsmischung 1 unter Rühren zu der hergestellten Gelatine/Natriumalginat Lösung zugegeben. Bei Erreichen einer homogenen Mischung wurde mit der Ameisensäure-Zugabe 2 der pH-Wert durch langsames Zutropfen auf 3,9 eingestellt, danach wurde die Wärmequelle entfernt. Anschließend wurde der Ansatz auf Raumtemperatur abgekühlt. Nach dem Erreichen der Raumtemperatur wurde die Reaktionsmischung mit Eis gekühlt. Bei Erreichen einer Temperatur von 8 °C wurde das Eisbad entfernt und mit Natronlauge Zugabe 1 der pH-Wert auf 4,7 erhöht. Anschließend wurde Relugan GT50 zugegeben. Dabei wurde darauf geachtet, dass die Temperatur bis zu der Zugabe des Relugan GT50 16-20 °C nicht überschreitet.

Im Anschluss wurde die, mittels 20% Ameisensäure auf einen pH Wert von 4,5 angesäuerte Melafin-Suspension Zugabe 2 langsam zudosiert. Anschließend wurde die Reaktionsmischung auf 60 °C erwärmt und bei Erreichen der Temperatur für 60 min gehalten. Nach dieser Haltezeit wurde die Wärmequelle entfernt und die Mikrokapselsuspension für 14h schonend gerührt. Nach Ablauf der 14h wurde die Mikrokapselsuspension mittels Natronlauge Zugabe 2 auf einen pH-Wert von 10,5 eingestellt.

1.3 Ergebnis

Die erhaltene erfindungsgemäße Mikrokapsel MK 1 wurde lichtmikroskopisch untersucht. Typische Aufnahmen sind in Fig. 1 dargestellt. Zur Evaluierung der MK 1 wurden der pH-Wert, der Feststoffgehalt, die Viskosität, die Teilchengröße und der Gehalt an Kernmaterial in der Slurry bestimmt. Das Ergebnis ist in Tabelle 2 dargestellt.

Tabelle 2: Analyseergebnisse der erfindungsgemäßen Mikrokapsel MK 1

Beispiel 2 - Herstellung nicht erfindungsgemäßer Referenz-Mikrokapsel - Melamin- Formaldehyd Rezeptur

2.1 Materialien

Die eingesetzten Materialien zur Herstellung der Referenz-Mikrokapseln - Melamin- Formaldehyd sind in Tabelle 3 dargestellt.

Tabelle 3: Liste der zur Herstellung verwendeten Stoffe

1) Polymer auf Basis Acrylamidosulfonat

2) 1,3,5-Triazin-2,4,6-triamin, Polymer mit Formaldehyd, methyliert (Gehalt (W/W): >= 60 % - <= 80 %), in Wasser

3) Melamin: Cyanuramide: 1,3,5-Trazine-2,4,6-triamine

4) Konzentration bezogen auf die angesäuerte Suspension *Mengen der Komponenten beziehen sich auf die Handelsware und werden eingesetzt wie geliefert

2.2 Herstellungsverfahren (basierend auf Patent BASF EP 1 246693 B1)

Luracoll SD wurde in VE-Wasser eingerührt und danach Lupasol PA140 zugegeben und gerührt bis eine klare Lösung entstand. Die Lösung wurde im Wasserbad auf 30- 35 °C erwärmt. Unter Rühren mit einer Dissolverscheibe wurde das Parfümöl bei 1100 U/min zugegeben.

Der pH-Wert der ÖI-in-Wasser-Emulsion wurde mit einer 10 %-igen Ameisensäure auf 3,3 - 3,8 eingestellt. Danach wurde die Emulsion für 30 min mit 1100 U/min weiter gerührt bis eine Tropfengröße von 20 - 30 pm erreicht war oder entsprechend verlängert bis die gewünschte Teilchengröße von 20 - 30 pm (Peak-Max) erreicht ist. Die Teilchengröße wurde mittels eines Beckmann-Coulter Gerätes (Laserbeugung, Fraunhofer Methode) bestimmt. Die Drehzahl wurde in Abhängigkeit der Viskosität so verringert, dass eine gute Durchmischung gewährleistet war. Mit dieser Drehzahl wurde weitere 30 min bei 30 - 40 °C gerührt. Anschließend wurde die Emulsion auf 60°C erwärmt und weiter gerührt.

Die Melamin-Suspension wurde mit Ameisensäure (10%ig) auf einen pH-Wert von 4,5 eingestellt und zur Reaktionsmischung zudosiert. Der Ansatz wurde 60 min bei 60 °C gehalten und anschließend auf 80°C aufgeheizt. Nach 60 min Rühren bei 80 °C wurde die Harnstoff-Lösung zugegeben.

Nach dem Abkühlen auf Raumtemperatur wurde die Mikrokapseldispersion über ein 200-pm-Filtersieb filtriert.

