Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CAPSULES INCLUDING EMBEDDED CORRUGATED HEATER, HEAT-NOT-BURN (HNB) AEROSOL-GENERATING DEVICES, AND METHODS OF GENERATING AN AEROSOL
Document Type and Number:
WIPO Patent Application WO/2022/146584
Kind Code:
A1
Abstract:
A capsule for an aerosol-generating device includes an inner frame defining an opening and a corrugated heater. The corrugated heater is supported by the inner frame and extends across at least a portion of the opening defined by the inner frame. An aerosol-forming substrate is at least partially disposed within the opening, such that the aerosol-forming substrate is on each side of the corrugated heater.

Inventors:
BLACKMON ZACK W (US)
Application Number:
PCT/US2021/060635
Publication Date:
July 07, 2022
Filing Date:
November 23, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ALTRIA CLIENT SERVICES LLC (US)
International Classes:
A24F40/42; A24F40/46; A61M11/04; A61M15/06
Foreign References:
EP3166426A12017-05-17
US20200275699A12020-09-03
EP3462931A12019-04-10
EP3539599A12019-09-18
US201715845501A2017-12-18
US201916252951A2019-01-21
US201916451662A2019-06-25
US201715559308A2017-09-18
US202016909131A2020-06-23
Other References:
DATABASE WPI Week 202008, Derwent World Patents Index; AN 2020-A3278F, XP002805861
Attorney, Agent or Firm:
YACURA, Gary, D. (US)
Download PDF:
Claims:
CLAIMS

1 . A capsule for an aerosol-generating device, comprising: an inner frame defining an opening; and a corrugated heater supported by the inner frame and extending across at least a portion of the opening.

2. The capsule of claim 1, further comprising: an aerosol-forming substrate at least partially within the opening, the aerosolforming substrate on each side of the corrugated heater.

3. The capsule of claim 2, wherein the aerosol-forming substrate includes a plant material.

4. The capsule of claim 3, wherein the plant material includes tobacco.

5. The capsule of claim 1, wherein the inner frame comprises: a first face; a second face; a first end; a second end; a first side; and a second side.

6. The capsule of claim 5, wherein the first end defines at least one hole therein; and the corrugated heater includes a first heater end portion and a second heater end portion, the first heater end portion and the second heater end portion extending through the at least one hole in the first end of the inner frame.

7. The capsule of claim 6, wherein the first heater end portion and the second heater end portion of the corrugated heater each includes a tab portion.

8. The capsule of claim 1, wherein the corrugated heater comprises a first corrugated row and a second corrugated row, the first corrugated row connected to the second corrugated row by a first connecting portion.

9. The capsule of claim 8, wherein the first connecting portion is U-shaped.

10. The capsule of claim 9, wherein the corrugated heater further comprises: a third corrugated row connected to the second corrugated row by a second connecting portion, the second connecting portion being U-shaped.

1 1. The capsule of claim 1 , wherein the inner frame has a thickness ranging from 1.0 mm to 6.0 mm.

12. The capsule of claim 1 1, wherein the thickness ranges from 2.0 mm to 4.0 mm.

13. The capsule of claim 1, wherein the corrugated heater includes at least one corrugation having a peak and a valley, a vertical distance between an apex of the peak and a bottom of the valley ranging from 0.5 mm to 3.0 mm.

14. The capsule of claim 1, further comprising: an outer frame surrounding at least a portion of the inner frame.

15. The capsule of claim 1, wherein the corrugated heater has a form of a triangle wave.

16. An aerosol-generating device comprising: a device body configured to receive a capsule including, an inner frame defining an opening, and a corrugated heater supported by the inner frame and extending across at least a portion of the opening; a plurality of electrodes within the device body and configured to electrically contact the corrugated heater of the capsule; and a power source configured to supply an electric current to the corrugated heater of the capsule via the plurality of electrodes.

17. The aerosol-generating device of claim 16, further comprising: an aerosol-forming substrate at least partially within the opening of the inner frame of the capsule, the aerosol-forming substrate on each side of the corrugated heater.

18. The aerosol- generating device of claim 17, wherein the aerosol-forming substrate includes a plant material.

19. The aerosol-generating device of claim 18, wherein the plant material includes tobacco.

20. The aero sol- generating device of claim 16, wherein the inner frame comprises: a first face; a second face; a first end; a second end; a first side; and a second side.

21. The aerosol-generating device of claim 20, wherein the first end defines at least one hole therein; the corrugated heater includes a first heater end portion and a second heater end portion, the first heater end portion and the second heater end portion extending through the at least one hole in the first end, and the first heater end portion and the second end portion of the corrugated heater each includes a tab portion; and the plurality of electrodes configured to contact the tab portion of each of the first heater end portion and the second heater end portion of the corrugated heater.

22. The aerosol-generating device of claim 16, wherein the corrugated heater includes a first corrugated row and a second corrugated row, the first corrugated row connected to the second corrugated row by a first connecting portion, the first connecting portion being U-shaped.

23. The aerosol-generating device of claim 22, wherein the corrugated heater further comprises: a third corrugated row connected to the second corrugated row by a second connecting portion, the second connecting portion being U-shaped.

