Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BIOSYNTHETIC METHODS FOR THE MODIFICATION OF CANNABINOIDS
Document Type and Number:
WIPO Patent Application WO/2022/204207
Kind Code:
A1
Abstract:
Provided is a method of modifying a first cannabinoid into a second cannabinoid or a non-cannabinoid. The method comprises combining the first cannabinoid with an enzyme that can modify the first cannabinoid into the second cannabinoid or non-cannabinoid under conditions where the first cannabinoid is modified into the second cannabinoid or non-cannabinoid. Also provided is a non-naturally occurring enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid. A nucleic acid encoding that enzyme is additionally provided. Further provided is a non-naturally occurring nucleic acid that encodes an enzyme having the enzymatic activity of the above non-naturally occurring enzyme. An expression cassette comprising that nucleic acid is additionally provided. A cell comprising the above expression cassette is further provided. Also provided is a plant expression cassette comprising the above-identified nucleic acid.

Inventors:
SCOTT ERIN MARIE (US)
VOGAN JACOB MICHAEL (US)
Application Number:
PCT/US2022/021424
Publication Date:
September 29, 2022
Filing Date:
March 22, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CB THERAPEUTICS INC (US)
International Classes:
C12P7/42; C12N15/52; C12N15/53; C12N15/70; A01H5/00
Foreign References:
US20170247650A12017-08-31
US20190241633A12019-08-08
US20190085347A12019-03-21
US20170283837A12017-10-05
Attorney, Agent or Firm:
GENDLOFF, Elie H. (US)
Download PDF:
Claims:
What is claimed is:

1. A method of modifying a first cannabinoid into a second cannabinoid or a non- cannabinoid, the method comprising combining the first cannabinoid with an enzyme that can modify the first cannabinoid into the second cannabinoid or non-cannabinoid under conditions where the first cannabinoid is modified into the second cannabinoid or non-cannabinoid.

2. The method of claim 1, wherein the enzyme is encoded by a nucleic acid comprising any one of SEQ ID NOs:l-50.

3. The method of claim 1, wherein the enzyme comprises an amino acid sequence comprising any one of SEQ ID NOs:51-100.

4. The method of claim 1, wherein the first and/or second cannabinoid comprises the structure

(CH2) CH3, (CH2)5CH3, or (CH2)6CH3; R2 = H or COOH; and R3 = CH3 or CH2OH.

5. The method of any one of claims 1-4, wherein the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase.

6. The method of claim 5, wherein the enzyme is an oxidase.

7. The method of claim 6, wherein the oxidase is a laccase.

8. The method of claim 7, wherein the laccase comprises an amino acid sequence comprising any one of SEQ ID N0s:92-100.

9. The method of claim 6, wherein the oxidase is a cytochrome P450, expressed with a cytochrome P450 reductase (CPR).

10. The method of claim 6, wherein the oxidase is selected from the group consisting of a flavin-dependent monooxygenase, a copper-depedent monooxygenase, a multicopper oxidase, a bacterial polysaccharide monooxygenase, a non-heme iron-dependent monooxygenase, a pterin- dependent monooxygenase, a diiron hydroxylase, an alpha-ketoglutarate-dependent hydroxylase, a cofactor-dependent monooxygenase, and a cofactor-independent monooxygenase.

11. The method of claim 10, wherein the oxidase is a copper-dependent monooxygenase comprising an amino acid sequence having SEQ ID NO: 89.

12. The method of claim 10, wherein the oxidase is a multicopper oxidase comprising an amino acid sequence having SEQ ID NO:90 or 91.

13. The method of any one of claims 1-12, wherein the first cannabinoid is converted into a second cannabinoid.

14. The method of claim 13, wherein the first cannabinoid is tetrahydrocannabinol (THC) or tetrahydrocannabinolic acid (THCA) and the second cannabinoid is cannabinol (CBN) or cannabinolic acid (CBNA) and the enzyme is a desaturase, an aromatase, a dehydrogenase, or an oxidase.

15. The method of claim 13, wherein the first cannabinoid is tetrahydrocannabivarinic acid (THCVA), tetrahydrocannabiphorolic acid (TCHPA), tetrahydrocannabiorcinic acid (THCOA) or sesquiTHCA (THCFA) and the second cannabinoid is cannabinerolic acid (CBNA), cannabinerovarinic acid (CBNVA), cannabiphorolic acid (CBNPA), cannabinorcinic acid (CBNOA) or sesqui cannabinerolic acid (sesqui-CBNA), respectively.

16. The method of claim 15, wherein the second cannabinoid is decarboxyl ated after the enzymatic reaction.

17. The method of claim 16, wherein the second cannabinoid is decarboxyl ated by heating.

18. The method of claim 16, wherein the second cannabinoid is decarboxyl ated by combining the second cannabinoid with a decarboxylase.

19. The method of claim 13, wherein the first cannabinoid is tetrahydrocannabivarinol (THCV), tetrahydrocannabiphorol (TCHP), tetrahydrocannabiorcinol (THCO) or sesquitetrahydrocannabinolic acid (sesquiTHCA) and the second cannabinoid is cannabinerovarinol (CBNV), cannabiphorol (CBNP), cannabinorcinol (CBNO) or sesqui cannabinerol (sesqui-CBN), respectively.

20. The method of claim 13, wherein the enzyme is a combination of a cytochrome P450 (CYP-450) and a cytochrome P450 reductase (CPR) and the second cannabinoid is an 11 -hydroxy derivative of the first cannabinoid.

21. The method of claim 20, wherein the first cannabinoid is THC, THCA, CBN or CBNA.

22. The method of any one of claims 1-21, wherein the enzyme is not naturally occurring.

23. The method of any one of claims 1-22, wherein the enzyme is derived from a naturally occurring gene that has been codon optimized for expression in a yeast.

24. The method of any one of claims 1-5, wherein the first cannabinoid is converted into a non-cannabinoid.

25. The method of claim 24, where the non-cannabinoid is a homopolymer or heteropolymer of cannabinoids, where each polymer consists of at least 2 cannabinoid molecules.

26. The method of claim 24, wherein the non-cannabinoid lacks an aromatic ring.

27. The method of claim 24, wherein acetyl-CoA is the non-cannabinoid or created from the non-cannabinoid.

28. The method of any one of claims 1-27, wherein the method is carried out in vitro.

29. The method of claim 28, wherein, when combined with the enzyme, the first cannabinoid is in a crude extract of a Cannabis sp. plant or a microorganism from which the first cannabinoid was synthesized.

30. The method of claim 29, wherein the first cannabinoid is substantially purified when combined with the enzyme.

31. The method of any one of claims 28-30, wherein the enzyme is in a crude extract from a plant or microorganism when combined with the first cannabinoid.

32. The method of any one of claims 28-30, wherein the enzyme is substantially purified when combined with the first cannabinoid.

33. The method of any one of claims 1-27, wherein the method is carried out by a living organism that synthesizes the enzyme.

34. The method of claim 33, wherein the method is carried out in a plant.

35. The method of claim 34, wherein the plant is a Cannabis sp. plant.

36. The method of claim 31, wherein the method is carried out in a first microorganism.

37. The method of claim 36, wherein the first microorganism is a bacterium.

38. The method of claim 37, wherein the bacterium is of the genus Rhodococcus, Gordonia, Dietzia, Streptomyces, Escherichia, Nocardia or Mycobacterium.

39. The method of claim 36, wherein the first microorganism is a yeast.

40. The method of claim 39, wherein the yeast is a species of Saccharomyces, Candida, Pichia, Schizosaccharomyces, Scheffer somyces, Blakeslea, Rhodotorula , or Yarrowia.

41. The method of claim 39 or 40, wherein the yeast further comprises enzymes to synthesize the first cannabinoid.

42. The method of claim 41, wherein the yeast can synthesize the first cannabinoid from a non-cannabinoid.

43. The method of claim 41, wherein the yeast comprises a recombinant geranyl pyrophosphate synthase and a cannabinoid synthase, wherein the cannabinoid synthase can combine a polyprenyl pyrophosphate with alkylresorcylic acid to create a cannabinoid.

44. The method of any one of claims 41-43, wherein the first cannabinoid is THC or THCA and the second cannabinoid is CBN or CBNA.

45. The method of any one of claims36-44, wherein the first cannabinoid is synthesized in a second microorganism, wherein the method further comprises incubating the first microorganism, or an extract thereof, with the second microorganism.

46. The method of claim 45, wherein the first cannabinoid is substantially purified from the second microorganism.

47. The method of claim 45, wherein the second microorganism is a yeast.

48. The method of any one of claims 36-47, wherein the first cannabinoid is synthesized in a Cannabis sp. plant and matter from the Cannabis sp. plant is incubated with the first microorganism.

49. The method of claim 48, wherein crude matter from the Cannabis sp. plant is incubated with the first microorganism.

50. The method of claim 48, wherein the first cannabinoid is substantially purified from the hemp or Cannabis plant.

51. The method of any one of claims 45-50, wherein the first cannabinoid is THC or THC A.

52. A non-naturally occurring enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid.

53. The non-naturally occurring enzyme of claim 52, wherein the enzyme comprises at least one amino acid that is a conservative substitution of an amino acid in a naturally occurring enzyme that has the same enzymatic activity.

54. The non-naturally occurring enzyme of claim 53, wherein the naturally occurring enzyme comprises the amino acid sequence of any one of SEQ ID NOs:51-100.

55. The non-naturally occurring enzyme of claim 52, wherein the enzyme comprises at least one amino acid that is not in a naturally occurring enzyme that has the same enzymatic activity.

56. The enzyme of any one of claims 52-55, wherein the first and/or second cannabinoid comprises the structure , i 3, 2 3, 2 2 3, 2 3 3, H2)3CH3,

(CH2)4CH3, (CH2)5CH3, or (CH2)6CH3; R2 = H or COOH; and R3 = CH3 or CH2OH.

57. The enzyme of any one of claims 52-66, wherein the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase.

58. The enzyme of claim 52, wherein the first cannabinoid is tetrahydrocannabinol (THC) or tetrahydrocannabinolic acid (THCA) and the second cannabinoid is cannabinol (CBN) or cannabinolic acid (CBNA) and the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase.

59. The enzyme of claim 52, wherein the first cannabinoid is tetrahydrocannabivarinic acid (THCVA), tetrahydrocannabiphorolic acid (TCHPA), tetrahydrocannabiorcinic acid (THCOA) or sesquiTHCA (THCFA) and the second cannabinoid is cannabinerolic acid (CBNA), cannabinerovarinic acid (CBNVA), cannabiphorolic acid (CBNPA), cannabinorcinic acid (CBNOA) or sesqui cannabinerolic acid (sesqui-CBNA), respectively.

60. The enzyme of claim 52, wherein the first cannabinoid is tetrahydrocannabivarinol (THCV), tetrahydrocannabiphorol (TCHP), tetrahydrocannabiorcinol (THCO) or sesquitetrahydrocannabinolic acid (sesquiTHCA) and the second cannabinoid is cannabinerovarinol (CBNV), cannabiphorol (CBNP), cannabinorcinol (CBNO) or sesqui cannabinerol (sesqui-CBN), respectively.

61. The enzyme of claim 52, wherein the enzyme is a combination of a cytochrome P450 (CYP-450) and a cytochrome P450 reductase (CPR).

62. The enzyme of claim 661, wherein the CYP-450 is a CYP2C9 a CYP3A4. or a C YP76 AH22-24

63. The enzyme of claim 52, wherein the enzyme is a laccase or another copper dependent oxidase.

64. The enzyme of claim 61, wherein the first cannabinoid is THC, THCA, CBN or CBNA.

65. The enzyme of any one of claims 52-64, wherein the enzyme is expressed from a codon optimized gene sequence in a yeast.

66. The enzyme of any one of claims 52-64, wherein the enzyme is expressed from a codon optimized gene sequence in a bacterium.

67. The enzyme of claim 62, wherein the bacterium is E. coli.

68. The enzyme of any one of claims 50-64, in vitro.

69. The enzyme of any one of claims 50-64, in vivo.

70. The enzyme of claim 69, in a plant.

71. The enzyme of claim 70, in a Cannabis sp. plant.

72. The enzyme of claim 69, in a microorganism.

73. The enzyme of claim 72, wherein the microorganism is a bacterium.

74. The enzyme of claim 72, wherein the microorganism is a yeast.

75. The enzyme of claim 74, wherein the yeast is a species of Saccharomyces, Candida, Pichia, Schizosaccharomyces, Scheffer omyces, Blakeslea, Rhodotorula , or Yarrowia.

76. The enzyme of claim 74 or 75, wherein the yeast further comprises enzymes to synthesize the first cannabinoid.

77. A non-naturally occurring nucleic acid encoding an enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid.

78. The nucleic acid of claim 77, encoding the enzyme of any one of claims 60-64.

79. The nucleic acid of claim 77 or 78, comprising any one of SEQ ID NOs:l-50.

80. The nucleic acid of any one of claims 77-79, further comprising nucleic acids encoding amino acids that are not part of the enzyme.

81. The nucleic acid of claim 80, wherein the additional nucleic acids are at the 5’ end of the nucleic acid and encode a codon optimized cofolding peptide.

82. The nucleic acid of claim 81, wherein the codon optimized cofolding peptide comprises any one of SEQ ID NO: 106-110.

83. The nucleic acid of claim 81 , wherein the codon optimized cofolding peptide is encoded by a sequence comprising any one of SEQ ID NO: 101-105.

84. A non-naturally occurring nucleic acid that encodes an enzyme having the enzymatic activity of the non-naturally occurring enzyme of any one of claims 52-64, or a naturally occurring equivalent.

85. The non-naturally occurring nucleic acid of claim 84, wherein the encoded enzyme is the enzyme of any one of claims 48-59.

86. The non-naturally occurring nucleic acid of claim 84, wherein the encoded enzyme is naturally occurring.

87. The non-naturally occurring nucleic acid of any one of claims 84-86, codon optimized for production in yeast.

88. The nucleic acid of any one of claims 52-65, further comprising a promoter functional in a yeast.

89. An expression cassette comprising a nucleic acid encoding an enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid.

90. The expression cassette of claim 83, comprising the nucleic acid of any one of claims

64-73.

91. The expression cassette of claim 83, wherein the nucleic acid comprises any one of SEQ ID NOs:l-50.

92. A cell comprising the expression cassette of claim 80, capable of expressing the enzyme of any one of claims 50-61, or a naturally occurring equivalent thereof.

93. The cell of claim 92, which is a bacterial cell.

94. The cell of claim 92, which is a yeast cell.

95. The yeast cell of claim 95, which is a species of Saccharomyces, Candida, Pichia, Schizosaccharomyces, Scheffer somyces, Blakeslea, Rhodotorula , or Yarrowia.

96. The cell of any one of claims 92-95, comprising a THC biosynthetic pathway that allows the yeast cell to produce the first cannabinoid.

97. The cell of claim 96, wherein the cell can synthesize the first cannabinoid from a non- cannabinoid.

98. The cell of claim 96 or 97, wherein the cell comprises a recombinant geranyl pyrophosphate synthase and a cannabinoid synthase, wherein the cannabinoid synthase can combine a polyprenyl pyrophosphate with alkylresorcylic acid to create a cannabinoid.

99. The cell of any one of claims 92-98, wherein the first cannabinoid is THC or THCA and the second cannabinoid is CBN or CBNA.

100. The cell of any one of claims 96-98, which is a yeast cell.

101. The nucleic acid of any one of claims 77-86, further comprising a promoter functional in a plant.

102. A plant expression cassette comprising the nucleic acid of claim 101.

103. A plant comprising the expression cassette of claim 93, capable of expressing the enzyme of any one of claims 52-64, or a naturally occurring equivalent thereof.

104. The plant of claim 103, wherein the plant is a hemp or Cannabis plant.

105. The plant of claim 103 or 104, wherein the plant has less THC than the same plant without the expression cassette.

Description:
BIOSYNTHETIC METHODS FOR THE MODIFICATION OF CANNABINOIDS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/164126, filed March 22, 2021, and incorporated by reference herein in its entirety.

SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on March 22, 2022, is named CBTH-12-US_SL.txt and is 339,457 bytes in size.

BACKGROUND OF THE INVENTION (1) Field of the Invention

The present application generally relates to manipulation of cannabinoids. More specifically, the application provides methods and compositions for the enzymatic modification or degradation of cannabinoids.

Cannabinoids are a class of organic small molecules of meroterpenoid structures found in the plant genus Cannabis. The small molecules are currently under investigation as therapeutic agents for a wide variety of health issues, including epilepsy, pain, and other neurological problems, and mental health conditions such as depression, PTSD, opioid addiction, and alcoholism (Committee on the Health Effects of Marijuana, 2017).

Numerous cannabinoids of varying structure are produced in Cannabis spp ., each with their own therapeutic profile. However, since some cannabinoids are made in very small quantities in Cannabis spp. and are challenging to separate from other cannabinoids in Cannabis extracts, it is difficult to evaluate the therapeutic and psychotropic effect of each particular cannabinoid.

Rare cannabinoids from Cannabis spp. or from microbial bioproduction are gaining intense interest in the nutraceutical and clinical markets.

In one example, conversion of the abundant cannabinoid, tetrahydrocannabinol (THC) to a rare cannabinoid, cannabinol (CBN) is desirable for many reasons. THC is lower value, has intoxicating psychoactive side effects and is illegal in many jurisdictions. CBN is a high value, legal molecule that shows great clinical promise in treating sleep and skin disorders, and it has shown potential as a therapeutic for amyotrophic lateral sclerosis (Lou Gehrig's disease) (Carter, 2010; reviewed in Giacoppo, 2016). CBN is naturally formed by slow and inefficient non- enzymatic oxidation of THC in Cannabis spp. However, there is no known enzymatic route to produce CBN from THC. CBN can also be synthesized in small batches using organic chemistry (Caprioglio, 2019). Other approaches to make CBN include non-enzymatic oxidation methods applied to purified plant derived cannabinoids, such as heating and exposure to UV light or sunlight (PCT Patent Application Publication WO2014/159688A1 and US Patent Application Publication 2017/0020943A1) These routes are expensive, slow and environmentally unfriendly. An enzymatic route to CBN would greatly aid efforts to produce larger, cheaper and more consistent batches of this highly valuable compound.

There is thus a need to (a) synthesize individual cannabinoids, (b) convert one cannabinoid into another cannabinoid, or (c) convert a particular cannabinoid into a non-cannabinoid. The present invention addresses that need.

BRIEF SUMMARY OF THE INVENTION

The present invention provides enzymes and methods using those enzymes to modify or degrade cannabinoids. Thus, in some embodiments, a method of modifying a first cannabinoid into a second cannabinoid or a non-cannabinoid is provided. The method comprises combining the first cannabinoid with an enzyme that can modify the first cannabinoid into the second cannabinoid or non-cannabinoid under conditions where the first cannabinoid is modified into the second cannabinoid or non-cannabinoid.

Also provided is a non-naturally occurring enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid. A nucleic acid encoding that enzyme is additionally provided.

Further provided is a non-naturally occurring nucleic acid that encodes an enzyme having the enzymatic activity of the above non-naturally occurring enzyme. An expression cassette comprising that nucleic acid is additionally provided.

In other embodiments, a cell comprising the above expression cassette is provided. In these embodiments, the cell is capable of expressing the enzyme provided above, or a naturally occurring equivalent thereof. Also provided is a plant expression cassette comprising the above-identified nucleic acid, as is a plant comprising the expression cassette, where the plant is capable of expressing the above- identified enzyme, or a naturally occurring equivalent thereof.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1A, IB, and 1C depict cannabinoid synthase substrates, the structures of various cannabinoids, and cannabinoid decarboxylation reactions. FIG. 1 A shows the alkylresorcylic acid prenyl acceptor and the polyprenol diphosphate prenyl donor in cannabinoid synthase reactions; FIG. IB shows various cannabinoid compounds; and FIG. 1C shows cannabinoid decarboxylation reactions.

FIG. 2A depicts the CBN biosynthesis pathway and structures of variants cannabinoids.

FIG. 2B depicts the 11-hydroxylation of THC and CBN by cytochrome P450 CYP2C19.

FIG. 2C depicts oxidases acting on representative cannabinoids, THC and CBN, to form homopolymers and heteropolymers.

FIG. 3A, 3B and 3C depict different mechanisms by which different classes of enzymes might form an aromatic ring during CBN biosynthesis. FIG. 3A depicts a ring desaturation mechanism carried out by an aromatase. FIG. 3B depicts a ring desaturation mechanism carried out by a dehydrogenase. FIG. 3C depicts a ring desaturation mechanism carried out by a desaturase.

FIG. 4A depicts methods for making CBN biosynthetically using this technology where the entire CBN biosynthesis pathway is contained within one microbial host. Also depicted is a complete biosynthesis pathway to 11 -OH CBN where the entire 11 -OH CBN biosynthesis pathway is contained within one microbial host.

FIG. 4B depicts a bioconversion strategy where one microbe makes THC, and a second microbe converts THC to CBN.

FIG. 4C depicts bioconversion of crude plant or microbial material by microbe with CBN synthase.

FIG. 4D depicts bioconversion of purified cannabinoids by a microbe containing CBN synthase.

FIG. 4E depicts enzymatic conversion of purified cannabinoids using purified recombinant CBN synthase. FIG. 4F depicts enzymatic conversion of crude plant or microbial material using purified recombinant CBN synthase.

FIG. 4G depicts a cannabinoid producing plant that is not modified and a plant that is modified to express a CBN synthase

FIG. 5A depicts methods for selective THC degradation where the entire pathway producing THC and CBD is contained within one microbial host.

FIG. 5B depicts a bioconversion strategy where one microbe makes THC, and a second microbe degrades THC.

FIG. 5C depicts elimination of THC from crude plant or microbial material by a microbe expressing THC degradase.

FIG. 5D depicts elimination of THC from purified cannabinoids by a microbe expressing a THC degradase.

FIG. 5E depicts selective enzymatic degradation of THC in purified cannabinoids using purified recombinant THC degradase.

FIG. 5F depicts selective enzymatic degradation of THC in crude plant or microbial material using purified recombinant THC degradase.

FIG. 5G depicts a cannabinoid producing plant that is not modified and a plant that is modified to express a THC degradase.

FIG. 6A depicts HPLC data showing selective degradation of THC and bioconversion of THC into CBN by a microbe possessing CBN synthase activity relative to THC incubated with a microbe that does not have this activity.

FIG. 6B depicts HPLC data showing selective degradation of THC by a microbe possessing THC degradase activity relative to THC incubated with a microbe that does not have this activity.

DETAILED DESCRIPTION OF THE INVENTION

Abbreviations and Definitions

To facilitate understanding of the invention, a number of terms and abbreviations as used herein are defined below as follows:

Conservative amino acid substitutions: As used herein, when referring to mutations in a protein, "conservative amino acid substitutions” are those in which at least one amino acid of the polypeptide encoded by the nucleic acid sequence is substituted with another amino acid having similar characteristics. Examples of conservative amino acid substitutions are ser for ala, thr, or cys; lys for arg; gin for asn, his, or lys; his for asn; glu for asp or lys; asn for his or gin; asp for glu; pro for gly; leu for ile, phe, met, or val; val for ile or leu; ile for leu, met, or val; arg for lys; met for phe; tyr for phe or trp; thr for ser; trp for tyr; and phe for tyr.

Functional variant: The term "functional variant," as used herein, refers to a recombinant enzyme such as a CBN synthase that comprises a nucleotide and/or amino acid sequence that is altered by one or more nucleotides and/or amino acids compared to the nucleotide and/or amino acid sequences of the parent protein and that is still capable of performing an enzymatic function (e.g., synthesis of CBN) of the parent enzyme. In other words, the modifications in the amino acid and/or nucleotide sequence of the parent enzyme may cause desirable changes in reaction parameters without altering fundamental enzymatic function encoded by the nucleotide sequence or containing the amino acid sequence. The functional variant may have conservative change including nucleotide and amino acid substitutions, additions and deletions. These modifications can be introduced by standard techniques known in the art, such as site-directed mutagenesis and random PCR-mediated mutagenesis, and may comprise natural as well as non-natural nucleotides and amino acids. Also envisioned is the use of amino acid analogs, e.g. amino acids not DNA or RNA encoded in biological systems, and labels such as fluorescent dyes, radioactive elements, electron dense agents, or any other protein modification, now known or later discovered.

Recombinant nucleic acid and recombinant protein: As used herein, a recombinant nucleic acid or protein is a nucleic acid or protein produced by recombinant DNA technology, e.g., as described in Green and Sambrook (2012).

Polypeptide, protein, and peptide: The terms “polypeptide,” “protein,” and “peptide” are used herein interchangeably to refer to amino acid chains in which the amino acid residues are linked by peptide bonds or modified peptide bonds. The amino acid chains can be of any length of greater than two amino acids. Unless otherwise specified, the terms “polypeptide,” “protein,” and “peptide” also encompass various modified forms thereof. Such modified forms may be naturally occurring modified forms or chemically modified forms. Examples of modified forms include, but are not limited to, glycosylated forms, phosphorylated forms, myristoylated forms, palmitoylated forms, ribosylated forms, acetylated forms, and the like. Modifications also include intra-molecular crosslinking and covalent attachment of various moieties such as lipids, flavin, biotin, polyethylene glycol or derivatives thereof, and the like. In addition, modifications may also include protein cyclization, branching of the amino acid chain, and cross-linking of the protein. Further, amino acids other than the conventional twenty amino acids encoded by genes may also be included in a polypeptide.

The term “protein” or “polypeptide” may also encompass a “purified” polypeptide that is substantially separated from other polypeptides in a cell or organism in which the polypeptide naturally occurs (e.g., 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 100% free of contaminants).

Primer, probe and oligonucleotide: The terms “primer,” “probe,” and “oligonucleotide” may be used herein interchangeably to refer to a relatively short nucleic acid fragment or sequence. They can be DNA, RNA, or a hybrid thereof, or chemically modified analogs or derivatives thereof. Typically, they are single-stranded. However, they can also be double-stranded having two complementing strands that can be separated apart by denaturation. In certain aspects, they are of a length of from about 8 nucleotides to about 200 nucleotides. In other aspects, they are from about 12 nucleotides to about 100 nucleotides. In additional aspects, they are about 18 to about 50 nucleotides. They can be labeled with detectable markers or modified in any conventional manners for various molecular biological applications.

Vector: As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is an episome, i.e., a nucleic acid capable of extra-chromosomal replication. Various vectors are those capable of autonomous replication and/expression of nucleic acids to which they are linked. Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.”

Linker: The term “linker” refers to a short amino acid sequence that separates multiple domains of a polypeptide. In some embodiments, the linker prohibits energetically or structurally unfavorable interactions between the discrete domains.

Cannabinoid: As used herein, the term “cannabinoid” refers to a family of structurally related aromatic meroterpenoid molecules. Cannabinoids are generally formed by the enzymatic fusion, by a cannabinoid synthase (having geranylpyrophosphate:olivetolate geranyltransferase activity), of an alkylresorcylic acid

, where R 1 = CLP, (CH2)2CH3 (divarinolic acid), (CH2)4CH3 (olivetolic acid), or (CH2)6CH3, with a polyprenyl pyrophosphate such as geranyl pyrophosphate, neryl pyrophosphate, geranylgeranyl pyrophosphate, of famesyl pyrophosphate (FIG. 1; see also Luo et al., 2019; Carvalho et al., 2017; and Giilck and Moller, 2020 and references cited therein). The polyprenyl pyrophosphate is synthesized by geranyl pyrophosphate synthase (GPPS) (US Provisional Patent Application 63/141486).

Codon optimized: As used herein, a recombinant gene is “codon optimized” when its nucleotide sequence is modified to accommodate codon bias of the host organism to improve gene expression and increase translational efficiency of the gene.

Expression cassette: As used herein, an “expression cassette” is a nucleic acid that comprises a gene and a regulatory sequence operatively coupled to the gene such that the promoter drives the expression of the gene in a cell. An example is a gene for an enzyme with a promoter functional in yeast, where the promoter is situated such that the promoter drives the expression of the enzyme in a yeast cell.

The present invention is directed to methods and compositions for modifying a first cannabinoid into a second cannabinoid or a non-cannabinoid using recombinant enzymes in microorganisms.

Methods of modifying or degrading cannabinoids

In some embodiments, a method of modifying a first cannabinoid into a second cannabinoid or a non-cannabinoid is provided. The method comprises combining the first cannabinoid with an enzyme that can modify the first cannabinoid into the second cannabinoid or non-cannabinoid under conditions where the first cannabinoid is modified into the second cannabinoid or non-cannabinoid.

In these embodiments, the first cannabinoid and the second cannabinoid can be any cannabinoid now known or later discovered. In some of these embodiments, the first and/or second cannabinoid comprises the structure

, i 3 , 2 3 , 2 2 3 , 2 3 3 , H 2 ) 3 CH 3 ,

(CH 2 ) 4 CH 3 , (CH 2 ) 5 CH 3 , or (CH 2 ) 6 CH 3 ; R 2 = H or COOH; and R 3 = CH 3 or CH 2 OH.

Non-limiting examples of the first cannabinoid or the second cannabinoid are cannabigerolic acid (CBGA), cannabidiolic acid (CBDA), cannabichromene (CBC), cannabidivarin (CBCV), cannabichromenic acid (CBCA), cannabichromevarinic acid (CBCVA) cannabinol (CBN), cannabinerolic acid (CBNA), cannabivarin (CBV), cannabigerolic acid (CBGA), cannabinerovarinic acid (CBNVA), cannabigerophorolic acid (CBGPA), cannabigerovarinic acid (CBGVA), cannabigerogerovarinic acid (CBGGVA), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarin (THCV), tetrahydrocannabivarin acid (THCVA), cannabinerovarinic acid (CBNVA), sesquicannabigerol (CBF), cannabigerogerol (CBGG), sesqui-cannabigerolic acid (CBFA), cannabigerogerolic acid (CBGGA), sesquicannabigerolic acid (CBFA), sesquicannabidiolic acid (CBDFA), sesquiTHCA (THCFA), sesqui-cannabigerovarinic acid (CBFVA), sesquiCBCA (CBCFA), sesquiCBGPA (CBFPA), tetrahydrocannabivarin (THCV), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabidivarinic acid (CBDVA), or cannabidivarin (CBDV) (FIG. 1). The decarboxylation reactions shown in FIG. 1C can be carried out by heat (e.g., combustion) or a -decarboxylase.

These methods can use any enzyme, now known or later discovered, that can carry out the conversion of the first cannabinoid into the second cannabinoid or degrade the first cannabinoid. In some embodiments, the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase.

In some embodiments, the first cannabinoid is tetrahydrocannabinol (THC) or tetrahydrocannabinolic acid (THCA) and the second cannabinoid is cannabinol (CBN) or cannabinolic acid (CBNA). In other embodiments, the first cannabinoid is tetrahydrocannabivarinic acid (THCVA), tetrahydrocannabiphorolic acid (TCHPA), tetrahydrocannabiorcinic acid (THCOA) or sesquiTHCA (THCFA) and the second cannabinoid is cannabinerolic acid (CBNA), cannabinerovarinic acid (CBNVA), cannabiphorolic acid (CBNPA), cannabinorcinic acid (CBNOA) or sesqui cannabinerolic acid (sesqui-CBNA), respectively. In additional embodiments, the first cannabinoid is tetrahydrocannabivarinol (THCV), tetrahydrocannabiphorol (TCHP), tetrahydrocannabiorcinol (THCO) or sesquitetrahydrocannabinolic acid (sesquiTHCA) and the second cannabinoid is cannabinerovarinol (CBNV), cannabiphorol (CBNP), cannabinorcinol (CBNO) or sesqui cannabinerol (sesqui-CBN), respectively.

Exemplary enzymatic reactions are shown in FIGS. 2A, 2B, 2C, 3A,3B, and 3C. FIG. 2A shows the enzymatic conversion of the initial products of cannabinoid synthase, e.g., CBGA, CBGVA and CBG, into THCA, THCV A, THC, CBDA, CBDVA, CBD, CBCA, CBCVA or CBC. FIG. 2A also shows the conversion of THC or THCV into CBN or CBV by CBN synthase. In various embodiments, the CBN synthase is a desaturase, an aromatase, a dehydrogenase, or an oxidase.

In various embodiments, the first cannabinoid is converted into a second cannabinoid that is an 11 -hydroxy derivative of the first cannabinoid. In some of these embodiments, the conversion is carried out by the combination of a cytochrome P450 (CYP-450) and a cytochrome P450 reductase (CPR). FIG. 2B shows a nonlimiting example of the conversion of THC and CBN into 11 -hydroxy-THC and 11-hydroxy-CBN, respectively, by a CYP-450, for example CYP2C19, and a P450 reductase.

In various embodiments, a cannabinoid is oxidized by an oxidase into a polymeric state, such as a dimer of cannabinoids. This can occur between oxidized cannabinoids of the same species, such as THC or CBN, respectively, to form homopolymers, or a mixture of cannabinoid species, such as THC and CBN, which are oxidized to a heteropolymer of cannabinoids, as show in FIG. 2C.

The enzyme utilized in these methods can have any activity that can modify the first cannabinoid into the second cannabinoid. For example, FIG. 3A shows a generalized aromatase activity that can be utilized to convert, e.g., THC or THCV into CBN or CBV, and FIG. 3B and FIG. 3C show generalized dehydrogenase and desaturase activities, respectively, that, as discussed above, can also serve to create the aromatic ring.

In some embodiments, the enzymes utilized in these methods additionally enable reduction of cannabinoid, e.g., THC, levels in pure cannabinoid preparations while not affecting other cannabinoid molecules. Cannabidiol (CBD) products often contain unwanted THC. Federal law bans any product containing more than 0.3% THC, so even small reductions in THC are critical to maintenance of cannabis products under this legal limit. Enzymes that destroy THC completely or convert THC to a molecule besides CBN are useful for certain applications and are commercially valuable.

The invention methods can be part of a complete biosynthesis pathway for cannabinoids such as CBN, including production of its acidic cannabinoid variant, cannabinolic acid (CBNA). The complete biosynthesis pathway for any cannabinoid is amenable to integration in a cannabinoid producing host cell. If the pathway includes a functional CBN synthase, accumulation of THC during an industrial fermentation is avoided.

The microorganism, e.g., yeast or bacterium, in which the methods are carried out can further comprise other enzymes, e.g., recombinantly transformed enzymes, that can affect the cannabinoid pathway, for example an enzyme that synthesizes the first cannabinoid from a non- cannabinoid or from another cannabinoid. This is illustrated in FIG. 2B and the right panel of FIG. 4A, showing an illustration of a microorganism that is transformed with a CYP-450 and a CPR that converts a cannabinoid (e.g., THC) into an 11 -hydroxy cannabinoid (e.g., 11 -OH- THC), then converting that 11 -hydroxy THC into 11-OH-CBN with CBN synthase. See also Watanabe, 2007.

To execute a CYP reaction, a CPR (cytochrome P450 reductase) is necessary to supply the P450 enzyme with reducing equivalents in the form of NADPH. The combination of the recombinant P450 and CPR genes and enzymes results in an 11-OH hydroxylase capable of acting on various cannabinoid substrates. In some embodiments, the hydroxyl group at the 11 -position is added by recombinant CYP-450 + CPR before the conversion of tetrahydrocannabinol or tetrahydrocannabinolic acid (THC/ A) to CBN/A, yielding a conversion from 11 -hydroxy tetrahydrocannabinol (11-OH THC) to 11-OH CBN.

The recombinant hydroxylation enzymes herein described may also hydroxylate other cannabinoid substrates, such as CBD, when expressed in a recombinant host capable of cannabinoid bioproduction. Additional reactions, substrates, and products for the above reconstituted biosynthetic pathways in a modified organism are depicted in FIG. 2A, where cannabinoid variants such as cannabivarinol (CBV) can also be produced via CBN synthases and bioconversion organisms herein described.

The enzymes used in these methods can be recombinantly expressed in a microorganism such as a yeast or bacterium, or a plant such as a Cannabis sp. In those systems, the gene for those enzymes can be modified, e.g., by codon optimizing the gene for the recombinant microorganism or plant. In other embodiments, the enzyme is not naturally occurring. Such enzymes can be modified from a naturally occurring enzyme by, e.g., having conservative amino acid substitutions or substitutions that alter the enzymatic activity. Those enzymes can also be derived from a naturally occurring gene that has been codon optimized for expression in a recombinant host such as bacteria, yeast or plants.

In some of these methods, the first cannabinoid is converted (degraded) into a non- cannabinoid, for example by eliminating the cannabinoid aromatic ring that is derived from an alkylresorcylic acid in the naturally occurring cannabinoid pathway in Cannabis spp. Acetyl-CoA can also be produced as a result of this conversion.

These methods can be carried out in vivo or in vitro. When in vitro , the enzyme can be synthesized in a recombinant microorganism or plant and extracts of the microorganism or plant can be combined with the first cannabinoid. In various embodiments, the enzyme can be at least partially purified from the extract.

In these in vitro methods, the first cannabinoid can be present in a crude extract of a Cannabis sp. plant or a microorganism from which the first cannabinoid was synthesized. Alternatively, the first cannabinoid can be substantially purified when combined with the enzyme.

Exemplary in vitro methods are illustrated in FIGS. 4E, 4F, 5D and 5E. In FIG. 4E, THC is incubated with purified CBN synthase, converting the THC to CBN. In FIG. 4F, purified CBN synthase is incubated with a crude Cannabis sp. (hemp) preparation, converting THC therein into CBN. FIG. 5D illustrates utilizing a THC degradase inside an organism to degrade THC in a purified mixture of THC and CBD, leaving the CBD. FIG. 5E illustrates the same reaction, where the degradase degrades the THC in a crude Cannabis sp. (hemp) preparation, leaving the CBD.

In other embodiments, bioconversion of THC to CBN takes place using lysate of a microbe containing the CBN synthase while the THC precursor is produced in a second microorganism. The first microbe could express the CBN synthase natively or recombinantly.

In additional embodiments, bioconversion of THC to CBN takes place using lysate of a microorganism containing the CBN synthase while the THC precursor is supplied as lysate from a second, cannabinoid producing microorganism. The first microbe could express the THC-to- CBN synthase natively or recombinantly.

In further embodiments, the CBN synthase is expressed recombinantly in a microbial host and the enzyme purified. The purified enzyme can then be used on purified plant derived THC to do an enzymatic conversion of THC to CBN in vitro. The methods provided herein can facilitate development of industrial processes to eliminate THC and/or produce CBN in crude cannabinoid preparations, including plant material and microbial cell mass.

In the above exemplary embodiments, THC/A can be selectively degraded instead of being converted to CBN.

When the method is carried out in vivo , the method can be carried out by a living organism that synthesizes the enzyme. Any living organism can be utilized to carry out the method. In some embodiments, the method is carried out in a plant, e.g., a tobacco or Cannabis sp. plant.