2.3 Ergebnis

Die erhaltene MF Referenz-Mikrokapsel MK 2 wurde lichtmikroskopisch untersucht. Eine typische Aufnahme der MK 2 ist in Fig. 2 dargestellt. Zur Evaluierung der erhaltenen Mikrokapseln wurden der pH-Wert, der Feststoffgehalt, die Viskosität, die Teilchengröße und der Gehalt an Kernmaterial in der Slurry bestimmt. Das Ergebnis ist in Tabelle 4 dargestellt.

Tabelle 4: Analyseergebnisse der nicht erfindungsgemäßen Referenz-Mikrokapsel

MK 2

Beispiel 3 - Herstellung von nicht erfindungsgemäßen Referenz-Mikrokapseln - Gelatine/Alginat Rezeptur (basierend auf Patent Koehler DE 3424115)

3.1 Materialien

Die eingesetzten Materialien zur Herstellung der Referenz-Mikrokapseln - Gelatine- Alginat sind in Tabelle 5 dargestellt.

Tabelle 5: Liste der zur Herstellung verwendeten Stoffe und Einsatzmenge der nicht erfindungsgemäßen Referenz-Mikrokapsel MK 3

1) Zugabe richtet sich nach pH-Wert (siehe Herstellungsverfahren)

2) Glutaral; Glutaraldehyd; Glutardialdehyd (Gehalt (W/W): 50 %), Wasser (Gehalt (W/W): 50 %) 3.2 Herstellungsverfahren

Natriumsulfat wurde in ein 800 ml Becherglas gewogen und unter Rühren mit einem Flügelrührer mittels Wasser Zugabe 1 gelöst.

Das Parfümöl wurde in einem separaten Becherglas eingewogen und unter Rühren auf 45°C erwärmt.

Natriumalginat und Schweinehautgelatine wurden unter Rühren langsam in die Natrium-Sulfat-Lösung eingestreut und gelöst. Mittels Natronlauge Zugabe 1 wurde der pH-Wert auf 9,5 eingestellt.

Zur Herstellung einer Emulsion wurde das erwärmte Parfümöl langsam in die Gelatine-Alginat-Lösung gegeben und dabei die Rührer-Drehzahl auf 1200 U/min erhöht. Während der Emulgierung wurde die Tröpfchengröße mittels eines Beckmann-Coulter Gerätes (Laserbeugung, Fraunhofer Methode) bestimmt. Nach Erreichen einer Tröpfchengröße von 20 - 30 pm wurde die Drehzahl gesenkt, sodass eine schonende Durchmischung gewährleistet wurde.

In einem weiteren Becherglas wurde die Natriumsulfat Zugabe 2 mittels Wasser Zugabe 2 gelöst. Anschließend wurde konzentrierte Essigsäure zu dieser Lösung zugegeben und unter Rühren auf 45°C erwärmt.

Die zuvor erwärmte Essigsäure/Natriumsulfat-Lösung wurde in einen Tropftrichter gefüllt und über eine Dauer von 15 min zur Emulsion zudosiert. Dabei wurde die Rührgeschwindigkeit so gewählt, dass eine vollständige Durchmischung gewährleistet ist.

Nach Zugabe der Essigsäurelösung wurde das Gemisch unter Rühren zunächst auf Raumtemperatur und anschließend mit Eis auf 8 °C abgekühlt.

Bei Erreichen einer Suspensionstemperatur von 8 °C wurde das Eisbad entfernt und mit Natronlauge Zugabe 2 der pH-Wert auf 4,7 eingestellt. Anschließend wurde Regulan GT50 zugegeben. Dabei wurde darauf geachtet, dass die Temperatur der hergestellten Suspension bis zu der Zugabe des Regulan GT50 16-20 °C nicht überschreitet. Anschließend wurde der pH-Wert der Mikrokapselsuspension unter Rühren durch langsames Zutropfen der Natronlauge Zugabe 3 (ca. 20 - 30 min) auf 10,5 eingestellt.

3.3 Ergebnis Die erhaltenen Gelatine-Referenz-Mikrokapseln MK 3 wurden lichtmikroskopisch untersucht. Eine typische Aufnahme der MK 3 ist in Fig. 3 dargestellt. Zur Evaluierung der erhaltenen Mikrokapseln wurden der pH-Wert, der Feststoffgehalt, die Viskosität, die Teilchengröße und der Gehalt an Kernmaterial in der Mikrokapselsuspension bestimmt. Das Ergebnis ist in Tabelle 6 dargestellt.