24. A method of generating an aerosol comprising: electrically contacting a plurality of electrodes with a capsule, the capsule including an inner frame and a corrugated heater, the inner frame defining an opening, and the corrugated heater supported by the inner frame and extending across at least a portion of the opening; and supplying an electric current to the corrugated heater of the capsule via the plurality of electrodes.

Description:
CAPSULES INCLUDING EMBEDDED CORRUGATED HEATER, HEAT-NOT-BURN (HNB) AEROSOL-GENERATING DEVICES, AND METHODS OF GENERATING AN AEROSOL

BACKGROUND

Field

[0001] The present disclosure relates to capsules, heat-not-burn (HNB) aerosolgenerating devices, and methods of generating an aerosol without involving a substantial pyrolysis of the aerosol-forming substrate.

Description of Related Art

[0002] Some electronic devices are configured to heat a plant material to a temperature that is sufficient to release constituents of the plant material while keeping the temperature below a combustion point of the plant material so as to avoid any substantial pyrolysis of the plant material. Such devices may be referred to as aerosol-generating devices (e.g., heat-not-burn aerosol-generating devices), and the plant material heated may be tobacco. In some instances, the plant material may be introduced directly into a heating chamber of an aerosol- generating device. In other instances, the plant material may be pre-packaged in individual containers to facilitate insertion and removal from an aerosol-generating device.

SUMMARY

[0003] At least one example embodiment relates to a capsule for an aerosolgenerating device. [0004] In at least one example embodiment, a capsule for an aerosol-generating device comprises an inner frame defining an opening, and a corrugated heater supported by the inner frame and extending across at least a portion of the opening. [0005] In at least one example embodiment, the capsule further comprises an aerosol-forming substrate at least partially within the opening. The aero sol- forming substrate is on each side of the corrugated heater. The aerosol-forming substrate includes a plant material. The plant material includes tobacco.

[0006] In at least one example embodiment, the inner frame comprises: a first face; a second face; a first end; a second end; a first side; and a second side. The first end defines at least one hole therein. The corrugated heater includes a first heater end portion and a second heater end portion. The first heater end portion and the second heater end portion extend through the at least one hole in the first end of the inner frame. The first heater end portion and the second heater end portion of the corrugated heater each includes a tab portion.

[0007] In at least one example embodiment, the corrugated heater comprises a first corrugated row and a second corrugated row, the first corrugated row connected to the second corrugated row by a first connecting portion. The first connecting portion is U-shaped. The corrugated heater further comprises a third corrugated row connected to the second corrugated row by a second connecting portion. The second connecting portion is U-shaped.

[0008] In at least one example embodiment, the inner frame has a thickness ranging from 1.0 mm to 6.0 mm. The thickness ranges from 2.0 mm to 4.0 mm. The corrugated heater includes at least one corrugation having a peak and a valley. A vertical distance between an apex of the peak and a bottom of the valley ranging from

0.5 mm to 3.0 mm. [0009] In at least one example embodiment, the capsule further comprises an outer frame surrounding at least a portion of the inner frame.

[0010] In at least one example embodiment, the corrugated heater has a form of a triangle wave.

[0011] At least one example embodiment relates to an aerosol-generating device.

[0012] In at least one example embodiment, an aerosol-generating device comprises a device body configured to receive a capsule. The capsule includes an inner frame defining an opening, and a corrugated heater supported by the inner frame and extending across at least a portion of the opening. The device further comprises a plurality of electrodes within the device body and configured to electrically contact the corrugated heater of the capsule, and a power source configured to supply an electric current to the corrugated heater of the capsule via the plurality of electrodes.

[0013] In at least one example embodiment, the device further comprises an aerosol-forming substrate at least partially within the opening of the inner frame of the capsule, the aerosol-forming substrate on each side of the corrugated heater. The aerosol-forming substrate includes a plant material. The plant material includes tobacco.

[0014] In at least one example embodiment, the inner frame comprises a first face, a second face, a first end, a second end, a first side, and a second side. The first end defines at least one hole therein. The corrugated heater includes a first heater end portion and a second heater end portion. The first heater end portion and the second heater end portion extend through the at least one hole in the first end, and the first heater end portion and the second end portion of the corrugated heater each includes a tab portion. The plurality of electrodes is configured to contact the tab portion of each of the first heater end portion and the second heater end portion of the corrugated heater.

[0015] In at least one example embodiment, the corrugated heater includes a first corrugated row and a second corrugated row. The first corrugated row is connected to the second corrugated row by a first connecting portion. The first connecting portion is U-shaped. In at least one example embodiment, the corrugated heater further comprises a third corrugated row connected to the second corrugated row by a second connecting portion. The second connecting portion is U-shaped.

[0016] At least one example embodiment relates to a method of generating an aerosol.