In other embodiments, the method is carried out in a microorganism, as illustrated in FIG. 4A. The left panel of FIG. 4A shows an illustration of a microorganism transformed with a CBN synthase gene, that can convert THC, THCV or THCA to CBN, CBV or CBNA. Any microorganism capable of being transformed with a recombinant form of the enzyme can be utilized here. In some of these embodiments, the first microorganism is a yeast, e.g., a yeast that is a species of Saccharomyces, Candida, Pichia, Schizosaccharomyces, Scheffersomyces, Blakeslea, Rhodotorula , or Yarrowia. In other embodiments, the first microorganism is a bacterium, e.g., a bacterium of the genus Rhodococcus, Gordonia, Dietzia, Streptomyces, Escherichia, Nocardia or Mycobacterium.

The microorganism can also comprise a recombinant enzyme “upstream” from cannabinoid synthase, e.g., a recombinant geranyl pyrophosphate synthase (GPPS) (see US Provisional Patent Application 63/141486). In various embodiments, the microorganism further comprises a recombinant GPPS and cannabinoid synthase, where the cannabinoid synthase can combine a polyprenyl pyrophosphate with alkylresorcylic acid to create a cannabinoid.

In some in vivo embodiments of these methods where the enzyme is in a first microorganism (yeast or bacteria), the first cannabinoid is synthesized in a second microorganism, wherein the method further comprises incubating the first microorganism, or an extract thereof, with the second microorganism. This is illustrated in FIG. 4B, which shows a transgenic microorganism that produces a first cannabinoid (e.g., THC) in co-culture with a transgenic microorganism that converts the first cannabinoid into a second cannabinoid (e.g., CBN). In that example, bioconversion of THC to CBN takes place using a microbe containing CBN synthase while the THC precursor is produced in a second microorganism. The first microbe could express the CBN synthase natively or recombinantly. This bioconversion strategy would follow that outlined by Abbott (1977), but incorporate a recombinant THC producing microbe as well as use on crude plant material or microbial biomass.

In other embodiments, the first cannabinoid is synthesized in a Cannabis sp. plant and matter from the Cannabis sp. plant is incubated with the first microorganism. This is illustrated in FIG. 4C, where THC is produced in a Cannabis sp. (i.e., hemp) plant, and crude plant matter is incubated with the first microorganism (e.g., a yeast or bacterium) that converts the THC into CBN.

In embodiments described above where the first cannabinoid is extracted from the second microorganism or a plant (e.g., a Cannabis sp. plant or tobacco), the first cannabinoid can be in a crude extract or can be partially or substantially purified from the second microorganism.

Various additional in vivo scenarios are illustrated in FIGS. 4D, 5A, 5B and 5C. FIG. 4D illustrates the bioconversion of purified THC into CBN by a microorganism (e.g., a yeast or bacterium) that expresses a recombinant CBN synthase. In FIG. 5B, a first microorganism that produces both THC and CBD is co-cultured with a second microorganism that produces a THC degradase, thus degrading the THC, but not the CBD produced by the first microorganism. Similarly, FIG. 5C illustrates the incubation of a crude preparation of Cannabis sp. (hemp) with a microorganism that produces a THC degradase, thus degrading the THC, but not the CBD in the hemp preparation. In another similar scenario, FIG. 5D illustrates the incubation of a purified cannabinoid preparation comprising THC and CBD with a microorganism that produces a THC degradase, thus eliminating the THC from the preparation.

Nonlimiting examples of enzymes that can be utilized in these reactions are provided in Table 1, where SEQ ID NOs:l-50 provide nucleic acid sequences for the enzymes, codon optimized for expression in yeast, and SEQ ID NOs:51-100 provide corresponding amino acid sequences. SEQ ID NOs:l-12 and 51-62 are P450 nucleic acid and amino acid sequences, respectively; SEQ ID NOs: 13-20 and 63-70 are CPR nucleic acid and amino acid sequences, respectively; SEQ ID NOs:21-28 and 71-78 are CBN synthase nucleic acid and amino acid sequences, respectively; SEQ ID NOs:29-38 and 79-88 are THC degradase nucleic acid and amino acid sequences, respectively; and SEQ ID NOs:39-50 and 89-100 are oxidase nucleic acid and amino acid sequences, respectively. Of the oxidase enzymes provided, those comprising nucleic acid sequences SEQ ID NOs:42-50 and amino acid sequences SEQ ID N0:92-100 are laccases.

Table 1. Summary of codon optimized sequences provided herewith.

Enzymes

Also provided is a non-naturally occurring enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid. The non-naturally occurring enzyme in these embodiments can have any alterations from a naturally occurring counterpart. In some embodiments, the enzyme comprises at least one amino acid that is not in a naturally occurring enzyme that has the same enzymatic activity. In some of those embodiments, the enzyme comprises a conservative substitution of an amino acid in a naturally occurring enzyme that has the same enzymatic activity. In various embodiments, the naturally occurring enzyme comprises any of SEQ ID NOs:51-100.

These enzymes can be utilized in the above-described methods. As such, in some embodiments, the first and/or second cannabinoid comprises the structure (CH 2 ) 4 CH , (CH 2 ) 5 CH , or (CH 2 ) 6 CH ; R 2 = H or COOH; and R 3 = CH or CH 2 OH. In other embodiments, the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase. In additional embodiments, the first cannabinoid is tetrahydrocannabinol (THC) or tetrahydrocannabinolic acid (THCA) and the second cannabinoid is cannabinol (CBN) or cannabinolic acid (CBNA) and the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase. In further embodiments, the first cannabinoid is tetrahydrocannabivarinic acid (THCVA), tetrahydrocannabiphorolic acid (TCHPA), tetrahydrocannabiorcinic acid (THCOA) or sesquiTHCA (THCFA) and the second cannabinoid is cannabinerolic acid (CBNA), cannabinerovarinic acid (CBNVA), cannabiphorolic acid (CBNPA), cannabinorcinic acid (CBNOA) or sesqui cannabinerolic acid (sesqui-CBNA), respectively. Also, the first cannabinoid can be tetrahydrocannabivarinol (THCV), tetrahydrocannabiphorol (TCHP), tetrahydrocannabiorcinol (THCO) or sesquitetrahydrocannabinolic acid (sesquiTHCA) and the second cannabinoid can be cannabinerovarinol (CBNV), cannabiphorol (CBNP), cannabinorcinol (CBNO) or sesqui cannabinerol (sesqui-CBN), respectively.

Where the enzyme activity is the conversion of the first cannabinoid, e.g., THC, THCA, CBN or CBNA, into a 11 -hydroxy analog, the enzyme can be a combination of a cytochrome P450 (CYP-450) and a cytochrome P450 reductase (CPR). In some of these embodiments, the CYP-450 is a CYP2C9 or a CYP3A4 or a CYP76AH22-24 or a CYP76AH1 (ferruginol synthases).

In various embodiments, the enzyme is expressed from a codon optimized gene sequence in a yeast or a bacterium, e.g. E. coli.

The enzyme can be in vivo (e.g., in a yeast, bacterium or plant), or in vitro. Nonlimiting examples of transgenic plants in which the enzyme can be expressed are a Cannabis sp. or a tobacco plant. Nonlimiting examples of transgenic yeast in which the enzyme can be expressed are species of Saccharomyces, Candida, Pichia, Schizosaccharomyces, Scheffer omyces, Blakeslea, Rhodotorula , or Yarrowia. In some embodiments, the enzyme is in a yeast that further comprises enzymes to synthesize the first cannabinoid.

Chemistry of the CBN synthase reaction

Chemically, the conversion of THC to CBN requires creation of 2 double bonds in a cyclohexene ring resulting in formation of an aromatic ring. See FIG. 2A. This is an oxidation reaction. Enzyme families catalyzing similar reactions include aromatases, dehydrogenases, desaturases, and oxidases (FIGS. 3A, 3B and 3C).

Classes of enzymes that are capable of derivatizing cannabinoids and species that contain such enzymes are provided herewith. Multiple CBN synthase enzymes and enzymes specific for THC catabolism without production of CBN can be provided. Different enzymatic specificity is also envisioned, e.g. conversion of the acid derivative of THC (THCA) to CBNA. Derivatives of THC can also be converted to the appropriate derivatives of CBN, e.g. THCVA to CBVA. See FIG. 2A.

Also envisioned are enzymes of these classes that selectively degrade THC by converting it to molecules other than CBN but leave other cannabinoids untouched.

The conversion of THC/A to CBN/A is an oxidation reaction, so it may be catalyzed by oxidases. CYP-450s are examples of enzymes of this reaction. Some oxygenases may add hydroxyl or ketone groups to the structure as they form the aromatic ring of CBN/A. This would generate a hydroxylated variant of CBN/A, a novel molecule. Oxidases may also include non P450s such as flavin-dependent monooxygenases, copper-dependent monooxygenases, bacterial polysaccharide monooxygenases, non-heme iron-dependent monooxygenases, pterin-dependent monooxygenases, diiron hydroxylases, alpha-ketoglutarate-dependent hydroxylases , other cofactor-dependent monooxygenases, cofactor-independent monooxygenases, and/or laccases (reviewed in Torres Pazmino, 2010).

An aromatic ring is formed by the CBN synthase, so it may also be catalyzed by aromatases (FIG. 3 A). An example would be CYP19, an aromatase responsible for adding 2 double bonds to testosterone to create the aromatic ring in estradiol. The reaction is described here: https://www.uniprot.org/uniprot/Q16449.

As hydrogen atoms are abstracted to make the double bonds in CBN/A, a dehydrogenase may be able to catalyze the reaction. An example of a dehydrogenase that catalyzes a similar reaction would be arogenate dehydrogenase, as described here: https://www.uniprot.org/uniprot/Q944B6. Since double bonds are formed in creation of CBN/A, a desaturase may be responsible. An example of a desaturase that catalyzes a similar reaction would be arogenate dehydratase/prephenate dehydratase, as described at https://www.uniprot.org/uniprot/Q9LMR3

Some enzymes of these classes will also degrade THC by converting it to molecules other than CBN. A non-limiting example is reversing THCA synthase to generate CBGA.

In some embodiments, the CBN synthase can use any variant of tetrahydrocannabinolic acid THCA, as starting material, including: tetrahydrocannabivarinic acid (THCVA), tetrahydrocannabiphorolic acid (TCHPA), tetrahydrocannabiorcinic acid (THCOA), sesquiTHCA (THCFA) and produce, respectively, cannabinerolic acid (CBNA), cannabinerovarinic acid (CBNVA), cannabiphorolic acid (CBNPA), cannabinorcinic acid (CBNOA) sesqui cannabinerolic acid (sesqui-CBNA). Decarboxylation of any of these products, either enzymatically or by non- enzymatic methods such as heat, will produce the respective decarboxyl ated derivatives and is an optional last step of the pathway.

Organisms originating the enzymes

The enzyme can be a naturally occurring enzyme, or an enzyme derived from a naturally occurring enzyme, now known or later discovered, that occurs in any living organism, for example a bacterium, an archaeon, a protist, a fungus, an algae, an animal or a plant.

Many microbial enzymes catalyze reactions of these classes using similar substrates, but have never been tested for activity on cannabinoids. To determine a source of a CBN synthase, microbes can be screened for bioconversion activity of appropriate cannabinoids, after the methods of Abbott (1977). Microbes possessing this activity should have their genomes sequenced if there is no publicly available genome. Enzymes from the above listed enzyme classes should be found from the sequenced genomes and thereby identified as good candidates for the CBN synthase activity. Organisms that make molecules similar to desired cannabinoids can be identified from literature and those genomes searched as well to identify additional candidate enzymes. Bioinformatics methods to do this are in US Patent 10,671,632

Some microbes screened will contain a THC degradase instead of a CBN synthase. This is detectable as a reduction in a THC containing starting material relative to a negative control (FIG. 6 A and 6B).

In some embodiments, the gene for the enzyme is derived from a bacterium. It is envisioned that an enzyme derived from any bacterium now known or later discovered can be utilized in the present invention. For example, the bacterium can be from phylum Abditibacteriota, including class Abditibacteria, including order Abditibacteriales; phylum Abyssubacteria or Acidobacteria, including class Acidobacteriia, Blastocatellia, Holophagae, Thermoanaerobaculia, or Vicinamibacteria, including order Acidobacteriales, Bryobacterales, Blastocatellales, Acanthopleuribacterales, Holophagales, Thermotomaculales, Thermoanaerobaculales, or Vicinamibacteraceae; phylum Actinobacteria, including class Acidimicrobiia, Actinobacteria, Actinomarinidae, Coriobacteriia, Nitriliruptoria, Rubrobacteria, or Thermoleophilia, including orders Acidimicrobiales, Acidothermales, Actinomycetales, Actinopolysporales, Bifidobacteriales, Nanopelagicales, Catenulisporales, Corunebacteriales, Cryptosporangiales, Frankiales, Geodermatophilales, Glycomycetales, Jiangellales, Micrococcales, Micromonosporales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Sporichthyales, Streptomycetales, Streptosporangiales, Actinomarinales, Coriobacteriales, Eggerthellales, Egibacterales, Egicoccales, Euzebyales, Nitriliruptorales, Gaiellales, Rubrobacterales, Solirubrobacterales, or Thermoleophilales; phylum Aquificae, including class Aquificae, including order Aquificales or Desulfurobacteriales; phylum Armatimonadetes, including class Armatimonadia, including order Armatimonadales, Capsulimonadales, Chthonomonadetes, Chthonomonadales, Fimbriimonadia, or Fimbriimonadales; phylum Aureabacteria or Bacteroidetes, including class Armatimonadia, Bacteroidia, Chitinophagia, Cytophagia, Flavobacteria, Saprospiria or Sphingobacteriia, including order Bacteroidales, Marinilabiliales, Chitinophagales, Cytophagales, Flavobacteriales, Saprospirales, or Sphingopacteriales; phylum Balneolaeota, Caldiserica, Calditrichaeota, or Chlamydiae, including class Balneolia, Caldisericia, Calditrichae, or Chlamydia, including order Balneolales, Caldisericales, Calditrichales, Anoxychlamydiales, Chlamydiales, or Parachlamydiales; phylum Chlorobi or Chloroflexi, including class Chlorobia, Anaerolineae, Ardenticatenia, Caldilineae, Thermofonsia, Chloroflexia, Dehalococcoidia, Ktedonobacteria, Tepidiformia, Thermoflexia, Thermomicrobia, or Sphaerob acted dae, including order Chlorobiales, Anaerolineales, Ardenticatenales, Caldilineales, Chloroflexales, Herpetosiphonales, Kallotenuales, Dehalococcoidales, Dehalogenimonas, Ktedonobacterales, Thermogemmatisporales, Tepidiformales, Thermoflexales, Thermomicrobiales, or Sphaerobacterales; phylum Chrysiogenetes, Cloacimonetes, Coprothermobacterota, Cryosericota, or Cyanobacteria, including class Chrysiogenetes, Coprothermobacteria, Gloeobacteria, or Oscillatoriophycideae, including order Chrysiogenales, Coprothermobacterales, Chroococcidiopsidales, Gloeoemargaritales, Nostocales, Pleurocapsales, Spirulinales, Synechococcales, Gloeobacterales, Chroococcales, or Oscillatoriales; phyla: Eferribacteres, Deinococcus-thermus, Dictyoglomi, Dormibacteraeota, Elusimicrobia, Eremiobacteraeota, Fermentibacteria, or Fibrobacteres, including class Deferribacteres, Deinococci, Dictyoglomia, Elusimicrobia, Endomicrobia, Chitinispirillia, Chitinivibrionia, or Fibrobacteria, including order Deferribacterales, Deinococcales, Thermales, Dictyoglomales, Elusimicrobiales, Endomicrobiales, Chitinspirillales, Chitinvibrionales, Fibrobacterales, or Fibromonadales; phylum Firmicutes, Fusobacteria, Gemmatimonadetes, or Hydrogenedentes, including class Bacilli, Clostridia, Erysipelotrichia, Limnochordia, Negativicutes, Thermolithobacteria, Tissierellia, Fusobacteriia, Gemmatimonadetes, Longimicrobia, including order Bacillales, Lactobacillales, Borkfalkiales, Clostridiales, Halanaerobiales, Natranaerobiales, Thermoanaerobacterales, Erysipelotrichales, Limnochordales, Acidaminococcales, Selenomonadales, Veillonellales, Thermolithobacterales, Tissierellales, Fusobacteriales, Gemmatimonadales, or Longimicrobia; phylum Hydrogenedentes, Ignavibacteriae, Kapabacteria, Kiritimatiellaeota, Krumholzibacteriota, Kryptonia, Late scib acted a, LCP-89, Lentisphaerae, Margulisbacteria, Marinimicrobia, Melainabacteria, Nitrospinae, or Omnitrophica, including class Ignavibacteria, Kiritimatiellae, Krumholzibacteria, Lentisphaeria, Oligosphaeria, or Nitrospinae, including order Ignavibacteriales, Kiritimatiellales, Krumholzibacteriales, Lentisphaerales, Victivallales, Oligosphaerales, orNitrospinia; phylum Omnitrophica or Planctomycetes, including class Brocadiae, Phycisphaerae, Planctomycetia, or Phycisphaerales, including order Sedimentisphaerales, Tepidisphaerales, Gemmatales, Isosphaerales, Pirellulales, or Planctomycetales; phylum Proteobacteria including class Acidithiobacillia, Alphaproteobacteria, Betaproteobacteria, Lambdaproteobacteria, Muproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Gammaproteobacteria, Hydrogenophilalia, Oligoflexia, or Zetaproteobacteria, including order Acidithiobacillales, Caulobacterales, Emcibacterales, Holosporales, Iodidimonadales, Kiloniellales, Kopriimonadales, Kordiimonadales, Magnetococcales, Micropepsales, Minwuiales, Parvularculales, Pelagibacterales, Rhizobiales, Rhodobacterales, Rhodospirillales, Rhodothalassiales, Rickettsiales, Sneathiellales, Sphingomonadales, Burkholderiales, Ferritrophicales, Ferrovales, Neisseriales, Nitrosomonadales, Procabacteriales, Rhodocyclales, Bradymonadales, Acidulodesulfobacterales, Desulfarculales, Desulfobacterales, Desulfovibrionales, Desulfurellales, Desulfuromonadales, Myxococcales, Syntrophobacterales, Campylobacterales, Nautiliales, Acidiferrobacterales, Aeromonadales, Alteromonadales, Arenicellales, Cardiobacteriales, Cellvibrionales, Chromatiales, Enterobacterales, Immundisolibacterales, Legionellales, Methylococcales, Nevskiales, Oceanospirillales, Orbales, Pasteurellales Pseudomonadales, Salinisphaerales, Thiotrichales, Vibrionales, Xanthomonadales, Hydrogenophilales, Bacteriovoracales, Bdellovibrionales, Oligoflexales, Silvanigrellales, or Mariprofundales; phylum Rhodothermaeota, Saganbacteria, Sericytochromatia, Spirochaetes, Synergistetes, Tectomicrobia, or Tenericutes, including class Rhodothermia, Spirochaetia, Synergistia, Izimaplasma, or Mollicutes, including order Rhodothermales, Brachyspirales, Brevinematales, Leptospirales, Spirochaetales, Synergistales, Acholeplasmatales, Anaeroplasmatales, Entomoplasmatales, or Mycoplasmatales; phylum Thermodesulfobacteria, Thermotogae, Verrucomicrobia, or Zixibacteria, including class Thermodesulfobacteria, Thermotogae, Methylacidiphilae, Opitutae, Spartobacteria, or Verrucomicrobiae, including order Thermodesulfobacteriales, Kosmotogales, Mesoaciditogales, Petrotogales, Thermotogales, Methylacidiphilales, Opitutales, Puniceicoccales, Xiphinematobacter, Chthoniobacterales, Terrimicrobium, or Verrucomicrobiales.

In other embodiments, the gene for the enzyme is derived from an archaeon. It is envisioned that an enzyme derived from any archaeon now known or later discovered can be utilized in the present invention. For example, the archaeon can be from phylum Euryarchaeota, including class Archaeoglobi, Hadesarchaea, Halobacteria, Methanobacteria, Methanococci, Methanofastidiosa, Methanomicrobia, Methanopyri, Nanohaloarchaea, Theionarchaea, Thermococci, or Thermoplasmata, including order Archaeoglobales, Hadesarchaeales, Hal obacteri ales, Methanobacteriales, Methanococcales, Methanocellales, Methanomicrobiales, Methanophagales, Methanosarcinales, Methanopyrales, Thermococcales, Methanomassiliicoccales, Thermoplasmatales, or Nanoarchaeales; DPANN superphylum, including subphyla Aenigmarcheota, Altiarchaeota, Diapherotrites, Micrarchaeota, Nanoarchaeota, Pacearchaeota, Parvarchaeota, or Woesearchaeota; TACK superphylum, including subphylum Korarchaeota, Crenarchaeota, Aigarchaeota, Geoarchaeota, Thaumarchaeota, or Bathyarchaeota; Asgard superphylum including subphylium Odinarchaeota, Thorarchaeota, Lokiarchaeota, Helarchaeota, or Heimdallarchaeota.

In additional embodiments, the gene for the enzyme is derived from a fungus. It is envisioned that a CBN synthase or THC degradase from any fungus now known or later discovered can be utilized in the present invention. This includes but is not limited to the phyla Chytridiomycota, Basidiomycota, Ascomycota, Blastocladiomycota, Ascomycota, Microsporidia, Basidiomycota, Glomeromycota, Symbiomycota, and Neocallimastigomycota. For example, the fungus can be from the phylum Ascomycota, including classes and orders Pezizomycotina, Arthoniomycetes, Coniocybomycetes, Dothideomycetes, Eurotiomycetes, Geoglossomycetes, Laboulbeniomycetes, Lecanoromycetes, Leotiomycetes, Lichinomycetes, Orbiliomycetes, Pezizomycetes, Sordariomycetes, Xylonomycetes, Lahmiales, Itchiclahmadion, Triblidiales, Saccharomycotina, Saccharomycetes, Taphrinomycotina, Archaeorhizomyces, Neolectomycetes, Pneumocystidomycetes, Schizosaccharomycetes, Taphrinomycetes; phylum Basidiomycota including subphyla or classes Pucciniomycotina, Ustilaginomycotina, Wallemiomycetes, and Entorrhizomycetes; subphylum Agaricomycotina including classes Tremellomycetes, Dacrymycetes, and Agaricomycetes; phylum Symbiomycota, including class Entorrhizomycota; subphylum Ustilaginomycotina including classes Ustilaginomycetes and Exobasidiomycetes; phylum Glomeromycota including classes Archaeosporomycetes, Glomeromycetes, and Paraglomeromycetes; subphylum Puccini omycotina including orders and classes: Pucciniomycotina, Cystobasidiomycetes, Agaricostilbomycetes, Microbotryomycetes, Atractiellomycetes, Classiculomycetes, Mixiomycetes, and Cryptomycocolacomycetes; subphylum incertae sedis Mucoromyceta including orders Calcarisporiellomycota and Mucoromycota; phylum Mortierellomyceta including class Mortierellomycota; subphylum incertae sedis Entomophthoromycotina including order Entomophthorales; phylum Zoopagomyceta including classes Basidiobolomycota, Entomophthoromycota, Kickxellomycota, and Zoopagomycotina; subphylum incertae sedis Mucoromycotina including orders Mucorales, Endogonales, and Mortierellales; phylum Neocallimastigomycota including class Neocallimastigomycetes; phylum Blastocladiomycota including classes Physodermatomycetes and Blastocladiomycetes; phylum Rozellomyceta including classes Rozellomycota and Microsporidia; phylum Aphelidiomyceta including class Aphelidiomycota; Chytridiomyceta including classes Chytridiomycetes and Monoblepharidomycetes; and phylum Oomycota including classes or orders Leptomitales, Myzocytiopsidales, Olpidiopsidales, Peronosporales, Pythiales, Rhipidiales, Salilagenidiales, Saprolegniales, Sclerosporales, Anisolpidiales, Lagenismatales, Rozellopsidales, and Haptoglossales.

Nucleic acids

The present invention is additionally directed to nucleic acids encoding any of the above- identified enzymes. In some embodiments, the nucleic acids are codon optimized to improve expression, e.g., using techniques as disclosed in US Patent No. 10,435,727. In some of these embodiments, the codon optimized nucleic acids comprise any of SEQ ID NOs:l-50.

More specifically, optimized nucleotide sequences are generated based on a number of considerations: (1) For each amino acid of the recombinant polypeptide to be expressed, a codon (triplet of nucleotide bases) is selected based on the frequency of each codon in the Saccharomyces cerevisiae genome; the codon can be chosen to be the most frequent codon or can be selected probabilistically based on the frequencies of all possible codons. (2) In order to prevent DNA cleavage due to a restriction enzyme, certain restriction sites are removed by changing codons that cover those sites. (3) To prevent low-complexity regions, long repeats (sequences of any single base longer than five bases) are modified. (2) and (3) are performed recursively to ensure that codon modification does not lead to additional undesirable sequences. (4) A ribosome binding site is added to the N-terminus. (5) A stop codon is added. In various embodiments, the nucleic acids further comprise additional nucleic acids encoding amino acids that are not part of the enzyme. In some of these embodiments, the additional sequences encode additional amino acids present when the nucleic acid is translated, encoding, for example, an additional protein domain, with or without a linker sequence, creating a fusion protein. Other examples are localization sequences, i.e., signals directing the localization of the folded protein to a specific subcellular compartment or membrane.

In some embodiments, the nucleic acids have, at the 5’ end, a nucleic acid encoding codon optimized cofolding peptides to create a fusion protein, e.g., having SEQ ID NOs:69-73 (Table 2), joining the sequences together to form a fusion polypeptide, e.g., having the amino acid sequence of SEQ ID NO:74-78 fused at the N terminus of the enzyme polypeptide, generating recombinant fusion polypeptides.

Table 2

Further provided is a non-naturally occurring nucleic acids that encode an enzyme having the enzymatic activity of any of the non-naturally occurring enzymes described above, or a naturally occurring enzyme having any of the enzyme activities described above. The nucleic acids may be codon optimized, e.g., for production in yeast.

In some embodiments, the nucleic acid comprises additional nucleotide sequences that are not translated. Examples include promoters, terminators, barcodes, Kozak sequences, targeting sequences, and enhancer elements. Particularly useful here are promoters that are functional in yeast.

Expression of a gene encoding an enzyme is determined by the promoter controlling the gene. In order for a gene to be expressed, a promoter must be present within 1,000 nucleotides upstream of the gene. A gene is generally cloned under the control of a desired promoter. The promoter regulates the amount of enzyme expressed in the cell and also the timing of expression, or expression in response to external factors such as sugar source.

Any promoter now known or later discovered can be utilized to drive the expression of the various genes (e.g., 11-OH hydroxylase, CBN synthase, THC degradase) described herein. See e.g. http://parts.igem.org/Yeast for a listing of various yeast promoters. Exemplary promoters listed in Table 3 below drive strong expression, constant gene expression, medium or weak gene expression, or inducible gene expression. Inducible or repressible gene expression is dependent on the presence or absence of a certain molecule. For example, the GAL1, GAL7, and GAL10 promoters are activated by the presence of the sugar galactose and repressed by the presence of the sugar glucose. The HO promoter is active and drives gene expression only in the presence of the alpha factor peptide. The HXT1 promoter is activated by the presence of glucose while the ADH2 promoter is repressed by the presence of glucose.

Table3: Exemplary yeast promoters

In various embodiments, the nucleic acid is in a yeast expression cassette. Any yeast expression cassette capable of expressing the enzyme in a yeast cell can be utilized. In some embodiments, the expression cassette consists of a nucleic acid encoding a CBN synthase or THC degradase with a promoter.

Additional regulatory elements can also be present in the expression cassette, including restriction enzyme cleavage sites, antibiotic resistance genes, integration sites, auxotrophic selection markers, origins of replication, and degrons.

The expression cassette can be present in a vector that, when transformed into a host cell, either integrates into chromosomal DNA or remains episomal in the host cell. Such vectors are well-known in the art. See e.g. http://parts.igem.org/Yeast for a listing of various yeast vectors. A nonlimiting example of a yeast vector is a yeast episomal plasmid (YEp) that contains the pBluescript II SK(+) phagemid backbone, an auxotrophic selectable marker, yeast and bacterial origins of replication and multiple cloning sites enabling gene cloning under a suitable promoter (see Table 3). Other exemplary vectors include pRS series plasmids.

Host cells

The present invention is also directed to genetically engineered host cells that comprise the above-described nucleic acids. Such cells may be, e.g., any species of filamentous fungus, including but not limited to any species of Aspergillus , which have been genetically altered to produce precursor molecules, intermediate molecules, or cannabinoid molecules. Host cells may also be any species of bacteria, including but not limited to Escherichia , Corynebacterium , Caulobacter, Pseudomonas , Streptomyces, Bacillus , or Lactobacillus.

In some embodiments, the genetically engineered host cell is a yeast cell, which may comprise any of the above-described expression cassettes, and capable of expressing the recombinant enzyme encoded therein.

Any yeast cell capable of being genetically engineered can be utilized in these embodiments. Nonlimiting examples of such yeast cells include species of Saccharomyces , Candida , Pichia , Schizosaccharomyces, Scheffer somyces, Blakeslea , Rhodotorula , or Yarrowia.

These cells can achieve gene expression controlled by inducible promoter systems; natural or induced mutagenesis, recombination, and/or shuffling of genes, pathways, and whole cells performed sequentially or in cycles; overexpression and/or deletion of single or multiple genes and reducing or eliminating parasitic side pathways that reduce precursor concentration.

The host cells of the recombinant organism may also be engineered to produce any or all precursor molecules necessary for the biosynthesis of cannabinoids, including but not limited to olivetolic acid (OA), olivetol (OL), FPP and GPP, hexanoic acid and hexanoyl-CoA, malonic acid and malonyl-CoA, dimethylallylpyrophosphate (DMAPP) and isopentenylpyrophosphate (IPP) as disclosed in US Patent No. 10,435,727.

Construction of Saccharomyces cerevisiae strains expressing a cannabinoid modifying or degrading enzyme such as CBN synthase or THC degradase is carried out via expression of a gene which encodes for the enzyme. The gene encoding the enzyme can be cloned into vectors with the proper regulatory elements for gene expression (e.g. promoter, terminator) and the derived plasmid can be confirmed by DNA sequencing. As an alternative to expression from an episomal plasmid, the gene encoding the enzyme may be inserted into the recombinant host genome. Integration may be achieved by a single or double cross-over insertion event of a plasmid, or by nuclease-based genome editing methods, as are known in the art e.g. CRISPR, TALEN and ZFR. Strains with the integrated gene can be screened by rescue of auxotrophy and genome sequencing. See, e.g., Green and Sambrook (2012).

To produce the desired cannabinoid, each candidate polypeptide may be introduced into a host cell genetically modified to contain all necessary components for cannabinoid biosynthesis using standard yeast cell transformation techniques (Green and Sambrook, 2012). Cells are subjected to fermentation under conditions that activate the promoter controlling the candidate polypeptide (see, e.g., Table 3). The broth may be subsequently subjected to HPLC analysis (FIG. 6 A and 6B).

In some embodiments, for recombinant enzyme purification, the gene encoding the enzyme is cloned into an expression vector such as the pET expression vectors from Novagen, transformed into a protease deficient strain of E. coli such as BL21 and expressed by induction with IPTG. The protein of interest may be tagged with a common tag to facilitate purification, e.g. hexahistidine, GST, calmodulin, TAP, AP, CAT, HA, FLAG, MBP etc. Coexpression of a bacterial chaperone such as dnaK, GroES/GroEL or SecY may help facilitate protein folding. See Green and Sambrook (2012).

Any of the enzymes described above can also be produced in transgenic plants, using techniques known in the art (see, e.g., Keshavareddy et al., 2018). In these embodiments, the above-described nucleic acid encoding the enzyme further comprises a promoter functional in a plant. In various embodiments, the nucleic acid is in a plant expression cassette. Any plant capable of being transformed with the nucleic acid can be utilized here. In some embodiments, the plant is a tobacco or a Cannabis sp. plant. Cannabis sp. that are transformed with a THC degradase are particularly useful, since such an enzyme expressed in Cannabis sp. plants grown for fiber could reduce the THC content to below the 0.3% current legal THC limit.

Preferred embodiments are described in the following examples. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the specification or practice of the invention as disclosed herein. It is intended that the specification, together with the examples, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims, which follow the examples. Various methods and compositions provided in US Patent Applications 16/553103, 16/553120, 16/558973, 17/068636 and 63/053539; US Patent 10,435,727; and US Patent Publications 2020/0063170 and 2020/0063171 are utilized in the examples.

Example 1. Expression of a recombinant fusion polypeptides for THC/A conversion degradation and 11 -hydroxy cannabinoid variant production in a modified host organism

Construction of Saccharomyces cerevisiae strains expressing CBN synthase, THC degradase, P450, and/or CPR enzymes fused with N terminal cofolding peptides from Table 1, having SEQ ID NOs: 106-110 to produce CBN/A from THC/A, and 11 -hydroxy variants such as 11 -OH CBN, is carried out via expression of a fusion gene of any codon optimized nucleic acid sequence SEQ ID NOs: 101-105 combined at the 5’ end of a nucleic acid sequence encoding an enzyme that modifies a first cannabinoid into a second cannabinoid or non-cannabinoid. The fusion genes were cloned into vectors with the proper regulatory elements for gene expression (e.g. promoter, terminator) and the derived plasmid was confirmed by DNA sequencing. The fusion genes were also inserted into the recombinant host genome. Integration was achieved by a single or double cross-over insertion event of the plasmid. Strains with the integrated gene were screened by rescue of auxotrophy and genome sequencing.

Example 2 - Method of growth of host cells

Modified host cells which yield cannabinoids such as THC/A, express recombinant (i) CBN synthase for THC/A conversion to CBN/A, (ii) p450 and CPR protein combinations (11-OH hydroxylases) for 11 -OH hydroxy variants of cannabinoids such as 11 -OH- THC, or (iii) a combination of CBN synthase and 11-OH hydroxylases for production of cannabinoids such as 11-OH-CBN. More specifically, the cannabinoid-producing strain expressing CBN synthases and/or 11-OH hydroxylases herein is grown in a feedstock as described in US Patent Application No. 17/068,636. An example feedstock used for a modified host expressing the recombinant CBN synthase is growing the strain in a minimal-complete or rich culture media containing yeast nitrogen base, amino acids, vitamins, ammonium sulfate, and a carbon source, such as glucose or molasses. The feedstock is consumed by the modified host which expresses the recombinant CBN synthase with a cannabinoid biosynthesis pathway to convert the feedstock into (i) biomass, (ii) THC/A and 11 -OH- THC variants thereof, (iii) CBN/A and 11-OH CBN, and variants thereof, or (iv) biomass and the cannabinoids products in (ii) and (iii). Strains expressing the recombinant CBN synthase genes can be grown on feedstock for 12 to 160 hours at 25-37°C for isolation of products.

Example 3 - Removal of THC/A by formation of a homopolymer or heteropolymer

Cells are genetically engineered to contain one or more laccase enzymes. Integration is achieved by a single or double cross-over insertion event of the plasmid. Strains with the integrated gene are screened by rescue of auxotrophy and genome sequencing. The laccase gene can be under the control of an inducible promoter. When polymerization of THC/A is desired, inducer is added to the culture along with supplemental copper at a final concentration of lOOpM-lOOmM. Polymerized cannabinoids can be separated from the culture by filtration, centrifugation or dialysis. Membranes for filtration and dialysis should be selected such that molecules corresponding to the size of a monomeric cannabinoid pass through the pores of the membrane, but larger molecules such as polymers are retained on the other side of the membrane. conversion or degradation

The CBN synthase or THC degradase enzyme is cloned into a high-copy vector with key features that allow 1) tight induction by the lactose analog, b-D-thiogalactoside (IPTG), 2) an N- terminal secretory signal peptide (e.g., MKKTAIAIAVALAGFATVAQA), and 3) C-terminal fusion to a HIS tag for purification. E. coli cells harboring the CBN synthase or THC degradase expression vector are grown in M9 minimal media with 1% glucose for 18h at 37 °C and shaking at 300 rpm. Concentrated cell culture is diluted to an OD„ =1 in fresh M9 minimal media with 1% glucose and 0.2 mM IPTG and grown for 48h.

The supernatant containing the recombinant proteins is equilibrated in binding buffer (50 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole, lmM MgCE, 10% glycerol, 10 mM 2- mercaptoethanol, 1 mM PMSF, Complete EDTA-free (1 tablet/100 ml), 20 mM l-phenyl-2- thiourea; pH 7.4) and centrifuged at 2,500g for 5 min to remove insoluble matter. Then the supernatant is filtered through a 0.45 pm filter (Millipore, MA, USA) and applied onto a HisTrap HP column (GE Healthcare Bioscience). The recombinant proteins are eluted with a step gradient of imidazole (concentrations of 5, 20, 40 and 300 mM). Fractions are analyzed by SDS-PAGE. Purified CBN synthase or THC degradase protein is resuspended in activity buffer [100 mM sodium phosphate buffer, pH 6.55, ImM PMSF, EDTA-free protease inhibitor cocktail at working concentration (Roche, Meylan, France)] for use in converting or degrading THC/A in crude plant matter or THC/A in cannabinoid isolate via incubation and continuous shaking for 6- 12 hrs at 30 °C.

Example 5 - Preparation ot cell lysate trom a host expression recombinant LB IN synthase and

THC degradase for conversion and degradation of THC/A

Host cells expressing recombinant CBN synthase or THC degradase are resuspended in lysis buffer consisting of 50 mM Tris-HCl pH7.5, 200mM NaCl, 1 mM MgCE, 5 mM DTT, ImM PMSF, and DNAse. Resuspended host cells are then lysed by sonication / French press /homogenization or enzymatic lysis such as zymolyase or lysozyme. Lysate is cleared by centrifugation at 16000 rpm for 15 min at 4 °C. Cleared lysate is added to crude or purified cannabinoid preparations at concentrations ranging from lmg/gram to lg/g. The mixture is incubated with continuous shaking for 6-12 hrs at 30 °C. Cannabinoids are then extracted.

Example 6 - Detection of isolated product

To identify cannabinoid conversion products from CBN synthase, the degradation of THC via THC degradase, 11 -hydroxy variants of cannabinoids, and all other products of converted plant matter, cannabinoid isolate, or from a host cell expressing an engineered biosynthetic pathway for cannabinoids, an Agilent 1100 series liquid chromatography (LC) system equipped with a reverse phase Cl 8 column (Agilent Eclipse Plus Cl 8, Santa Clara, CA, USA) was used. A gradient was used of mobile phase A (ultraviolet (UV) grade H2O + 0.1% formic acid) and mobile phase B (UV grade acetonitrile + 0.1% formic acid). Column temperature was set at 30 °C. Compound absorbance was measured at 210 nm and 305 nm using a diode array detector (DAD) and spectral analysis from 200nm to 400nm wavelengths. A 0.1 milligram (mg)/milliliter (mL) analytical standard was made from certified reference material for each terpene and cannabinoid (Cayman Chemical Company, USA). Each sample was prepared by diluting 1) fermentation biomass from a recombinant host expressing the engineered cannabinoid and CBN synthase biosynthesis pathway or 2) a conversion or degradation reaction containing CBN synthase or THC degradase by 1 :3 or 1 :20 in 100% acetonitrile and filtered in 0.2 um nanofilter vials. The retention time and UV-visible absorption spectrum (i.e., spectral fingerprint) of the samples were compared to the analytical standard retention time and UV-visible spectra (i.e. spectral fingerprint) when identifying the terpene and cannabinoid compounds.