Tabelle 6: Analyseergebnisse der Gelatine-Alginat-Referenzmikrokapsel MK 3

Beispiel 4 - Herstellung der weiteren erfindungsgemäßen Mikrokapsel mit einem Dreischichtaufbau

4.1 Materialien

Tabelle 7: Liste der zur Herstellung verwendeten Stoffe

1) Polymer auf Basis: Acrylamidosulfonat, Quelle: BASF

2) 1,3,5-Triazin-2,4,6-triamin, Polymer mit Formaldehyd, methyliert (Gehalt (W/W): >= 60 % - <= 80 %), in Wasser, Quelle: BASF 3) Cyanursäuretriamid (Melamin); Quelle: OCI Nitrogen BV

4) Zugabe richtet sich nach pH-Wert (siehe Herstellungsverfahren)

5) Glyoxal; Oxalaldehyd (Gehalt (W/W): 40 %), Wasser (Gehalt (W/W): 60 %), Quelle: Sigma Aldrich

6) Konzentration bezogen auf die angesäuerte Suspension

*Mengen der Komponenten beziehen sich auf die Handelsware und werden eingesetzt wie geliefert

4.2 Herstellungsverfahren

Zur Herstellung der Reaktionsmischung 1 wurden Lupasol PA140 und Luracoll SD mit Wasser Zugabe 1 in einem Becherglas eingewogen und mit einer 4 cm Dissolverscheibe vorgemischt. Das Becherglas wurde im Wasserbad fixiert, und mit der Dissolverscheibe bei 500 U/min bei 30°C verrührt bis eine klare Lösung entstand. Sobald die Luracoll / Lupasol Lösung klar war und 30 - 40 °C erreicht hat, wurde die Parfümölmenge langsam zugegeben und dabei die Drehzahl so eingestellt (1100 U/min), dass damit die gewünschte Teilchengröße erzielt wird. Dann wurde der pH- Wert dieser Mischung durch Zugabe der Ameisensäure-Zugabe 1 angesäuert.

Es wurde 20 - 30 min emulgiert oder entsprechend verlängert bis die gewünschte Teilchengröße von 20 - 30 pm (Peak-Max) erreicht ist. Die Teilchengröße wurde mittels eines Beckmann-Coulter Gerätes (Laserbeugung, Fraunhofer Methode) bestimmt. Nach Erreichen der Teilchengröße wurde die Drehzahl so reduziert, dass eine schonende Durchmischung gewährleistet war.

Anschließend wurde die Resorcin-Lösung eingerührt und unter schonendem Rühren für 30 - 40 min präformiert. Nach Ablauf der Präformierungszeit wurde die Emulsionstemperatur innerhalb von 15 min auf 50 °C erhöht. Bei Erreichen dieser Temperaturwurde die Mischung übereinen Zeitraum von 15 min auf 60°C erhöht und diese Temperatur für weitere 30 min gehalten. Anschließend wurde mit Hilfe von 20%iger Ameisensäure die Melafin-Suspension Zugabe 1 auf einen pH-Wert von 4,5 eingestellt und über einen Zeitraum von 90 min zu der Reaktionsmischung zudosiert. Danach wurde die Temperatur für 30 min gehalten. Nach Ablauf der 30 min wurde innerhalb von 15 min die Temperatur zunächst auf 70 °C erhöht. Anschließend wurde die Temperatur innerhalb von 15 min auf 80 °C erhöht und für 120 min gehalten. Danach wurde die wässrige Harnstoff-Lösung zugegeben, die Wärmequelle abgeschaltet und die Reaktionsmischung 1 auf Raumtemperatur abgekühlt. In einem separaten Becherglas wurde Natriumsulfat in Wasser unter Rühren mit einem Flügelrührer bei 40-50 °C gelöst. Natriumalginat und Schweinehautgelatine werden langsam in das erhitzte Wasser eingestreut. Nachdem alle Feststoffe gelöst waren, wurde Reaktionsmischung 1 unter Rühren zu der hergestellten Gelatine/Natriumalginat Lösung zugegeben. Bei Erreichen einer homogenen Mischung wurde mit der Ameisensäure-Zugabe 2 der pH-Wert durch langsames Zutropfen auf 3,9 eingestellt, danach wurde die Wärmequelle entfernt. Anschließend wurde der Ansatz auf Raumtemperatur abgekühlt. Nach dem Erreichen der Raumtemperatur wurde die Reaktionsmischung mit Eis gekühlt. Bei Erreichen einer Temperatur von 8 °C wurde das Eisbad entfernt und mit Natronlauge Zugabe 1 der pH-Wert auf 4,7 erhöht. Anschließend wurde die Glyoxal-Lösung zugegeben. Dabei wurde darauf geachtet, dass die Temperatur bis zu der Zugabe der Glyoxal-Lösung 16-20 °C nicht überschreitet. Im Anschluss wurde die, mittels 20% Ameisensäure auf einen pH Wert von 4,5 angesäuerte Melafin-Suspension Zugabe 2 langsam zudosiert. Anschließend wurde die Reaktionsmischung auf 60 °C erwärmt und bei Erreichen der Temperatur für 60 min gehalten. Nach dieser Haltezeit wurde die Wärmequelle entfernt und die Mikrokapselsuspension für 14h schonend gerührt. Nach Ablauf der 14h wurde die Mikrokapselsuspension mittels Natronlauge Zugabe 2 auf einen pH-Wert von 10,5 eingestellt.

4.3 Ergebnis

Die erhaltene erfindungsgemäße Mikrokapsel MK 4 wurde lichtmikroskopisch untersucht. Typische Aufnahmen sind in Fig. 6 dargestellt. Zur Evaluierung der MK 4 wurden der pH-Wert, der Feststoffgehalt, die Viskosität, die Teilchengröße und der Gehalt an Kernmaterial in der Slurry bestimmt. Das Ergebnis ist in Tabelle 8 dargestellt.

Tabelle 8: Analyseergebnisse der erfindungsgemäßen Mikrokapsel MK 4

Beispiel 5 - Stabilitätsmessung der Mikrokapseln

5.1 Vorbemerkung

Zur Bestimmung der Stabilität von Mikrokapseln wurden diese über einen Zeitraum von bis zu 12 Wochen in einer modellhaften Weichspülerformulierung bei 40°C gelagert und die Konzentration der aus dem Kapselinneren in die umgebende Formulierung diffundierten Riechstoffe mittels HS - GC/MS bestimmt. Basierend auf den Messwerten wurde der Restanteil des noch in der Kapsel befindlichen Parfümöls berechnet.

Modellhafte Weichspülerformulierung auf Basis Rewoquat WE 18 E US von Evonik in Anlehnung an die Rezeptur aus dem zugehörigen Produktdatenblatt:

Für die Herstellung der Weichspülerbase wurden 94 g Wasser auf 50 °C erwärmt und 5,65 g Rewoquat WE 18 E US unter Rühren in das erwärmte Wasser gegeben. Die Mischung wurde auf Raumtemperatur abgekühlt, dann erfolgte die Zugabe der Mikrokapseldispersion.

5.2 Versuchsdurchführung

Hierzu wurde die Mikrokapselsuspension (Slurry) sorgfältig homogenisiert und mit einer Konzentration von 1 Gew.-% in der Modellformulierung bei 40°C, luftdicht verschlossen, im Wärmeschrank gelagert. Als Vergleich dient der nicht verkapselte Riechstoff mit analoger Riechstoffkonzentration in der Modellformulierung.

Nach vorgegebener Lagerdauer wurden die Muster aus dem Wärmeschrank entnommen und ein Aliquot in ein 20 ml Headspace-Vial eingewogen. Das Vial wurde anschließend sofort verschlossen.

Diese Muster wurden per Headspace-SPME (Sohd-Phase-Micro-Extractiori) mit Hilfe der Kapillargaschromatographie untersucht und, nach erfolgter Detektion mit einem massenselektiven Detektor (MSD), ausgewertet.

5.3 Ergebnis

Der Stabiltätsverlauf der erfindungsgemäßen Kapsel nach Beispiel 1 und 4 sowie der Referenzkapsel nach Beispiel 2 über 12 Wochen ist in Tabelle 9 dargestellt. Tabelle 9: Messwerte der Stabilitätsuntersuchung

Wie der Tabelle 9 zu entnehmen ist, zeigen die erfindungsgemäßen Mikrokapseln MK 1 und MK 4 nach 12 Wochen Lagerung in einer Modellformulierung eine zur MF- Referenz-Mikrokapsel MK 2 vergleichbare Stabilität.

Die Gelatine/Alginat-Referenz-Mikrokapsel MK 3 zeigt unter den gewählten Testbedingungen keine Kapselstabilität im Testmedium (Zerfall bereits während der Probenvorbereitung), sodass eine Erfassung von Messwerten zur Stabilitäts bewertung hier innerhalb des erforderlichen Zeitrahmens nicht möglich war.

Für die Berechnung der Kapselstabilität wurde eine Konzentrationsveränderung von 16 Einzelinhaltsstoffen des verkapselten Riechstoffs betrachtet. Eine Stabilitäts verringerung hat einen Austritt des verkapselten Riechstoffs zufolge, welcher anschließend mittels Headspace-SPME gaschromatographisch detektiert werden kann. Da alle Kapseldispersionen auf einen definierten Ölgehalt von 15 Gew.-% eingestellt wurden, ist ein direkter Vergleich der untersuchten Kapselproben möglich. Einzelinhaltsstoffe (bzw. deren gaschromatographisch erfassten Einzelsignale), welche aufgrund von messtechnisch bedingten Schwankungen höhere Konzentrationen anzeigen, als diese theoretisch im Vergleich mit dem Referenzstandard möglich waren, wurden nur bis zur theoretischen Maximalkonzentration in der Auswertung berücksichtigt. Beispiel 6 - Bioabbaubarkeitsmessung der Mikrokapseln (gemäß OECD 301 F)

6.1 Allgemein

Dieser Versuch dient der Beurteilung der raschen biologischen Abbaubarkeit der Mikrokapseln.