FIG. 6A depicts the detection of CBN and THC isolated from fermentation broth with a recombinant CBN synthase host and from fermentation broth with a control microorganism. Detection and isolation of product are depicted by retention time matching of post-fermentation conversion and degradation of THC into CBN with CBN and THC analytical standards, along with a matching UV-vis spectral fingerprint of the post-fermentation conversion and degradation of THC with the THC analytical standard and CBN with the CBN analytical standard. This also corroborates that the recombinant host is able to successfully convert and degrade THC, which further validates that the systems and methods herein enzymatically target THC/A molecules for conversion and degradation.

FIG. 6B depicts the detection of THC isolated from fermentation broth with a recombinant THC degrading host and from fermentation broth with a control microorganism. Detection and isolation of product are depicted by retention time matching of post-fermentation conversion and degradation of THC with a THC analytical standard, along with a matching UV-vis spectral fingerprint of the post-fermentation conversion and degradation of THC with the THC analytical standard. This also corroborates that the recombinant host is able to successfully convert and degrade THC, which further validates that the systems and methods herein enzymatically target THC/A molecules for conversion and degradation.

References

Abbott et al., 1977, Experientia 33:718-720.

Carter et al., 2010, Am J Hosp Palliat Care 27:347-56.

Caprioglio et al., 2019, Org. Lett. 21:6122-6125.

Carvalho et al., 2017, FEMS Yeast Res. 17:fox037.

Committee on the Health Effects of Marijuana, 2017, The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research, National Academies Press.

Giacoppo S. and Mazzon E., 2016, Neural Regeneration Res. 11:1896-1899.

Green and Sambrook (2012) Molecular Cloning: A Laboratory Manual (Fourth Edition), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.

Giilck and Moller, 2020, Trends in Plant Science 25:985-1004. Keshavareddy et al., 2018, Int. J. Curr. Microbiol. App. Sci 7:2656-2668.

Luo et al., 2019, Nature 567:123-126.

Torres Pazmino, Daniel & Winkler, Margit & Glieder, Anton & Fraaije, Marco. (2010). Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. Journal of biotechnology. 146. 9-24. 10.1016/j.jbiotec.2010.01.021.

Watanabe et al., 2007, Life Sciences 80:1415-1419. http://parts.igem.org/Yeast. https://www.uniprot.org/uniprot/Q16449.

PCT Patent Application Publication WO 2014/159688 AL

US Patent Application Publication 2017/0020943 AL

US Patent No. 10,435,727.

US Patent No. 10,671,632.

US Patent Application 16/553103.

US Patent Application 16/553120.

US Patent Application 16/558973.

US Patent Application 17/068636.

US Provisional Patent Application 63/035692.

US Provisional Patent Application 63/053539.

US Provisional Patent Application 63/141486.

US Patent Application Publication 2020/0063170.

US Patent Application Publication 2020/0063171.

In view of the above, it will be seen that several objectives of the invention are achieved and other advantages attained.

As various changes could be made in the above methods and compositions without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

All references cited in this specification, including but not limited to patent publications and non-patent literature, and references cited therein, are hereby incorporated by reference. The discussion of the references herein is intended merely to summarize the assertions made by the authors and no admission is made that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinence of the cited references.

As used herein, in particular embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 10%. Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the disclosure. That the upper and lower limits of these smaller ranges can independently be included in the smaller ranges is also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.

The indefinite articles “a” and “an,” as used herein in the specification and in the embodiments, unless clearly indicated to the contrary, should be understood to mean “at least one.”

The phrase “and/or,” as used herein in the specification and in the embodiments, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements can optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.

As used herein in the specification and in the embodiments, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of’ or “exactly one of,” or, when used in the embodiments, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the embodiments, shall have its ordinary meaning as used in the field of patent law.

As used herein in the specification and in the embodiments, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements can optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.

SEQ ID NOs

Seq. ID NO: 1 >p450_l

ATGGCCGCAGACAGTCTTGTTGTCCTTGTTCTGTGCCTTAGTTGCCTTTTGCTGCTA T

CTCTTTGGAGACAATCATCAGGGAGAGGTAAACTTCCGCCTGGACCAACTCCACTAC

CCGTCATAGGGAATATATTACAAATCGGTATAAAGGACATCTCCAAGTCCCTGACGA

ATCTTTCCAAGGTGTATGGTCCTGTGTTCACACTATACTTCGGCTTGAAACCCATCG T

GGTCTTACATGGCTACGAGGCAGTGAAAGAGGCCCTGATTGATTTGGGGGAAGAGT

TCAGTGGGAGAGGAATCTTTCCCCTTGCTGAGAGGGCTAATCGTGGTTTTGGGATAG

TGTTTTCTAACGGAAAGAAGTGGAAAGAAATAAGGCGTTTCAGCCTGATGACTTTGC

GT AATTTTGGGATGGGAAAAAGGTC A ATT GAAGATCGT GTT C AAGAAGAAGCCCGT

TGCCTGGTGGAGGAGTTGAGAAAGACGAAGGCTTCCCCGTGCGATCCAACTTTCATA

CTGGGATGTGCGCCATGCAATGTCATATGTAGTATAATCTTTCATAAGAGATTCGAC

TAT AAGGAT C AGC AATTCTTGA ACTTGAT GGAGAA ATT GAACGAGAAC AT AAAAAT

TCTGTCTTCCCCCTGGATTCAAATATGTAATAACTTTAGCCCAATAATAGACTACTT C

CCAGGTACGCACAATAAACTGTTAAAGAACGTCGCTTTTATGAAATCTTACATATTG

GAGAAGGTGAAAGAGCACCAAGAGAGCATGGACATGAACAATCCGCAAGACTTCA

TT GATT GTTTCCTGAT GAAGAT GGAAAAAGAAAAGC AC AACC AGCCTTCTGAATTT A

CGATTGAAAGCCTTGAAAATACTGCAGTCGATCTATTCGGAGCTGGCACAGAGACT

ACCTCAACCACGTTAAGATATGCTTTGCTTTTACTACTGAAGCATCCAGAGGTGACT

GCCAAGGTGCAAGAAGAGATCGAGAGGGTCATCGGAAGGAACCGTTCCCCGTGTAT

GCAGGACAGGAGCCATATGCCTTACACAGACGCGGTTGTCCACGAAGTCCAGCGTT

ACATAGATCTATTACCGACGTCACTACCCCACGCGGTCACTTGTGACATCAAATTTC

GTAACTACCTGATCCCCAAGGGCACTACCATATTAATTTCACTTACTTCCGTGCTAC A

CGACAATAAGGAATTTCCAAATCCCGAGATGTTCGACCCGCATCACTTTCTGGACGA

AGGGGGAAATTTCAAGAAGTCAAAGTACTTCATGCCTTTCTCCGCCGGAAAGAGAA

TCTGTGTAGGAGAAGCTCTGGCGGGGATGGAACTATTCTTGTTTTTAACCTCAATAT

TACAGAATTTTAACCTTAAATCCCTTGTAGATCCTAAGAATCTGGACACAACGCCTG

TGGTTAACGGGTTCGCGTCCGTTCCGCCGTTTTACCAGTTATGCTTTATTCCCGTTT A

A

Seq. ID NO: 2 >p450_2

ATGGCCGCAGACTCTCTTGTTGTATTGGTATTATGCCTAAGCTGCTTGCTTCTATTA A

GCCTATGGAGACAAAGCAGTGGGAGAGGGAAACTTCCGCCCGGACCAACTCCTCTA

CCTGTAATCGGGAACATTTTACAAATCGGCATAAAAGATATCTCAAAAAGTTTAACA

AATTTGTCCAAGGTGTACGGCCCGGTATTTACTCTTTACTTCGGATTGAAGCCGATA

GT AGTTTTGC ACGGCT ATGAGGCCGT C AAGGAGGC ACTT AT AGACTT AGGAGAGGA

GTTTTCTGGGAGGGGC ATTTTCCCGCTT GC AGAGCGT GC AAAT AGGGGGTTTGGGAT

AGTGTTCTCAAATGGTAAGAAATGGAAAGAAATCAGGCGTTTTTCTCTGATGACCCT

TAGGAACTTCGGAATGGGAAAGAGATCTATCGAAGACAGGGTCCAGGAGGAAGCCC

GTTGCCTAGTAGAAGAACTTCGTAAGACGAAGGCTTCCCCATGTGACCCTACCTTTA

TTCTAGGCTGTGCGCCGTGCAATGTCATATGTTCTATTATTTTTCATAAGAGATTCG A

TTATAAGGATCAGCAGTTCCTGAATTTAATGGAGAAATTAAACGAGAATGTTAAAAT

ACTTAGTTCACCTTGGATACAGATATGTAATAACTTTTCACCTATAATCGATTATTT T

CCCGGAACTCATAACAAGCTCTTGAAGAATGTTGCTTTTATGAAGTCTTACATTTTA

GAGA A AGTT A A AGAGC AT C AGGA AT C CAT GGAC AT GA AT A ACC C AC AGGATTT CAT TGACTGCTTCTTAATGAAAATGGAAAAGGAAAAGCATAACCAGCCAAGTGAGTTCA

CTATTGAATCTCTTGAAAACACGGCTGTGGATCTGTTCGGAGCAGGAACCGAGACTA

CGTCTACGACGCTGCGTTATGCGTTACTGCTATTACTGAAACATCCAGAAGTTACAG

CGAAGGT AC AAGAGGAGATCGAGAGGGT C ATCGGAAGA AAT AGGAGTCCCTGT ATG

CAAGATCGTTCTCATATGCCCTACACAGATGCAGTCGTTCATGAAGTGCAGAGATAT

ATCGACTTGTTACCCACCTCCCTACCTCACGCAGTAACCTGCGATATCAAATTTAGG

AATTATTTAATACCTAAAGGGACGACCATTCTGATAAGCCTAACATCAGTCTTGCAC

GATAACAAGGAATTTCCGAACCCCGAGATGTTTGACCCACACCATTTCCTGGACGAG

GGCGGGAACTTCAAGAAATCCAATTATTTTATGCCTTTCAGTGCTGGTAAGAGGATA

TGCGTAGGAGAGGCTTTAGCCAGGATGGAGCTTTTCCTATTCCTGACATCTATACTT

CAAAACTTCAATCTAAAGAGTTTAGTCGATCCGAAAAATTTAGATACGACGCCTGTT

GTAAATGGGTTCGCCTCCGTACCTCCCTTCTACCAATTGTGCTTTATTCCCGTGTAA

Seq. ID NO: 3 >p450_3

ATGGCCGCAGATTCCTTTGTGGTGCTGGTGCTGTGTTTAAGCTGCTTATTGTTACTA T

CCTTATGGCGTCAATCATCCGGACGTGGCAAATTGCCCCCTGGCCCAACACCCCTGC

CCGTTATAGGAAATATACTTCAGATTGACATAAAAGATATCAGTAAATCCCTAACGA

ATCTTTCTAAAGTTTATGGGCCCGTCTTTACCCTTTATTTCGGTCTGAAACCGATTG T

CGTTTTACACGGATACGAGGCAGTGAAAGAGGCTCTGATCGACTTAGGTGAGGAGT

TCTCTGGCCGTGGACATTTTCCATTGGCAGAACGTGCTAATAGGGGGTTCGGTATTG

TATTCTCCAACGGGAAAAAGTGGAAGGAAATCAGGCGTTTTTCCTTAATGACGCTAA

GA A ACTTC GGC AT GGGT A AGAGGAGT AT AGA AGAC CGT GTT C A AGAGGA AGC T AGA

TGCTTAGTAGAGGAGCTGAGGAAGACTAAGGCCTCTCCCTGTGATCCAACATTCATT

CTGGGCTGTGCTCCGTGCAATGTCATCTGTAGTATAATTTTTCGTAAGAGATTTGAC T

ATAAGGATCAACAGTTCCTGAATCTTATGGAGAAACTTAATGAAAATGTCAAGATA

CTGTCTTCTCCCTGGATACAAATTTACAACAACTTTTCTCCCATCATAGATTACTTC C

CTGGAACGCATAACAAGCTGTTGAAAAATGTGGCTTTTATGAAGTCCTATATTCTGG

AAAAGGT C AAGGA AC AT C AGGAA AGT AT GGAC ATGAAC AATCCGC AAGATTT CAT C

GATT GCTTC TT A AT G A AG AT GGAGA A AGA A A A AC AT A AT C A AC CT AGT GAGTTT AC

GATAGAGAGTCTTGAAAACACTGCCGCGGACCTATTCGGCGCCGGCACGGAAACCA

CATCTACCACCCTTAGGTATGCATTACTTCTACTACTAAAACATCCTGAAGTTACCG C

T A AGGT AC A AGA AGAGATCGAGAGAGT A AT AGGC AGGA AT AGA AGT C CGT GT AT GC

AAGATAGGAGCCACATGCCATACACAGACGCAGTCGTCCATGAAGTTCAGCGTTAT

ATTGACCTTCTTCCGACCAGTCTGCCACATGCAGTCACCTGTGACATTAAATTCAGG

AATTATTTAATTCCCAAAGGTACAACAATATTAATCTCTCTGACGAGCGTTCTACAT

GACAATAAGGAGTTCCCTAACCCAGAGATGTTCGATCCGCACCATTTCCTAGACGAA

GGTGGAAACTTTAAGAAGAGCAATTATTTTATGCCATTCTCCGCTGGGAAAAGAATC

TGTGTTGGCGAAGCATTGGCCAGAATGGAATTGTTTTTGTTCCTAACAAGCATCTTA

CAAAATTTCAATCTTAAATCTTTGGTTGACCCGAAGAATCTGGACACCACACCTGTC

GTAAATGGGTTTGCAAGCGTACCACCTTTTTATCAATTGTGTTTCATCCCCGTCTAA

Seq. ID NO: 4 >p450_4

ATGGCCGCAGATCTGGTAGTGTTCTTGGCCTTGACCCTAAGCTGTTTAATTCTACTA T

CATTATGGCGTCAGTCCTCCGGACGTGGTAAACTACCGCCAGGACCAACTCCGCTGC

CCATTATCGGGAACTTTCTTCAAATCGACGTCAAAAACATATCACAATCATTTACAA

ACTTCTCAAAAGCATACGGGCCAGTTTTTACTCTGTACCTAGGAAGCAAACCCACAG TT ATTTT GC AT GGCT ACGAAGCTGTC AAGGAGGCGTTGAT AGAC AGAGGAGAAGAA

TTTGCTGGGAGGGGAAGTTTCCCGATGGCCGAAAAGATCATCAAGGGATTTGGCGT

CGTGTTTTCT AACGGC AAT AGGTGGAAAGAAAT GAGGAGATT C AC ATT GATGACTCT

GAGGAACCTGGGTATGGGAAAGAGAAACATTGAAGATAGGGTCCAGGAGGAGGCA

CAATGTTTGGTTGAAGAACTAAGAAAAACAAAAGGAAGTCCCTGTGATCCAACGTT

CATTCTATCCTGCGCTCCCTGCAATGTTATCTGTTCTATTATATTCCAAAACCGTTT C

GATT AT A AAGAT AAAGAATTTCT AAT ACT A ATGGAT AAAATT AACGAGA ACGT GAA

GATCCTATCCTCACCCTGGTTGCAAGTTTGCAATTCATTTCCTTCCTTAATAGACTA T

TGTCCAGGTTCTCATCACAAAATAGTGAAAAATTTCAACTATTTAAAGTCTTATTTG C

TGGAGAAAATTAAAGAGCATAAAGAGAGCCTTGACGTTACTAACCCCAGGGACTTT

ATT GACT ACT ATTT A ATT AAGC AGAAAC AGGTT AACC AT ATTGAAC AGT C AGA ATTT

TCTTTAGAGAATTTAGCCTCTACAATTAACGACCTGTTCGGGGCCGGGACAGAAACC

ACGAGCACAACGCTGAGATACGCATTACTACTGCTACTTAAATATCCGGATGTTACT

GCT A AGGTT C AGGAAGAAATCGAT AGGGT AGT AGGACGTC ATCGTT C ACC ATGC AT

GCAAGATCGTTCACACATGCCTTATACTGATGCAATGATACACGAAGTTCAGCGTTT

TATTGACTTGTTACC AACC AGTTTACCGC ATGC GGTCACATGTGACATCAAATTTAG

GAAATATCTGATCCCCAAGGGTACAACTGTCATCACTAGCCTAAGCTCCGTATTGCA

TGACAGTAAAGAGTTCCCAAATCCAGAGATGTTCGACCCAGGGCACTTTTTGAATGC

GAATGGCAATTTTAAGAAGAGCGACTATTTCATGCCCTTTAGCACTGGCAAGAGAAT

ATGTGCCGGAGAGGGACTAGCAAGGATGGAATTATTCCTGATTCTTACCACAATACT

ACAGAACTTCAAATTAAAATCATTAGTCCACCCAAAAGAGATAGATATTACTCCAGT

GATGAACGGTTTTGCATCCCTTCCGCCACCCTACCAACTATGTTTTATTCCGCTTTA A

Seq. ID NO: 5 >p450_5

AATGGCCGCAATTTTAGGCGTATTCCTTGGTTTGTTTTTGACGTGTTTACTATTGTT A

AGTTTGTGGAAGCAGAATTTCCAAAGGAGAAATTTACCCCCAGGACCGACACCACT

TCCCATTATCGGTAACATACTTCAAATCGACTTAAAGGACATTTCCAAGAGTTTGAG

AAACTTCTCAAAAGTCTACGGCCCGGTATTTACCCTGTACTTGGGGAGGAAACCCGC

GGTCGTTCTGCATGGTTACGAGGCTGTTAAAGAGGCACTTATCGATCACGGGGAAG

AGTTCGCAGGTAGGGGTGTGTTTCCCGTCGCCCAAAAGTTTAACAAGAACTGCGGG

GTGGTTTTCTCATCCGGCCGTACCTGGAAGGAAATGAGGAGATTCTCCTTGATGACA

CTTAGGAATTTTGGGATGGGCAAGAGAAGTATAGAGGATAGGGTACAGGAAGAGGC

ACGTTGTCTAGTAGACGAACTTCGTAAAACTAACGGGGTGCCTTGTGATCCAACCTT

TATCCTGGGGTGCGCCCCGTGTAACGTGATTTGCTCTATCGTATTCCAAAACAGATT

CGATTACAAAGACCAGGAGTTTCTTGCGCTAATAGATATACTAAATGAAAACGTTGA

GATCCTTGGATCACCGTGGATTCAAATTTGTAATAACTTCCCAGCTATTATTGACTA T

TTACCGGGAAGACACAGGAAACTGTTAAAGAACTTTGCTTTTGCGAAACATTACTTC

TTAGCTAAAGTAATTCAACACCAGGAATCATTAGATATCAATAATCCCCGTGATTTC

ATCGACTGCTTCCTTATAAAAATGGAGCAGGAGAAGCATAATCCCAAAACTGAGTTT

ACTTGCGAGAACTTAATCTTCACTGCTTCTGACCTTTTCGCGGCCGGTACGGAGACA

ACCTCTACTACACTTCGTTATTCCTTATTATTGTTGTTAAAGTACCCTGAGGTTACG G

CAAAGGTGCAAGAAGAGATTGACCACGTGATAGGTCGTCACAGGTCTCCATGTATG

C A AGAC CGT CAT C AC AT GC CGT AC AC AGACGC T GT ACTGC AC GAG AT AC AGC GTT A

CATCGACCTATTACCCACGAGCTTACCTCACGCGCTTACCTGTGATATGAAGTTTAG

GGATTATTTAATCCCGAAGGGAACTACCGTTATCGCTTCTTTAACTTCAGTGCTTTA C

GATGATAAGGAGTTCCCTAACCCAGAGAAATTTGATCCAAGCCACTTCCTTGACGAG

AACGGAAAATTCAAAAAGTCCGATTACTTCTTCCCGTTCTCTACTGGAAAAAGGATC TGCGTAGGAGAGGGGCTTGCTCGTACCGAATTGTTTCTATTCTTAACTACAATTCTGC

AAAATTTTAACCTGAAGAGCCCTGTAGATCTGAAGGAGTTAGACACGAATCCTGTG

GCAAACGGTTTTGTGTCAGTACCACCAAAATTTCAGATCTGTTTTATTCCTATATAA

Seq. ID NO: 6 >p450_6

ATGGCCGCAGCATTGATACCAGACTTAGCGATGGAAACCTGGTTGTTGCTTGCGGTG

TCTTTAGTCCTACTGTATCTATACGGTACTCATAGCCATGGTCTGTTCAAAAAGTTA G

GTATCCCCGGTCCAACGCCGCTACCCTTCCTTGGTAATATTCTGTCTTATCATAAGG G

TTTTTGCATGTTCGATATGGAGTGTCATAAGAAGTACGGTAAGGTATGGGGATTTTA

TGACGGTCAGCAGCCAGTCTTGGCAATAACAGACCCGGACATGATCAAGACAGTCC

TTGTAAAAGAGTGTTATAGCGTGTTTACGAACAGGAGACCGTTCGGGCCAGTGGGCT

TCATGAAGTCCGCAATTTCTATTGCGGAAGATGAGGAGTGGAAAAGGCTTCGTAGTC

TTTTGAGCCCTACATTTACGTCTGGAAAATTGAAGGAAATGGTCCCTATCATTGCTC

A AT AC GG AG AT GTT C T AGT G AGG A AT TT A AGG AG AG AGGC T GAG AC T GG A A AGC C G

GTTACACTAAAAGACGTTTTCGGCGCGTACTCTATGGATGTCATCACCTCTACATCT T

TCGGGGTAAACATCGACAGTCTGAATAACCCGCAAGACCCCTTTGTTGAGAACACA

AAGAAATTACTGAGATTCGACTTTTTGGACCCGTTCTTTCTGTCCATTACTGTATTC C

CCTTTTTGATTCCGATTCTGGAAGTTTTAAATATTTGTGTTTTCCCGCGTGAGGTTA C

AAATTTCCT AAGGAAAAGTGTT AA AAGGAT GAAGGAGTCC AGACTGGAAGAT ACTC

A A A AGC AT AGGGT AGATTTCC T AC A ATT A AT GATT GAC T C AC AG A AT AGT A AGG AG

ACCGAGAGCCACAAGGCCCTTAGTGATCTTGAATTAGTCGCACAGTCAATTATTTTC

ATATTTGCGGGCTACGAGACAACCAGCTCAGTTCTATCATTTATAATGTATGAACTG

GCCACCCACCCTGATGTGCAACAAAAACTTCAGGAAGAGATCGATGCAGTCCTTCC

AAATAAAGCTCCACCCACCTATGATACCGTTTTGCAAATGGAGTATCTTGACATGGT

TGTAAACGAAACCCTGCGTTTGTTTCCTATAGCAATGAGATTGGAACGTGTATGTAA

GAAAGACGTGGAGATAAATGGAATGTTTATTCCTAAAGGTGTGGTCGTTATGATTCC

CTCATATGCCTTACATCGTGATCCAAAATATTGGACGGAGCCTGAAAAATTTCTGCC

AGAGAGGTTTTCCAAGAAAAACAAAGATAATATAGATCCCTACATCTATACACCCTT

TGGCAGCGGTCCGAGGAATTGCATTGGCATGCGTTTTGCTTTAATGAATATGAAGCT

GGCCTTAATTAGGGTTTTGCAAAATTTCTCTTTCAAACCGTGCAAGGAAACTCAGAT

ACCATTAAAACTTTCATTAGGAGGCCTACTTCAACCTGAGAAACCTGTGGTTTTAAA

AGTT GAG AGT AGAGACGGT ACGGT GAGT GGCGCTT AA

Seq. ID NO: 7 >p450_7

ATGGCCGCAGATCTAATACCTAATCTAGCCGTAGAGACCTGGCTTCTGTTAACCAAA

TTGGAGTTTGGGTTCTACATATTTCCGTTTATCTACGGTACTCATAGCCATGGTCTT T

TCAAGAAACTGGGCATTCCAGGCCCGACGCCATTGCCGTTCCTGGGTAATATCCTAT

CAT AC AGA A A AGGCTTC T GC AT GTTT GAC AT GGA AT GC C AC A AGA AGT AT GGG A AG

GTATGGGGCTTTTACGATGGCAGACAACCAGTTCTGGCAATTACAGACCCGGACATG

ATAAAAACGGTTCTAGTAAAGGAATGTTATTCTGTATTCACTAATAGGCGTCCTTTC

GGCCCAGTGGGGTTCATGAAATCTGCGATATCTATCGCGGAAGATGAAGAGTGGAA

GAGAAT AAGATCTTT ACTT AGCCCT AC ATTC ACT AGT GGC AAATTGAAGGAGAT GGT

TCCTATTATTGCCCAGTACGGAGACGTCTTAGTACGTAATCTTAGAAGAGAAGCCGA

TACCGGTAAGCCCGTTACACTGAAGGACGTCTTCGGAGCATACAGTATGGACGTGAT

CACATCTACTTCTTTCGGTGTAAACATAGACTCCTTGAACAATCCCCAAGATCCCTT C

GTTGAAAACACTAAGAAACTACTGAGATTTGACTTTTTGGACCCTTTCTTTCTATCT A TTATAGTCTTTCCTTTCTTGATTCCAATTCTGGAGGTACTGAATATCTGCGTATTTCCT

CGTGAAGTCACAAACTTCCTAAGAAAGTCAGTCAAGAGGATGAAGGAAAGCCGGCT

AGAAGACACTCAAAAGCATAGGGTTGACTTTCTTCAGTTAATGATTGATTCTCAAAA

CTCC AAAGAAACTGAGAGT C AC AAAGCTCT ATC AGATCTGGAGTT AGT GGCGC AGT

CCATAATTTTTATCTTTGCCGGTTACGAGACCACAAGTTCCGTGCTGTCATTTATCA T

GT AT GAGCTGGC T AC CC AC CC AGAT GT GC AGC A A A A AC T AC AGGAGGAGAT C GAT G

CAGTTTTACCCAATAAGGCACCGCCCACGTATGACACAGTTCTGCAAATGGAGTACC

TGGACATGGTGGTCAATGAGACGCTTCGTTTGTTCCCAGTTGCTATGAGGTTGGAGA

GGGT GT GC A AG A AGG AT GT T GAG AT A A AC GGT AT GT TT ATC C C A A AGGGC GTT GT C

GTGATGATACCAAGCTACGCACTTCACCGTGATCCTAAATATTGGACTGAGCCTGAG

AAATTTTTACCTGAACGTTTTAGTAAGAAAAATAAAGATAACATTGATCCCTATATC

TACACGCCTTTCGGAAGCGGACCCCGTAATTGTATAGGAATGAGGTTCGCTCTTATG

AATATGAAATTAGCCCTAATACGTGTGCTACAAAACTTCAGCTTCAAGCCATGCAAG

GAGACACAGATTCCCCTAAAGCTGCGTCTTGGGGGTTTGCTACAGCCGGAAAAACCT

ATCGTTCTAAAAGTCGAAAGTAGGGATGGAACAGTGTCCGGGGCATAA

Seq. ID NO: 8 >p450_8

ATGGCCGCAGCACTTATACCCGATTTAGCGATGGAGACGTGGTTACTACTAGCGGTG

TCACTGGTGCTGCTGTACCTATATGGGACCCATAGTCATGGACTGTTCAAAAAGTTG

GGCATTCCCGGACCGACGCCGCTACCCTTTCTTGGTAATATTTGGTCTTATCGTAAA G

GATTCTGTATGTTCGACATGGAATGCCATAAGAAGTATGGGAAAGTTTGGGGGTTCT

ATGATGGGAGACAGCCAGTTCTAGCTATCACTGATCCCGATATGATTAAAACAGTTC

TTGTAAAAGAGTGTTATAGTGTCTTCACAAACCGTAGGCCTTTCGGCCCAGTCGGCT

TT AT GA AGT C T GC CAT AT C C ATTGCTGAGGAT GAGG A AT GG A AGAGACTGAGATCC

CTTTTGTCTCCGACCTTTACTAGCGGCAAGTTGAAGGAGATGGTACCATTGATCGCA

CAATATGGCGACGTACTTGTCCGTAACCTGCGTTTAGAGGCCGAAACGGGCAAACC

GGTTACGATGAAGGTTATTACTTCTACAAGTTTCGGGGTCAATATAGACTCACTGAA

TAACCCACAAGATCCTTTCGTAGAGAATACTAAAAAGTTGCTGAGATTCGATTTCCT

AGACCCCTTTTTCCTGTCTATTATTGTCTTTCCTTTCTTGACGCCTATACTTGAAGT AT

TGAACATTAGTGTGTTCCCGAGGGCCGTTACTTCATTCTTGCGTAAAAGTGTTAAGA

GAATGAAAGAGTCTAGGCTTGAAGATACTCAGAAACATCGTGTGGACTTCTTACAG

CTAATGATTGACTCCCAAAATAGTAAGGAGACTGAGAGTCATAAAGCGTTAAGCGA

CTTGGAATTGGTAGCACAAAGCATAATCTTCATCTTTGCTGGGTACGAGACGACTTC

CAGCGTGCTGAGTTTTATAACATACGAATTGGCAACGCACCCGGACGTTCAGCAAA

AACTTCAAGAGGAAATAGATGCCGTCTTGCCGAACAAGGCACCCCCGACTTATGAT

AC AGT GTT GC AA ATGGAGT ACCT AGAC AT GGT AGTC AACGAGAC ACTT AGGTT ATTT

CCT AT AGCC AT GAGGTT AGAGAGAGTCTGC AAAA AGGACGT AGAGATT AATGGT AT

GTTCATCCCGAAAGGAGTTGTAGTAATGATCCCTTCCTACGCCCTGCACCACGACCC

TAAGTACTGGACCGAACCCGAAAAGTTCCTGCCCGAGCGTTTCTCTAAGAAAAATA

AAGATAATATCGATCCCTATATTTATACACCATTCGGCTCTGGACCAAGGAACTGCA

TTGGCATGCGTTTTGCCCTGATGAATATGAAGCTGGCGCTAATAAGGGTACTGCAGA

ATTTTTCCTTTAAACCGTGCAAGGAAACCCAAATACCTCTAAAGTTACGTCTGGGAG

GTCTGCTACAACCGGAAAAACCCATTGTCTTGAAAGTGGAATCCAGAGATGGCACC

GTTTCTGGGGCGTAA

Seq. ID NO: 9 >p450_9 ATGGCCGCAGAGTTAATTCCGTCCTTTTCTATGGAAACTTGGGTACTTCTAGCGACC

AGTTTGGTCTTGTTATACATATACGGTACATATTCTTATGGTCTATTTAAAAAGTTA G

GCATTCCGGGCCCGCGTCCCGTACCCTATTTTGGGTCTACTATGGCCTATCATAAGG

GGATTCCGGAGTTCGATAACCAGTGTTTTAAGAAGTATGGCAAAATGTGGGGGTTTT

ATGAAGGCCGTCAGCCTATGCTGGCAATCACAGACCCAGATATAATTAAAACGGTA

CTGGTAAAAGAGTGTTACTCTGTATTCACTAACAGACGTATCTTCGGGCCTATGGGA

AT AAT GAAAT ACGCC ATTTCTCT AGC AT GGGACGAGC AAT GGAAGCGT ATC AGAAC

CTTATTATCCCCGGCGTTTACTAGCGGCAAGTTAAAAGAAATGTTCCCTATTATCGG

GCAGTACGGAGATATGTTGGTTAGGAACCTTCGTAAGGAAGCCGAGAAAGGTAACC

CCGTTAATATGAAAGATATGTTTGGAGCCTACTCAATGGATGTTATCACAGGGACGG

CTTTCGGGGTGAACATTGATAGTTTGAATAATCCCCACGACCCCTTCGTGGAGCATT

CCAAGAATCTTCTAAGGTTCAGGCCCTTCGACCCATTTATCTTGAGCATTATCTTAT T

TCCGTTCCTAAACCCGGTGTTCGAAATATTAAACATTACTCTGTTTCCGAAGAGCAC

TGTCGATTTCTTTACTAAATCTGTCAAGAAGATCAAAGAATCCAGACTAACCGATAA

GCAGATGAATAGGGTGGATCTGTTACAGTTAATGATTAACTCTCAGAACTCAAAAG

AAATAGATAACCACAAAGCCCTTAGCGACATCGAGCTAGTGGCCCAATCTACCATC

TTTATCTTTGGAGGTTATGAAACCACAAGCTCAACATTGAGCTTTATTATCTACGAA

CTGACAACGCATCCTCATGTACAACAGAAGGTACAGGAAGAAATTGACGCAACATT

TCCAAACAAGGCACCACCCACCTATGATGCGTTGGTACAGATGGAGTACCTAGATAT

GGTAGTGAACGAAACTTTGCGTATGTTTCCTATAGCTGGGCGTCTGGAAAGGGTCTG

CAAGAAGGACGTCGAAATTCACGGGGTGACGATTCCTAAGGGAACGACCGTTCTAG

TACCTTTATTTGTCCTACACAACAACCCAGAGCTTTGGCCTGAACCCGAGGAGTTCA

GGCCTGAAAGGTTTTCTAAAAACAATAAGGACAGCATCAACCCGTATGTGTACCTAC

CATTTGGCACAGGTCCTCGTAATTGCCTGGGTATGCGTTTTGCGATAATGAATATCA

AATTAGCTCTAGTCCGTATTTTACAGAATTTCTCATTTAAACCATGCAAGGAGACGC

AGATTCCTCTGAAGTTGTATACTCAGGGGTTGACTCAACCCGAACAACCAGTGATCT

TGAAGGTGGTTCCGCGTGGTCTTGGCCCGCAGGTTGAACCCGACTTCCTTTAA

Seq. ID NO: 10 >p450_10

ATGGCCGCAGATTCTTTTCCACTGCTGGCGGCATTGTTCTTCATCTTAGCTGCTACA T

GGTTTATTAGCTTCCGTAGACCGAGGAACCTACCCCCAGGTCCATTCCCTTACCCAA

TAGTAGGAAACATGTTGCAACTTGGCACACAACCACACGAAACGTTCGCAAAACTT

TCCAAGAAGTATGGGCCACTAATGTCAATCCACTTGGGCTCCTTGTACACCGTAATA

GTCAGCAGCCCAGAGATGGCTAAGGAGATTATGCATAAGTACGGCCAAGTCTTCTC

AGGCCGTACAGTGGCGCAGGCGGTCCACGCGTGCGGGCATGATAAGATCAGCATGG

GCTTTCTGCCGGTAGGGGGTGAGTGGCGTGATATGAGAAAGATTTGCAAAGAGCAA

ATGTTCTCACACCAATCAATGGAGGATTCACAATGGCTGCGTAAGCAGAAATTACA

GCA AC T AC T AG A AT AT GCTC AGA AGT GC T C AGAGAGGGGT AGAGC C ATCGAC ATT A

GGGAGGCAGCGTTTATCACCACTTTGAACTTGATGTCCGCCACTTTGTTCTCCATGC A

GGCGACCGAATTCGATTCCAAGGTAACTATGGAATTTAAGGAGATTATAGAAGGAG

TCGCCTCCATTGTGGGTGTACCAAACTTCGCAGATTATTTTCCTATTTTACGTCCCT T

CGACCCCCAAGGGGTTAAAAGGCGTGCCGACGTATACTTCGGAAGACTTTTAGCCAT

C ATT GAGGGGTTCCTT AATGAA AGGGT GGAGAGT AGGAGGACGAACCCC AACGC AC

CTAAAAAGGACGACTTCCTGGAAACGCTAGTTGATACCCTTCAGACTAATGACAATA

AGCTAAAGACGGATCACTTGACTCATTTAATGCTGGACTTATTTGTGGGAGGTTCAG

AAACTAGCACAACCGAGATAGAGTGGATTATGTGGGAGCTTCTAGCGAACCCGGAA

A AG AT GGC A A A A AT GA A AGCTGAGTT GA AGT C AGT GAT GGGT GA AGAGA AGGTT GT TGATGAAAGTCAGATGCCACGTTTGCCATATTTACAGGCAGTTGTTAAAGAAAGCAT