Die Testkonzentration der zu untersuchenden Proben beträgt standardmäßig 1000 mg/l O2. Die Messköpfe und der Controller messen den Sauerstoffverbrauch in einem geschlossenen System. Durch den Verbrauch von Sauerstoff und das gleichzeitige Binden von entstehendem Kohlendioxid an Natronlaugeplätzchen entsteht ein Unterdrück im System. Die Messköpfe registrieren und speichern diesen Druck über den eingestellten Messzeitraum. Die gespeicherten Werte werden mittels Infrarot übertragung in den Controller eingelesen. Sie können mittels des Programmes Achat OC auf einen PC übertragen und ausgewertet werden.

Um den Einfluss des Kernmaterials zum Abbau zu eliminieren wurde Perfluoroctan verkapselt (Abbaurate = <1 %).

6.2 Geräte und Chemikalien

Geräte: OxiTop-Control-Messsystem, Fa. WTW inkl. Controller OxiTop OC

110 mit Schnittstellenkabel für PC, 6 Messköpfen OxiTop C, 6 Glasfläschchen mit jeweils 510 ml Gesamtvolumen, 6 Magnetrührer, 6 Gummiköcher, 1 Magnetrührsystem, sowie Auslesesoftware Achat OC

Trockenschrank ORI-BSB, auf 20 °C eingestellt Ausströmersteine Oxygenius, 30 x 15 x 15 mm 3 Aquarienbelüftungspumpe Thomas -ASF Nr. 1230053 Filternutsche D=90 mm Saugflasche 2 I

Weißbandfilter MN 640 d, D=90mm, Fa. Macherey + Nagel Flandbuch "System Oxi Top Controll", Fa. WTW Chemikalien: Belebtschlamm aus der werkseigenen oder einer kommunalen Abwasserreinigungsanlage Ethylenglycol z.A., Fa. Merck Referenzprobe mit CSB 1000 mg/l 02 Wallnussschalen-Mehl, Fa. Senger Naturrohstoffe Nährsalzlösung aus der werkseigenen oder einer kommunalen Abwasserreinigungsanlage Natronlaugeplätzchen z.A. > 99%, Fa. Merck Küvettentest CSB LCK 514, Fa. Dr. Lange

6.3 Durchführung

6.3.1 Herstellung der Mikrokapsel-Slurries

Die Mikrokapseln MK 1 bis MK 4 wurden entsprechend der Beschreibungen der Beispiele 1 bis 4 hergestellt, mit dem Unterschied, dass anstelle des Parfümöls das vollständig persistente Perfluoroctan (Abbaurate <1%) als Kernmaterial verwendet wurde. Dadurch wird ein etwaiger Einfluss des Kernmaterials auf das Versuchsergebnis eliminiert.

6.3.2 Probenvorbereitung

Für die Abbautests über 28 Tage wurden die Mikrokapsel-Slurries, wie aus der Herstellung erhalten, verwendet.

Im Falle der verlängerten Abbautests über 60 Tage wurden die Mikrokapsel-Slurries nach Herstellung durch dreimaliges Zentrifugieren und Redispergieren in Wasser gewaschen, um gelöste Rückstände abzutrennen. Dafür wird eine Probe von 20-30 mL jeweils 10 Minuten bei 12.000 Umdrehungen pro Minute zentrifugiert. Nach Absaugen des Klarberstandes wird mit 20-30 mL Wasser aufgefüllt und der Bodensatz durch Schütteln redispergiert.

6.3.3 Herstellung der Referenzprobe Es wurden 711 ,6 mg Ethylenglycol in einem 1 I-Messkolben gelöst und bis zur Marke aufgefüllt. Das entspricht einem CSB von 1000 mg/l O2. Ethylenglycol gilt als gut bioabbaubar und dient hier als Referenz.

Auf Grund des raschen Abbaus von Ethylenglykol wurde für den verlängerten 60- Tage-Test Wallnussschalen-Mehl als weitere Referenz hinzugenommen. Wallnussschalen-Mehl besteht aus einer Mischung von Biopolymeren, insbesondere Cellulose und Lignin, und dient als biobasierte Referenz auf Feststoffbasis. Auf Grund des langsamen Abbaus von Wallnussschalen-Mehl kann der Testverlauf über den kompletten Zeitraum von 60 Tagen verfolgt werden. Hierfür wurden 117,36 g Walnussschalen-Mehl unter Rühren homogen in 11 Wasser dispergiert. Aliquote Teile dieser Mischung wurden unter Rühren zur CSB-Bestimmung entnommen. Anhand des CSB-Mittelwertes von 1290±33 mg/l O2 wurde die benötigte Einsatzmenge berechnet und unter Rühren in die OxiTop-Flaschen überführt.