GAGGTTACATCCACCAGGTCCATTGCTATTACCTAGAAAGGCCGAGTCCGACCAGGT

CGTAAATGGCTATCTGATTCCGAAAGGGGCGCAGGTACTGATCAATGCCTGGGCGA

TTGGAAGGGACCACTCAATCTGGAAAAACCCGGACTCCTTTGAACCGGAAAGATTC

TTAGATCAGAAAATTGATTTTAAGGGCACCGATTACGAACTTATCCCCTTCGGGAGT

GGCAGGAGAGTCTGTCCAGGAATGCCTCTTGCTAATAGGATCCTTCACACAGTCACT

GCCACGCTAGTACATAATTTCGATTGGAAGCTTGAGCGTCCGGAGGCCTCAGACGCT

CATAGGGGCGTGCTGTTCGGCTTTGCTGTAAGGAGAGCAGTCCCTCTAAAGATTGTG

CCTTTTAAGGTG

Seq. ID NO: 11 >p450_l 1

ATGGCAGCCGATCCCTTCCCTCTGGTAGCAGCGGCATTATTCATAGCTGCAACATGG

TTCATTACCTTCAAAAGGAGACGTAATCTTCCGCCGGGGCCTTTCCCTTACCCGATT G

TGGGCAATATGTTGCAACTAGGTTCCCAACCACACGAGACATTTGCCAAGCTATCCA

AAAAGTACGGGCCATTAATGTCAATTCACCTTGGAAGTTTATATACCGTAATAATAT

CCTCCCCCGAAATGGCCAAAGAGATAATGCACAAGTACGGGCAAGTCTTTTCTGGG

AGAACAATAGCTCAGGCTGTGCACGCATGCGATCACGATAAAATATCTATGGGCTTT

TTACCTGTGGGAGCAGAGTGGCGTGACATGAGGAAGATCTGCAAGGAACAGATGTT

CTCTCATCAAAGCATGGAAGATAGTCAGAACTTACGTAAACAGAAACTTCAGCAAT

T GCTGGA AT AT GCTC A A A A AT GC AGT GA AGA AGGA AGAGGA ATCGAT AT AC GT GAG

GCAGCTTTTATTACTACATTAAACCTGATGTCTGCCACGTTATTCAGCATGCAAGCC

ACTGAATTCGATAGTAAAGTCACTATGGAGTTCAAGGAAATAATCGAAGGAGTGGC

GAGCATCGTGGGCGTCCCAAATTTTGCAGATTATTTCCCCATTCTGCGTCCTTTCGA C

CCTCAAGGGGTTAAGCGTCGTGCGGATGTCTACTTTGGAAGATTATTAGGCTTGATC

GAAGGTTATCTTAACGAAAGAATTGAATTCAGAAAAGCCAACCCCAATGCCCCAAA

GAAAGACGATTTTTTAGAAACCCTGGTGGACGCACTTGATGCGAAGGATTACAAAC

TAAAGACTGAACACCTTACTCACCTGATGCTAGACCTATTCGTTGGGGGGAGCGAGA

CGAGC ACC ACTGA AATT GAGT GGAT CAT GTGGGAGTT ACTGGC AT C ACCTGAGAAG

AT GGC C A A AGT C A A AGC AGA ATT GA A A AGT GT A AT GGGGGGCGA A A AGGTCGT GG

ACGAGTCTATGATGCCTAGATTACCTTATCTGCAAGCAGTGGTTAAAGAGTCAATGA

GGTTACACCCGCCAGGCCCATTATTACTTCCAAGAAAAGCGGAAAGTGACCAGGTC

GTAAACGGTTATTTGATTCCTAAGGGAGCGCAAGTACTGATCAATGCGTGGGCGATG

GGTAGAGACCCAAGCCTATGGAAAAACCCTGACTCTTTTGAGCCAGAGCGTTTTTTA

GACCAGAAGATCGACTTTAAGGGTACAGATTACGAACTTATCCCGTTTGGAAGTGGC

AGAAGGGTGTGCCCTGGAATGCCCCTGGCGAACAGAATTCTTCATACGGTTACTGCT

ACTCTTGTGCATAACTTTGATTGGAAATTGGAAAGACCGGAGGCAAGCGACGCGCA

CAAGGGAGTCCTTTTTGGTTTCGCGGTCAGGAGAGCTGTACCTTTGAAGATCGTCCC

TATCAAGGCA

Seq. ID NO: 12 >p450_12

ATGGCGGCAGACAGCTTCCCGTTACTGGCAGCACTTTTCTTTATCGCAGCAACTATA

ACTTTCCTGTCTTTCAGGCGTAGAAGAAACTTGCCGCCCGGACCATTTCCCTACCCT

ATTGTAGGTAATATGCTACAACTGGGTGCAAATCCACACCAAGTCTTCGCCAAACTT

TCAAAAAGATATGGGCCTCTGATGAGTATACATCTGGGAAGCTTGTATACGGTTATA

GTGAGTTCCCCTGAGATGGCGAAGGAAATATTACATAGGCATGGGCAAGTGTTCTCT

GGTCGTACTATTGCCCAAGCTGTCCACGCTTGCGATCATGACAAAATATCTATGGGT TTCCTTCCAGTAGCCAGCGAATGGAGGGACATGAGGAAAATTTGCAAGGAGCAGAT

GTTCAGCAATCAAAGCATGGAGGCTAGCCAGGGACTTCGTAGGCAGAAACTACAAC

AACTTTTGGATCATGTACAGAAATGCTCCGATAGTGGGAGGGCCGTCGACATTAGA

GAAGCTGCTTTCATAACCACCTTGAATCTTATGTCCGCCACACTGTTCAGCTCCCAG

GCCACCGAGTTCGATTCTAAGGCTACCATGGAATTTAAGGAGATTATTGAAGGTGTA

GCCACCATCGTAGGCGTACCTAACTTCGCAGATTACTTCCCAATTCTTAGGCCCTTT G

ATCCCCAGGGAGTGAAACGTAGGGCCGACGTATTTTTCGGAAAACTGTTAGCCAAA

ATTGAAGGCTATTTAAACGAGAGATTAGAATCCAAGAGGGCAAACCCGAATGCGCC

AAAAAAGGACGATTTCTTGGAGATTGTCGTCGATATTATCCAGGCAAACGAATTTAA

GTTAAAGACTCACCACTTTACTCACTTGATGTTGGACTTATTTGTTGGCGGCTCAGA C

ACGAATACAACGTCCATCGAGTGGGCGATGTCTGAGTTAGTAATGAACCCCGACAA

GATGGCGCGTTTGAAGGCTGAACTGAAATCTGTGGCAGGGGATGAAAAAATAGTTG

ACGAGTCAGCCATGCCAAAGTTGCCTTACTTGCAGGCCGTCATAAAGGAAGTTATGC

GTATACACCCTCCGGGGCCGTTGCTTTTGCCTCGTAAAGCTGAAAGCGATCAAGAAG

TGAATGGATACCTTATTCCGAAAGGCACACAGATCCTGATAAATGCATATGCGATAG

GACGTGATCCATCAATCTGGACTGACCCCGAAACATTTGACCCGGAACGTTTCCTGG

ATAACAAGATTGATTTCAAGGGACAAGATTACGAGCTGTTGCCGTTCGGCTCCGGAC

GTCGTGTATGTCCGGGGATGCCGTTAGCTACTAGAATACTTCACATGGCAACCGCCA

CGCTAGTCCACAACTTCGACTGGAAATTAGAAGACGATAGTACAGCCGCTGCAGAC

CACGCAGGCGAGCTATTTGGAGTTGCAGTGAGAAGGGCAGTTCCGCTTCGTATAATC

CCGAT AGT GAAGTCC

Seq. ID NO: 13 >CPR_1

ATGGCCGCAGGAGATTCTCATGTGGATACGTCGTCCACTGTGTCTGAAGCTGTTGCT

GAAGAGGTATCTTTATTCAGTATGACTGACATGATCCTATTCAGCCTTATTGTGGGG

CTACTGACCTACTGGTTCCTATTCAGAAAGAAGAAGGAAGAGGTCCCAGAGTTCAC

CAAGATCCAAACGCTGACTTCCAGCGTCCGTGAATCATCCTTTGTTGAGAAAATGAA

GAAAACAGGGCGTAATATCATTGTGTTTTATGGTAGTCAGACTGGCACTGCAGAAG

AGTTCGC C A AC AGGTT GTCT A A AGAT GCGC AC AGAT AT GGT AT GAGGGGT AT GT C TG

CGGACCCGGAGGAATATGACTTAGCGGACTTGTCCTCTCTGCCTGAAATTGATAACG

CGCTAGTGGTCTTCTGTATGGCTACGTACGGAGAAGGCGATCCAACCGATAATGCCC

AAGACTTCTACGATTGGTTGCAAGAGACTGACGTGGATTTGTCCGGAGTAAAGTTCG

C AGT ATTTGGGCTGGGAAAC AAAACTT AT GAAC ATTTT AAT GC AAT GGGT AAGT ACG

TAGACAAACGTTTAGAACAACTGGGTGCACAAAGAATATTCGAGCTTGGTTTGGGG

GATGATGACGGTAATTTAGAGGAGGATTTCATCACTTGGAGGGAGCAATTCTGGCC

GGCGGTGTGCGAGCATTTCGGCGTTGAGGCGACCGGAGAAGAGTCAAGCATTAGAC

AGT AT GAAC TT GTT GT GC AC AC AGAT ATC G AC GC C GC A A A AGT GT AT AT GGGGG AG

ATGGGTAGATTAAAATCTTATGAGAATCAAAAACCTCCTTTCGATGCGAAAAATCCA

TTCCTTGCCGCTGTGACCACAAACAGGAAACTAAATCAAGGTACAGAGCGTCATTTG

ATGCACTTGGAGCTAGACATCAGTGATTCTAAAATTAGGTACGAATCAGGGGATCA

CGTCGCCGTTTATCCCGCCAATGATAGCGCCTTGGTGAATCAGTTAGGTAAGATACT

GGGTGCTGATTTGGATGTAGTCATGAGCTTGAATAACCTTGATGAAGAGTCCAATAA

GAAACATCCTTTCCCGTGCCCAACAAGTTATAGAACCGCCCTTACGTACTACTTAGA

TATCACCAATCCACCAAGAACGAATGTCCTATATGAGCTTGCTCAATATGCCAGTGA

GCC ATCCGAGC AAGAGCTGCTT AGGAAAAT GGCGTCCTC ATCCGGTGAAGGC AA AG

AATTATACCTGTCCTGGGTGGTCGAGGCCAGGAGGCATATTTTAGCTATTTTGCAAG

ATTGTCCTTCCCTTAGGCCGCCCATCGATCATCTTTGTGAGCTGCTTCCTCGTTTAC A AGCAAGGTATTATTCTATCGCGTCCTCCTCTAAAGTCCATCCAAACAGCGTACACAT

CTGTGCCGTGGTGGTCGAGTACGAGACGAAGGCCGGTAGAATCAACAAGGGCGTTG

CTACAAACTGGTTGAGAGCCAAGGAGCCCGCGGGGGAAAACGGAGGTCGTGCATTA

GTACCGATGTTTGTCCGTAAATCTCAATTCAGGTTGCCTTTTAAGGCAACCACTCCG

GTAATCATGGTCGGGCCTGGCACTGGCGTAGCCCCATTTATAGGATTCATTCAGGAA

AGGGCCTGGTTGAGGCAACAAGGCAAGGAGGTTGGAGAGACTCTGCTGTACTACGG

ATGCCGTAGGAGCGACGAAGATTACTTGTATCGTGAAGAGCTTGCACAATTTCACCG

TGACGGAGCACTTACTCAATTAAATGTGGCTTTTAGTCGTGAACAGTCACATAAGGT

GTATGTACAACATTTATTGAAGCAAGACCGTGAACACCTTTGGAAGCTGATTGAAGG

TGGCGCCCATATTTATGTATGCGGCGATGCTCGTAATATGGCAAGGGACGTTCAAAA

CACTTTCTATGACATCGTCGCAGAACTTGGGGCGATGGAGCATGCTCAAGCAGTAGA

TTACATCAAGAAACTAATGACCAAAGGTAGATATTCACTTGACGTTTGGTCCTAA

Seq. ID NO: 14 >CPR_2

ATGGCCGCACCTTTCGGTATTGACAATACTGACTTCACTGTCTTGGCGGGCCTGGTA

CTGGC AGT ACTGTT GT AT GT GA AGAGG A AC AGT AT A A A AG A AC T GTTGAT GT C AGA

TGATGGTGACATCACAGCTGTTTCTAGTGGGAACAGAGACATTGCCCAGGTCGTCAC

GGAAAATAATAAAAACTATCTAGTCCTGTATGCTTCACAGACCGGCACCGCAGAAG

ATTATGCGAAGAAATTTAGCAAGGAGCTGGTAGCCAAGTTCAACCTTAATGTGATGT

GCGCTGACGTAGAGAATTACGACTTCGAATCCTTAAACGATGTACCGGTTATCGTTT

CTATCTTCATTTCCACCTACGGAGAGGGCGATTTTCCAGACGGTGCGGTTAACTTCG

AAGACTTTATATGTAATGCTGAGGCTGGAGCTTTAAGTAACTTACGTTATAATATGT

TTGGTCTTGGGAACTCTACTTATGAGTTCTTTAATGGCGCTGCCAAGAAAGCCGAAA

AACACTTATCTGCGGCGGGGGCCATCAGACTGGGCAAACTTGGAGAGGCCGACGAT

GGTGCCGGGACAACGGACGAGGATTATATGGCTTGGAAGGATTCTATATTGGAGGT

TCTAAAGGATGAACTACACTTAGATGAGCAGGAAGCCAAATTTACTTCCCAGTTTCA

GTATACTGTTCTGAACGAAATAACAGACTCCATGTCTTTGGGCGAACCGTCTGCGCA

TTACCTACCCAGCCATCAACTGAACAGAAACGCGGACGGAATACAGCTAGGGCCCT

TTGACTTATCGCAGCCTTACATTGCCCCAATTGTAAAATCTAGGGAGCTGTTTAGTT C

TAATGATAGGAATTGCATACATAGCGAGTTCGACTTGTCCGGTTCTAATATTAAGTA

CTCTACAGGTGACCACCTGGCCGTATGGCCGAGCAATCCCCTTGAGAAGGTAGAAC

AATTTTTGTCAATCTTCAACCTAGATCCAGAAACGATATTCGATTTGAAGCCCCTGG

ACCCGACTGTTAAGGTACCGTTTCCCACTCCTACCACCATAGGTGCGGCAATCAAGC

ACTATTTGGAAATCACAGGCCCGGTATCACGTCAATTGTTTAGTAGCTTAATTCAAT

TCGCCCCGAAT GCTGACGT AAAGGAGAAACT AACCCTGCT AAGT AAGGAC A AGGAC

CAATTCGCTGTGGAAATTACCAGTAAATATTTCAACATAGCGGATGCTTTAAAGTAT

CTGAGTGATGGGGCTAAATGGGACACTGTGCCCATGCAATTTCTGGTGGAGTCCGTG

CCCCAAATGACCCCCAGGTACTACAGTATCAGTTCATCCAGCCTAAGTGAGAAGCA

GACGGTCCATGTAACAAGCATAGTAGAGAATTTCCCAAATCCCGAATTACCGGATG

CGCCCCCTGTCGTGGGAGTGACAACCAATCTTCTAAGGAATATCCAACTAGCCCAAA

ACAATGTGAATATCGCGGAAACGAACCTACCCGTTCACTACGATCTTAATGGACCCA

GGAAACTTTTTGCAAATTACAAACTTCCCGTCCATGTTAGGAGATCAAATTTTAGGC

TACCTTCCAATCCAAGCACTCCAGTGATCATGATTGGACCGGGTACTGGAGTTGCGC

CTTTCCGTGGGTTCATTAGGGAAAGAGTAGCCTTTTTGGAGAGTCAGAAGAAAGGC

GGAAATAATGTCAGCTTGGGCAAACACATATTGTTTTACGGTTCACGTAACACCGAC

GACTTCCTTTACCAGGATGAATGGCCAGAGTACGCTAAGAAACTAGACGGGTCTTTT

GAGATGGTTGTGGCCCACTCTAGGCTTCCAAACACGAAGAAGGTCTATGTACAGGA T A AGC T GA A AGACT AT G AGGATC A AGTTTTT GA A AT GAT A A AC A AC GGGGC GTT C A TTTATGTTTGCGGAGACGCAAAAGGGATGGCTAAGGGTGTGAGCACAGCCTTGGTC GGTATCTTATCAAGAGGGAAGTCAATAACTACAGACGAAGCCACTGAGCTAATTAA AATGCTTAAAACGAGCGGAAGGTACCAAGAGGACGTTTGGTAA

Seq. ID NO: 15 >CPR_3

ATGGCCGCAGGAGACAGCCACGAAGATACTAGTGCGACCGTTCCGGAGGCAGTGGC

GGAAGAGGTGAGCCTATTCAGTACTACCGATATTGTACTTTTCTCCCTAATTGTGGG

TGTGCTGACTTACTGGTTCATATTTAAAAAGAAGAAAGAGGAGATTCCCGAATTTTC

CAAAATCCAAACGACAGCTCCACCCGTTAAAGAAAGTAGTTTCGTCGAGAAAATGA

AGAAGACTGGGAGGAATATAATAGTTTTCTATGGAAGCCAAACAGGGACCGCAGAG

GAGTTCGCGAACAGACTAAGTAAAGACGCTCATAGATACGGTATGCGTGGTATGTC

CGCTGACCCAGAGGAGTACGACCTGGCAGACCTAAGCTCACTGCCAGAGATTGACA

AAAGCCTAGTGGTCTTCTGTATGGCTACATATGGTGAAGGTGATCCAACTGATAACG

CTCAGGATTTCTACGATTGGTTACAAGAGACAGATGTGGACCTGACTGGAGTTAAAT

TTGCAGTCTTCGGCTTGGGGAATAAAACATACGAACACTTTAATGCTATGGGGAAAT

ACGTCGATCAAAGATTGGAGCAACTTGGCGCCCAGAGAATTTTCGAGCTAGGCTTG

GGAGACGACGATGGGAATCTTGAGGAGGATTTTATAACTTGGAGAGAACAGTTTTG

GCC AGCCGT GT GCGAATTTTTCGGAGTCGAGGCGAC AGGCGAAGAGT C AAGT AT C A

GGCAATATGAGCTAGTTGTGCATGAAGATATGGACACGGCGAAAGTCTACACCGGC

GAGATGGGACGTCTAAAAAGTTACGAGAACCAAAAACCGCCTTTTGATGCGAAGAA

TCCATTCTTGGCCGCCGTCACGACAAACCGTAAGTTAAACCAAGGGACTGAAAGAC

ATC T GAT GC AC TT AG AGC TT G AC AT C T C C GAT AGT A A A AT A AGGT AT G A AAGT GG A

GATCACGTCGCCGTATACCCGGCTAACGATTCAACTCTAGTTAATCAGATCGGGGAA

ATATTAGGGGCCGACCTAGACGTCATAATGAGTTTAAACAACCTAGATGAAGAATC

AAACAAGAAACACCCATTCCCCTGTCCAACCACTTACAGGACAGCGTTGACTTATTA

TCTTGATATCACCAATCCCCCGAGAACCAACGTGTTATATGAACTTGCTCAGTATGC

CAGTGAACCATCTGAGCAGGAACATCTGCACAAGATGGCATCCTCATCAGGAGAAG

GAAAAGAATTATATCTGTCCTGGGTCGTGGAGGCTAGGAGACATATCCTTGCGATCC

TGCAGGACTATCCTAGCTTGCGTCCGCCTATCGACCATTTATGCGAACTGCTACCTC

GTTTGCAGGCCAGGTACTACAGCATAGCCTCTAGTAGTAAAGTACATCCTAACTCTG

TGCATATATGTGCCGTGGCCGTGGAGTACGAGGCTAAATCAGGAAGAGTAAATAAA

GG AGT C GCA AC G AGT T GGC T G AGG AC T A AGG A AC C AGC C GGC GAG A AC GGT AGG A

GAGCACTGGTGCCCATGTTTGTGAGGAAGTCCCAATTTCGTCTGCCATTTAAGCCTA

CAACCCCGGTAATTATGGTCGGTCCCGGGACAGGTGTAGCTCCGTTCATGGGATTTA

TCCAAGAGCGTGCCTGGTTGAGGGAACAGGGTAAAGAAGTCGGAGAGACCTTATTA

TACTATGGATGTAGGCGTTCAGACGAGGATTATTTATACCGTGAGGAGTTAGCCCGT

TTTCACAAAGACGGGGCCTTAACCCAGCTTAATGTAGCTTTTTCTAGGGAGCAAGCG

CATAAGGTCTATGTTCAACACTTGCTTAAAAGGGATAAAGAACACTTGTGGAAGCTA

ATACACGAAGGAGGAGCCCATATCTATGTTTGCGGAGATGCCAGGAACATGGCCAA

GGACGTACAAAATACCTTTTATGATATTGTCGCAGAATTTGGTCCTATGGAGCACAC

AC A AGC T GT AG AC TAT GTT A AG A A AC T A AT G AC A A A AGGC AGGT AC AGT C T GG AT G

TCTGGTCTTAA

Seq. ID NO: 16 >CPR 4 ATGGCCGCAGGTGATTCCCATGAGGACACTTCCGCTACTATGCCGGAGGCCGTAGC

GGAGGAGGTCTCATTGTTTTCCACGACTGACATGGTCCTGTTCAGCCTGATCGTCGG

CGTTTTGACGTATTGGTTCATATTTAGAAAGAAAAAGGAAGAAATCCCCGAGTTCTC

CAAAATCCAAACCACTGCCCCTCCGGTAAAAGAAAGCTCTTTTGTTGAGAAGATGA

AGAAGACAGGCCGTAATATCATCGTGTTTTATGGTAGCCAGACTGGTACAGCCGAG

GAATTTGC AAAC AGACTGAGC A AGGACGCGC AC AGGT ACGGT ATGCGT GGC AT GTC

CGCCGATCCCGAAGAGTATGATCTAGCCGACCTGAGCAGCTTACCGGAAATCGATA

AATCCCTTGTTGTCTTTTGCATGGCGACCTATGGAGAGGGCGATCCGACCGATAACG

CACAGGACTTCTATGATTGGTTGCAAGAGACGGACGTAGACCTGACAGGCGTGAAG

TTCGCCGTCTTCGGACTGGGCAATAAAACATACGAGCACTTCAACGCAATGGGCAA

GTATGTGGATCAGCGTTTAGAGCAACTAGGCGCCCAAAGGATTTTCGAGTTGGGTCT

GGGAGACGACGAT GGAAACCT AGAAGAAGATTTC AT AACCTGGCGT GAGC A ATTCT

GGCCTGCAGTATGCGAGTTCTTTGGTGTTGAGGCCACGGGCGAAGAATCATCTATAA

GGCAGTATGAATTGGTCGTTCACGAAGATATGGACGCCGCGAAGGTATACACCGGC

GAAATGGGGCGTCTTAAATCATACGAAAACCAAAAACCTCCCTTTGACGCTAAAAA

TCCATTTCTAGCTGCTGTCACCGCAAATCGTAAGTTAAACCAGGGCACTGAGAGGCA

CCTAATGCACCTGGAGCTGGATATCAGCGATTCCAAAATCAGATACGAATCAGGAG

ACCACGTCGCGGTGTATCCCGCAAACGATTCAGCGTTAGTAAACCAAATCGGGGAA

ATACTTGGAGCGGATCTTGATGTGATAATGTCTTTAAATAACCTAGACGAGGAATCC

AATAAGAAACACCCATTTCCCTGTCCTACGACATACAGAACCGCGCTGACGTATTAT

TTGGATATAACAAATCCTCCCAGAACGAACGTTCTATATGAGTTAGCCCAGTATGCT

T C AG AGCC GAGT GA AC AGGA AC ATCTGC AC A AGAT GGC GAGC AGTT C AGG AGAGG

GTAAGGAATTATACCTTTCCTGGGTCGTTGAGGCGCGTAGACACATACTTGCAATTC

TACAAGACTACCCTAGCCTAAGACCACCTATAGACCATCTGTGCGAGTTATTGCCAC

GTTTGCAAGCC AGGT ATT ATAGCATCGCAAGTTCTTCTAAAGTTCACCCCAACTCTG

TGCACATATGTGCAGTTGCTGTCGAATACGAAGCAAAATCCGGGAGGGTTAATAAG

GGAGT AGCT ACGAGTTGGCT AAGAGC A AAAGAACC AGCTGGT GAAAAT GGAGGTCG

TGCCCTTGTCCCGATGTTTGTAAGAAAATCCCAATTCAGACTACCGTTTAAGAGTAC

CACGCCCGTGATCATGGTTGGTCCGGGGACTGGTATAGCACCTTTTATGGGGTTCAT

CCAGGAGCGTGCCTGGCTACGTGAGCAAGGCAAAGAGGTAGGCGAGACATTGCTTT

ACTACGGGTGTAGACGTAGCGATGAAGATTACCTGTACAGAGAAGAGTTGGCGAGA

TTCCACAAAGACGGCGCTTTAACCCAACTAAACGTCGCTTTTAGCAGAGAACAGGCT

CAT A A AGT GT AC GT C C AGC ACTT GCTGA A A AGGGAC AGGGAGC ATTT AT GGA A AC T

GATTCATGAAGGTGGCGCGCACATATACGTATGCGGGGATGCTCGTAATATGGCTA

AGGATGTGCAGAATACATTTTACGACATTGTAGCGGAGTTCGGCCCTATGGAGCATA

CGC AAGCTGT AGATT ATGT C AAGAAATT AAT GACC AAAGGT AGAT ACTC ATTGGAC

GTTTGGAGCTAA

Seq. ID NO: 17 >CPR_5

ATGGCCGCAATCAACATGGGTGACTCTCATGTTGACACAAGTTCCACCGTTTCCGAA

GCTGTAGCGGAAGAAGTGAGCCTATTCAGCATGACAGATATGATTCTATTCTCACTT

ATTGTCGGTTTACTGACTTACTGGTTTCTATTCAGAAAGAAGAAGGAAGAGGTCCCC

GAATTTACGAAAATACAAACACTTACTTCCTCAGTTAGGGAATCATCATTCGTTGAG

AAAATGAAAAAGACGGGGCGTAACATCATCGTGTTTTATGGTTCACAAACCGGAAC

TGCCGAAGAGTTTGCGAATAGATTATCTAAGGACGCTCATAGATACGGAATGCGTG

GGATGTCTGCCGATCCCGAGGAATATGATCTGGCAGATCTTAGCAGTCTACCGGAAA

TCGACAATGCACTTGTGGTGTTCTGCATGGCAACATACGGGGAAGGAGATCCGACG GATAATGCACAGGACTTTTATGACTGGTTGCAAGAGACCGACGTGGATCTATCCGGT

GTCAAGTTTGCCGTTTTTGGGCTTGGGAATAAGACCTACGAGCACTTCAATGCAATG

GG A A A AT AT GT GG AT A AG AG AC T GG AGC AGC T GGG AGC C C A A AG A AT AT TC G AGTT

AGGATTAGGTGACGATGATGGGAATCTTGAGGAAGACTTCATCACCTGGCGTGAAC

AGTTTTGGCCGGCAGTTTGCGAACACTTTGGTGTAGAAGCCACTGGGGAAGAGTCTT

CCATCAGGCAATACGAGCTGGTAGTGCATACAGATATTGATGCAGCTAAGGTATAT

ATGGGT GAG AT GGGAAGGTT AAAAAGTT ATGAGA ACC AGAAACC ACCTTTT GATGC

C AAAAATCCTTTTCTGGCCGC AGTT ACGAC AA AC AGGAA ATT AAACC AGGGT ACGG

A A AG AC AC TT A AT GC ATTT AG A AC T GGAC AT C TC AGAC AGC A AGATT AGGT AC GA A

AGTGGGGACCACGTCGCAGTGTACCCGGCTAATGACAGCGCGCTAGTGAATCAGCT

GGGTAAAATTCTAGGGGCGGATCTTGACATCGTGATGAGCCTGAATAATTTGGACG

AAGAGAGCAACAAGAAACATCCCTTCCCCTGTCCTACTTCCTATAGGACGGCTCTAA

CATATTATCTGGACATAACGAATCCCCCTAGAACGAACGTCTTGTACGAATTGGCAC

AGTACGCTTCTGAACCGTCAGAACAGGAATTACTACGTAAAATGGCGAGTTCTAGTG

GTGAAGGAAAAGAGTTATACCTAAGTTGGGTTGTAGAGGCAAGGAGACACATTCTG

GCTATTTTACAAGATTGCCCTAGTTTGAGGCCGCCTATAGACCACCTTTGTGAGTTA T

TACCGAGGTTACAGGCTCGTTACTATTCTATAGCAAGCAGTAGTAAGGTCCACCCGA

ATAGCGTACACATATGCGCCGTAGTAGTAGAATACGAAACAAAGGCGGGTCGTATC

AACAAAGGAGTGGCGACCAACTGGTTGCGTGCCAAAGAACCGGCAGGAGAAAACG

GTGGGAGGGCTCTAGTTCCGATGTTTGTCCGTAAAAGTCAGTTTAGGTTACCGTTCA

AGGCCACGACCCCCGTAATCATGGTAGGTCCCGGGACTGGAGTTGCGCCGTTCATA

GGCTTT ATCC AGGAA AGGGCCTGGTTGCGT C AGC AGGGC AAGGAGGTCGGT GAAAC

ACTGTT AT AC T AT GGAT GC AGG AGG AGT GACGAGGACT AT C T GT AC AGAGA AGAGC

TTGCCCAATTCCACAGGGACGGCGCATTGACTCAACTTAACGTAGCCTTCTCACGTG

AACAGTCTCACAAGGTGTACGTCCAACACCTGCTGAAGAGAGACAGGGAGCATCTG

T GGA A ATT A AT AGA AGGCGGAGC AC AT ATCT AT GT AT GT GGCGAT GCA AG A A AC AT

GGCACGTGATGTCCAGAATACCTTTTACGATATTGTCGCGGAGCTTGGGGCGATGGA

ACACGCTCAAGCCGTAGATTACATCAAGAAACTAATGACAAAGGGGCGTTATTCTCT

TGACGTATGGTCCTAA

Seq. ID NO: 18 >CPR_6

ATGGCCGCAATTAACATGGGAGATTCCCACATGGATACATCCAGCACAGTGTCCGA

AGCAGTTGCGGAGGAAGTGAGTTTATTTTCCATGACAGACATGATCCTTTTCTCACT

TATTGTGGGGTTACTTACCTACTGGTTTTTGTTTAGGAAAAAGAAAGAGGAGGTCCC

GGAATTTACTAAAATACAGACTTTGACATCATCAGTACGTGAGTCTTCCTTTGTAGA

G A A A AT G A AG A AG AC AGGC AGG A AT AT A AT AGT ATT TT AT GG AT C TC AG AC C GGG A

CCGCAGAGGAGTTCGCTAACCGTCTATCCAAAGACGCCCACCGTTATGGTATGAGG

GGCATGAGTGCGGACCCCGAGGAGTACGATCTAGCCGATCTATCCAGCTTACCTGA

GATAGAGAACGCATTGGTTGTATTTTGTATGGCCACGTATGGCGAAGGTGATCCGAC

AGATAATGCTCAAGATTTCTACGACTGGTTACAAGAGACCGACGTAGACTTGTCTGG

TGTAAAGTTCGCTGTATTTGGATTAGGAAATAAGACCTATGAACACTTTAACGCCAT

GGGCAAGTATGTCGATAAACGTCTGGAACAATTAGGCGCTCAGAGAATTTTCGAAC

TGGGACT AGGC GAT GACGACGGAAACCTGGAGGAGGACTTT ATT ACGT GGAGAGAA

CAATTTTGGCCCGCTGTCTGTGAACATTTCGGCGTTGAGGCAACCGGCGAAGAAAGC

TCGATAAGGCAATATGAATTGGTAGTACATACAGATATAGACGCCGCTAAAGTGTA

CATGGGAGAAATGGGAAGGTTGAAGAGTTATGAGAACCAAAAACCTCCGTTCGACG

CTAAGAATCCGTTCCTAGCGGCTGTCACTACAAATAGAAAGTTGAATCAAGGCACA GAAAGGCATTTAATGCATTTAGAGCTTGATATTTCTGACAGCAAAATCAGATACGAA

TCCGGGGACCATGTTGCGGTCTACCCAGCAAACGACAGTGCCTTAGTAAATCAGCTA

GGGAAAAT ACTTGGGGCGGATTT GGAT GTCGT AATGAGTCTT AAT AACCT AGAT GA

AGAATCAAATAAGAAACATCCATTTCCTTGTCCCACAAGCTATAGGACCGCGCTGAC

TTACTATCTGGACATCACTAATCCCCCAAGAACCAATGTGTTGTATGAGTTAGCCCA

GTATGCCAGCGAGACGAGTGAGCAAGAGTTATTGAGAAAAATGGCAAGTAGCTCAG

GAGA AGGGA AGGAGCTGT AT C T GAGC T GGGTT GT AG AGGC AC GT AG AC AC ATTCTG

GCCATTTTGCAAGATTGCCCTTCTTTGAGACCACCTATAGATCATCTTTGTGAGCTT C

TACCAAGGCTGCAGGCTCGTTACTACAGTATTGCTAGTTCAAGCAAAGTTCATCCAA

AC AGT GTCC AC ATCTGCGCGGTCGT AGTT GAAT ACGAGAC AAAGGCCGGGAGAATT

AATAAAGGTGTGGCCACTAATTGGCTAAGAGCCAAAGAACCTGCTGGTGAGAACGG

TGGGCGGGCGCTTGTCCCGATGTTTGTAAGGAAGAGTCAATTTCGTCTGCCATTTAA

GGCGACCACGCCTGTTATTATGGTGGGTCCAGGAACAGGTGTAGCCCCATTTATAGG

ATTCATTCAAGAAAGGGCCTGGTTAAGGCAACAAGGCAAAGAGGTTGGTGAAACTC

TTCTTTATTATGGGTGTCGTAGATCAGATGAAGATTACCTGTATCGTGAAGAGCTTG

TACAATTCCATAGAGACGGCGCGCTTACACAATTGAATGTTGCTTTTAGTCGTGAGC

A A AGTC AT A A AGT C T AC GTT C A AC ATTT ATT A A A A AGGGAT AGAGAGC AC TT GT GG

AAACTGAT AGAAGGAGGGGCGC AT ATCT ATGT AT GCGGAGACGCGAGGAAT ATGGC

TAGAGACGTGCAAAATACCTTTTATGATATCGTTGCAGAATTGGGTGCAATGGAGCA

TACGCAAGCCGTTGATTACATAAAGAAGTTGATGACCAAAGGACGTTACAGCCTAG

ATGTTTGGTCTTAA

Seq. ID NO: 19 >CPR_7

ATGGCCGCAAATATGGCAGACAGTAATATGGATGCGGGAACGACCACATCTGAGAT

GGTAGCAGAGGAGGTAAGCCTATTTTCCACTACGGATGTGATATTGTTCAGTTTGAT

CGTAGGTGTTATGACTTATTGGTTTCTTTTCAGGAAAAAGAAAGAAGAGGTGCCGGA

GTTCACAAAGATTCAGACCACTACCTCCTCCGTTAAGGATAGATCATTTGTTGAAAA

GAT GA AGA A A ACC GGC AGGA AT ATC ATT GT GTTC T AC GGT AGCC AGAC AGGA ACGG

CGGAAGAGTTCGCCAACCGTCTATCCAAAGACGCTCACAGATATGGTATGAGGGGA

ATGGCGGCCGACCCGGAGGAGTACGACCTGGCTGATCTGTCTTCTTTGCCAGAAATA

GAGAAGGCGTT GGCT AT ATTCTGT AT GGC AACCT AT GGAGAAGGGGACCC AAC AGA

TAACGCTCAGGACTTTTACGATTGGTTGCAAGAGACTGATGTGGACCTAAGTGGTGT

AAAGTATGCGGTATTTGCCCTGGGGAACAAGACGTACGAGCACTTCAATGCAATGG

GTAAGTACGTAGATAAGAGACTGGAACAGTTGGGAGCGCAAAGGATATTCGACTTG

GGATTAGGTGATGACGACGGAAACCTAGAGGAAGATTTCATAACCTGGAGGGAACA

ATTCTGGCCCGCCGTTTGTGAGCATTTTGGCGTTGAAGCAACGGGTGAAGAGAGTTC

TATCCGTCAATACGAGTTGATGGTACATACGGATATGGATATGGCAAAAGTTTACAC

CGGTGAAATGGGAAGACTAAAGTCATACGAAAACCAGAAGCCCCCATTTGATGCGA

AAAACCCTTTCCTAGCAGTCGTAACGACGAACCGTAAGCTGAATCAGGGGACGGAG

AGGCACTTAATGCACTTAGAACTTGATATATCTGACTCTAAAATTAGATATGAATCT

GGGGACCATGTAGCCGTATATCCAGCAAACGATAGCGCCTTAGTAAACCAACTGGG

CGAGATATTGGGGGCTGATCTGGATATCATAATGAGTTTGAACAACTTGGATGAAG

AAAGTAACAAGAAACATCCGTTCCCTTGTCCCACATCATATAGAACAGCCCTTACCT

ACTACTTGGACATAACAAACCCGCCAAGAACTAACGTTCTATACGAGTTGGCTCAAT

ATGCGAGCGAACCGACCGAACATGAACAACTACGTAAAATGGCATCTTCATCTGGT

GAGGGTAAGGAACTTTACTTGAGGTGGGTGCTTGAAGCTAGAAGGCATATCCTGGC

GATTTTGCAAGACTATCCTAGTCTAAGACCGCCGATTGATCACTTGTGTGAGCTTCT T CCTAGACTTCAAGCTAGGTACTACTCAATCGCCAGCAGTTCAAAAGTGCACCCGAAC

T C AGT AC AT AT AT GT GC CGT AGCC GT C GAGT ACGAGAC C A AG AC GGGC AGGAT AAA

CAAAGGAGTCGCCACAAGTTGGCTGAGAGCTAAGGAACCAGCAGGCGAAAATGGT

GGGCGTGCCCTAGTGCCTATGTATGTGCGTAAAAGTCAGTTCAGATTACCGTTCAAA

GCTACGACCCCTGTAATAATGGTAGGCCCGGGCACTGGAGTGGCCCCCTTCATTGGA

TTCATTCAAGAGCGTGCCTGGCTAAGGCAACAGGGGAAGGAGGTTGGGGAAACATT

GTT GT ATT AT GGGT GC AGG AG A AGC GACGAGGATT ATCT AT AT AGGGA AGAGCTGG

CGGGCTTCCATAAGGACGGCGCGCTGACTCAATTAAATGTTGCATTCAGCAGGGAA

CAACCCCAAAAGGTGTACGTGCAGCACTTACTTAAAAAGGATAAGGAACACTTATG

GAAATTAATTCACGAGGGTGGAGCCCACATCTACGTGTGTGGGGATGCCAGGAATA

TGGCTAGGGATGTCCAGAACACATTCTATGATATTGTAGCCGAACAAGGTGCGATG

GAGCACGCCCAAGCTGTTGACTATGTCAAGAAATTGATGACCAAAGGGAGATACTC

TCTGGACGTCTGGTCATAA

Seq. ID NO: 20 >CPR_8

ATGGCCGCTGAACCTACCTCACAAAAGCTTAGTCCTCTTGACTTCATTGCGGCCATT

CTAAAAGGTGATTATTCAGATGGGCAACTGGAAGCTGCATCCCCGGGGATGGCTAT

GCTGCTGGAGAATAGAGATCTTGTAATGGTTCTTACAACAAGTGTGGCTGTATTGAT

AGGGTGTGTGGTGGTGTTAGCCTGGAGACGTACGGCCGGTTCAGCCACCAAAAAGC

AGTTTGAGCCTCCCAAGCTTGTAGTACCGAAAGCCGCAGAACTGGAGGAAGTTGAT

GACGACAAACCTAAGGTAAGTATCTTCTTTGGTACCCAAACCGGAACCGCGGAGGG

CTTTGCGAAAGCTTTCGCCGAGGAGGCCAAGGCCAGATATCCCCAGGCTAACTTCA

AGGTGATCGACTTAGATGATTACGCAGCAGACGACGACGAGTATGAGGAGAAACTG

AAGAAGGAGACGCTGGCGTTCTTCTTTCTGGCGTCCTACGGCGATGGAGAGCCCACA

GACAACGCGGCTAGATTCTACAAGTGGTTCACTGAGGGGAAGGATAGAGGTGATTG

GTT GA A A A ATTT AC A AT AC GGAGT GTTTGGTCT AGGC A AT AG AC A AT AT G AGC AC TT

T A AT A A A ATCGC T ATCGTTGT GA AT GAC AT C ATT GT C GAGC A AGGT GGA A A A A AGC

TAGTGTCAGTGGGCCTTGGGGACGACGATCAGTGCATAGAAGACGACTTCGCCGCTT

GGAGAGAATTAGTATGGCCAGAACTTGACAAGTTGCTTCGTAACGAAGACGATGCC

ACCGTCTCT AC ACC AT AC ACCGC AGC AGT ACTGC AAT AT AGGGTT GTCTTT CAT GAT

CAGACAGACGGCTTAATCTCCGAGAACGGCTTCTTGAACGGCAGAGCGAACGGGAC

GTCTGTCTTCGATGCCCAACACCCCTGTCGTTCCAACGTCGCGGTCAAAAAAGAACT

TCACACCCCCGCTAGTGACCGTAGTTGTGCCCATCTTGAATTTGATATATCTGGGAC T

GGGTT AGTCT ATGAA ACTGGAGAT CAT GTT GGAGTTT ACTGCGAA AACCT AATTGA A

ACTGTAGAGGAGGCCGAAAAGTTGTTAAATATTCCCCCTCAAACATATTTTTCCATA

CATACGGATAATGAGGATGGGTCCCCTCGTAGCGGCAGCTCTCTTCCGCCTCCATTC

CCGCCATGCACTTTAAGAACGGCCTTGACCAGGTATGCGGATTTGTTGTCCGCGCCT

AAAAAAAGC ACCTT AATT GCTCT AGC AGAGAGTGCC AGCGAT C AG AGT GAAGCCGA

CAGATTACGTCACCTTGCGAGCCCCGGTGGTAAGGAGGAATACGCTCAATATATCAC

CGCAAGCCAAAGGTCCCTGCTAGAGGTAATGGCGGACTTCCCCAGTGCGAAGCCTT

CATTGGGCGTCTTTTTCGCAGCCATAGCCCCCCGTTTGCAGCCCCGTTTTTACTCTA T

CTCAAGCTCACCGAAAATAGCACCTAGCAGGATACATGTTACGTGCGCGCTGGTTTA

TGAAAA AACGCCT ACGGGTCGT GTT CAT AAGGGT GTCTGC AGT AC AT GGAT GAAGA

ACGCTGTGCCCCTGGAGGAATCTAATGACTGTAGCTGGGCGCCGATATTTGTCAGGA

ACTCCAACTTCAAGCTACCTGCCTATCCCAAAGTGCCCATAATTATGATTGGCCCTG

GAACTGGTCTGGCCCCGTTCAGAGGTTTTCTACAAGAGCGTCTTGCGTTAAAAGAAT

C AGGT GC C G A ATT GGG AC C AGC TATACTATTCTTC GGGT GT AGG A AT AG A A A A AT G GACTTCATCTATGAAGATGAGCTAAACAACTTCGTAGAGGCGGGCGTTATAAGTGA ACTGATAGTAGCGTTTAGTAGGGAGGGACCAACTAAGGAGTATGTACAACACAAGA T GAC T C AGAGGGCGT C AGAT GT AT GGA AGAT CAT A AGC GAT GGAGGTT AT GTTT AT GTGTGCGGCGACGCGAAAGGAATGGCAAGGGATGTTCACCGTACACTACATACAAT AGCACAAGAGCAGGGCAGCCTTTCTTCATCTGAAGCAGAGGGAATGGTGAAAAATC T AC AGAC A AC CGGGC GTT ATCTG AGGGACGT AT GG

Seq. ID NO: 21 >CBNsyn_l

ATGGCCGCAGACTTCTCAGGTAAAAACGTTTGGGTCACGGGGGCCGGTAAAGGTAT

AGGTTACGCGACAGCATTGGCATTCGTAGAGGCAGGGGCCAAGGTCACAGGCTTCG

ATCAGGCATTTACACAGGAACAGTACCCTTTTGCCACCGAGGTTATGGATGTAGCGG

ACGCCGCCCAAGTAGCACAAGTCTGTCAGCGTCTACTAGCTGAGACAGAGAGATTG

GATGCTCTGGTGAATGCGGCAGGTATTCTTCGTATGGGTGCCACCGACCAATTATCT

AAGGAGGACTGGCAACAAACGTTCGCTGTAAATGTTGGAGGTGCATTTAACCTGTTC

C A AC AGACT AT GA AT C AGTT C AGA AGGC AGC GT GG AGGCGC T AT AGT C AC AGT AGC

CAGTGACGCCGCGCATACCCCAAGGATTGGAATGTCAGCGTACGGAGCTTCCAAGG

CAGCCCTGAAGAGCCTAGCTTTATCAGTCGGTCTGGAGCTGGCCGGGTCAGGGGTA

AGGTGCAACGTTGTGTCCCCGGGCTCCACGGATACAGACATGCAGAGAACTCTGTG

GGTGTCTGACGACGCAGAGGAACAACGGATCAGAGGTTTCGGAGAGCAGTTCAAAC

TAGGGATTCCGCTGGGCAAGATCGCTAGACCACAAGAGATAGCTAATACTATACTTT

TCCTAGCATCCGATTTAGCCAGTCACATCACTTTACAAGACATCGTAGTGGATGGTG

GTTCAACACTAGGCGCTTAA

Seq. ID NO: 22 >CBNsyn_2

ATGGCCGCAAGCGATCTGCATAATGAGTCCATTTTCATTACAGGCGGAGGCTCTGGT

CTTGGGCTGGCCTTAGTGGAAAGGTTTATAGAGGAAGGGGCACAGGTTGCTACACTT

GAGCTTAGCGCAGCAAAAGTCGCGTCTCTACGTCAACGTTTTGGAGAACATATATTG

GCCGTGGAAGGCAACGTCACGTGTTATGCCGACTATCAAAGAGCTGTAGATCAGAT

ACT A ACCCGTTCTGGGAAGTT AGATT GCTTT AT AGGGAAT GC AGGT AT ATGGGAT C A

TAACGCTTCCCTGGTTAATACCCCAGCAGAAACGCTAGAAACAGGGTTTCATGAGCT

TTTTAACGTAAACGTCCTGGGGTACTTACTGGGAGCAAAAGCATGTGCTCCTGCGCT

TATCGCGTCAGAGGGTTCAATGATATTTACCCTTTCAAACGCGGCTTGGTACCCAGG

TGGAGGGGGTCCTTTATATACGGCCTCCAAACATGCAGCAACTGGCCTGATCCGTCA

ACTAGCCTATGAACTTGCACCCAAGGTAAGGGTTAATGGAGTGGGTCCCTGCGGCAT

GGCTAGTGATCTTAGGGGACCACAAGCCTTAGGGCAATCAGAAACGAGTATAATGC

AGTCATTGACCCCCGAAAAGATTGCGGCGATATTACCTCTGCAATTTTTCCCACAAC

CGGCGGACTTCACTGGACCATACGTCATGTTAACATCTAGGCGTAATAATAGGGCAC

TGAGCGGCGTTATGATTAACGCGGACGCTGGGTTGGCTATCAGAGGCATTAGGCAC

GTGGCAGCAGGACTTGACCTATAA

Seq. ID NO: 23 >CBNsyn_3

ATGGCCGCAACGGGATGGTTAGCGGGAAAAAGAGCTTTGATCGTCGGTGCGGGTTC

CGGAATCGGAAGAGCTACAGTTGACGCATTTCTAAACGAGGACGCGAGAGTTGCAG

TTCTGGAGTATGACTCCGATAAGTGTGCAACACTTAGGCACCAGTTACCAGACGTTC

CCGTGATAGAAGGCGATGGGACCACAAGGACCGCTAACGATGAGGCCGTTCAGGTC GCTGTGGACGCATTCGGGGGACTAGATACTCTGGTCAACTGTGTTGGAATATTCGAC

TTCTACCGTCGTATCCAAGACATTCCCGCAGAGCTGATCGATCAGGCATTTGACGAA

ATGTTTAGAATCAATGTATTATCACATATCCACTCTGTTAAAGCAGCGGTACCTGCT

CTGATGGGTCAGGACGGAGCATCTATTGTGCTGACGGAGAGTGCTTCTTCATTCTAT

CCCGGTAGGGGCGGGTTGTTGTATGTGGCGTCAAAATTTGCTGTTCGTGGTGTCGTA

ACCGC ACTGGCCCATGAGTTGGCTCCCAGGATTCGTGTTAATGGAGTAGCTCCTGGC

GGAACCCTTAATACAGATCTGAGGGGCCTTGACAGTTTGGACCTTGGTGCCCGTAGG

TTAGATGCCGCGCCTGACAGAGCTAGAGAACTTGCAGCGAGGACCCCACTGGGGGT

CGCATTGTCCGGTGAAGACCACGCCTGGTCTTACGTTTTCCTGGCCTCTCATAGGAG

TAGAGGTCTAACAGGCGAAACGATTCACCCTGATGGCGGCTTTTCTTTAGGACCGCC

GCC AC AAAGGAATT AA

Seq. ID NO: 24 >CBNsyn_4

ATGAGTAGTATCGAGACCAAAATCTTTCCTGGGCGTTTTGATGGTAGGTGTCTTACC

ATAACAGGTGCCGCCCAAGGCATTGGGTTGACAGTAGCTACGAGGATAGCGGCAGA

AGGCGGTGAAGTGGTGCTTGTTGACCGTGCAGACCTTGTACACGAGGTGGCAGAGC

AGCTACGTGAGGCAGGAGGCAAGGCGCACTCAGTAACGGCTGATTTAGAAACATTT

GAGGGTGCTGAGGAAGCGATCTCTCATGCCGTAAGGACGACTGGCAGAATCGATGT

ACTAATCAATGTTGTGGGCGGGACTATATGGGCAAAACCGTATGAGCACTACGCCC

CGGAGGAAATAGAAAAAGAAATTAGAAGATCCTTATTCCCTACGCTATGGACATGT

AGAGCTGCGGC ACCGC ATTT AATCGAACGT AGAGC AGGAACGAT AGTGAACGT AAG

CTCCGTTGCTACGAGGGGCGTAAATCGTGTTCCCTATTCCGCAGCAAAGGGAGGTGT

TAATGCTATTACTGCGTCTCTGGCGTTGGAATTAGCCCCGTACGGGGTAAGGGTTGT

CGCAACGGCTCCAGGCGGGACCGTCGCGCCAGAGAGAAGAATCGCCAGAGGGCCT

AGCCCACAGAGTGAGCAGGAGAAAGCCTGGTACCAGCAGATTGTAGATCAGACAGT

TGACTCCTCATTACTTAAAAGGTATGGTACTCTTGATGAACAAGCAGCCGCGATCTG

CTTCCTTGCATCAGAAGAGGCGTCATACATCACCGGAACTGTCTTGCCGGTGGCCGG

AGGGGACTT AGGAT AA

Seq. ID NO: 25 >CBNsyn_5

ATGAGT AGT ACCGGCTGGCT AGACGGC AAAAGGGCCTT AGTT GTT GGGGGAGGAAG

TGGGATAGGTAGAGCTGTCGTAGACGCTTTCTTAGCTGAAGGAGCTTGCGTAGCCGT

CCTGGAAAGGGACCCGAATAAGTGTAGAGTCCTAAGAGAACATCTGCCGCAGGTGC

CCGTAATTGAAGGAGATGCAACAAGGGCTGCAGATAATGACGCAGCGGTAGCTGCA

GCAGTTGCTGCATTTGGAGGACTAGACACGCTTGTAAATTGTGTGGGTATCTTTGAC

TTCTATCAGGGCATCGAGGACATTCCGGCGGACACCCTTGACGTAGCATTCGATGAA

ATGTTCAGAACGAACGTACTATCCCACATGCATAGTGTAAAGGCGGCAGTTCCCGA

GTTACGTAAACATAGGGGCTCTTCTATCGTTCTGGCTGAATCCGCCTCTAGCTTCTA T

CCAGGGAGAGGGGGTGTCCTATATGTCTCTTCTAAATTTGCCGTCAGAGGTCTGGTA

ACCACTCTAGCATACGAGTTGGCCCCAGATATCAGGGTGAATGGGGTCGCCCCAGG

TGGTACGCTGAATACGGATCTGCGTGGCTTAGCGTCACTAGGAAGGGATGCTGACA

GGCTAGATGATAACCCTAATAGGGCCAATGAGTTAGCAGCCAGAACTCCGCTTAAC

GTGGCCCTTAGTGGGGAAGATCATGCGTGGTCTTTTGTCTTCTTCGCTTCCGACAGA

AGC AGGGGAATT AC AGCCGGGGCT ACTC ATCC AGATGGAGGCTTT GGAATTGGT GC

GCCCAAGCCCTCTACTAGATAA Seq. ID NO: 26 >CBNsyn_6

ATGAGT AGTGGGTTTCTGGATGGCAAGGTTGCTCTTGTGACTGGTGGCGGGAGTGGT

ATTGGAAGGGCCGTCGTCGAATTATACGTTCAGCAAGGAGCTAAAGTAGGTATCTTA

GAAATCTCACCCGAAAAAGTGAAGGACCTGAGGAATGCCCTACCAGCTGACAGTGT

CGTGGTAACAGAGGGAGATGCTACGAGTATGGCGGATAACGAGAGGGCAGTCGCG

GACGTTGTTGACGCATTCGGACCCCTTACTACGTTAGTTTGTGTGGTGGGGGTATTC

GATTACTTTACAGAGATTCCTCAGCTACCTAAAGATAAAATCTCTGAAGCCTTTGAT

CAACTTTTTGGGGTAAATGTTAAATCCAACCTATTGTCTGTGAAAGCGGCGTTAGAC

GAGCTAATTGAGAACGAAGGAGACATAATACTGACGCTAAGTAACGCAGCTTTTTA

TGCCGGTGGAGGCGGCCCACTGTATGTTTCTAGTAAGTTTGCTGTAAGGGGCTTGGT

GACTGAGTTAGCATATGAGCTTGCCCCAAAAGTACGTGTCAACGGGGTAGCCCCAG

GGGGAACGATTACCGAACTTAGAGGAATCCCGGCCTTGGCGAATGAAGGACAAAGG

CTGA AAGACGTTCCTGAC ATCGAGGGATT AAT AGAAGGA ATT AATCCCCTT GGT ATC

GTTGCTCAGCCTGAGGACCACTCCTGGGCCTACGCGTTATTAGCAAGTAGAGAAAG

GAC AT C AGCGGT AAC AGGC ACGATT AT AAAC AGCGAT GGAGGATT AGGAGT C AGGG

GC AT GACTCGT ATGGCCGGTCTGGC AC AAT AA

Seq. ID NO: 27 >CBNsyn_7

ATGAGTAGTAGTAGGTCTGTGACTTTGGTAGTCGGCGCTGCCCAAGGAATTGGCAGG

GCTACCGCATTGACGCTTGCGACGGCGGGTCACAGGGTCGTGTTGGCGGATAGGGA

CGTAGACGGCTTGGCCGAGACTGCTGCGCTTCTACACGTCGCTGCACCGGTTCACGG

AC TT G AC GT AT GT GAT GC T GC T GGGGT GGC GG A AGC GGTT GC G AGGGT GG AGGT C G

AGCACGGACCGGTAGATGCTCTAGCTCATGTCGCGGGGGTGTTTACCACGGGCTCTG

TACTTGATTCAGACTTAGCAGAGTGGCAACGTATGTTTGACGTCAACGTGACGGGGC

T AAT C AAT GT ACTGCGT GTCGTGGGGC AT GGC AT GAG AG A AC GT AGACGT GGAGC A

ATCGTCACTGTCGGTTCTAATTCCGCTGGTGTACCAAGGGTGGGGATGGGAGCTTAT

GGTGCATCAAAATCCGCAGCACATATGCTGGTACGTGTATTAGGATTGGAATTAGCA

AGATTCGGCGTCAGGGCGAATGTTGTTGCCCCAGGGTCCACGGACACAGCGATGCA

ACGTTCTCTTTGGCCCGACCCTGCTGACGACGCTGGCGCCCGTACTGCGATAGACGG

TGACGCCGCTTCATTTAAGGTCGGGATTCCACTGGGGAGGATCGCAGACCCAGCCG

ACATCGCGGACGCCGTCGAGTTCCTGCTATCTGATCGTGCTAGGCACATAACAATGC

AGACTCTATATGTAGATGGTGGTGCTACCCTGAGAGCATAA

Seq. ID NO: 28 >CBNsyn_8

ATGAGT AGT C AAAT GCTGGAT GACC ACGT AGCTCTGAT ACT AGGTGGTGGGAGTGG

ATTGGGTCTAGGAATTGCGCGTCATTTTCTCGGAGAAGGGGCTCAGGTGGCCATCTT

TGAGATCAGTGAATCCAAATTATTAGACCTAAAAGCTGAGTTCGGGGACGACGTAC

TTCTTTTACAGGGGGATGTAACATCAATTGACGACCTAGAGGCAGCCCGTGCCGCAG

TAGTGGATAGGTTCGGAAGGTTGGATGCACTTATTGGTGCGCAAGGGATTTTTGATG

GGAACATCCCATTGAGAGACATCCCGACCGAGAGAATCGAAAAGGTTTTCGACGAA

GTGCTACATGTTGACGTGCTAGGTTATATATTAGCCGCTAGGGTCTTCCTGGAAGAG

CTGGAGAAGACAGACGGAGCAATTGTGTTTACCAGCAGTACTGCGGCTTACGCAGC

CGATGGAGGAGGTTTGTTTTACACTGCCGCCAAGGGTGCCGTTAGAAGTGTAATCAA

TCAGCTTGCATTCGAGTTCGCGCCGAAGGTCAGAGTCAACGGAGTCGCTCCATCCGG

CATCGCTAATTCACAGCTTCAAGGGCCGCGTGCCCTAGGATTAGAGAACAACAAGC AGAGTGATATTCCCGTTGAGGATTTTACGAACCAATTTCTGTCTCTGACGTTGACAC CTACCCTGCCCACTCCGGAGGAATATGCGCCACTTTATGCATATTTAGCGTCCAGGA AC A AT ACC AC A AT GAC AGGGC A A AC GAT A ATT GC AGAT C AGGGCC T ATTT A AC AG A GC GGT C AT ATC T A AC GGC GT T GC AG AT AGAGT AGGC A A AT A A