6.3.4 Vorbereitung des Bioschlamms

Aus dem Auslauf des Belebtschlammbeckens einer werkseigenen oder einer kommunalen Abwasserreinigungsanlage wurde mit einem 20 I-Eimer Belebtschlamm entnommen. Nach 30-minütigem Absetzen wurde das Überstandswasser verworfen.

Anschließend wurde der aufkonzentrierte Bioschlamm im Eimer mit Hilfe der Aquarienpumpe und eines Ausströmersteins 3 Tage permanent belüftet.

6.3.5 Trockengehaltsbestimmung des Bioschlamms

Nach 3 Tagen wurden 100 ml des aufkonzentrierten Bioschlamms mittels einer Filternutsche über einen Weißbandfilter abfiltriert. Der Filterkuchen wird 24 h bei 105°C im Trockenschrank getrocknet.

TG = Trockengehalt des Bioschlamms in % E = Einwaage des Filterkuchens in g A = Auswaage des Filterkuchens in g c = TG x 10 c = Konzentration des Bioschlamms in g/l

6.3.6 Einstellung der Proben auf einen CSB von 1000 mg/l O2

Der CSB-Wert der zu untersuchenden Proben wurde mit dem Küvettentest CSB LCK 514 bestimmt. Die Probe wird solange mit Wasser verdünnt bis der CSB-Wert von 1000 mg/l O2 erreicht wird.

6.3.7 Vorbereitung der Ansätze

Für eine Probe wurden 6 OxiTop-Flaschen verwendet, da jeweils Doppel bestimmungen durchgeführt werden.

In jeweils 2 Flaschen (Doppelbestimmung) fanden folgende Messungen statt:

- Biologische Abbaubarkeit der Probe

- Biologische Abbaubarkeit der Ethylenglycol-Lösung (= Referenzlösung)

- Blindprobe (= Bestimmung des Restabbaus des Schlamms selbst)

Für jede Flasche sind erforderlich:

- 25 ml Probe mit einem CSB von 1000 mg/l O2 (bei Blindprobe 25 ml destilliertes Wasser)

- 3,5 ml Nährlösung

- 44,5 mg otro (ofentrockener) Schlamm

- destilliertes Wasser zum Auffüllen auf ein Gesamtvolumen von 250 ml

In jeden Gummiköcher wurden mit einem Spatel 3 Natronlaugeplätzchen gegeben. Nachdem die Flaschen mit Probe, Nährlösung, Bioschlamm und destilliertem Wasser versetzt wurden, wurde in jede Flasche ein Magnetrührstäbchen gegeben. Dann wurden die Gummiköcher auf die jeweiligen Flaschenhälse aufgesetzt und die Messköpfe fest auf die Flaschen aufgeschraubt.

6.4 Messung und Auswertung Die Programmierung der OxiTop-C-Messköpfe und die Auswertung der Daten ist ausführlich beschrieben im Handbuch "System OxiTop Control", Fa. WTW.

6.5 Ergebnis

Das Bioabbaudiagramm nach 28 Tagen der erfindungsgemäßen Kapsel MK 1 nach OECD 301 F ist in Fig. 4(a) dargestellt.

Die erfindungsgemäße Kapsel MK 1 zeigt nach 28 Tagen eine Bioabbaubarkeit von 76±4 %. Weiterhin zeigt die erfindungsgemäße Kapsel MK 4 nach 28 Tagen eine Bioabbaubarkeit von 78±9 %. Nach Waschung zeigt die erfindungsgemäße Kapsel MK 1 nach 60 Tagen eine Bioabbaubarkeit von 47±16 %. In Fig. 7 ist ein Vergleich der Bioabbaubarkeitsmessung nach OECD 301 F dargestellt. Hier zeigt sich, dass die erfindungsgemäße Mikrokapsel MK1 eine vergleichbare Bioabbaubarkeit aufweist wie die naturbasierte Referenz Wallnussschalen-Mehl mit einer Bioabbaubarkeit von 53 % nach 60 Tagen.

In Fig. 5 ist ein Vergleich der Bioabbaubarkeitsmessungen nach OECD301 F zwischen der erfindungsgemäßen Mikrokapsel MK 1 , der MF-Referenz-Mikrokapsel MK 2 sowie der Gelatine/Alginat-Referenz-Mikrokapsel MK 3 dargestellt. Die Vorgabe zur OECD301 F (nach „Revised Introduction to the OECD Guidlines for testing of Chemicals, section 3, Part 1 , dated 23 March 2006“) sieht vor, dass die zu prüfende Substanz innerhalb eines 10-Tage-Zeitfensters (beginnend ab einem Abbau von 10 %) einen biologischen Abbaugrad von 60 % erreichen muss. Sowohl die erfindungsgemäße Mikrokapsel MK 1 als auch die Gelatine/Alginat-Referenz- Mikrokapsel MK 3 zeigen gegenüber der MF-Referenz-Mikrokapsel MK 2 einen sehr raschen biologischen Abbau. Die geforderte Zeitspanne für einen Abbau von 60 % ist bereits nach 7 Tagen erreicht.