Seq. ID NO: 29 >THCdeg_l

ATGAGTAGTTCTGGCCCCGCGCACAGCAATTTAGAGCAAGTATTCGCTAACGTGGCT

TCAAATTACCGTGGGGCTGATGTAGACTTGCACGCGGTTTATAGAGAAATGCGTGAG

AAGTCTCCCGTGTTGCCTGAAAATTTCATGGCCAGGCTTGGTGTGCCGTCTATAGCA

GGGCTGGACCCAAATAGGCCAACTTTTACGTTGTTTAAATATGACGATGTGATGGCT

GTAATGAGAGATGCGACTAATTTCACTAGTGGTTTTATTGCGGAAGGTCTGGGCTCT

TTCTTCGATGGTTTAATTCTAACAGCAATGGACGGTGAAGCACACAAGAATATACGT

TC ATTGTT AC AGCCGGTCTTT AT GCC AGAAACTGTT AAT AGGT GGAAAGAGACC AAA

ATT GAC AGAGT GAT A AGGG A AGAGT AT C TT AGACC A AT GGT GGC TT C A A AGCGT GC

CGATATCATGGAGTTTGCTTTATATTTCCCCATTAGAGTTATTTACTCATTGATTGG A

TTCCCAGAGGACCGTCCGGAGGAGATCGAACAGTATGCGGCTTGGGCCTTAGCGAT

TCTGGCCGGACCTCAAGTAGATCCTGAAAAAGCAGCAGCGGCACGTGGAGCAGCAA

TGGAAGCCGCCCAAGCACTGTACGACGTTGTTAAGGTAGTCGTAGCGCAAAGGAGG

GCCGAAGGGGCGACAGGCGACGACCTGATTTGCAGACTGATCAGAGCAGAGTACGA

AGGACGTAGTCTGGATGACCATGAAATAACGACGTTTGTTAGAAGCCTTCTGCCAGC

AGCTTCTGAAACGACGACGCGTACGTTTGGTACATTGATGACTCTGTTGCTAGAACG

TCCTGAACTGTTGGCACGTATCCGTGAGGATCGTTCTTTAGTCGGAAAAGCTATTGA

TGAGGCGGTACGTTATGAACCAGTGGCTACTTTTAAGGTAAGGCAAGCCGCAAAAG

ACGTGGAAATTAGAGGGGTGGCAATTCCGAAGGGCGCGATGGTGTCCTGCATCGTG

ACTAGCGCAAATCGTGACGAGGACGCTTTTGAGAATGCGGATACATTCGATATCGA

CCGTAGGGCTAAGCCGTCATTTGGATTTGGATTCGGTCCACATATGTGTATTGGTCA

GTTTGTTGCTAAAACCGAAATAAACTGCGCCCTAAATGCCATACTGGATTTGATGCC

AAACATCCGTTTAGACCCAGATAAACCCGCGCCAGAGATTATAGGGGCGCAGCTAA

GAGGACCCCATCACGTCCACGTGATTTGGGACTAA

Seq. ID NO: 30 >THCdeg_2

ATGAGTAGTAGGTCAACTGACCTTCCGGACCTGAAATCTGCGGCCTTTCTTGCGGAC

CGTTACCCAACGTACAGGAGACTACAAAGTGATTTCCCGCACTTCGAAATGAATATA

AATGGAGAGGAGTGTATCGTGCTGACAAGATACAGCGACGTCGATGAAGTCTTACG

AAACCCGTTGGCCACGGTTCAACAAGCTCCTGGTGTATTTCCAGAAAGGATAGGTCA

AGGTGCTGGGGCCCGTTTCTATCGTGAGTCACTACCCAATATTGATGCCCCCGATCA

CACGCGTATCAGGCGTATAGTTACACCGGCGTTCAACCCGAAAACAGTTGCTAACAT

GAG AGGT T GGGTT GAG A AGGT AAT AGT GG AGC AC C T AG AC C GT C TT G A AGG AT T GG

ACGAAATTGACTTTGTCTCTAGCTTTGCCGACCCGGTGCCAGCGGAAATAGCATGTA

GGTTGCTTCATGTGCCTGTGTCTGATGCTCCAGAACTTTTTGCTAGGCAGCATGGAT T

GAATGCTGTGCTATCTGTTAGCGACATCACACCTGAGAGATTAGCCGAAGCGGACG

CATCCGCTGCTTTCTACTATGAATACATGGACGACGTTTTAAACACACTGAAGGGTA

AATTGCCGGAAGATGATTTCGTGGGAGCGTTAATGGCTGCCGAGGCGCGTGACTCTG

GATTAACTAGGTCTGAATTGGTTACTACGCTTATCGGATTTCTGGTAGCCTCATATC A

CACCACGAAGGTGGCCATGACAAACACTGTCCTAGCTCTACTTAATCACGATGGCG

AGAGAGCTAGGCTTGTGGCGCAGCCGGATTTGGCGAGAAATGCCTGGGAAGAATCA TTGAGATATGACTCCCCAGTGCATTTCGTCCACCGTTATGCATCTGAACCACTGACA

ATAGGTGGTCAGCCCGTGGCCCAAGGTAAAAGGCTATTATTGGGCTTGCATGCAGCT

AGTAGAGACGAAAATAGGTTTGCCCAGGCAGATCACTACTTGATTGACAGACCGGA

TAACCGTCACCTGGCGTTTGCTGGGGGAGGGCACTTTTGCTTGGGGTCTCAACTTAG

CCGTTTGGAAGGAGACGTACTGTTGCGTACAATTTTTCAAAGATTCCCCGCAATGAG

GCTTACGGAAACCAGATTCGAAAGAGTACCGGACTTGACTTTTCCAATGTTACTAAG

GATGACAGTTTCATTAAGGGCGGAGCAAGGTTAA

Seq. ID NO: 31 >THCdeg_3

ATGAGTAGTACCTCTAATTCAATTAGGAGCCCATTGAGTCCGCCCCAGCCGAGACGT

ACTCCGCCGCCTTGTACCTCCTCAAGGGAACCGCCCATCGTCCGTGGTACTTGGCTT

TTAGGCAGCACCCGTGACTTGTTAAGGGACCCACTGGAGCTAGGGCTGCGTGGATA

CGCTGAAGGCGGGGACGTGGTAAGATATGTAGTTGGGTTACCTGGTCGTAGAAGAG

AGTTCTTCACGGTTAACCATCCCGATGGGGTTGGGGAACTGCTTAATGCTCCCCGTC

ACTTAGACTATCGTAAGGACAGTGAATTTTACCGTGCCATGAGGGATTTATATGGAA

AT GGGC TT GTT AC C AGT C A AG AT GA A AC TT GGCTGAGAC AGAGA AGGTT CAT AC AG

CCGTTGTTTACTCCACAGAGTGTTGATGGTTACGTCACACCAATGGTCGCGGAGGCT

GATAGGGTAGCAATAAGGTGGCACAATTGTACCTCCCGTCTGGTAGATTTGGACGGC

GAGATGCGTGCCCTAACATTAGGCGTGGCCGCCAGAATCCTATTCGGAGTTCAAGCC

CCGAGGATGCTTCCTATCCTGAGGACTACCCTACCGGTACTTGGTAGGGCCGTTCTG

CAACAAGGTGCGTCAGCTATCAGATTTCCTAGCTCTTGGCCTACCCCGGGTAATCGT

CGTATCGCCAGTGCAGAATCTCGTCTGGATGGTTTGTGTGATGCTATTATAGAGCGT

CGTAGGACAGTAGCCGAGCCAGGTACGGATTTGCTGGGTCGTTTGGTCGCTGCAAG

AGAGGACGGTGATACGCTGTCAACGGAGGAAATAAGAGATCAAGTCAAGGTATTTC

TCTTGGCTGGTCACGATACAACGGCAACGATGCTGACGTTTGCCTTATACCTGCTTG

GTAAGGACGCTGGCGTTCAGGATCAAGCGCGTGACGAAGCGGAACGTGTCTTGGGG

GCGGGGACGCCGACCGCAAGCGACGTCCACCGTCTGACATATACTACGATGGTACT

GGAGGAGGCGGCGAGACTGTACCCACCGTCTCCCTATTTAACTCGTAGAGCGGTCG

AGGAAAGCGAGGTCTGCGGGTACAGAATACCCGCTGGGGCCGATGTCAACCTGGCT

CCATGGGTGATCCATCACCGTGCCGATTTATGGCCTGATCCTTTCCGTTTCGATCCC G

ACAGATTCACCCCGGATAGGGTAAAAGAAAGACACAAATACGCGTGGTTCCCGTTT

GGACACGGACCAAGGGGTTGTATCGGTCAGAGATTCGCAATGCTGGAAGCGGCAGT

TACTTTAGCGATTCTTCTAAGAGAATTTGAGTTTAGGTCTCCGCCTGGCAGCGTTCC A

TTAACAGTAGACTTACTGTTGCATCCCGCCGGCGAGGTTCCTTGCCGTGTGAGGAGG

CGTGTACCTGTGCATTCAGCGGTTCATCGTACTCACCAGCCAAGTTAA

Seq. ID NO: 32 >THCdeg_4

ATGAGTAGTGCCCCGGACATTCTTTCTCCCGAGTTTCTGGATAACCCTTATCCTCTT C

ACCGTGTGCTACGTGACCACTACCCCGCTTTACACCACGAGGGGACCGACAGCTATC

TAATATCAAGGTACGCCGATTGCGCAGAAGCATTTCGTTCACCTAAATTCTCCTCCC

GT A AC T AT GA AT GGC AGCTT GA AC CGAT AC AC GGT AG A AC A ATTTTGC A A AT GGA A

GGGCGTGAGCATTCTACCCATAGAGCATTGCTAAATCCGTTTTTCAGAGGCAACGGA

CTAGAGAGATTCATGCCTGCCATTACACACAACGCAGCACAACTAATAGGCGATAT

AGTCGCCAGGAATGCAGGGGAATTGCTGGGTGCGGTTGCCAGACAGGGGGAAGCGG

AATTGGTATCACAATTCACTAGTCGTTTTCCTATAAACGTAATGGTGGACATGCTGG

GACTGCCGAAGTCCGACCACGAAAGGTTTAGAGGCTGGTATTTCTCCATTATGGCTT ATCTTAATAACCTGGCAGGGGACCCTGAAATTAACGCCGCGGCGGAGCGTACACAT

GTT GAACT AAGGGAGT AC ATGCTTCC AATT ATT AGAGAGCGT AGGAGT GGAGAT GG

AGACGACCTTCTATCCAGATTATGTCGTGCCGAAGTTGACGGTGAGCAGATGAGTGA

TGAGGAGATAAAGGCCTTTGTCTCTCTACTGCTGGTCGCCGGCGGAGAGACCACAG

AT AAGGC AAT AGC AAGC AT GATC AGAAATTT GATCGACC ACCC AGAT C AGAT GAGG

GCGGTTAGAGAAGATCGTTCACTTGCTGATAGGGTAATAGCAGAGACCCTTCGTTAT

TCCGGACCCGTACATATGATCATGAGACAAACAGAGGATGAGGTTCAGATAGAGGA

CTCTACCATTCCAGCGGGAGCAACCTGCATAATGATGTTAGCAGCCGCGAACAGAG

ATGAACGTCATTTTTCAAACCCGGACGAGTTCGATATATTTCGTACGGACCTAAACG

TAGACAGAGCCTTCTCAGGGGCGGCCAATCATGTCCAATTTATATTGGGCCGTCATT

TTTGCGTCGGGTCCATGTTGGCTAAAACTGAGATGACCATTGCACTTAATCTGGTCT T

GGACACAATGGATAGCATAGAATACCAAGATGGTTTTGTTCCCAGAGAGGAGGGGC

TGTACACCAGAAGCATCCCGGAGCTTAGGGTAAAATTTGAAGGTAAGTTAGGGTAA

Seq. ID NO: 33 >THCdeg_5

ATGAGTAGTAGCACTCCTGCCGCTGCTACATCCTTGGAGAGTGCCTTTGCGGGCGTC

GCGGACAATTATAAAGGTTCCGACGTGGACCTTCATGCAATCTATAGAGATATGAG

ACGTAACTCTCCTGTCATCGCTGAGGATTTCATGGCACGTCTGGGTGTTCCGAATAT T

GCAGGCCTAGACGCTAAAAGGCCAACATTTACCCTTTTCAAGTACAAGGACGTGAT

GTCTGTCTTGAGGGATGCTACCAATTTCACATCAGGCTTTATCGCGGAAGGATTAGG

GGCGTTTTTCGACGGCTTAATCCTGACTGGGATGGATGGTGAAGCACACCGTAGAAC

TAGGTCCCTATTGCAGCCGGTTTTCATGCCCGACGTTGTCAACCGTTGGAGGGAAAC

GAAAATGGCACCAATAGTCAGGAATGAATATATTGAACCGATGGTCCCGAAAAGGC

GTGCTGACCTTATGGACTTTGGACTTCACTTCCCTATACGTCTAATCTACAGTTTGA T

AGGGTTCCCAGACAATAGGCCGGAGCAGATCGAACAGTACGCTGCCTGGGCACTTG

CCATCCTGGCAGGGCCGCAGGTGGACGCAGAGAAAGCAGCCCAGGCGCGTAAAGCT

GCGATGGAAGCCGCCCAGGCGCTTTACGACGCAGTTAAACTTGAAGTTACAGAGGT

CCGTAAAAATGGAGCCCAGGGTGACGATCTAATCTGCAGGCTAATTAGAGCTGAGT

ATGAAGGCCGTCATCTTGATGATCATGAAGTCACAACCTTTGTCAGGTCACTTCTGC

CAGCCGCTGGAGAGACAACTACGAGAACGTTCGGTTCACTGATGGTCGCTCTTCTGG

AAAGACCTGAATTACTGGAACGTGTTAGGGCTGATAGATCCTTAGTGCCAAAGGCG

ATCGACGAAGCGGTGAGGTTCGAACCAGTAGCTACTTTTAAGGTCAGGCAGGCGGC

ACAGGATACGGAAATTGGCGGGTTCTCCATACCGAAGGGAGCAATGGTTCAATGTA

TAGTCAGTTCCGCCAACAGGGACGAAGAGGTCTTCGAAAACTCTGAGAGCTTTGAC

ATTGATAGAAAGCTGAAACCGTCATTCGGCTTCGGGTTCGGTCCACATATGTGCATA

GGGCAGTTCATTGCAAAGGTCGAGTTATCAGTGGCCGTAAACACTATTTTAGATTTA

TTGCCAAACCTTCGTTTAGATCCAGACAGGCCGAAACCTAGAATAGTAGGTGCTCAG

CTGAGAGGTCCCCACGCGCTTCATGTTATTTGGGACTAA

Seq. ID NO: 34 >THCdeg_6

ATGAGTAGTTCTCCCTCAGTGGCAGAGTTAAGCCAGGAGTTGGGAGAAGCATTCCGT

CTATCCAGCATGGACGATCCGTATCCGATGTTGGCAGAGAGGAGAAGAGAGACTCC

TGTGATGAAAGGGGATATAATGGTGGCCTTAGGTGCGCCAAGCTATATGGGCCAAC

ACGCCGGCGAGACTCATACTGTATTCAGGCATGACGACGTAATGGCTATCCTTCGTA

ATCACGAAACGTTCTCAAGCAGTATTTGGGAAATTTCTCAAGGGCCACTAATAGGTA

GATCCATCCTGGCAATGGACGGGGCAGAGCACAGACAATGGAGGGGATACTTACAG TCTGTATTTGGAGGGAAGCTATTGTCTTCATGGGATGAGTCCATATTCAGGCCCCTT

GCGGC AAAGT ATGTCGC AGACCTT GCT AGT A AGAGAGGT GCGGACCT AAT AGCGAT

GGCGTTGGAGTATCCCCTTAGGGCTATCTACGAGATCCTGGGCTTGGAAGATTTTAA

AGACAATTATGAGGAATTTCACGCTGACGTACTGACGATTCTACTAGCCCTATGGTC

TACACCCGACCCAGCGCAAGCCGACCAGTTCTTGCTACGTTTTCAAAAAGCTACGGA

AGCATCTGCTAGGAGTTGGGACCGTCTACTACCCATCGTCCAAAGAAAGAGGGCGG

CGGGTGCGAGCAGGAACGACCTTATTTCTAGTCTAATTAGGGCGGAATACGAGGGT

GGTGTTTTGGATGATGAACAAATCACCAGTTTTCTTAGGTCTCTATTGCTTGCAGCC A

CCGATACTACTACCCGTCAGTTTTTGAATACTTTGACCTTGCTTTTACAGAGGCCAG A

T GAGTTGGAT C GT ATTC GT AGGGAT AGGAGC AGATT GAGATTGGC ATTGGC GGA AG

GGGAAAGGTTGGAACCGCCCGCCCTATTCATACCCCGTATGATAACGAGGGATGTT

GTTATTAGGGGTACCGAGTTGACGGCGGGGACCCCCTTACTACTTGCCATCGGGAGC

GCGAATCGTGATCCTGAAGCCTACCCACCCGACCCAGATGAATTTCGTATCGATAGA

ACGGGACCACACCACGCCACGTTCGGTTTTGGTACTCACATCTGCTCCGGGATGAAC

ACTACTCGTCGTGAGATAGCAGCCTTGATCGATGCGATGTTAGACGGGCTACCGGGA

CTTCGTGTCGATCCCGACGCTCCCGCGCCACTTATATCAGGGATTCATTTTAGAGGC

CCATCCGCACTGCCGGTTGTATGGGATTAA

Seq. ID NO: 35 >THCdeg_7

ATGAGTAGTGATTACTCCAGGACACCCGAGTCCCTGCGTCCGGCTGATAGTTATGCC

GCGCTATCCTACTCCACAGTTAATGCTGCTCTGCGTAACGATAGAGTATTCTCTTCA A

AGATGTACGACTCCACCATTGGAGTGTTTATGGGTCCTACAATCTTGGCTATGAGTG

GCACTAAACACAGGGCTCACAGAAACCTTGTATCCGCTGCTTTCAAGCCGCAAAGTC

TGAGAGTTTGGGAACCTGATATTGTAAGACCAATTTGTAATGCACTAATTGATGAGT

TTGCCGGGACAGGCCACGCAGACCTGGTTCGTGACTTCACGTTTGAATTTCCTACTA

GAGTAATAGCTAGACTGCTAGGCTTACCAGCGGAGGATTTGCCATTCTTTAGAAAGG

CCGCAGTGGCGATTATCAGTTATGCAGGAAACGTTCCGAGAGCGTTGGAAGCGTCC

GAGGACCTGAAGAACT ACTTTCT AGGAC AC AT AGAGC A AAGACGT AGT C AGCCT AC

CGAT GAT ATT AT ATCTGATTT AGTT ACGGC AGAAGTTGAAGGAGAGC AATTGACCGA

TGAGGCAATTTATTCATTCCTGCGTCTGCTGTTACCTGCTGGGTTAGAGACAACCTA C

CGTAGTAGTGGAAATTTGCTGTACCTATTATTACGTCACCCAAGGCAATTTGCGGCC

GTGCAAGGAAACCATGGTCTTATTCCTCAAGCCGTAGAAGAGGGTCTGCGTTATGAG

ACGCCTCTAACGTTTGTCCAGCGTTTCACAACCGAAGACACGGAGCTTGGGGGCGTT

CCTGTTCCCGCGGGCGCAGTAGTAGATTTAGTCTTGGGCTCTGCCAACAGGGATGAA

GACAGATGGGAACGTCCGGGCGAGTTCGACATATTCAGAAAACCCGTGCCCCATAT

AAGTTTT ACGGC GGGAGCCCATACTTGTTTAGGACTGCATTTAGCCAGGATGGAGAC

GAGGGTTGCTGTCGAGTGCCTACTAACTCGTCTGACTAACTTCAGACTTCAGGATGA

AGGAGACCCCCACATAACCGGACAGCCATTCCGTAGTCCGAATCTTCTTCCAGTAAC

TTTCGACGTGGTTTAA

Seq. ID NO: 36 >THCdeg_8

ATGAGTAGTCCGACGCCAAGGTGGAGGATACCGGTGCTAGGCGATCTTCTTTCAGTT

GACCCCGCGAAGCCTGTTCAAAAGGAAATGGCTATGGCGGCGGAACTAGGTCCGTT

ATTCGAGCGTAAGATTATAGGGAGCAGACTTACAGTCGTTAGCGGCGTGGACCTAG

TCGCTGAGGTCAACGACGAGAAACATTGGGCTAGAGCTTTGGGGAGGCCCATACTG

AAGCTAAGAGATGTTGCAGGTGATGGGTTGTTCACAGCGTTCAACAGCGAGCCTGC ATGGGCTAGGGCTCATAGCGTGTTGGGCCCTGGCTTCTCACAAAGCGCATTGAGAAC

CTACCATGGCAGTATGACTAGGGTGTTGGATGATTTGGTGGCGACATGGGACGATGC

AGCGGCATCAGGTGCCCGTGTCGATGTCGCTCGTGATATGACGAGACTGACTTTCGA

TGTGATTGGCAGAGCCGGCTTTGGTCGTGACTTCGGCTCTTTGAGGGGTGATGATCT

GGACCCCTTTGCCGCTGCCATGGGTAGAGCACTTGGTTATGTGAATCAAACATCAAA

TGACATACCACTTCTACGTATGGTATTCGGTAGGGGCGCGGCCAAAAGGTACCAGA

CAGACGTCGCATTTATGCGTGATACCGTAGACGAGCTAGTTGCGAGCAGGGCTGGG

CGTGCCGAGAGGAGCGATGATCTTCTTGACCTAATGTTACACAGTGCTGACCCGGAT

ACTGGGGAGAGGTTGGACATGGAAAACATTAGGAATCAAGTTCTTACCTTCCTTGTT

GCCGGTAATGAGACAACAGCTAGTACATTGGCGTTTGCACTGTATTTTCTGGCTAGA

GAGCCCGAAGTTGTCGAAAGAGCCAGGGCCGAGATCGCGGATGTAGTCGGAGACGG

TGAGATCGCTTTCGAGCAAGTGGCTAAATTACGTTATGTCAGGAGGGTTGTCGATGA

GACGTTAAGACTGTGGCCTGCCGCTCCGGGCTACTTTCGTAAAGTTAGGCATGATAC

GGTATTAGGCGGTCGTTATCCCATGCCTAAAGGTTCATGGGTTTTCGTGCTGTTACC A

CAGCTTCATCGTGACCCTGTATGGGGTGACGATCCGGAAAGGTTTGACCCCGATAGA

TTCGCACCAGACGCTGTGCGTGCAAGGCCTAAAGATGCTTATAGACCGTTTGGCACA

GGCCCCAGAAGTTGTATAGGGAGGCAGTTCGCGTTGCACGAGGCGGTACTTGCCCT

GGCGACGTTGTTGAGAAGATACGACGTTGCCCCAGACCCAGCATATCGTTTAGATAT

CGTAGAAGCTGTAACGCTAAAGCCTAGAGGCTTTGAGCTTACACTACAGAGGAGGT

AA

Seq. ID NO: 37 >THCdeg_9

ATGAGTAGTTCAGCATCTTCCCAGTCTAACCTAGAGCAAGTCTTTGCCAACGTAGCA

T C A A ATT AT AGAGGAGC AGAC AT AG AC TT GC ACGC AGT AT ATCGT GA A AT GAGGGA

AAAGTCTCCGGTTCTGCCAGAGAATTTCATGGCCCGTCTAGGTGTGCCCTCAATCGC

TGGTCTGGACCCCGACCGTCCTGCCTTCACGCTATTCAAATATGACGACGTTATGGC

AGTCATGCGTGATGCTACAAACTTTACTTCAGGCTTTATAGCCGAGGGTTTGGGGTC

CTTCTTTGATGGACTTATATTGACAGCAATGGACGGTGAGGCACATAAAAATATACG

TTCCTTATTGCAGCCTGTCTTTATGCCAGAAACCGTTAACAGATGGAAAGAGACTAA

GATCGAC AGAGTGAT AAGGGA AGAAT ACCTGC AACC AAT GGT GGC ATCC AAAGGGG

CGGATATTATGGAGTTTGCTCTGTATTTTCCAATTAGAGTTATTTATTCCCTGATAG G

ATTCCCAGAAGATAGACCCGAGGAAATCGAACAATACGCAGCATGGGCGCTCGCAA

TCCTGGCGGGCCCACAAGTGGACCCCGAAAAGGCAGTTGCCGCGCGTGGAGCCGCT

ATGGAAGCTGCCC AGGCGTTGT AT GACGTGGT GAAAGTCGT AGTCGCGC AGAGGCG

TTCTCAAGGTGCCACGGGAGATGACTTGATATCCAGGCTGATACGTGCCGAGTACGA

AGGTCGTAGCCTGGATGACCACGAGATAACCACGTTCGTCAGGTCCCTACTGCCCGC

GGCATCTGAGACAACGACCAGAACATTCGGGACATTGATGACTTTACTATTGGAAA

GACCGGAGCTTCTAGCACGTATTCGTGAAGACAGAAGCCTGGTGCCAAAAGCAATT

GATGAGGCTGTTAGGTACGAACCTGTAGCAACCTTTAAGGTCAGACAGGCCGCTAA

AGACGTTGAGATACGTGGGGTAGCCATTCCTCAAGGAGCCATGGTTAGCTGTATTGT

AACATCTGCAAATAGGGACGAAGACGCGTTCGAAAATGCTGATACTTTCAATATCG

ATAGAAGAGCGAAACCATCATTCGGTTTCGGATTCGGCCCACACATGTGCATTGGAC

AATTTGTAGCCAAGACCGAGATAAATTGCGCTCTAAATGCTATTCTGGACTTAATGC

CCAATATACGTCTTGATCCCGATAAACCTGCACCAGAAATCATAGGTGCCCAGCTAA

GGGGTCCCCACCATGTACACGTCATTTGGGACTAA

Seq. ID NO: 38 >THCdeg_10

ATGAGTAGTACTGCCACAGAATTGAGGGATGCACCTGGGAGTGCGCCAGGCCTACC

CAGGAGATCCATGTTATCCCTTTTACCCAGAATGGCACGTGATAGATTGTCAGTTAT

GACAAGTGTAGCGGCGCGTTATGGGGACGCCGTGACGTTGCCCTTGGGCTTATCAAC

GTTACACTTCTTCAACCACCCCGACTATGCTAAGCACGTACTGGCTGATAATAGCTC

AAACTACCACAAGGGCATCGGCTTAATCCACGCGAAGCGTGCGTTAGGTGACGGAC

TTCTT ACGTC AGAGGGT GAGTT AT GGAGAAAAC AGAGGA AAACC ATT C AGCCGGC A

TTTGCTGTTAAAAGGTTGGCTGGACAAGCGGGGGCAATCGCAGAGGAAGCTGATAG

GTTGGTAGAGCATCTGCTGGCCCGTCAAGGGAGAGGGCCAGTTGACATCAGGCACG

AGATGACTGCCCTTACCCTAGGTGTGTTAGGCCGTACCCTACTTGATGCGGACTTAG

GCGCTTTCGGTTCAGTGGGCCACTGGTTCGAGGCTGTACAAGACCAGGCGATGTTTG

ACATGATGAGCCTTGGTACTGTACCACTATGGTCTCCCTTGCCCAAGCAACTGAGAT

TC AGGAGAGCGAGGAGGGAATT GGAGT C AGT GGTGGACCGTCT AGT AGCTC AGCGA

GGGGATAGACCTAGGGCAGACGGCGATGATGTTGTGTCCAGGCTTGTCGATAGTAC

AGGAAGGGAGCGT GATCCTGC ACT AAGGAGAAAGAGAATGC ACGAT GAATTGGT G

ACTCTGTTACTGGCGGGCCACGAGACAACAGCATCTACCCTTAGCTGGACATTCCAT

TTGGCCGATGAACACCCTGAGGTCTGGGAGCGTTTACACGCCGAAGCCGTGGAGGT

ACTAGGTGATAGGCGTCCGGTCTTTGAAGATTTACATCGTTTGCGTTACACAAATCG

TGTACTAAATGAAGTTATGAGGTTGTACCCTCCAGTTTGGCTGCTTCCTAGAAGAGC

TGTCGCTGACGACGTTGTTGGAGGATATAGAGTACCGGCTGGATCTGATGTTTTAAT

CTGCCCTTATACGCTACACAGACATCCTGAGTTTTGGGAGCTTCCAAGTAGGTTCGA

CCCTGATAGGTTCGATCCGGAAAGGTCTGCCAACAGGCCCAGATATGCTTACATTCC

TTTTGGTGCGGGTCCACGTTTTTGCGTTGGTAACAACCTAGGACTAATGGAGGCAGC

CTTCGTTATTGCAGCTATAGCAAGAAGAATGAGACTAAGGAAGGTTCCGGGAGGAA

CTGTCGTTCCTGAACCAATGTTGACTTTACGTGTTAGAAGTGGGCTGCCTATGACGG

TGCACGCGCTTGACCGTTAA

Seq. ID NO: 39 >Oxid_l

ATGAGTAGTCAGAGAAGAGATTTCCTTAAGTATTCTGTGGCCCTTGGCGTTGCCTCA

GCTTTGCCCCTGTGGTCTAGGGCCGTCTTTGCCGCGGAAAGACCGACTCTTCCGATC

CCCGACTTGCTGACGACCGATGCCAGAAATAGAATTCAACTAACCATCGGGGCAGG

CCAGAGTACCTTCGGCGGCAAAACCGCCACGACTTGGGGTTACAATGGTAACCTGTT

AGGGCCTGCTGTCAAACTACAACGTGGCAAAGCGGTCACGGTAGACATATATAACC

AACT AACTGAGGAAAC AACGTTGC ACTGGC ATGGCCT AGAAGT GCCCGGCGAAGT A

GATGGAGGTCCCCAGGGCATTATCCCCCCAGGGGGTAAAAGATCAGTCACATTGAA

TGTCGACCAGCCTGCGGCTACATGCTGGTTCCATCCACATCAGCACGGGAAGACGG

GGAGGCAAGTGGCAATGGGGCTTGCTGGTTTAGTTGTAATAGAGGATGACGAGATC

TTGAAACTAATGCTTCCAAAACAATGGGGGATAGACGACGTACCTGTAATCGTTCAA

GAT A A A A A ATTT AGCGC AGAT GGGC A A ATCGAC T AC C AGC T GGAT GT CAT GAC AGC

GGC AGT GGGAT GGTTT GGGGAC AC ACTGCT AACT AACGGGGCT AT AT ACCCCC AGC

ACGCCGCTCCAAGGGGTTGGTTACGTCTGCGTCTATTAAACGGTTGCAACGCCCGTA

GCTTAAATTTTGCGACCTCAGACAATCGTCCCTTGTATGTAATCGCGAGCGACGGTG

GATTATTGCCGGAGCCCGTAAAAGTCTCCGAGTTGCCTGTGCTGATGGGAGAAAGAT

TTGAGGTTTTGGTGGAGGTTAACGATAACAAGCCCTTTGATCTAGTTACCCTTCCTG T

AAGCCAAATGGGGATGGCCATCGCTCCATTTGACAAACCTCACCCCGTCATGAGAA

TTCAACCCATCGCTATAAGTGCGTCTGGTGCGCTTCCAGATACTCTGTCTAGCCTAC C

AGCGCTACCGTCTCTTGAAGGTTTAACAGTAAGGAAACTGCAACTATCTATGGATCC A AT GTT AGAT AT GAT GGGA AT GCA A AT GTT A AT GGAGA AGT AC GGT GATC AGGC A A

T GGC GGGT AT GGAC C AC TCC C AGAT GAT GGGCC AC AT GGGT C AC GGC A AT AT GA AT

CATATGAACCATGGGGGCAAATTCGACTTCCATCACGCTAACAAGATTAATGGTCAA

GCCTTCGACATGAACAAGCCTATGTTTGCCGCGGCTAAGGGTCAGTACGAAAGATG

GGTCATCTCCGGGGTAGGGGACATGATGCTGCATCCGTTCCACATCCATGGCACACA

ATTTAGGATTCTTAGTGAAAATGGAAAACCTCCTGCTGCACATAGGGCGGGATGGA

AGGATACTGTGAAGGTGGAAGGTAACGTTAGTGAGGTGCTAGTCAAATTCAATCAC

GATGCCCCCAAAGAACATGCCTATATGGCCCACTGTCACCTTTTGGAGCATGAGGAT

ACGGGAAT GAT GCT AGGTTT C AC AGTC

Seq. ID NO: 40 >Oxid_2

ATGTCTAGCAGACTGAGCTTCTTAACGTCATTGGTTACATTGGCGTTGGTATCTAGC

ACGTATGCCGGAGTTGGGCCCGTTGTAGATCTTACAGTTTCAAACGCCGTTATTTCA

CCTGATGGGTTTGACAGAGACGCGATTGTAGTTAACGGCGTGTTCCCAGCGCCTCTT

AT C AC AGGT A AGA A AGGT GAC AGATTC C AGCT A A AT GT GAT C GAT A AC AT GACT A A

CCATACTATGCTGAAGTCAACAAGTATTCATTGGCATGGGTTTTTTCAAAAAGGTAC

TAACTGGGCCGATGGCGGGGCCTTTGTCAACCAATGTCCAATCGCTCCTGGCCACTC

CTTCCTATACGATTTCCGTGTACCGGACCAAGCAGGCACATTCTGGTACCACTCACA

CCTTTCTACGCAATATTGCGACGGTTTAAGAGGGCCCATCGTGGTATATGACCCCAA

CGACCCTCATGCGGACCTGTACGATGTGGATAATGATTCCACTGTGATCACACTTGC

CGACTGGTACCACGTTGCCGCCCGTCTTGGGCCCAGATTTCCGCTGGGAGCAGATTC

TACGGTTATTAACGGTCTTGGGCGTTCCCTTAGCACGCCTAACGCTGACTTAGCTGT

GATCTCAGTCACTCAAGGTAAAAGATATAGGTTCCGTCTAATATCTCTTTCATGCGA

CCCCTTCCATACTTTTTCTATCGATGGACATGACTTGACCATTATAGAGGCGGACAG

CGTGAACACGGAGCCCTTGGTGGTGGATGCAATTCCAATCTTCGCCGGACAACGTTA

TTCTTTTGTCTTGAGCGCCGTCAAGGACATAGATAACTATTGGATACGTGCGGACCC

AAACTTTGGAACTACAGGCTTTGCATCAGGTATCAACTCAGCGATCCTTCGTTATGA

CGGGGCTGCACCTATTGAACCAACCGCTGTTTTAGCTCCGGTAAGCGTTAATCCCTT

GGTTGAGACGGATTTGCACCCGCTTGAGGATATGCCTGTACCCGGTAGACCAACAA

AGGGTGGCGTTGATAAAGCAATCAACCTGGATTTTAGTTTTAGCTTCCCTAATTTTT T

CATTAACAATGCCACATTTACAAGCCCCACAGTGCCTATCCTGCTACAGATAATGTC

CGGCGCGCAAGCCGCGCAGGATTTATTGCCTTCTGGTAGCGTGATTGAACTGCCAGC

GCAGTCCACCATAGAACTAACTCTTCCCGCGACGGTCAATGCCCCCGGAGTGCCACA

TCCATTTCATTTGCATGGCCACACATTCGCCGTAGTACGTTCCGCCGGTAGCACTGC

CTACAATTACGACAACCCTATTTGGCGTGACGTCGTATCCACTGGCACGCCCGCCGC

AAATGACAACGTCACTATTAGATTTACAACGGACAATCCCGGACCTTGGTTTTTACA

TTGCCACATTGACTTCCACCTTGAGGCTGGCTTCGCCGTGGTATTCGCGGAGGGTGT

GCCGCAGACCCAAGTGGCGAATCCAGTACCTCAAGCGTGGGAGGAACTGTGCCCGA

TTT AT GAC GC ATT ACCGGAAGAT GAT C AG

Seq. ID NO: 41 >Oxid_3

ATGTCTAGTTTTAAAGTCAGCTGTAAGGTCACTAACAACAATGGTGATCAGAACGTA GAAACGAATTCCGTTGAT AGAAGGAAT GTTCTGCTGGGCCTGGGGGGGCT AT ATGG TGTCGCTAATGCCATCCCGCTAGCAGCCTCAGCGGCTCCAACGCCACCACCAGACCT AAAGACTTGTGGGAAGGCGACGATAAGTGACGGGCCTCTAGTTGGATACACCTGTT GTCCTCCCCCTATGCCTACAAATTTTGACAATATACCCTACTATAAGTTCCCAAGCAT GACAAAGCTTAGAATCCGTAGTCCGGCACATGCCGTTGACGAAGAATATATCGCTA

AATACAATTTAGCGATTTCCAGGATGAAAGATCTAGATAAAACCGAACCCTTAAAC

CCTCTAGGGTTCAAGCAGCAGGCTAACATCCACTGTGCGTACTGTAACGGTGCGTAT

GTGTTCGGCGACAAGGTACTTCAGGTACATAACTCCTGGCTGTTCTTCCCCTTTCAT C

GTTGGTATTTATACTTCTATGAGAGGATATTGGGCAAGTTAATAGATGATCCCACGT

TTGCTCTGCCATATTGGAATTGGGATCACCCAAAAGGCATGCGTTTGCCGCCGATGT

TT GAC AGAGAGGGT AC ATCC ATCT AT GATGAA AGGAGGAAT C AGC AAGT GCGT AAT

GGGACCGTCATGGATTTGGGATCATTCGGAGACAAAGTAGAAACGACCCAACTGCA

ACTTATGTCCAACAATTTGACTTTGATGTATCGTCAAATGGTCACAAATGCGCCCTG

CCCACTACTGTTTTTTGGAGCCCCGTATGTTCTTGGAAACAATGTAGAAGCCCCTGG

CACAATTGAAAATATACCGCACATTCCCGTGCATATATGGGCTGGCACGGTGCGTGG

CTCCACCTTCCCTAACGGGGATACGTCTTACGGAGAAGACATGGGTAATTTTTACTC

CGCAGGTTTAGATAGCGTTTTTTACTGCCATCATGGAAACGTTGATCGTATGTGGAA

C G AGT GG A AGGC TAT AGGT GGT A AG AGGC GT GAC C T GT C T G A A A A AG AT T GGT T G A

ATAGTGAATTTTTTTTTTATGATGAGAACAAGAAGCCGTATAGGGTCAAAGTTCGTG

ATTGCCTGGACGCAAAGAAGATGGGCTACGATTATGCGCCCATGCCCACTCCCTGGC

GTAATTTCAAACCCAAAACGAAGGTGAGCGCAGGCAAGGTCAACACATCATCCCTT

CCGCCTGTCAACGAGGTTTTTCCCTTGGCTAAAATGGATAAGGTGATTAGTTTTTCA

ATAAACAGGCCGGCTAGCTCAAGAACACAGCAAGAAAAAAATGAACAGGAGGAGA

TGTTGACATTTGATAACATCAAGTACGACAATCGTGGTTACATTCGTTTTGACGTCT T

CTTGAACGTCGACAACAACGTTAACGCGAACGAGCTGGACAAAGTTGAATTCGCTG

GAAGCTATACCTCATTACCACATGTGCATCGTGTCGGAGAAAATGATCACACGGCCA

CCGTTACCTTCCAGCTAGCCATCACTGAACTACTGGAAGATATCGGCCTAGAAGATG

A AG A A ACC AT AGCTGT GAC TC T AGT ACC C A AGA AGGGGGGT GA AGGA ATT AGT ATT

GAG A AT GT GG A A ATT AAAT T AT T AG AC T GT

Seq. ID NO: 42 >Oxid_4

ATGTCTGGCCAGAATAAAATGGGTCTTATACTTGTATTTCTGTTTCTGGACGGGTTG C

TTGTCTGTTTAGCTGCGGATGTGGATGTACATAACTACACCTTTGTTCTGCAGGAAA

AAAACTTTACTAAATGGTGTAGCACTAAAAGTATGCTGGTCGTAAACGGTTCATTCC

CTGGGCC A ACT ATT AC AGCC AGAAAGGGGGAT AC GAT ATTT GTC AACGT CAT AAAT

C A AGGGA AGT AC GGGTT A AC C ATCC ATTGGC AT GGT GTT A AGC A ACC A AGGA AT C C

CTGGAGCGACGGACCCGAATATATAACTCAATGCCCGATTAAACCGGGTACGAACT

TCATTTACGAGGTCATTCTGTCAACCGAGGAGGGAACACTGTGGTGGCATGCACACT

CCGACTGGACGCGTGCCACCGTGCATGGTGCGTTAGTGATTTTACCCGCTAACGGAA

CCACATATCCTTTTCCACCCCCGTACCAGGAGCAGACGATAGTCTTAGCGAGCTGGT

TTAAAGGCGATGTGATGGAGGTAATTACATCTTCTGAAGAGACGGGGGTTTTTCCCG

CCGCGGCTGACGGGTTTACAATCAATGGCGAACTGGGAGACCTGTACAATTGCAGC

AAGGAAACCACATACAGGCTTTCCGTACAGCCGAACAAAACATATTTACTAAGAAT

TGT GAAT GC AGTCCT AAACGAGGAAAAGTTTTTT GGT AT AGCGAAAC AC AC ATT GAC

AGTAGTTGCTCAGGACGCTTCATATATTAAGCCTATAAATACCTCTTATATAATGAT

CACGCCTGGCCAAACGATGGATGTATTATTCACGACCGACCAAACTCCTTCTCACTA

CTATATGGTTGCGAGTCCGTTTCACGACGCACTAGACACGTTTGCAAATTTTAGCAC

TAATGCAATCATACAATATAATGGGTCCTATAAAGCACCGAAAAGTCCCTTCGTGAA

ACCGTTGCCCGTTTATAATGACATCAAGGCAGCAGATAAATTCACGGGGAAACTGC

GTTCTCTTGCCAATGAGAAGTTCCCAGTAAACGTCCCCAAGGTCAACGTTAGAAGGA

T ATTT AT GGC AGTCTC ACT A A AT AT C GTT A AGT GT GCA A AT A AG AGC T GCA AC A AT A ATATAGGACACTCTACTTCAGCCTCCCTAAACAACATAAGTTTTGCGCTACCTCAGA

CAGATGTACTGCAGGCATATTATAGAAACATCAGCGGCGTATTCGGTAGAGATTTTC

CTACAGTTCAGAAGAAGGCTAACTTTTCCTTAAATACAGCCCAAGGCACTCAAGTAC

TAATGATAGAGTATGGCGAGGCCGTTGAGATCGTATATCAGGGTACTAATTTGGGA

GCCGCAACCAGTCATCCGATGCACCTTCATGGCTTTAACTTCTATCTAGTTGGCACG

GGTGCTGGAACGTTCAACAACGTGACTGATCCTCCCAAGTATAACCTGGTCGACCCG

CCTGAGTTGAATACTATAAACCTACCACGTATCGGCTGGGCAGCAATTAGGTTTGTC

GCGGACAACCCAGGGGTCTGGTTCCTTCACTGTCACTTCGAGAGACATACAACGGA

GGGTATGGCAACAGTCGTGATTGTGAAAGATGGCGGAACTACAAACACTTCTATGC

TACCAAGTCCCGCGTACATGCCACCATGCAGC

Seq. ID NO: 43 >Oxid_5

ATGTCTTCCCGTAAGATTTGTCTAGGGTGTTCACATTCTTTAAGCTCCCAACCCTTT A

CATATACAACTCAGAAGACTGTAAGTAGTAGGCGTATCGGTGACTCTCAGTGGCGTC

TTAGCCGTGGTTACACCCGTACGCTGACCTCTGCAAGTGCAAGCGTTGCTACAGCTC

CCGCTAAGCTACTTACGGTCAATGAAACTCAAAAATGCCTAAGGAACATGGTCCGT

GGCGGAGACGTAATTAGCTACATTCTTTCCCATTCTTCCCGTAACGCAGACCAGAAT

TTGAAAGATTTAGACAGCTTAATATTGGAGCCTGTCTGCAGTGCTACGCACGAGATG

TTCGACGTTTTCGAGATCCCAGAACACATTTTGACTCCGTTTTGCGATAACAGAAAT

GTCCCCGAGGAACAAGTCACCCGTAATCCTAATCTGAGAACCGACTGTCTGACGAT

GAAGAGGTTTGTGCTATTACAGAGCCTAGTCGCGGTTGCATCCGCCGGAATTGGGCC

AGTAGCAGATCTGTACGTAGGAAATAGAATACTGGCTCCGGATGGGTTTAACAGAA

GTACAGTTCTAGGAGGTACCAGTTCATCTGATTTTGGATTCCCAGCGCCACTAATCA

CCGGCACAAAAGGGGACAGGTTTCAACTGAACGTCATCAATCAATTAACCGACACT

ACGATGTTAAGATCAACAAGCATACATTGGCACGGGTTATTCCAGGCTGGCTCATCT

TGGGCCGACGGCCCTGTAGGAGTAAATCAATGCCCTATAGCTCCAGGAAACTCATTT

CTGTACGACTTTAACGTCCCTGACCAGGCGGGAACTTTCTGGTATCATAGTCATTAT

AGCACACAGTACTGTGATGGTCTTAGGGGGGCTTTTGTGGTAAGAGATCCTAACGAT

CCACATGCGAGTCTTTACGATGTCGATAATGATGACACAGTTATAACATTGGCTGAT

TGGTATCATACGAGCGCTAAAGAGCTATCAGGCTCCTTTCCGGCAGAAGAGGCGAC

CTTGATCAATGGGCTGGGTAGGTATAGCGGGGGTCCTACTTCCCCATTAGCTATCGT

CAATGTAGAAGCGGGCAAGAGGTACCGTTTCCGTTTGGTATCCATAAGCTGCGATCC

ATTCTACACCTTCTCCATTGATGGTCACGATTTGACCATTATAGAGGCGGACGGGGA

GAACACTGATCCACTAGTAGTGGACTATCTGGAAATATACGCTGGGCAACGTTACA

GCGTGGTGTTAAACGCGAACCAGCCAGTAGACAATTACTGGATTAGGGCAAATTCTT

CCAATGGTCCGAGGGACTTTGTTGGCGGCACAAATTCTGCCATACTGCGTTACGCCG

GTGCATCAAACTCAGATCCGACAACAGAGCTAGGGCCGCGTAATAATAGGCTTGTT

GAGAATAACCTTCATGCTCTGGGATCCCCTGGTGTGCCAGGCACGCATACGATTGGA

GAGGCCGATGTAAACATTAATCTTGAAATATTGTTTACGCCACCGAATGTCCTAACC

GTTAATGGCGCCCAATTCATTCCACCTACTGCTCCCGTTTTATTGCAGATATTGTCC G

GGACAAAACAAGCAACGGATTTGTTACCCCCAGGTTCCGTATATGTTCTGCCTAGAA

ACGCGGTAGTTGAGCTAACAATCCCGGGTGGGTCAGGCGGAAGTCCTCATCCGATG

CATCTGCATGGCCACGTCTTTGACGTAGTTAGATCAGCTGGATCAGATACCATAAAT

TGGGACAATCCGGTCAGAAGAGATGTCGTGAACATTGGGACTAGCACATCTGACAA

TGCCACGATTAGGTTCACGACCGACAACCCGGGACCATGGATTTTTCATTGTCATAT

CGACTGGCACTTGGAGGTTGGGCTGGCAGTTGTTTTTGCTGAGGATCCGGATACAAT TGAAAATAGTACACATCCCGCTGCGTGGGATGAGCTGTGCCCAATTTACGACAACCT

TCCTTCCGACGAGTTA

Seq. ID NO: 44 >Oxid_6

ATGAGCTCCACATTGGAAAAGTTCGTAGATGCCTTACCGATCCCAGATACATTAAAG

CCGGT AC A AC AATCT AAAGAAAAA ACGT ATT ACGAGGTC ACGAT GGAGGAATGT AC

GCATCAATTACATAGAGATCTTCCGCCCACAAGGCTATGGGGATATAACGGTTTATT

TC C T GGT C C G AC GAT C G A AGT G A AG AG A A AT G A A A AC GT AT AC GT A A AGT GG AT G A

ATAATTTACCTTCAACACATTTTCTTCCTATAGATCATACCATCCACCACAGCGACT C

CCAACATGAAGAGCCTGAGGTAAAGACGGTAGTGCATCTTCATGGCGGTGTTACTCC

GGATGACTCCGACGGCTATCCAGAAGCATGGTTCAGCAAGGATTTCGAACAAACGG

GCCCGTACTTCAAAAGGGAAGTATATCACTACCCAAACCAGCAGCGTGGTGCCATC

CTATGGTATCATGATCATGCAATGGCCTTGACTCGTTTGAATGTTTATGCAGGTCTA G

TCGGGGCATACATTATACACGATCCCAAGGAAAAGAGATTAAAACTGCCTTCAGAT

GAGTACGATGTACCCCTACTGATCACGGACAGGACAATAAACGAGGATGGTTCTCTT

TTTTACCCCAGCGCGCCAGAAAATCCATCCCCCTCACTGCCAAACCCTAGCATTGTC

CCGGCATTTTGCGGGGAGACAATCCTTGTGAATGGTAAAGTATGGCCGTACTTGGAG

GTCGAACCAAGGAAGTATAGATTTAGGGTTATAAATGCGAGCAACACAAGAACATA

TAACTTATCCTTAGACAATGGCGGCGACTTCATTCAAATAGGATCTGATGGGGGCTT

GTTACCCCGTTCAGTGAAGTTGAATTCCTTTTCATTAGCACCTGCAGAAAGGTACGA

TATAATCATTGACTTTACCGCATACGAAGGTGAGAGCATTATCTTAGCTAATAGTGC

TGGCTGCGGGGGGGATGTCAATCCTGAGACGGACGCGAATATTATGCAATTTAGAG

TT AC AAAGCCTCTGGCCC AAAAGGATGAATCC AGAAAACC AAAGT ACTTGGC ATCC

T ATCCGT C AGTT C AAC ATGAGAGGATTC AA AAC AT AAGGAC ACTGAAATT AGC AGG

TACGCAAGACGAATATGGTCGTCCGGTACTTTTGCTGAATAATAAGCGTTGGCACGA

TCC AGTT ACTGAAACGCCTAAGGTGGGT ACC ACCGAGATTTGGAGCATAATAAATCC

CACGAGAGGCACCCATCCCATTCACCTACATCTTGTCAGTTTCAGAGTCTTAGACCG

TCGTCCGTTCGATATAGCTCGTTATCAGGAGTCAGGGGAACTTTCCTACACTGGACC

TGCTGTACCGCCGCCACCGTCAGAAAAGGGTTGGAAGGACACGATCCAGGCCCATG

CGGGTGAAGTTCTAAGAATCGCAGCTACCTTCGGTCCGTACAGCGGGAGGTATGTGT

GGCACTGTCATATCTTGGAGCACGAAGACTACGATATGATGAGGCCTATGGATATCA

CTGATCCACACAAG

Seq. ID NO: 45 >Oxid_7

ATGAGCTCTGTGTTTAGTGCTGCGTTTTCCGCATTCGTTGCCTTAGGTCTAACTCTG G

GCGCTTTTGCTGCCGTTGGCCCGGTCGCGGACATCCACATTACCGATGATACCATAG

CACCTGACGGATTTAGTAGGGCTGCCGTACTGGCAGGTGGGACCTTCCCAGGGCCCC

TAATCACCGGGAACATGGGAGACGCCTTTAAGTTAAACGTCATCGACGAGTTGACG

GATGCCTCTATGTTGAAAAGTACCAGTATCCATTGGCACGGCTTCTTTCAGAAGGGA

ACGAACTGGGCTGATGGCCCAGCTTTCGTGAATCAATGCCCCATTACAACTGGAAAC

TCCTTCTTGTATGACTTCCAAGTGCCAGACCAAGCAGGTACTTATTGGTATCACTCC C

ACCTAAGCACTCAGTACTGTGACGGACTGAGAGGTGCCTTCGTGGTTTACGACCCAA

GTGATCCGCACAAAGATCTGTACGACGTGGACGATGAATCCACCGTCATAACCCTA

GCAGACTGGTACCACACGCTGGCCAGGCAGATTGTGGGAGTGGCGATTAGCGATAC

CACGCTTATCAATGGCCTGGGGCGTAATACAGACGGACCCGCAGATGCTGCCTTAG

CCGTGATCAATGTAGAAGCTGGCAAAAGATATAGATTTCGTTTAGTAAGCATCAGTT GCGACCCGAATTGGGTGTTTAGTATTGACAATCATGACTTTACGGTTATTGAGGTAG

ACGGCGTGAACAGCCAGCCTCTGAATGTTGACAGCGTACAAATATTTGCAGGGCAG

AGGTATTCCCTAGTGTTGAACGCGAACCAGCCCGTCGATAACTATTGGATTAGGGCT

GATCCTAACCTTGGTACCACAGGGTTCGCGGGTGGAATAAATTCAGCAATTCTACGT

TATAAGGGTGCGGCCGTTGCCGAGCCGACTACATCCCAAACCACAAGCACCAAGCC

CTTATTGGAGACTGACTTGCACCCCTTGGTTAGTACACCAGTCCCAGGATTACCGCA

ACCTGGCGGCACGGATGTAGTCCAAAACCTTATTCTAGGCTTCAATGCTGGGCAGTT

CACAATCAATGGCGCATCCTTTGTGCCACCAACAGTTCCAGTTTTGTTACAAATCTT A

TCTGGAACAACGAACGCGCAAGACCTGCTACCGTCCGGTAGTGTATTTGAGTTACCG

TTGGGAAAAACGGTCGAATTAACCCTGGCAGCCGGCGTTTTAGGCGGACCACACCC

GTTTCACTTACACGGTCATAATTTCCATGTCGTCAGGTCCGCTGGACAGGACACGCC

CAATTACGACGATCCAATTGTCCGTGACGTTGTCTCAACCGGAGCGTCTGGGGACAA

TGTTACAATTAGGTTTACTACCGACAATCCTGGGCCCTGGTTCCTACACTGTCATAT C

GATT GGC ACCT AGAGGC AGGCTTT GCGGTT GT ATTCGC AGAGGC AGT GAAT GAG AC

TAAATCTGGCAATCCTACACCGGCAGCCTGGGATAACCTATGCACTCTTTACGATGC

TCT AGCTGAT GGT GAC AAG

Seq. ID NO: 46 >Oxid_8

ATGTCCTCCTGTTTGGCCGCTATATGGTCAAGGAAAAGAGCGGAGCATGCCGCGTCA

AGGCTTCCAGCTTTACAGGAGAAAAGGTCCACACTAAGCTACGCGTATGCTAGGTTA

GATGGCAGTCTTGCGAGTATGTTTCCAAATAGGTTTTGGTCAAGCGTTAGTCTTGGA

GCTAGGATTAAACCGGTGGATGGGAGTAGTGAAGAACCCACCGCAAGGCCCAGCAG

CTGTGCCAGGCCCTTCTTACACTCAGCATCATCTGAATCAGGGTTCGTCTCCTCCTC A

CGTCCGACCAGCTTTTGCGTTACGTGCTCCCGTCGTTGGAGATGCTGTAGTCTTTTG G

CAATGCTGGGATTCAGGTTCTTACACACAAGCGTCCTTGCTGCATTGACTCTTAGTC T

AAAGAGTTATGCGGCGATAGGACCGGTTACAGACTTGACCGTCGCTAATGCGAATA

TTTCACCCGATGGTTATGAAAGAGCTGCGGTGTTAGCCGGCGGTTCATTTCCCGGCC

CACTAATTACTGGCAGAAAGGGGGACCACTTTCAGATTAATGTAGTAGATCAGCTA

ACCAACCACACCATGCTTAAAAGCACCTCTATCCATTGGCACGGGCTGTTCCAGAAA

GGGACTAACTGGGCAGACGGGCCGGCGTTTGTTAACCAGTGTCCCATCTCCACTGGG

AACTCCTTCTTATACGACTTCCATGTTCCTGATCAAGCGGGGACTTTTTGGTATCAT T

CCCATCTAAGCACACAGTACTGTGATGGTCTAAGGGGTGCCATGGTGGTGTATGACC

CCAATGACCCTCACAAGAACCTTTATGACGTAGATAATGACGATACCGTAATAACCC

TAGCAGATTGGTATCATGTAGCCTCTAAGCTGGGGCCTGCTGTCCCTTTTGGGGGGG

ACTCAACCTTGATAAATGGCAAGGGTCGTAGCACTGCAACACCAACCGCCGACCTT

GCTGTCATTAGTGTAACTCAAGGTAAAAGATATAGGTTCCGTCTGGTGTCACTTTCA

TGCGACCCGAATTTCACGTTTAGTATAGATGGTCATGCCCTGACCGTAATAGAGGCC

GATGCTGTTTCAACTCAGCCATTAACTGTCGACAGTATCCAAATATTCGCGGGTCAA

AGGTACTCCTTTGTGCTTAATGCCAATCAGTCCGTTGATTCATACTGGATTCGTGCC C

AGCCATCCCTTGGTAATGTGGGCTTTGATGGAGGGCTTAATTCTGCGATCCTTCGTT A

TGACGGGGCTGCGCCGACCGAACCATCCGCGCTAGCTGTTCCAGTCTCTACTAATCC

TTTGGTTGAGACGGCACTGAGGCCGCTTAATTCAATGCCCGTCCCCGGTAAGGCTGA

GGTGGGCGGTGTGGATAAAGCGATTAACCTTGCGTTTAGTTTCAATGGCACGAACTT

TTTCATCAATGGGGCAACGTTTGTGCCGCCCGCCGTGCCCGTTCTACTACAGATCAT

GAGTGGCGCCCAGAGTGCTAGTGATCTTCTTCCTAGCGGCTCAGTGTTTGTGCTACC

CAGTAACGCTACCATCGAATTAAGTTTTCCAGCAACTGCAAACGCCCCAGGCGCTCC

ACATCCCTTCCACCTACATGGACACACGTTCGCGGTAGTACGTTCTGCTGGTTCCGC GGAGTATAATTATGAAAATCCTATATGGAGAGACGTTGTTTCAACCGGTTCTCCGGG

AGACAATGTCACCATACGTTTCAGGACCGATAATCCGGGCCCCTGGTTTCTGCATTG

TCATATCGATCCCCATCTGGAGGCCGGCTTTGCGGTGGTTATGGCGGAGGACACTAG

GGACGTCAAGGCCGACAATCCCGAACCTAAAGCCTGGGACGATCTTTGCCCCACAT

ACAATGCGCTAGCAGTGGATGACCAA

Seq. ID NO: 47 >Oxid_9

ATGTTTCCAGGGGCGCGTATTCTGGCCACCCTGACGTTGGCACTGCATCTGCTGCAC

GGT AC C A AT GCC GC A AT AGGAC CC AC T GG AG AC AT GT AC AT AGTT A ACG A AGACGT

GTCCCCTGACGGCTTCACCAGGTCCGCAGTAGTTGCTAGGAGTGATCCTACCACAAA

CGGGACATCCGAAACTCTAACGGGTGTCTTAGTTCAGGGGAACAAGGGAGACAACT

TCCAATTGAACGTGCTGAACCAGTTATCAGACACAACTATGCTAAAAACGACAAGC

ATTCATTGGCACGGCTTTTTTCAATCTGGATCCACCTGGGCCGACGGCCCAGCCTTT G

TAAACCAATGTCCAATAGCTAGCGGTAATTCTTTCCTTTACGATTTTAATGTACCAG A

CCAGGCCGGCACGTTCTGGTACCACAGTCATCTGTCAACCCAGTACTGTGACGGTTT

GAGGGGACCATTTATCGTTTACGACCCAAGCGATCCCCACCTGTCTCTATACGACGT

CGACAATGCGGACACTATCATAACGCTGGAAGACTGGTACCACGTAGTGGCACCTC

AGAACGCCGTATTGCCGACGGCCGATAGCACACTAATTAACGGCAAAGGCCGTTTC

GCCGGGGGTCCTACAAGCGCCTTAGCGGTCATCAATGTTGAGTCTAATAAACGTTAC

AGATTCCGTCTTATATCCATGTCCTGTGACCCTAATTTTACGTTTAGTATAGACGGA C

ATAGCCTACAAGTGATTGAGGCCGATGCCGTGAACATTGTACCGATAGTAGTGGATT

CCATCCAGATATTCGCCGGACAAAGGTACAGCTTTGTACTTAACGCTAACCAGACCG

TGGACAACTACTGGATCAGAGCTGATCCGAATTTGGGCAGCACTGGTTTCGACGGA

GGTATCAACTCTGCTATTTTAAGGTATGCTGGAGCAACGGAAGATGACCCCACGACG

ACAAGTTCCACCTCAACTCCATTAGAAGAAACAAACTTGGTACCCCTAGAGAATCCT

GGGGCGCCAGGACCGGCGGTACCCGGCGGTGCAGACATAAATATCAATCTTGCCAT

GGCTTTCGACGTGACGAATTTCGAATTAACGATTAACGGATCCCCTTTCAAAGCACC

TACCGCCCCCGTACTTTTACAGATATTGTCAGGAGCAACGACGGCCGCTTCCTTGCT

GCC AT C AGGGTCC ATTT ACTC ACT AGAAGCC AAT AAAGT AGT GGAGATTTCC AT ACC

TGCTCTAGCTGTGGGGGGTCCGCATCCTTTCCACTTACACGGGCATACATTTGACGT T

ATACGTTCAGCGGGGAGTACGACTTACAATTTTGACACTCCCGCTCGTAGGGATGTC

GTT AAT AC AGGA AC GGACGCT A AT GAT AAT GT A AC A AT A AG ATTT GTT ACC GAC A A

CCCAGGGCCGTGGTTTCTGCATTGCCACATAGACTGGCACTTAGAGATAGGGCTGGC

CGTCGTTTTCGCCGAGGACGTTACTAGCATAACCGCACCTCCAGCGGCGTGGGATGA

TTTGTGTCCCATCTATGACGCATTATCTGATAGCGACAAGGATAATCCTAGGTTTGG

ATTTGCACCAGCGACAGGAGGTAAAGCAACGGGCAGGAGAAATTGGTTCTCAAAGG

CTAGGCGTAGAGCAATTTTGGTTCCCTATTTAAAACTTTTAAAATTGGGGTTGGTGA

TGGTCTTCTATATAAGAGCAGAAAGGAACCATGGTAGACTTTCCCAATCTACACCTC

CGAATCGT AGGGT AG AT C AGCGTGAATT A ATT ACT AAC AC ATGGGTGGAGAGGTTTT

TCCTGCACCGTCTAATGTTTCTGAAGCTTTTTGTTGGAACCGCATGTTTCATGCACA T

CTTCAATTCAGTTAGCTCACTAGGGATGTGTACGTTGAGGACCAGCCATGGGTCCTC

CGAGTCATTAGCTTCTCCATCAGCGACCATGATGTTAGGAGGCGGCCTAACTCTTCT

TAGTGCTAACATAAGACTTTGGTGTTATGCCGAGATGAGAGATTTGTACGACTTCGA

AGTT AAT ATCAAAAAGGCCCACCGTCTTGTAACGACTGGGCCGTATAGTGTTTCTAT

GGTTATGTTTAGCAAGGATCATTGGTTGTATCAATGCGGTCTGCGTTCCATGGTTGG

CGTTGTGCTAAGTTGTATATGGTGCGCGGAAGTTGTACTGATCAACGGAATTATGGT CCCGGCACGTATGAAGGTGGAAGACGACGGATTGAGAAGGCACTTCGGGCGTGAGT

GGGATGAATATGCATCACGTGTGGCCTATAGGTTGGTCCCCGAGATTTAT

Seq. ID NO: 48 >Oxid_10

ATGTCAAGTAAGAGCTTTATCTCTGCCGCGACCCTACTGGTCGGAATACTTACGCCG

AGTGTGGCGGCTGCTCCACCTAGCACCCCTGAGCAAAGGGACCTGTTGGTTCCCATT

ACAGAAAGGGAGGAAGCTGCTGTTAAAGCGCGTCAGCAGTCTTGCAACACTCCCTC

AAACCGTGCATGCTGGACGGATGGCTATGACATCAATACAGACTATGAAGTAGATT

CTCCTGATACGGGTGTTGTTCGTCCCTACACTTTGACGCTGACCGAGGTTGATAACT

GGACTGGGCCTGATGGTGTCGTCAAGGAAAAGGTTATGCTGGTAAACAATTCAATA

ATCGGACCCACAATTTTTGCCGATTGGGGTGATACCATCCAAGTCACGGTGATTAAT

AACCTTGAGACCAATGGAACGAGTATTCATTGGCACGGCCTACATCAGAAGGGTAC

GAACTTGCACGATGGAGCTAATGGGATTACTGAATGCCCCATCCCGCCCAAGGGGG

GCAGAAAGGTTTATAGATTCAAAGCACAGCAATATGGAACGAGTTGGTATCATAGT

CACTTTTCCGCGCAGTACGGCAACGGTGTGGTTGGCGCGATACAGATCAACGGGCC

GGCCAGTTTACCATACGATACGGACCTGGGCGTTTTTCCTATCAGCGATTATTATTA T

TCCTCAGCGGATGAGCTAGTTGAATTGACCAAAAACAGCGGTGCACCCTTTTCAGAT

AATGTCCTTTTTAACGGAACGGCAAAGCACCCAGAAACAGGCGAGGGCGAGTACGC

AAATGTAACGTTAACCCCAGGAAGGAGGCATCGTTTGCGTCTGATTAACACGAGTGT

TGAAAACCATTTCCAAGTCTCTCTAGTTAATCATACCATGACGATCATTGCCGCCGA

TATGGTTCCAGTAAATGCTATGACCGTTGATTCACTGTTCCTGGGCGTCGGACAAAG

GTACGACGTAGTAATAGAAGCTAGTAGAACTCCAGGGAATTATTGGTTCAATGTGA

CATTCGGGGGCGGCCTGTTGTGCGGAGGCAGTAGGAATCCTTACCCAGCTGCAATAT

TTCACTATGCAGGCGCCCCTGGTGGACCGCCGACTGATGAAGGAAAAGCGCCGGTG

GATCACAACTGCTTGGATCTGCCGAACCTTAAACCTGTTGTTGCTCGTGATGTGCCA

TTATCTGGTTTCGCCAAGAGGCCCGACAACACTTTAGACGTCACTTTGGACACGACT

GGAACTCCCCTTTTCGTCTGGAAGGTAAACGGTAGTGCTATTAACATAGACTGGGGC

CGTCCGGTCGTGGATTACGTACTAACACAAAACACTTCTTTCCCACCCGGTTACAAT

ATAGTCGAGGTCAACGGCGCAGATCAGTGGTCATACTGGTTGATTGAGAATGACCC

AGGTGCGCCATTCACGCTACCGCACCCGATGCACCTACATGGGCATGACTTTTATGT

ACTAGGTAGAAGTCCGGATGAATCACCTGCTAGCAATGAACGTCACGTATTTGATCC

CGCCCGTGATGCGGGATTACTGTCCGGGGCGAACCCAGTGAGGCGTGATGTTACTAT

GTTGCCTGCGTTTGGATGGGTTGTGCTGGCCTTCAGGGCTGACAACCCCGGGGCATG

GCTTTTTCATTGCCATATAGCATGGCACGTATCCGGCGGGCTAGGTGTTGTCTACCT A

GAGCGTGCAGACGACCTGAGGGGAGCGGTATCAGACGCGGACGCGGATGACTTGGA

TAGGCTTTGCGCTGATTGGAGGAGATACTGGCCGACAAATCCGTATCCCAAATCAGA

CTCTGGTCTT

Seq. ID NO: 49 >Oxid_l 1

ATGTCATCCCGTTTCCAGAGCCTATTTTTCTTTGTGCTGGTAAGCTTGACTGCGGTG G

CGAATGCGGCTATTGGGCCGGTGGCTGACCTTACACTTACAAACGCACAAGTTTCCC

CAGATGGCTTCGCTAGAGAAGCGGTCGTGGTTAACGGAATCACCCCAGCACCATTG

ATTACGGGGAACAAGGGGGACAGATTTCAGTTAAATGTGATCGACCAGCTTACTAA

CCACACGATGTTGAAGACGTCTTCTATACACTGGCATGGTTTTTTCCAGCAGGGTAC

TAACTGGGCAGATGGCCCTGCTTTCGTTAACCAGTGTCCGATTGCGTCCGGTCATAG

TTTTTTGTACGACTTTCAGGTCCCTGATCAAGCGGGGACGTTCTGGTATCACTCACA C CTAAGTACCCAATACTGTGACGGACTGCGTGGACCGTTCGTGGTGTACGACCCTAAT

GATCCCCATGCGAGCCTTTATGACATCGACAATGACGATACTGTCATAACTCTGGCG

GACTGGTACCATGTAGCCGCGAAATTAGGTCCACGTTTCCCATTCGGTTCAGATAGC

ACCCTAATAAACGGCCTTGGCAGAACTACCGGAATTGCGCCGTCTGACCTTGCAGTC

ATCAAAGTGACACAGGGCAAGCGTTACCGTTTCCGTCTGGTCTCTTTGTCCTGTGAC

CCAAACCACACATTCTCCATTGACAATCACACCATGACGATCATCGAGGCCGACTCT

ATCAATACGCAGCCACTAGAGGTGGATAGCATCCAGATATTCGCTGCTCAGCGTTAT

TCTTTCGTGCTGGACGCTAGCCAACCGGTGGATAACTACTGGATAAGAGCAAATCCG

GCGTTCGGTAACACCGGGTTTGCTGGTGGGATAAACTCTGCCATACTTAGATACGAT

GGTGCACCAGAAATCGAGCCTACTTCTGTCCAAACAACCCCGACTAAGCCTCTGAAT

GAAGTGGATTTGCACCCTTTGTCACCGATGCCAGTACCAGGATCTCCAGAACCGGGA

GGAGTGGATAAGCCACTTAACCTAGTGTTCAATTTCAATGGGACAAACTTTTTCATT

AATGACCACACCTTTGTGCCACCCTCTGTGCCCGTACTTTTGCAAATATTGAGTGGT G

CTCAGGCGGCGCAAGACCTGGTCCCGGAGGGGTCCGTGTTCGTTCTTCCTAGTAATT

CTAGCATTGAGATCTCCTTTCCAGCAACCGCTAATGCTCCAGGTTTCCCGCATCCAT T

CC ATCT AC ACGGAC ACGC ATTT GCGGTT GT AAGGAGT GCGGGGAGTT C AGTTT AC AA

CTATGACAACCCCATATTCAGGGACGTAGTAAGCACAGGACAACCAGGTGACAATG

TGACTATAAGATTCGAGACCAATAACCCCGGTCCTTGGTTCTTACATTGCCACATAG

ACTTTCACTTAGACGCGGGTTTTGCAGTGGTCATGGCCGAGGATACTCCTGATACTA

AAGCCGCGAATCCAGTGCCTCAAGCCTGGTCTGATTTATGTCCGATCTATGATGCGC

TGGATCCTTCCGATTTA

Seq. ID NO: 50 >Oxid_12

ATGAGCTCCGGACTTCAACGTTTCAGTTTCTTCGTTACGTTAGCATTAGTGGCCCGT T

CACTTGCTGCAATCGGACCAGTGGCATCCCTGGTAGTTGCAAACGCTCCAGTGAGTC

CGGACGGTTTTCTTAGGGACGCCATTGTGGTAAACGGAGTGGTACCGAGTCCACTAA

TAACTGGCAAAAAAGGAGACCGTTTCCAGCTGAATGTCGATGATACCCTGACAAAT

CATAGTATGCTTAAGAGCACGAGCATACACTGGCACGGTTTTTTTCAAGCAGGAACA

AACTGGGCCGACGGACCGGCTTTCGTCAATCAATGTCCCATCGCTAGTGGGCACTCC

TTCCTATACGATTTTCATGTTCCAGACCAAGCGGGGACGTTTTGGTACCATAGTCAT C

TAAGTACCCAATACTGCGATGGGCTTCGTGGGCCTTTCGTAGTGTACGACCCAAAGG

ATCCCCATGCGTCCAGGTACGATGTCGACAATGAAAGCACGGTGATTACGCTGACA

GATTGGTATCATACCGCTGCGAGGTTAGGACCGCGTTTTCCCCTTGGAGCAGACGCC

ACTCTAATCAATGGGTTGGGACGTTCTGCCAGTACACCGACCGCCGCGCTGGCTGTT

AT A A AC GT AC A AC AT GGGA A A AGAT AC AGGTTT AGGTT AGT ATCT ATC AGTT GT GAC

CCTAATTATACATTCTCTATAGATGGTCATAACCTTACGGTCATTGAAGTTGACGGC

ATCAATTCCCAGCCCTTACTGGTTGATAGTATCCAGATCTTCGCTGCCCAGAGATAT T

CTTTTGTGCTGAATGCTAATCAGACAGTTGGTAACTATTGGGTCAGGGCCAACCCTA

ACTTTGGGACGGTTGGTTTTGCTGGGGGGATCAACTCAGCCATACTAAGGTACCAAG

GTGCGCCCGTAGCAGAACCTACTACCACGCAGACAACCAGTGTAATCCCTTTGATTG

AGACCAATCTGCATCCGCTTGCACGTATGCCCGTACCGGGCTCACCGACACCAGGA

GGAGTGGACAAAGCCTTAAATCTAGCTTTTAACTTCAATGGAACAAATTTCTTCATC

AACAACGCCACGTTTACACCACCAACGGTGCCTGTATTACTTCAGATCTTAAGCGGC

GCCCAGACGGCACAGGATTTGCTGCCAGCAGGATCAGTATATCCTCTACCCGCGCAC

TCAACCATAGAAATAACGCTTCCTGCCACAGCACTTGCTCCTGGGGCTCCACACCCT

TTCCACCTACATGGGCACGCATTCGCCGTAGTGAGATCTGCGGGATCCACGACTTAC

AATTACAATGACCCCATCTTCCGTGATGTGGTGAGCACAGGGACACCAGCAGCGGG AGATAATGTTACTATTCGTTTCCAAACTGACAACCCGGGGCCATGGTTTCTGCACTG

CCACATAGATTTTCATCTTGACGCCGGCTTTGCGATCGTGTTCGCCGAGGATGTCGC

AGACGTGAAGGCCGCCAACCCCGTTCCAAAGGCGTGGTCAGATCTATGTCCGATAT

ATGACGGCTTATCTGAAGCCAATCAA

Seq. ID NO: 51 >p450_l

MAADSLVVLVLCLSCLLLLSLWRQSSGRGKLPPGPTPLPVIGNILQIGIKDISKSLT NLSK V Y GP VF TL YF GLKPI VVLHGYE A VKEALIDLGEEF S GRGIFPL AERANRGF GI VF SN GKK WKEIRRF SLMTLRNF GMGKRSIEDRV QEEARCL VEELRKTK ASPCDPTFILGC APCNVIC SIIFHKRFDYKDQQFLNLMEKLNENIKILSSPWIQICNNFSPIIDYFPGTHNKLLKNVAF MK SYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHNQPSEFTIESLENTAVDLFGAGTE TT STTLRY ALLLLLKHPE VT AK V QEEIERVIGRNRSPCMQDRSHMP YTD AVVHE V QRYI DLLPT SLPH A VT CDIKFRN YLIPKGTTILI SLT S VLHDNKEFPNPEMFDPHHFLDEGGNFK K SK YFMPF S AGKRIC V GE AL AGMELFLFLT SILQNFNLK SL VDPKNLDTTP VVN GF A S VP PFYQLCFIPV

Seq. ID NO: 52 >p450_2

MAADSLVVLVLCLSCLLLLSLWRQSSGRGKLPPGPTPLPVIGNILQIGIKDISKSLT NLSK V Y GP VF TL YF GLKPI VVLHGYE A VKEALIDLGEEF S GRGIFPL AERANRGF GI VF SN GKK WKEIRRF SLMTLRNF GMGKRSIEDRV QEEARCL VEELRKTK ASPCDPTFILGC APCNVIC SIIFHKRFD YKDQQFLNLMEKLNENVKILS SPWIQICNNF SPUD YFPGTHNKLLKN V AFM K S YILEK VKEHQE SMDMNNPQDFID CFLMKMEKEKHN QP SEF TIE SLENT A VDLF GAGT ETTSTTLRY ALLLLLKHPEVT AK V QEEIERVIGRNRSPCMQDRSHMP YTD AVVHE V QRY IDLLPTSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGN FK K SN YFMPF S AGKRIC V GEAL ARMELFLFLT SILQNFNLK SL VDPKNLD TTP VVN GF AS VP PFYQLCFIPV

Seq. ID NO: 53 >p450_3

MAADSFVVLVLCLSCLLLLSLWRQSSGRGKLPPGPTPLPVIGNILQIDIKDISKSLT NLSK V Y GP VF TL YF GLKPI VVLHGYE A VKEALIDLGEEF S GRGHFPL AERANRGF GI VF SNGKK WKEIRRF SLMTLRNF GMGKRSIEDRV QEEARCL VEELRKTK ASPCDPTFILGC APCNVIC SIIFRKRFD YKDQQFLNLMEKLNENVKILS SPWIQIYNNF SPUD YFPGTHNKLLKN V AFM K S YILEK VKEHQE SMDMNNPQDFID CFLMKMEKEKHN QP SEF TIE SLENT A ADLF GAGT ETTSTTLRY ALLLLLKHPEVT AK V QEEIERVIGRNRSPCMQDRSHMP YTD AVVHE V QRY IDLLPTSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGN FK K SN YFMPF S AGKRIC V GE AL ARMELFLFLT SILQNFNLK SL VDPKNLD TTP V VN GF AS VP PFYQLCFIPV

Seq. ID NO: 54 >p450_4

MAADLVVFLALTLSCLILLSLWRQSSGRGKLPPGPTPLPIIGNFLQIDVKNISQSFT NFSKA Y GP VFTL YLGSKPT VILHGYE AVKE ALIDRGEEF AGRGSFPM AEKIIKGF GVVF SNGNRW KEMRRFTLMTLRNLGMGKRNIEDRVQEEAQCLVEELRKTKGSPCDPTFILSCAPCNVICS IIF QNRFD YKDKEFLILMDKINENVKIL S SPWLQ V CN SFP SLID Y CPGSHHKI VKNFN YLK SYLLEKIKEHKESLDVTNPRDFIDYYLIKQKQVNHIEQSEFSLENLASTINDLFGAGTET TS TTLRY ALLLLLK YPD VT AK V QEEIDR V V GRHRSPCMQDRSHMP YTD AMIHE V QRFIDLL PTSLPHAVTCDIKFRKYLIPKGTTVITSLSSVLHDSKEFPNPEMFDPGHFLNANGNFKKS D YFMPF S T GKRIC AGEGLARMELFLILTTILQNFKLK SL VHPKEIDITP VMN GF ASLPPP Y Q LCFIPL

Seq. ID NO: 55 >p450_5

MAAILGVFLGLFLTCLLLLSLWKQNFQRRNLPPGPTPLPIIGNILQIDLKDISKSLR NFSKV YGPVFTLYLGRKP AVVLHGYEAVKEALIDHGEEF AGRGVFP VAQKFNKNCGVVF S SGR TWKEMRRF SLMTLRNF GMGKRSIEDRV QEE ARCLVDELRKTN GVPCDPTFILGC APCN VIC SIVF QNRFD YKDQEFL ALIDILNENVEILGSPWIQICNNFP AIID YLPGRHRKLLKNF A F AKHYFL AK VIQHQE SLDINNPRDFIDCFLIKMEQEKHNPKTEF T CENLIF T ASDLF A AGT ETTSTTLRYSLLLLLKYPEVTAKVQEEIDHVIGRHRSPCMQDRHHMPYTDAVLHEIQRYI DLLPTSLPHALTCDMKFRDYLIPKGTTVIASLTSVLYDDKEFPNPEKFDPSHFLDENGKF KK SD YFFPF S T GKRIC V GEGL ARTELFLFLTTILQNFNLK SP VDLKELDTNP V AN GF V S VP PKFQICFIPI

Seq. ID NO: 56 >p450_6

MAAALIPDLAMETWLLLAVSLVLLYLYGTHSHGLFKKLGIPGPTPLPFLGNILSYHK GFC MFDMECHKK Y GK VW GF YDGQQP VL AITDPDMIKTVL VKEC Y S VFTNRRPF GP V GFMK S AI SI AEDEEWKRLRSLL SPTF T S GKLKEM VPII AQY GDVL VRNLRRE AET GKP VTLKD V F GAY SMD VITST SF GVNID SLNNPQDPF VENTKKLLRFDFLDPFFL SIT VFPFLIPILEVLNI C VFPRE VTNFLRK SVKRMKESRLEDTQKHRVDFLQLMID S QN SKETE SHK AL SDLEL V A QSIIFIFAGYETTSSVLSFIMYELATHPDVQQKLQEEIDAVLPNKAPPTYDTVLQMEYLD M VVNETLRLFPI AMRLERV CKKD VEIN GMFIPKGV VVMIP S YALHRDPK YWTEPEKFLPE RF SKKNKDNIDP YI YTPF GS GPRN CIGMRF ALMNMKL ALIRVLQNF SFKPCKET QIPLKL S LGGLLQPEKP VVLKVESRDGTVSGA

Seq. ID NO: 57 >p450_7

MAADLIPNL AVETWLLLTKLEF GF YIFPFIY GTHSHGLFKKLGIPGPTPLPFLGNILS YRKG F CMFDMECHKK Y GK VW GF YDGRQP VL AITDPDMIKT VLVKEC Y S VFTNRRPF GP V GF MK S AI SI AEDEEWKRIRSLL SPTFT S GKLKEM VPII AQ Y GD VL VRNLRRE AD T GKP VTLK D VF GAY SMD VIT ST SF GVNID SLNNPQDPF VENTKKLLRFDFLDPFFLSIIVFPFLIPILEVL NIC VFPRE VTNFLRK S VKRMKESRLED T QKHRVDFLQLMID S QN SKETE SHK AL SDLEL VAQSIIFIFAGYETTSSVLSFIMYELATHPDVQQKLQEEIDAVLPNKAPPTYDTVLQMEY L DM VVNETLRLFP V AMRLERV CKKD VEIN GMFIPKGV VVMIP S Y ALHRDPK YWTEPEKF LPERF SKKNKDNIDP YI YTPF GSGPRN CIGMRF ALMNMKL ALIRVLQNF SFKPCKETQIPL KLRLGGLLQPEKPIVLKVESRDGTVSGA

Seq. ID NO: 58 >p450_8

MAAALIPDL AMETWLLLAV SLVLLYL Y GTHSHGLFKKLGIPGPTPLPFLGNIW S YRKGF CMFDMECHKK Y GKVW GF YDGRQP VL AITDPDMIKT VLVKEC Y S VFTNRRPF GP VGFM K SAISI AEDEEWKRLRSLL SPTF T S GKLKEMVPLI AQ Y GD VL VRNLRLE AET GKP VTMK V ITSTSFGVNIDSLNNPQDPFVENTKKLLRFDFLDPFFLSIIVFPFLTPILEVLNISVFPR AVTS FLRKS VKRMKESRLEDTQKHRVDFLQLMID SQN SKETESHK AL SDLEL V AQ SIIFIF AGY ETTSSVLSFITYELATHPDVQQKLQEEIDAVLPNKAPPTYDTVLQMEYLDMVVNETLRLF PI AMRLERV CKKD VEINGMFIPKGVVVMIP S YALHHDPK YWTEPEKFLPERF SKKNKDN IDPYIYTPFGSGPRNCIGMRFALMNMKLALIRVLQNFSFKPCKETQIPLKLRLGGLLQPE K PIVLKVESRDGTVSGA

Seq. ID NO: 59 >p450_9

MAAELIP SF SMETWVLL AT SL VLL YI Y GT Y S Y GLFKKLGIPGPRP VP YFGSTMAYHKGIP EFDNQCFKK Y GKMW GF YEGRQPMLAITDPDIIKTVLVKEC Y SVFTNRRIF GPMGIMKYA ISLAWDEQWKRIRTLLSPAFTSGKLKEMFPIIGQYGDMLVRNLRKEAEKGNPVNMKDM F GAY SMD VITGT AF GVNID SLNNPHDPF VEHSKNLLRFRPFDPFIL SIILFPFLNP VFEILNI TLFPK S T VDFFTK S VKKIKE SRLTDKQMNRVDLLQLMIN S QN SKEIDNHK AL SDIEL V AQ STIFIFGGYETTSSTLSFIIYELTTHPHVQQKVQEEIDATFPNKAPPTYDALVQMEYLDM V VNETLRMFPIAGRLERV CKKD VEIHGVTIPKGTTVL VPLF VLHNNPELWPEPEEFRPERF S KNNKD SINP Y VYLPF GT GPRNCLGMRF AIMNIKL AL VRILQNF SFKPCKETQIPLKL YT Q GLTQPEQPVILKVVPRGLGPQVEPDFL

Seq. ID NO: 60 >p450_10

MAAD SFPLL AALFFIL AATWFISFRRPRNLPPGPFP YPI V GNMLQLGTQPHETF AKL SKK Y GPLMSIHLGSL YTVIVS SPEMAKEIMHKY GQVF SGRT VAQ AVHACGHDKISMGFLP VGG EWRDMRKICKEQMF SHQ SMED SQWLRKQKLQQLLEY AQKC SERGRAIDIRE AAFITTL NLMSATLFSMQATEFDSKVTMEFKEIIEGVASIVGVPNFADYFPILRPFDPQGVKRRADV YFGRLLAIIEGFLNERVESRRTNPNAPKKDDFLETLVDTLQTNDNKLKTDHLTHLMLDLF VGGSETSTTEIEWIMWELLANPEKMAKMKAELKSVMGEEKVVDESQMPRLPYLQAVV KESMRLHPPGPLLLPRKAESDQVVNGYLIPKGAQVLINAWAIGRDHSIWKNPDSFEPERF LDQKIDFKGTDYELIPFGSGRRVCPGMPLANRILHTVTATLVHNFDWKLERPEASDAHR GVLF GF A VRRA VPLKIVPFK V

Seq. ID NO: 61 >p450_l 1

MAADPFPLVAAALFIAATWFITFKRRRNLPPGPFPYPIVGNMLQLGSQPHETFAKLS KKY GPLMSIHLGSL YT VIIS SPEMAKEIMHK YGQVF SGRTIAQ AVHACDHDKISMGFLP VGAE WRDMRKICKEQMF SHQ SMED SQNLRKQKLQQLLE Y AQKC SEEGRGIDIREAAFITTLNL MSATLFSMQATEFDSKVTMEFKEIIEGVASIVGVPNFADYFPILRPFDPQGVKRRADVYF GRLLGLIEGYLNERIEFRKANPNAPKKDDFLETLVDALDAKDYKLKTEHLTHLMLDLFV GGSETSTTEIEWIMWELLASPEKMAKVKAELKSVMGGEKVVDESMMPRLPYLQAVVK ESMRLHPPGPLLLPRKAESDQVVNGYLIPKGAQVLINAWAMGRDPSLWKNPDSFEPERF LDQKIDFKGTDYELIPFGSGRRVCPGMPLANRILHTVTATLVHNFDWKLERPEASDAHK GVLF GF A VRRA VPLKIVPIK A

Seq. ID NO: 62 >p450_12

MAADSFPLLAALFFIAATITFLSFRRRRNLPPGPFPYPIVGNMLQLGANPHQVFAKL SKR YGPLMSIHLGSLYTVIVSSPEMAKEILHRHGQVFSGRTIAQAVHACDHDKISMGFLPVAS EWRDMRKICKEQMF SNQSMEASQGLRRQKLQQLLDHVQKCSDSGRAVDIRE AAFITTL NLM S ATLF S S Q ATEFD SK ATMEFKEIIEGV ATI V GVPNF AD YFPILRPFDPQGVKRR AD VF FGKLLAKIEGYLNERLESKRANPNAPKKDDFLEIVVDIIQANEFKLKTHHFTHLMLDLFV GGSDTNTTSIEWAMSELVMNPDKMARLKAELKSVAGDEKIVDESAMPKLPYLQAVIKE VMRIHPPGPLLLPRKAESDQEVNGYLIPKGTQILINAYAIGRDPSIWTDPETFDPERFLD N KIDFKGQD YELLPF GS GRR V CPGMPL ATRILHM AT ATL VHNFD WKLEDD S T A A ADH AG ELF GV A VRR A VPLRIIPIVK S

Seq. ID NO: 63 >CPR_1

M A AGD SHVD T S S TV SE A V AEE V SLF SMTDMILF SLI V GLLT YWFLFRKKKEE VPEF TKIQ TLTS S VRES SF VEKMKKTGRNIIVF Y GSQTGTAEEF ANRLSKDAHRY GMRGMS ADPEEY DL ADL S SLPEIDNAL VVF CM AT Y GEGDPTDNAQDF YDWLQETD VDL SGVKF AVF GLGN KTYEHFNAMGK YVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWP AV CEHF GV EAT GEE S SIRQ YEL VVHTDID A AK VYMGEMGRLK S YEN QKPPFD AKNPFL A A VTTNRK LNQGTERHLMHLELDISD SKIRYE S GDH V A V YP AND S AL VN QLGKILGADLD VVM SLN NLDEESNKKHPFPCPT S YRT ALT YYLDITNPPRTNVLYEL AQ Y ASEP SEQELLRKM AS S S GEGKEL YLS W VVE ARRHIL AILQDCP SLRPPIDHLCELLPRLQ ARYY SIAS S SKVHPN S VH ICAVVVEYETKAGRINKGVATNWLRAKEPAGENGGRALVPMFVRKSQFRLPFKATTPVI MVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAQFHRDGA LTQLNVAFSREQSHKVYVQHLLKQDREHLWKLIEGGAHIYVCGDARNMARDVQNTFY DIVAELGAMEHAQ AVD YIKKLMTKGRY SLD VW S

Seq. ID NO: 64 >CPR_2

M A APF GIDNTDF T VL AGL VL A VLL YVKRN SIKELLM SDD GDIT A V S S GNRDI AQ V VTEN NKN YL VL Y AS QTGT AED Y AKKF SKEL V AKFNLNVMC AD VEN YDFE SLND VP VI V SIFI S TY GEGDFPDGAVNFEDFICNAEAGALSNLRYNMF GLGNSTYEFFNGAAKKAEKHLS AA GAIRLGKLGEADDGAGTTDEDYMAWKDSILEVLKDELHLDEQEAKFTSQFQYTVLNEIT D SM SLGEP S AH YLP SHQLNRN ADGIQLGPFDL S QP YI APIVK SRELF S SNDRN CIHSEFDL SGSNIK YSTGDHL A VWP SNPLEK VEQFL SIFNLDPETIFDLKPLDPT VKVPFPTPTTIGA AI KHYLEITGP V SRQLF S SLIQF APNAD VKEKLTLL SKDKDQF AVEIT SKYFNIAD ALKYL SD GAKWDTVPMQFLVESVPQMTPRYYSISSSSLSEKQTVHVTSIVENFPNPELPDAPPVVGV TTNLLRNIQL AQNNVNI AETNLP VH YDLN GPRKLF AN YKLP VHVRRSNFRLP SNP S TP VI MIGPGTGVAPFRGFIRERVAFLESQKKGGNNV SLGKHILF Y GSRNTDDFLY QDEWPEYA KKLDGSFEMVVAHSRLPNTKKVYVQDKLKDYEDQVFEMINNGAFIYVCGDAKGMAK GV S T AL V GIL SRGK SITTDE ATELIKMLKT S GRY QED VW

Seq. ID NO: 65 >CPR_3

MAAGD SHEDTS AT VPEAV AEE V SLF STTDIVLF SLI V GVLT YWFIFKKKKEEIPEF SKIQT TAPPVKESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADPEEY DLADLSSLPEIDKSLVVFCMATYGEGDPTDNAQDFYDWLQETDVDLTGVKFAVFGLGN KTYEHFNAMGKYVDQRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEFFGV EAT GEES SIRQ YEL VVHEDMDT AKVYT GEMGRLKS YEN QKPPFD AKNPFL AA VTTNRK LNQGTERHLMHLELDISD SKIRYE S GDH V A V YP AND STL VN QIGEILGADLD VIMSLNNL DEESNKKHPFPCPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGE GKEL YLS W VVEARRHIL AILQD YP SLRPPIDHLCELLPRLQ ARYY SIAS S SKVHPN S VHIC A V AVE YEAR S GRVNKGV AT S WLRTKEP AGEN GRRAL VPMF VRK S QFRLPFKPTTP VIM VGPGTGVAPFMGFIQERAWLREQGKEVGETLLYYGCRRSDEDYLYREELARFHKDGAL T QLNVAF SREQ AHK VYV QHLLKRDKEHLWKLIHEGGAHI YVCGD ARNM AKDV QNTF Y DIVAEF GPMEHTQ AVD YVKKLMTKGRY SLD VW S

Seq. ID NO: 66 >CPR_4

MAAGD SHEDTS ATMPE AVAEEV SLF STTDMVLF SLIV GVLT YWFIFRKKKEEIPEF SKIQ TT APP VKES SF VEKMKKTGRNIIVF Y GSQTGT AEEF ANRL SKD AHRY GMRGMS ADPEE Y DLADLSSLPEIDKSLVVFCMATYGEGDPTDNAQDFYDWLQETDVDLTGVKFAVFGLGN KTYEHFNAMGKYVDQRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEFFGV EAT GEE S SIRQ YEL VVHEDMD A AK V YT GEMGRLK S YEN QKPPFD AKNPFL A A VT ANRK LNQGTERHLMHLELDISD SKIRYE S GDH V A V YP AND S AL VN QIGEILGADLD VIM SLNN LDEESNKKHPFPCPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSG EGKEL YL S W VVE ARRHIL AILQD YP SLRPPIDHLCELLPRLQ ARYY SI AS S SK VHPN S VHI C A V AVE YE AK SGRVNKGV AT S WLRAKEP AGEN GGRAL VPMF VRK S QFRLPFK S TTP VI MV GPGT GIAPFMGFIQERAWLREQGKE V GETLL YY GCRRSDED YL YREEL ARFHKDGA LT QLNVAF SREQ AHK V YVQHLLKRDREHLWKLIHEGGAHIYVCGD ARNMAKD VQNTF YDIVAEF GPMEHTQ AVD YVKKLMTKGRY SLD VW S

Seq. ID NO: 67 >CPR 5

MAAINMGD SH VD T S S T V SE A V AEE V SLF SMTDMILF SLIV GLLT YWFLFRKKKEEVPEF T KIQTLTSSVRESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADP EEYDLADLS SLPEIDNALVVF CMAT Y GEGDPTDNAQDF YDWLQETD VDLSGVKF AVF G LGNKTYEHFNAMGKYVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEH FGVEATGEESSIRQYELVVHTDIDAAKVYMGEMGRLKSYENQKPPFDAKNPFLAAVTT NRKLNQGTERHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQLGKILGADLDIVMS LNNLDEESNKKHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQELLRKMAS S SGEGKEL YL SW VVEARRHIL AILQDCP SLRPPIDHLCELLPRLQ ARYY SI AS S SK VHPN S VHIC A V VVE YETK AGRINKG V ATNWLRAKEP AGEN GGRAL VPMF VRK S QFRLPFK ATT PVIMVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAQFHRD GALT QLNVAF SREQ SHK VYV QHLLKRDREHLWKLIEGGAHI YV C GD ARNM ARD VQNT FYDIVAELGAMEHAQ AVD YIKKLMTKGRY SLD VW S

Seq. ID NO: 68 >CPR_6

M A AINMGD SHMDT S S T V SE A V AEE V SLF SMTDMILF SLIV GLLT YWFLFRKKKEEVPEF TKIQTLT S S VRES SF VEKMKKT GRNIIVF Y GSQTGT AEEF ANRL SKD AHRY GMRGMS AD PEEYDLADLSSLPEIENALVVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKFAVF GLGNKTYEHFNAMGKYVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCE HFGVEATGEESSIRQYELVVHTDIDAAKVYMGEMGRLKSYENQKPPFDAKNPFLAAVT TNRKLNQGTERHLMHLELDISD SKIRYE S GDH V A V YP AND S AL VN QLGKILGADLD V V MSLNNLDEESNKKHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASETSEQELLRK MAS S SGEGKEL YLS W VVEARRHIL AILQDCP SLRPPIDHLCELLPRLQ ARY YSIAS S SKVH PNSVHICAVVVEYETKAGRINKGVATNWLRAKEPAGENGGRALVPMFVRKSQFRLPFK ATTPVIMVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYL YREEL VQF HRDGALTQLNVAF SREQ SHK VYV QHLLKRDREHLWKLIEGGAHI YVCGD ARNM ARD V QNTF YDIVAELGAMEHTQ AVD YIKKLMTKGRY SLD VW S Seq. ID NO: 69 >CPR_7

MAANMADSNMDAGTTTSEMVAEEVSLFSTTDVILFSLIVGVMTYWFLFRKKKEEVPE F TKIQTTTSSVKDRSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMAA DPEEYDLADLSSLPEIEKALAIFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKYAVF ALGNKTYEHFNAMGKYVDKRLEQLGAQRIFDLGLGDDDGNLEEDFITWREQFWPAVC EHF GVE AT GEE S SIRQ YELM VHTDMDM AK V YT GEMGRLK S YEN QKPPFD AKNPFL A V VTTNRKLNQGTERHLMHLELDI SD SKIRYE SGDH V A V YP AND S AL VN QLGEILG ADLDII MSLNNLDEESNKKHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPTEHEQLRK MAS S SGEGKEL YLRW VLE ARRHIL AILQD YP SLRPPIDHLCELLPRLQ ARYYSI AS S SK VH PN S VniC A V AVE YETKT GRINKGV AT S WLRAKEP AGEN GGRAL VPM Y VRK S QFRLPFK ATTPVIMVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAGF HKDGALTQLN V AF SREQPQK V Y V QHLLKKDKEHL WKLIHEGGAHI Y V C GD ARNM ARD VQNTF YDIVAEQGAMEHAQ AVD YVKKLMTKGRY SLD VW S

Seq. ID NO: 71 >CBNsyn_l

M AADF S GKN VW VT GAGKGIGY AT AL AF VE AGAK VT GFD Q AF T QEQ YPF ATE VMD V A

DAAQVAQVCQRLLAETERLDALVNAAGILRMGATDQLSKEDWQQTFAVNVGGAFNLF

QQTMNQFRRQRGGAIVTVASDAAHTPRIGMSAYGASKAALKSLALSVGLELAGSGVR C

NVVSPGSTDTDMQRTLWVSDDAEEQRIRGFGEQFKLGIPLGKIARPQEIANTILFLA SDL

ASHITLQDIVVDGGSTLGA

Seq. ID NO: 72 >CBNsyn_2

MAASDLHNESIFITGGGSGLGLALVERFIEEGAQVATLELSAAKVASLRQRFGEHIL AVE GNVTCYADYQRAVDQILTRSGKLDCFIGNAGIWDHNASLVNTPAETLETGFHELFNVNV LGYLLGAKACAPALIASEGSMIFTLSNAAWYPGGGGPLYTASKHAATGLIRQLAYELAP KVRVNGVGPCGMASDLRGPQALGQSETSIMQSLTPEKIAAILPLQFFPQPADFTGPYVML T SRRNNRAL S GVMIN AD AGL AIRGIRH V A AGLDL

Seq. ID NO: 73 >CBNsyn_3

M A AT GWL AGKRALI V GAGS GIGRAT VD AFLNED ARV A VLE YD SDKC ATLRHQLPD VP VIEGDGTTRTANDEAVQVAVDAFGGLDTLVNCVGIFDFYRRIQDIPAELIDQAFDEMFRI NVLSHIHSVKAAVPALMGQDGASIVLTESASSFYPGRGGLLYVASKFAVRGVVTALAHE L APRIRVN GV APGGTLNTDLRGLD SLDLGARRLD A APDRAREL A ARTPLGV AL S GEDH AWS YVFLASHRSRGLTGETIHPDGGF SLGPPPQRN