Es zeigt sich, dass der Abbaugrad der Standard-MF-Kapseln MK 2 entsprechend der Erfahrung den Bereich von 10 % innerhalb kurzer Zeit erreicht und hier ein Plateau bildet, dass auf keinen weiteren Abbau innerhalb der Messzeit hinweist. Die vernetzten Gelatine-Alginat-Mikrokapseln MK 3 erweisen sich als erfahrungsgemäß gut in der Bioabbaubarkeit. Sie erreichen innerhalb von 10 Tagen den Wert von 68±5 %.

Die erfindungsgemäße Mikrokapsel MK 1 zeigt nach 10 Tagen ebenfalls einen Abbaugrad von 68±6 %.

In Fig. 7 sind die Abbaukurven der erfindungsgemäßen MK 1 , der Referenzkaspeln MK 2 und MK 3 sowie der Referenzsubstanzen Ethylenglykol und Wallnussschalen- Mehl vergleichend dargestellt. Es zeigt sich, dass die rasch biologisch abbaubare Referenzprobe Ethylenglykol das Maximum der Abbaubarkeit zwischen dem 15. Tag und dem 25. Tag der Messung erreicht. Anschließend fällt der Messwert scheinbar ab, verursacht durch Prozesse des Inokulums, die durch das nicht mehr Vorhandensein einer abbaubaren Nahrungsquelle verursacht werden. Dieser Effekt kann als Messartefakt bewertet werden. Ein vergleichbares Verhalten wird für die leicht abbaubare Referenzkapsel MK 3 ersichtlich. Das Maximum der Abbaubarkeit wird bei der Probe MK 3 zwischen dem 25. Tag und dem 45. Tag der Messung erreicht und fällt danach ebenso ab. Die schwer abbaubare Referenzkapsel MK 2 zeigt im Messverlauf keine Bioabbaubarkeit. Negative Messwerte (die insbesondere in der zweiten Hälfte der Messdauer auftraten) wurden auf null gesetzt. Die naturbasierte Referenz Wallnussschalen-Mehl zeigt den typischen stufenartigen Abbau eines komplexen Stoffgemisches. Das Maximum der Bioabbaubarkeit wird im Bereich des 40. Tages der Messung erreicht, wobei dieser Wert bis zum Ende der Messung nach 60 Tagen im Rahmen der Schwankungsbreite konstant bleibt. Ein ähnliches Abbauverhalten kann für die erfindungsgemäße Mikrokapsel MK 1 beobachtet werden. Übereinen stufenartigen Verlauf wird nach 60 Tagen ein mittlerer Abbaugrad von 47% erreicht, wobei die absolute Streubreite zwischen 30 und 65 % Bioabbaubarkeit liegt.

Tabelle 10: Darstellung der Abbauwerte nach OECD 301 (60 Tage)

1) MK1, Vierfachbestimmung

2) MK2, Doppelbestimmung

3) MK3 Doppelbestimmung

4) Wallnussschalen-Mehl Referenz, Einfachbestimmung

Schließlich sei ausdrücklich darauf hingewiesen, dass die voranstehend be schriebenen Ausführungsbeispiele der erfindungsgemäßen Vorrichtung lediglich zur Erörterung der beanspruchten Lehre dienen, diese jedoch nicht auf die Aus führungsbeispiele einschränken.

Beispiel 7 - Bioabbaubarkeitsmessung der Mikrokapseln (gemäß OECD 302 C)

7.1 Allgemein

Dieser Versuch dient der Beurteilung der grundsätzlichen biologischen Abbaubarkeit der Mikrokapseln. Die Messung wurde anhand der Vorgaben nach OECD302C 1981-05 durch ein nach DIN EN ISO 17025 akkreditiertes Prüflabor (SGS Institut Fresenius GmbH, Taunusstein, Deutschland) durchgeführt. Dabei wurde die modifizierte Versuchsdurchführung mit natürlichem Inokulum und modifizierter Detektions methode (direkte Quantifizierung des gebildeten Kohlenstoffdioxids) genutzt.

Analog zur Probenvorbereitung für die Bioabbaubarkeitsmessung nach OECD 301 F (siehe Beispiel 5) wurden Mikrokapselslurries hergestellt, welche als Kernmaterial Perfluoroctan (Abbaurate = <1 %) enthalten. Somit wird ein Einfluss des Kernmaterials auf die Bioabbaubarkeit der Mikrokapseln verhindert.