Seq. ID NO: 74 >CBNsyn_4

MSSIETKIFPGRFDGRCLTITGAAQGIGLTVATRIAAEGGEVVLVDRADLVHEVAEQ LRE AGGKAHSVTADLETFEGAEEAISHAVRTTGRIDVLINVVGGTIWAKPYEHYAPEEIEKEI RRSLFPTLWTCRAAAPHLIERRAGTIVNV S S VATRGVNRVPY S AAKGGVNAITASL ALE L AP Y GVRVVAT APGGT VAPERRI ARGPSPQ SEQEK AW Y QQIVDQTVD S SLLKRY GTLDE QAAAICFLASEEASYITGTVLPVAGGDLG

Seq. ID NO: 75 >CBNsyn_5

MS S T GWLDGKR AL V V GGGS GIGR A VVD AFL AEGAC V A VLERDPNKCRVLREHLPQ VP VIEGDATRAADNDAAVAAAVAAFGGLDTLVNCVGIFDFYQGIEDIPADTLDVAFDEMF RTNVLSHMHS VKAAVPELRKHRGS SIVL AES AS SF YPGRGGVL YVS SKF AVRGL VTTL A YEL APDIRVN GV APGGTLNTDLRGL ASLGRD ADRLDDNPNRANEL A ARTPLN V AL S GE DHAW SF VFF ASDRSRGITAGATHPDGGF GIGAPKPSTR

Seq. ID NO: 76 >CBNsyn_6

MSSGFLDGKVALVTGGGSGIGRAVVELYVQQGAKVGILEISPEKVKDLRNALPADSV V VTEGDATSMADNERAVADVVDAFGPLTTLVCVVGVFDYFTEIPQLPKDKISEAFDQLFG VNVKSNLLSVKAALDELIENEGDIILTLSNAAFYAGGGGPLYVSSKFAVRGLVTELAYEL APKVRVNGVAPGGTITELRGIPALANEGQRLKDVPDIEGLIEGINPLGIVAQPEDHSWAY ALL ASRERTS AVT GTIIN SDGGLGVRGMTRMAGL AQ

Seq. ID NO: 77 >CBNsyn_7

MSS SRS VTL VVGAAQGIGRAT ALTL AT AGHRVVL ADRD VDGL AET AALLHVAAP VHG LD V CD A AGV AE A V ARVEVEHGP VD AL AH V AGVF TTGS VLD SDL AEW QRMFD VN VT G LINVLRVV GHGMRERRRGAI VT V GSN S AGVPRV GMGA Y GASKS AAHML VRVLGLEL A RFGVRANVVAPGSTDTAMQRSLWPDPADDAGARTAIDGDAASFKVGIPLGRIADPADIA DAVEFLLSDRARHITMQTLYVDGGATLRA

Seq. ID NO: 78 >CBNsyn_8

MSSQMLDDHVALILGGGSGLGLGIARHFLGEGAQVAIFEISESKLLDLKAEFGDDVL LLQ

GDVTSIDDLEAARAAVVDRFGRLDALIGAQGIFDGNIPLRDIPTERIEKVFDEVLHV DVL

GYILAARVFLEELEKTDGAIVFTSSTAAYAADGGGLFYTAAKGAVRSVINQLAFEFA PK

VRVNGVAPSGIANSQLQGPRALGLENNKQSDIPVEDFTNQFLSLTLTPTLPTPEEYA PLY

AYLASRNNTTMTGQTIIADQGLFNRAVISNGVADRVGK

Seq. ID NO: 79 >THCdeg_l

MSSSGPAHSNLEQVFANVASNYRGADVDLHAVYREMREKSPVLPENFMARLGVPSIA G LDPNRPTFTLFKYDDVMAVMRDATNFTSGFIAEGLGSFFDGLILTAMDGEAHKNIRSLL QPVFMPETVNRWKETKIDRVIREEYLRPMVASKRADIMEFALYFPIRVIYSLIGFPEDRP E EIEQ Y A AW AL AIL AGPQ VDPEK A A A ARGA AME A AQ AL YD VVK V V V AQRRAEGAT GD DLICRLIRAEYEGRSLDDHEITTFVRSLLPAASETTTRTFGTLMTLLLERPELLARIRED RS L V GK AIDE A VRYEP V ATFK VRQ A AKD VEIRGV AIPKGAM V S Cl VT S ANRDED AFEN ADT FDIDRRAKPSFGFGFGPHMCIGQFVAKTEINCALNAILDLMPNIRLDPDKPAPEIIGAQL R GPHHVHVIWD

Seq. ID NO: 80 >THCdeg_2

MS SRS TDLPDLK S A AFL ADRYPT YRRLQ SDFPHFEMNIN GEECI VLTRY SD VDEVLRNPL ATVQQAPGVFPERIGQGAGARFYRESLPNIDAPDHTRIRRIVTPAFNPKTVANMRGWVE K VIVEHLDRLEGLDEIDF V S SF ADP VP AEI ACRLLHVP V SD APELF ARQHGLNAVL S V SDI TPERLAEADASAAFYYEYMDDVLNTLKGKLPEDDFVGALMAAEARDSGLTRSELVTTL IGFLVASYHTTKVAMTNTVLALLNHDGERARLVAQPDLARNAWEESLRYDSPVHFVHR YASEPLTIGGQPVAQGKRLLLGLHAASRDENRFAQADHYLIDRPDNRHLAFAGGGHFCL GSQLSRLEGD VLLRTIF QRFPAMRLTETRFERVPDLTFPMLLRMT V SLRAEQG

Seq. ID NO: 81 >THCdeg_3

MSSTSNSIRSPLSPPQPRRTPPPCTSSREPPIVRGTWLLGSTRDLLRDPLELGLRGY AEGGD VVRYVVGLPGRRREFFTVNHPDGVGELLNAPRHLDYRKDSEFYRAMRDLYGNGLVTS QDETWLRQRRFIQPLFTPQSVDGYVTPMVAEADRVAIRWHNCTSRLVDLDGEMRALTL GVAARILFGVQAPRMLPILRTTLPVLGRAVLQQGASAIRFPSSWPTPGNRRIASAESRLD GT CD AHFRRR TV AEPGTDT I GR1 ,VA AREDGDTT STFF1RDOVK VF1 1 AGHDTTATM1 TF ALYLLGKDAGVQDQARDEAERVLGAGTPTASDVHRLTYTTMVLEEAARLYPPSPYLTR RAVEESEV CGYRIP AGAD VNLAPW VIHHRADLWPDPFRFDPDRFTPDRVKERHK Y AWF PF GHGPRGCIGQRF AMLE AAVTL AILLREFEFRSPPGS VPLT VDLLLHP AGEVPCRVRRR VP VHS A VHRTHQP S

Seq. ID NO: 82 >THCdeg_4

MSSAPDILSPEFLDNPYPLHRVLRDHYPALHHEGTDSYLISRYADCAEAFRSPKFSS RNY EW QLEPIHGRTILQMEGREHS THRALLNPFFRGN GLERFMP AITHN A AQLIGDI VARN AG ELLGA V ARQGE AEL V S QF T SRFPINVMVDMLGLPK SDHERFRGW YF SIM A YLNNL AGD PEINAAAERTHVELREYMLPIIRERRSGDGDDLLSRLCRAEVDGEQMSDEEIKAFVSLLL VAGGETTDKAIASMIRNLIDHPDQMRAVREDRSLADRVIAETLRYSGPVHMIMRQTEDE V QIED STIP AGAT CIMML AAANRDERHF SNPDEFDIFRTDLNVDRAF SGAANHV QFILGR HFCVGSMLAKTEMTIALNLVLDTMDSIEYQDGFVPREEGLYTRSIPELRVKFEGKLG

Seq. ID NO: 83 >THCdeg_5

MSS STP AAAT SLES AF AGV ADNYKGSD VDLHAI YRDMRRN SP VIAEDFMARLGVPNI AG LDAKRPTFTLFKYKDVMSVLRDATNFTSGFIAEGLGAFFDGLILTGMDGEAHRRTRSLL QP VFMPD VVNRWRETKMAPIVRNEYIEPMVPKRRADLMDF GLHFPIRLIY SLIGFPDNRP EQIEQYAAWALAILAGPQVDAEKAAQARKAAMEAAQALYDAVKLEVTEVRKNGAQG DDLICRLIRAEYEGRHLDDHEVTTFVRSLLPAAGETTTRTFGSLMVALLERPELLERVRA DRSLVPK AIDE AVRFEP V ATFKVRQ AAQDTEIGGF SIPKGAM VQCIVS S ANRDEEVFENS ESFDIDRKLKPSF GF GF GPHMCIGQFIAKVELS VAVNTILDLLPNLRLDPDRPKPRIVGAQ LRGPHALHVIWD

Seq. ID NO: 84 >THCdeg_6

MSS SP S VAEL S QELGE AFRL S SMDDP YPML AERRRETP VMKGDIM V ALGAP S YMGQH A GETHTVFRHDDVMAILRNHETF S S SIWEISQGPLIGRSILAMDGAEHRQWRGYLQ SVFG GKLLSSWDESIFRPLAAKYVADLASKRGADLIAMALEYPLRAIYEILGLEDFKDNYEEFH AD VLTILL ALW S TPDP AQ ADQFLLRF QK ATE A S ARS WDRLLPI V QRKRA AGASRNDLI S SLIRAEYEGGVLDDEQITSFLRSLLLAATDTTTRQFLNTLTLLLQRPDELDRIRRDRSRL R LALAEGERLEPPALFIPRMITRDVVIRGTELTAGTPLLLAIGSANRDPEAYPPDPDEFRI DR T GPHH ATF GF GTHIC S GMNTTRREI AALID AMLDGLPGLRVDPD AP APLI S GIHFRGP S AL PVVWD Seq. ID NO: 85 >THCdeg_7

MS SD Y SRTPESLRPAD S Y AALS YSTVNAALRNDRVF S SKMYD STIGVFMGPTIL AMSGT

KHRAHRNLVSAAFKPQSLRVWEPDIVRPICNALIDEFAGTGHADLVRDFTFEFPTRV IAR

LLGLPAEDLPFFRKAAVAIISYAGNVPRALEASEDLKNYFLGHIEQRRSQPTDDIIS DLVT

AEVEGEQLTDEAIYSFLRLLLPAGLETTYRSSGNLLYLLLRHPRQFAAVQGNHGLIP QAV

EEGLRYETPLTFVQRFTTEDTELGGVPVPAGAVVDLVLGSANRDEDRWERPGEFDIF RK

P VPHI SF T AGAHT CLGLHL ARMETR V AVECLLTRLTNFRLQDEGDPHIT GQPFRSPNLLP

VTFDVV

Seq. ID NO: 86 >THCdeg_8

MSSPTPRWRIPVLGDLLSVDPAKPVQKEMAMAAELGPLFERKIIGSRLTVVSGVDLV AE

VNDEKHWARALGRPILKLRDVAGDGLFTAFNSEPAWARAHSVLGPGFSQSALRTYHG S

MTRVLDDLVATWDDAAASGARVDVARDMTRLTFDVIGRAGFGRDFGSLRGDDLDPFA

AAMGRALGYVNQTSNDIPLLRMVFGRGAAKRYQTDVAFMRDTVDELVASRAGRAERS

DDLLDLMLHSADPDTGERLDMENIRNQVLTFLVAGNETTASTLAFALYFLAREPEVV ER

ARAEIADVVGDGEIAFEQVAKLRYVRRVVDETLRLWPAAPGYFRKVRHDTVLGGRYP

MPKGS W VF VLLPQLHRDP VW GDDPERFDPDRF APD A VR ARPKD A YRPF GT GPRS CIGR

QFALHEAVLALATLLRRYDVAPDPAYRLDIVEAVTLKPRGFELTLQRR

Seq. ID NO: 87 >THCdeg_9

MS S S AS S Q SNLEQ VF AN V ASN YRGADIDLH A V YREMREK SP VLPENFMARLGVP SI AGL

DPDRPAFTLFKYDDVMAVMRDATNFTSGFIAEGLGSFFDGLILTAMDGEAHKNIRSL LQ

PVFMPETVNRWKETKIDRVIREEYLQPMVASKGADIMEFALYFPIRVIYSLIGFPED RPEE

IEQYAAWALAILAGPQVDPEKAVAARGAAMEAAQALYDVVKVVVAQRRSQGATGDD

LISRLIRAEYEGRSLDDHEITTFVRSLLPAASETTTRTFGTLMTLLLERPELLARIR EDRSL

VPKAIDEAVRYEPVATFKVRQAAKDVEIRGVAIPQGAMVSCIVTSANRDEDAFENAD TF

NIDRRAKPSF GF GF GPHMCIGQF VAKTEINC ALNAILDLMPNIRLDPDKPAPEIIGAQLRG

PHHVHVIWD

Seq. ID NO: 88 >THCdeg_10

MSSTATELRDAPGSAPGLPRRSMLSLLPRMARDRLSVMTSVAARYGDAVTLPLGLST LH FFNHPD Y AKHVLADN S SNYHKGIGLIHAKRALGDGLLT SEGELWRKQRKTIQP AF AVKR LAGQAGAIAEEADRLVEHLLARQGRGPVDIRHEMTALTLGVLGRTLLDADLGAFGSVG HWFE A V QD Q AMFDMMSLGT VPL W SPLPKQLRFRRARRELE S V VDRL V AQRGDRPRAD GDD V V SRL VD S T GRERDP ALRRKRMHDEL VTLLL AGHETT AS TL S WTFHL ADEHPE VW ERLHAE AVE VLGDRRP VFEDLHRLRYTNRVLNE VMRL YPP VWLLPRR A V ADD V V GGY RVP AGSD VLICP YTLHRHPEF WELP SRFDPDRFDPERS ANRPRY AYIPF GAGPRF C V GNN LGLMEAAFVIAAIARRMRLRKVPGGTVVPEPMLTLRVRSGLPMTVHALDR

Seq. ID NO: 89 >Oxid_l

MS SQRRDFLK Y S VALGVAS ALPLW SRAVF AAERPTLPIPDLLTTD ARNRIQLTIGAGQ ST FGGKTATTWGYNGNLLGPAVKLQRGKAVTVDIYNQLTEETTLHWHGLEVPGEVDGGP QGIIPPGGKRSVTLNVDQPAATCWFHPHQHGKTGRQVAMGLAGLVVIEDDEILKLMLP KQWGIDDVPVIVQDKKFSADGQIDYQLDVMTAAVGWFGDTLLTNGAIYPQHAAPRGW

LRLRLLNGCNARSLNFATSDNRPLYVIASDGGLLPEPVKVSELPVLMGERFEVLVEV ND

NKPFDLVTLPVSQMGMAIAPFDKPHPVMRIQPIAISASGALPDTLSSLPALPSLEGL TVRK

LQLSMDPMLDMMGMQMLMEKYGDQAMAGMDHSQMMGHMGHGNMNHMNHGGKF

DFHH ANKIN GQ AFDMNKPMF A AAKGQ YERW VIS GV GDMMLHPFHIHGT QFRIL SEN G

KPP AAHRAGWKD T VK VEGN V SE VL VKFNHD APKEH A YM AHCHLLEHEDTGMMLGF T

V

Seq. ID NO: 90 >Oxid_2

MS SRLSFLTSLVTL ALV S ST YAGVGP VVDLTV SNAVISPDGFDRD AIVVNGVFPAPLITG

KKGDRFQLNVIDNMTNHTMLKSTSIHWHGFFQKGTNWADGGAFVNQCPIAPGHSFLY D

FRVPDQAGTFWYHSHLSTQYCDGLRGPIVVYDPNDPHADLYDVDNDSTVITLADWYH

VAARLGPRFPLGADSTVINGLGRSLSTPNADLAVISVTQGKRYRFRLISLSCDPFHT FSID

GHDLTIIE AD S VNTEPL VVD AIPIF AGQRY SF VL S AVKDIDNYWIRADPNF GTTGF ASGIN

S AILRYDGAAPIEPT AVL AP V S VNPL VETDLHPLEDMP VPGRPTKGGVDK AINLDF SF SFP

NFFINNATFTSPTVPILLQIMSGAQAAQDLLPSGSVIELPAQSTIELTLPATVNAPG VPHPF

HLHGHTFAVVRSAGSTAYNYDNPIWRDVVSTGTPAANDNVTIRFTTDNPGPWFLHCH I

DFHLEAGFAVVFAEGVPQTQVANPVPQAWEELCPIYDALPEDDQ

Seq. ID NO: 91 >Oxid_3

MS SFKV SCKVTNNNGDQNVETN SVDRRNVLLGLGGL Y GVANAIPL AAS AAPTPPPDLK TCGKATISDGPLVGYTCCPPPMPTNFDNIPYYKFPSMTKLRIRSPAHAVDEEYIAKYNLA I SRMKDLDKTEPLNPLGFKQQANIHCAYCNGAYVFGDKVLQVHNSWLFFPFHRWYLYF YERILGKLIDDPTFALPYWNWDHPKGMRLPPMFDREGTSIYDERRNQQVRNGTVMDLG SF GDKVETTQLQLMSNNLTLMYRQMVTNAPCPLLFF GAP YVLGNNVEAPGTIENIPHIP VHIW AGTVRGSTFPNGDT S Y GEDMGNF Y S AGLD S VF Y CHHGNVDRMWNEWK AIGGK RRDL SEKDWLN SEFFF YDENKKP YRVK VRDCLD AKKMGYD Y APMPTPWRNFKPKTK V SAGKVNTSSLPPVNEVFPLAKMDKVISFSINRPASSRTQQEKNEQEEMLTFDNIKYDNRG YIRFD VFLNVDNNVNANELDKVEF AGS YTSLPHVHRV GENDHT AT VTF QL AITELLEDI GLEDEETIAVTLVPKKGGEGISIENVEIKLLDC

Seq. ID NO: 92 >Oxid_4

MS GQNKMGLIL VFLFLDGLL V CL A AD VD VHN YTF VLQEKNF TKW C S TK SML VVN GSF

PGPTITARKGDTIFVNVINQGKYGLTIHWHGVKQPRNPWSDGPEYITQCPIKPGTNF IYEV

ILSTEEGTLWWHAHSDWTRATVHGALVILPANGTTYPFPPPYQEQTIVLASWFKGDV ME

VITSSEETGVFPAAADGFTINGELGDLYNCSKETTYRLSVQPNKTYLLRIVNAVLNE EKF

FGIAKHTLTVVAQDASYIKPINTSYIMITPGQTMDVLFTTDQTPSHYYMVASPFHDA LDT

F ANF S TN AIIQ YN GS YK APK SPF VKPLP V YNDIK A ADKF T GKLRSL ANEKFP VN VPK VN V

RRIFMAVSLNIVKCANKSCNNNIGHSTSASLNNISFALPQTDVLQAYYRNISGVFGR DFP

TV QKK ANF SLNT AQGT Q VLMIE Y GE A VEI V Y QGTNLGA AT SHPMHLHGFNF YL V GT GA

GTFNNVTDPPKYNLVDPPELNTINLPRIGWAAIRFVADNPGVWFLHCHFERHTTEGM AT

VVIVKDGGTTNT SMLP SP AYMPPC S

Seq. ID NO: 93 >Oxid 5 MSSRKICLGCSHSLSSQPFTYTTQKTVSSRRIGDSQWRLSRGYTRTLTSASASVATAPAK

LLTVNETQKCLRNMVRGGDVISYILSHSSRNADQNLKDLDSLILEPVCSATHEMFDV FEI

PEHILTPFCDNRNVPEEQVTRNPNLRTDCLTMKRFVLLQSLVAVASAGIGPVADLYV GN

RIL APDGFNRS T VLGGT S S SDF GFP APLIT GTKGDRF QLN VIN QLTDTTMLRS T SIHWHGL

FQAGSSWADGPVGVNQCPIAPGNSFLYDFNVPDQAGTFWYHSHYSTQYCDGLRGAFV

VRDPNDPHASLYDVDNDDTVITLADWYHTSAKELSGSFPAEEATLINGLGRYSGGPT SP

LAIVNVEAGKRYRFRLVSISCDPFYTFSIDGHDLTIIEADGENTDPLVVDYLEIYAG QRYS

VVLNAN QP VDNYWIRAN S SNGPRDF VGGTN S AILRY AGASN SDPTTELGPRNNRLVEN

NLHALGSPGVPGTHTIGEADVNINLEILFTPPNVLTVNGAQFIPPTAPVLLQILSGT KQAT

DLLPPGSVYVLPRNAVVELTIPGGSGGSPHPMHLHGHVFDVVRSAGSDTINWDNPVR RD

VVNIGTSTSDNATIRFTTDNPGPWIFHCHIDWHLEVGLAVVFAEDPDTIENSTHPAA WDE

LCPI YDNLP SDEL

Seq. ID NO: 94 >Oxid_6

MSSTLEKFVDALPIPDTLKPVQQSKEKTYYEVTMEECTHQLHRDLPPTRLWGYNGLF PG PTIE VKRNEN V Y VKWMNNLP S THFLPIDHTIHHSD S QHEEPEVKT VVHLHGGVTPDD SD GYPEAWFSKDFEQTGPYFKREVYHYPNQQRGAILWYHDHAMALTRLNVYAGLVGAYII HDPKEKRLKLP SDEYD VPLLITDRTINEDGSLF YP S APENP SP SLPNP SIVP AFCGETIL VN GKVWPYLEVEPRKYRFRVINASNTRTYNLSLDNGGDFIQIGSDGGLLPRSVKLNSFSLAP AERYDIIIDF T A YEGE SIIL AN S AGC GGD VNPETD ANIMQFR VTKPL AQKDE SRKPK YL AS YPSVQHERIQNIRTLKLAGTQDEYGRPVLLLNNKRWHDPVTETPKVGTTEIWSIINPTRG THPIHLHLVSFRVLDRRPFDIARYQESGELSYTGPAVPPPPSEKGWKDTIQAHAGEVLRI A ATF GP YSGRYVWHCHILEHED YDMMRPMDITDPHK

Seq. ID NO: 95 >Oxid_7

MSSVFSAAFSAFVALGLTLGAFAAVGPVADIHITDDTIAPDGFSRAAVLAGGTFPGP LIT

GNMGDAFKLNVIDELTDASMLKSTSIHWHGFFQKGTNWADGPAFVNQCPITTGNSFL Y

DFQVPDQAGTYWYHSHLSTQYCDGLRGAFVVYDPSDPHKDLYDVDDESTVITLADWY

HTL ARQI V GV AI SDTTLIN GLGRNTDGP AD A AL A VINVE AGKRYRFRL V SIS CDPNW VF S

IDNHDFTVIEVDGVNSQPLNVDSVQIFAGQRYSLVLNANQPVDNYWIRADPNLGTTG FA

GGIN S AILRYKGAAVAEPTTSQTTSTKPLLETDLHPL V STPVPGLPQPGGTD VVQNLILGF

NAGQFTINGASFVPPTVPVLLQILSGTTNAQDLLPSGSVFELPLGKTVELTLAAGVL GGP

HPFHLHGHNFHVVRSAGQDTPNYDDPIVRDVVSTGASGDNVTIRFTTDNPGPWFLHC HI

DWHLEAGFAVVFAEAVNETKSGNPTPAAWDNLCTLYDALADGDK

Seq. ID NO: 96 >Oxid_8

MSSCLAAIWSRKRAEHAASRLPALQEKRSTLSYAYARLDGSLASMFPNRFWSSVSLG AR n PVDGSSEEPTARPSSCARPFLHSASSESGFVSSSRPTSFCVTCSRRWRCCSLLAMLGFR

FLHTSVLAALTLSLKSYAAIGPVTDLTVANANISPDGYERAAVLAGGSFPGPLITGR KGD

HFQINVVDQLTNHTMLKSTSIHWHGLFQKGTNWADGPAFVNQCPISTGNSFLYDFHV P

DQAGTFWYHSHLSTQYCDGLRGAMVVYDPNDPHKNLYDVDNDDTVITLADWYHVAS

KLGPAVPFGGDSTLINGKGRSTATPTADLAVISVTQGKRYRFRLVSLSCDPNFTFSI DGH

ALTVIEADAVSTQPLTVDSIQIFAGQRYSFVLNANQSVDSYWIRAQPSLGNVGFDGG LNS

AILRYDGAAPTEPS AL AVP VSTNPLVET ALRPLN SMPVPGK AEVGGVDKAINLAF SFNG

TNFFINGATFVPPAVPVLLQIMSGAQSASDLLPSGSVFVLPSNATIELSFPATANAP GAPH PFHLHGHTFAVVRSAGSAEYNYENPIWRDVVSTGSPGDNVTIRFRTDNPGPWFLHCHID

PHLEAGFAVVMAEDTRDVKADNPEPKAWDDLCPTYNALAVDDQ

Seq. ID NO: 97 >Oxid_9

MFPGARILATLTLALHLLHGTNAAIGPTGDMYIVNEDVSPDGFTRSAVVARSDPTTN GT SETLTGVLVQGNKGDNFQLNVLNQLSDTTMLKTTSIHWHGFFQSGSTWADGPAFVNQC PIASGNSFLYDFNVPDQAGTFWYHSHLSTQYCDGLRGPFIVYDPSDPHLSLYDVDNADTI ITLEDWYHVVAPQNAVLPTADSTLINGKGRFAGGPTSALAVINVESNKRYRFRLISMSC DPNFTFSIDGHSLQVIEADAVNIVPIVVDSIQIFAGQRYSFVLNANQTVDNYWIRADPNL G STGFDGGINSAILRYAGATEDDPTTTSSTSTPLEETNLVPLENPGAPGPAVPGGADININ L AM AFD VTNFELTIN GSPFK APT AP VLLQIL S GATT A ASLLP S GSI Y SLE ANK VVEI SIP ALA VGGPHPFHLHGHTFDVIRSAGSTTYNFDTPARRDVVNTGTDANDNVTIRFVTDNPGPWF LHCHID WHLEIGL A VVF AED VT SIT APP A AWDDLCPI YD AL SD SDKDNPRF GF AP AT GG K AT GRRNWF SK ARRRAIL VP YLKLLKL GL VM VF YIRAERNHGRL S Q S TPPNRRVD QREL ITNTW VERFFLHRLMFLKLF VGT ACFMHIFN S VS SLGMCTLRTSHGS SESL ASP S ATMML GGGLTLL S ANIRLW C Y AEMRDL YDFEVNIKKAHRL VTTGP Y S V SMVMF SKDHWL Y QC GLRSM V GVVL S CIW C AE VVLIN GIM VP ARMK VEDDGLRRHF GREWDE Y A SR V A YRL V PEIY

Seq. ID NO: 98 >Oxid_10

MSSKSFISAATLLVGILTPSVAAAPPSTPEQRDLLVPITEREEAAVKARQQSCNTPS NRAC WTDGYDINTDYEVDSPDTGVVRPYTLTLTEVDNWTGPDGVVKEKVMLVNNSIIGPTIFA DWGDTIQVTVINNLETNGTSIHWHGLHQKGTNLHDGANGITECPIPPKGGRKVYRFKAQ Q YGTSWYHSHF S AQ YGNGVVGAIQINGP ASLP YDTDLGVFPISD YYYS S ADELVELTKN SGAPF SDNVLFN GT AKHPET GEGE Y AN VTLTPGRRHRLRLINT S VENHF Q V SL VNHTMT II AADMVPVNAMT VD SLFLGV GQRYD VVIEASRTPGNYWFNVTF GGGLLCGGSRNP YP A AIFFI Y AGAPGGPPTDEGK AP VDHN CLDLPNLKP V V ARD VPL S GF AKRPDNTLD VTLD TTGTPLFVWKVNGSAINIDWGRPVVDYVLTQNTSFPPGYNIVEVNGADQWSYWLIEND PGAPF TLPHPMHLHGHDF YVLGRSPDE SP ASNERHVFDP ARD AGLL S GANP VRRD VTM LP AF GW VVL AFRADNPGAWLFHCHIAWH V SGGLGVV YLERADDLRGA V SD AD ADDL DRLC ADWRRYWPTNP YPK SD SGL

Seq. ID NO: 99 >Oxid_l 1

MS SRF Q SLFFF VL V SLT AVANAAIGP VADLTLTNAQ V SPDGF ARE AVVVN GITP APLITG NKGDRFQLNVIDQLTNHTMLKTSSIHWHGFFQQGTNWADGPAFVNQCPIASGHSFLYD FQVPDQAGTFWYHSHLSTQYCDGLRGPFVVYDPNDPHASLYDIDNDDTVITLADWYHV AAKLGPRFPF GSD S TLIN GLGRTT GI AP SDL A VIK VTQGKRYRFRL V SL S CDPNHTF SIDN HTMTIIE AD SINTQPLEVD SIQIF AAQRY SF VLD ASQP VDNYWIRANP AF GNT GF AGGIN S AILRYDGAPEIEPTSVQTTPTKPLNEVDLHPLSPMPVPGSPEPGGVDKPLNLVFNFNGTN F FINDHTFVPPSVPVLLQILSGAQAAQDLVPEGSVFVLPSNSSIEISFPATANAPGFPHPF HL HGHAF AVVRS AGS S VYNYDNPIFRD V V STGQPGDNVTIRFETNNPGPWFLHCHIDFHLD AGF AVVMAEDTPDTK AANP VPQ AW SDLCPI YD ALDP SDL

Seq. ID NO: 100 >Oxid 12 MSSGLQRFSFFVTLALVARSLAAIGPVASLVVANAPVSPDGFLRDAIVVNGVVPSPLITG

KKGDRFQLNVDDTLTNHSMLKSTSIHWHGFFQAGTNWADGPAFVNQCPIASGHSFLY D

FHVPDQAGTFWYHSHLSTQYCDGLRGPFVVYDPKDPHASRYDVDNESTVITLTDWYH T

AARLGPRFPLGADATLINGLGRSASTPTAALAVINVQHGKRYRFRLVSISCDPNYTF SID

GHNLTVIEVDGINSQPLLVDSIQIFAAQRYSFVLNANQTVGNYWVRANPNFGTVGFA GG

INSAILRYQGAPVAEPTTTQTTSVIPLIETNLHPLARMPVPGSPTPGGVDKALNLAF NFNG

TNFFINNATFTPPTVPVLLQILSGAQTAQDLLPAGSVYPLPAHSTIEITLPATALAP GAPHP

FHLHGHAFAVVRSAGSTTYNYNDPIFRDVVSTGTPAAGDNVTIRFQTDNPGPWFLHC HI

DFHLD AGF AI VF AED V AD VK A ANP VPK AW SDLCPI YDGL SEAN Q

Seq. ID NO: 101 >MBP

ATGAAGATTGAGGAGGGAAAACTTGTCATATGGATTAATGGCGACAAAGGCTATAA

TGGGTTAGCAGAAGTCGGTAAAAAGTTTGAGAAAGACACTGGGATTAAGGTAACGG

TCGAGCACCCAGATAAGCTGGAAGAGAAATTCCCACAGGTTGCCGCGACTGGGGAT

GGCCCCGACATCATATTCTGGGCGCACGACAGATTTGGCGGTTATGCACAAAGTGG

GTTACTAGCTGAAATTACCCCAGATAAGGCATTTCAAGACAAACTATATCCTTTCAC

TTGGGATGCGGTTAGATATAACGGAAAATTGATAGCCTATCCTATTGCCGTGGAGGC

TTTATCACTAATCTATAACAAGGACCTATTGCCGAACCCGCCCAAAACATGGGAAGA

AATCCCTGCCTTAGACAAAGAACTTAAAGCGAAAGGCAAGAGTGCTCTAATGTTCA

ATCTTCAAGAGCCTTATTTTACTTGGCCCTTGATAGCGGCCGATGGCGGCTACGCCT T

C A AGT ACGAGA ACGGGA AGT AT GAT ATT A A AG AC GTT GGAGT GGAT A ACGC GGGT G

CGAAGGCTGGCCTGACGTTCTTAGTGGACTTGATTAAAAATAAGCACATGAACGCG

GACACGGACTACAGCATCGCGGAGGCGGCTTTTAATAAGGGCGAAACTGCTATGAC

GATCAATGGACCTTGGGCTTGGTCAAATATAGATACAAGTAAGGTAAATTATGGAG

TAACTGTGCTGCCGACCTTTAAGGGCCAACCTAGTAAACCGTTTGTCGGCGTGTTGT

CCGCCGGGATAAACGCCGCCTCCCCCAACAAAGAATTAGCAAAGGAATTTTTGGAG

AATT ACTT ACTGACCGAT GAGGGCTT GGAGGC AGT C AAT AAGGAT AAGCCCCTGGG

CGCTGTCGCATTGAAGTCATATGAAGAAGAACTTGCAAAAGATCCCCGTATTGCTGC

CACAATGGAGAATGCACAGAAAGGTGAAATAATGCCCAACATACCGCAGATGAGTG

CGTTCTGGTATGCGGTAAGAACAGCTGTTATCAACGCTGCGTCCGGGAGGCAAACA

GTTGATGAGGCTTTGAAAGACGCTCAGACCAATTCCTCCAGCAACAACAATAATAAT

A AC A AT A AC A AC A AC TT AGGT AT AGA AGGT AGAT A A

Seq. ID NO: 102 >VEN

ATGGTTAGTAAAGGAGAAGAGTTATTCACTGGCGTTGTACCTATTCTGGTTGAGCTA

GACGGAGATGTTAATGGCCACAAATTCTCCGTATCCGGGGAGGGGGAGGGCGATGC

AACATATGGAAAACTTACGCTAAAACTAATCTGTACGACTGGGAAACTACCCGTTCC

GTGGCCCACATTGGTTACGACACTTGGCTATGGCCTACAGTGTTTCGCTAGATACCC

TGATCATATGAAGCAACATGATTTCTTTAAGAGTGCAATGCCGGAGGGTTACGTTCA

GGAAAGAACAATTTTCTTCAAGGATGACGGCAATTACAAGACGAGGGCCGAGGTAA

AATTCGAGGGGGAT ACGCTGGTT AAC AGGAT AGAATT AA AAGGT AT AGATTTT AAA

GAAGACGGGAACATTCTAGGTCATAAACTTGAGTACAATTACAACTCCCATAATGTC

TACATAACAGCGGACAAGCAGAAGAATGGTATAAAGGCAAATTTTAAGATCAGACA

TAACATTGAAGACGGGGGAGTCCAGTTGGCTGACCACTATCAACAAAATACCCCCA

TTGGGGACGGTCCGGTGTTGCTTCCAGATAACCACTATCTTTCTTACCAGTCAGCCC T ATCCAAAGACCCAAACGAGAAGAGGGATCATATGGTTCTTCTGGAGTTTGTCACCGC AGC AGGGATT ACTTT GGGGAT GGACGAGCT AT AC AAGT AA

Seq. ID NO: 103 >MST

ATGGCTATGTTCTGCACTTTCTTCGAAAAACATCATCGTAAATGGGACATTTTACTA GAGAAATCCACCGGTGTGATGGAGGCGATGAAAGTGACATCCGAAGAAAAGGAAC AACTGAGCACAGCTATTGACCGTATGAACGAGGGCCTGGATGCTTTTATCCAGCTAT ATAACGAGTCCGAAATAGACGAGCCCCTTATCCAGCTTGACGATGACACAGCCGAA TT A AT GA A AC A AGC T AG AG AT AT GT ACGGT C AGGAGA AGTT A A AT GA A A A ACT A A A T AC A ATC ATT AAGC A AATTTT GT C AATCTCTGT ATCCGAGGAGGGAGAGAAAGAAG GC AGC GG AT C AGG AT A A

Seq. ID NO: 104 >OSP

ATGTATCTTCTAGGGATTGGGCTTATTTTAGCACTGATTGCCTGCAAGCAAAACGTT T

CTT C ACT AGACGAGAAA AACTC AGT GTC AGT AGACCTTCCTGGT GAG AT GAAGGTTT

TGGTCAGCAAGGAAAAGAACAAAGATGGCAAGTACGATTTAATTGCTACCGTGGAT

AAGTTGGAGCTGAAAGGAACATCCGACAAGAACAACGGCTCTGGGGTACTTGAAGG

AGTCAAGGCCGATAAAAGCAAAGTCAAGCTAACAATTTCCGACGACGGGTCTGGAT

AA

Seq. ID NO: 105 >OLE

ATGGCAGACAGAGATAGGTCAGGTATCTATGGCGGTGCTCATGCGACGTATGGCCA

AC AGC AAC AGC AAGGAGGAGGCGGGAGACCT AT GGGCGA AC AAGT C AAGGGC AT G

CTGCATGACAAGGGCCCTACGGCGTCCCAGGCCTTGACAGTTGCTACCTTATTTCCT

TTAGGAGGGCTGCTTTTGGTGCTTAGTGGATTAGCCCTTACTGCTTCCGTAGTCGGT C

TAGCAGTCGCAACGCCGGTCTTTTTGATCTTCAGTCCGGTGCTAGTCCCAGCGGCAT

TGCTAATCGGCACTGCCGTCATGGGGTTCTTGACCTCCGGTGCTCTGGGTCTGGGTG

GTTTGTCCTCTCTGACCTGTCTAGCAAACACTGCGCGTCAGGCTTTTCAGCGTACCC C

TGACTACGTGGAAGAAGCTCATAGAAGGATGGCTGAGGCAGCAGCGCATGCCGGAC

ATAAGACGGCTCAGGCTGGGCAAGCTATTCAAGGCAGGGCTCAAGAGGCTGGCGCT

GGT GGT GGGGC C GGGT A A

Seq. ID NO: 106 >MBP

MSKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGD GP DIIF W AHDRF GG Y AQ S GLL AEITPDK AF QDKL YPF T WD A VRYN GKLI A YPI AVE AL SLI Y NKDLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGK YDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAW SNIDT SKVNY GVT VLPTFKGQP SKPF VGVL S AGINAASPNKEL AKEFLENYLLTDEGLEA VNKDKPLGA V ALK S YEEEL AKDPRI A ATMEN AQKGEIMPNIPQM S AF W Y A VRT A VINA ASGRQT VDEALKD AQTNS S SNNNNNNNNNNLGIEGR

Seq. ID NO: 107 >VEN MV SKGEELFTGVVPILVELDGDVNGHKF S VSGEGEGD ATY GKLTLKLICTTGKLPVPWP

TLVTTLGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFE G

DTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIED GGV

QLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGM D

ELYK

Seq. ID NO: 108 >MST

MSAMFCTFFEKHHRKWDILLEKSTGVMEAMKVTSEEKEQLSTAIDRMNEGLDAFIQL Y NESEIDEPLIQLDDDTAELMKQARDMY GQEKLNEKLNTIIKQILSIS V SEEGEKEGSGSG

Seq. ID NO: 109 >OSP

MS S YLLGIGLIL ALI ACKQNV S SLDEKN S V S VDLPGEMKVL V SKEKNKDGK YDLIAT VD KLELKGT SDKNN GS GVLEGVK ADK SK VKLTI SDDGS G

Seq. ID NO: 110 >OLE

MSSADRDRSGIYGGAHATYGQQQQQGGGGRPMGEQVKGMLHDKGPTASQALTVATL

FPLGGLLLVLSGLALTASVVGLAVATPVFLIFSPVLVPAALLIGTAVMGFLTSGALG LGG

LSSLTCLANTARQAFQRTPDYVEEAHRRMAEAAAHAGHKTAQAGQAIQGRAQEAGAG

GGAG