7.2 Geräte und Chemikalien

Gemäß der Angaben des Prüflabors besteht das verwendete Inokulum aus Belebtschlamm aus der Abwasserreinigungsanlage Taunusstein-Bleidenstadt (~ 100 mg Trockenmasseäquivalent/L Ansatz). Als Kontrollgegenstand wurde Anilin verwendet.

7.3 Durchführung

Zunächst wurde von den jeweiligen Mikrokapselslurries eine Probe entnommen und eine Analyse des gesamten organischen Kohlenstoffs (TOC, engl. „Total Organic Carbon“) durchgeführt. Durch Kenntnis des molaren Verhältnisses von Kohlenstoffdioxid zu elementarem Kohlenstoff ließ sich mittels des TOC die theoretische Menge an Kohlenstoffdioxid berechnen, welche beim Abbau der Prüfsubstanz freigesetzt werden kann (TC02, „theoretische Menge C02“).

Die Herstellung der Prüfansätze erfolgte in einem Volumen von jeweils 3500 ml_. In dieses Volumen wurde der Prüfgegenstand und das Inokulum bei Raumtemperatur in einem mineralischen Nährmedium inkubiert. Durch Kenntnis des TOC des Mikrokapselslurries wurde eine Kohlenstoffkonzentration von ca. 25 mg C/L eingestellt. Somit stand lediglich der Kohlenstoff aus dem Prüfgegenstand als Energiequelle für die im Inokulum befindlichen Mikroorganismen zur Verfügung. Die Prüfansätze wurden mit C02-freier Druckluft belüftet und durch Magnetrührer gerührt. Durch den Abbau des Prüfgegenstands durch Mikroorganismen wurde der enthaltene Kohlenstoff in Kohlenstoffdioxid umgewandelt. Diese Gasentwicklung wurde mittels am Prüfansatz montierter Gaswaschflaschen aufgefangen. Die Gaswaschflaschen waren mit einer Lösung von Bariumhydroxid gefüllt, welches das entstehende Kohlenstoffdioxid bindet. Durch Titration mit Salzsäure lässt sich das im Prüfansatz gebildete Kohlenstoffdioxid quantifizieren. Der Abbaugrad der Prüfsubstanz errechnete sich anschließend durch den Vergleich des theoretisch bildbaren Kohlenstoffdioxids (aus der TOC Messung) mit der real bestimmten Kohlenstoffdioxidmenge. Je Prüfsubstanz wurden drei Ansätze hergestellt, was die Bestimmung eines mittleren Abbaugrads ermöglicht.

Zur Bestimmung der Kohlenstoffdioxidmenge, welche durch das Inokulum produziert wurde, wurden parallel zum Prüfansatz zwei sog. Blindproben mitbestimmt, welche keine Prüfsubstanz, sondern nur das Inokulum enthielten. Die so bestimmte Kohlenstoffdioxidmenge wurde vom Prüfansatz subtrahiert.

Analog der beschriebenen Durchführung wurde zusätzlich ein Ansatz mit einem Kontrollgegenstand (Anilin) sowie ein Ansatz mit einer Mischung aus Prüfgegenstand und dem Kontrollgegenstand (Toxizitätskontrolle) angesetzt und mitgeführt.

Die Dauer der Prüfung umfasste 28 Tage bzw. 60 Tage, wobei am letzten Tag der Abbauversuch durch Zugabe von konz. Salzsäure gestoppt und die im Ansatz befindlichen Carbonate, bzw. gelöstes Kohlenstoffdioxid, ausgetrieben und ebenfalls in den angeschlossenen Gaswaschflaschen quantifiziert wurden.

7.4 Messung und Auswertung

Nachdem durch Titration der in den Gaswaschflaschen befindlichen Bariumhydroxid- Lösung kann die im Prüfansatz entstandene Menge Kohlenstoffdioxid quantifiziert und der Abbaugrad der Prüfsubstand mit folgender Formel berechnet werden: mgC02 produziert*100

% Abbau= (mg Prüfsubstanz im Ansatz)*TC02

7.5 Ergebnis

Tabelle 11 : Darstellung der Abbauwerte nach OECD 301 F und OCED 302 C (28 Tage)

Das Bioabbaudiagramm nach OECD302C der erfindungsgemäßen Kapsel MK1 ist in Fig. 4(b) dargestellt.

Die erfindungsgemäßen Kapseln MK 1 zeigen nach 28 Tagen einen Abbaubarkeitswert von 45±4 %.

Schließlich sei ausdrücklich darauf hingewiesen, dass die voranstehend be schriebenen Ausführungsbeispiele der erfindungsgemäßen Vorrichtung lediglich zur Erörterung der beanspruchten Lehre dienen, diese jedoch nicht auf die Aus- führungsbeispiele einschränken.