[0017] In at least one example embodiment, a method of generating an aerosol comprises electrically contacting a plurality of electrodes with a capsule, the capsule including an inner frame and a corrugated heater, the inner frame defining an opening, and the corrugated heater supported by the inner frame and extending across at least a portion of the opening; and supplying an electric current to the corrugated heater of the capsule via the plurality of electrodes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The various features and advantages of the non-limiting embodiments herein may become more apparent upon review of the detailed description in conjunction with the accompanying drawings. The accompanying drawings are merely provided for illustrative purposes and should not be interpreted to limit the scope of the claims. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted. For purposes of clarity, various dimensions of the drawings may have been exaggerated. [0019] FIG. 1A is a perspective view of a first side of a capsule for an aerosolgenerating device according to an example embodiment.

[0020] FIG. IB is a perspective view of a second side of a capsule for an aerosolgenerating device according to an example embodiment.

[0021] FIG. 2A is an exploded view of the capsule of FIGS. 1A and IB according to at least one example embodiment.

[0022] FIG. 2B is an exploded view of the capsule of FIGS. 1A and IB according to at least one example embodiment.

[0023] FIG. 3 is a perspective view of the capsule of FIGS. 1A and IB with the first and second permeable structures removed to show a heater according to at least one example embodiment.

[0024] FIG. 4 is a side cross-sectional view of capsule of FIG. 3 according to at least one example embodiment.

[0025] FIG. 5 is perspective view of a portion of a capsule for an aerosol- generating device according to a second example embodiment.

[0026] FIG. 6 is a side cross-sectional view of the portion of the capsule of FIG. 5 along line VI- VI.

[0027] FIG. 7 is a cross-sectional view of an aerosol-generating device according to an example embodiment.

DETAILED DESCRIPTION

[0028] Some detailed example embodiments are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. Example embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only the example embodiments set forth herein.

[0029] Accordingly, while example embodiments are capable of various modifications and alternative forms, example embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit example embodiments to the particular forms disclosed, but to the contrary, example embodiments are to cover all modifications, equivalents, and alternatives thereof. Like numbers refer to like elements throughout the description of the figures.

[0030] It should be understood that when an element or layer is referred to as being "on," "connected to," "coupled to," “attached to,” “adjacent to,” or "covering" another element or layer, it may be directly on, connected to, coupled to, attached to, adjacent to or covering the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly connected to," or "directly coupled to" another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout the specification. As used herein, the term "and/or" includes any and all combinations or sub-combinations of one or more of the associated listed items.

[0031] It should be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, regions, layers and/or sections, these elements, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, region, layer, or section from another region, layer, or section. Thus, a first element, region, layer, or section discussed below could be termed a second element, region, layer, or section without departing from the teachings of example embodiments. [0032] Spatially relative terms (e.g., "beneath," "below," "lower," "above," "upper," and the like) may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It should be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the term "below" may encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

[0033] The terminology used herein is for the purpose of describing various example embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "includes," "including," "comprises," and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, and/or elements, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, and / or groups thereof.

[0034] When the words "about" and “substantially” are used in this specification in connection with a numerical value, it is intended that the associated numerical value include a tolerance of ±10% around the stated numerical value, unless otherwise explicitly defined. Moreover, when the terms "generally" or "substantially" are used in connection with geometric shapes, it is intended that precision of the geometric shape is not required but that latitude for the shape is within the scope of the disclosure. Furthermore, regardless of whether numerical values or shapes are modified as "about," “generally,” or "substantially," it will be understood that these values and shapes should be construed as including a manufacturing or operational tolerance (e.g., ±10%) around the stated numerical values or shapes.

[0035] Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It will be further understood that terms, including those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.

[0036] The processing circuitry (control circuitry) may be hardware including logic circuits; a hardware / software combination such as a processor executing software; or a combination thereof. For example, the processing circuitry more specifically may include, but is not limited to, a central processing unit (CPU) , an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA), a System-on-Chip (SoC), a programmable logic unit, a microprocessor, application-specific integrated circuit (ASIC), etc.

[0037] FIG. 1A is a perspective view of a first side of a capsule for an aerosolgenerating device according to an example embodiment. FIG. IB is a perspective view of a second side of a capsule for an aerosol-generating device according to an example embodiment.

[0038] In at least one example embodiment, as shown in FIGS. 1A and IB, the capsule 100 may be configured to be received within an aerosol-generating device (e.g., heat-not-burn aerosol-generating device). In the drawings, the capsule 100 has a laminar structure and a generally planar form. The proximal end of the capsule 100 may have a curved proximal edge, and the opposing distal end may have a linear distal edge. In addition, a pair of linear side edges may connect the curved proximal edge and the linear distal edge. The pair of linear side edges may be parallel to each other. Furthermore, the junctions of the linear side edges with the linear distal edge may be in the form of rounded corners.

[0039] Although the capsule 100 is shown in the figures as resembling a rectangle with a semicircular end (e.g., elongated semicircle, semi-obround), it should be understood that other configurations may be employed. For instance, the shape may be circular such that the capsule 100 has a disk- like appearance. In another instance, the shape of the capsule 100 may be elliptical or racetrack- like. In other instances, the capsule 100 may have a polygonal shape (regular or irregular), including a triangle, a rectangle (e.g., square), a pentagon, a hexagon, a heptagon, or an octagon. The laminar structure and generally planar form of the capsule 100 may facilitate stacking so as to allow a plurality of capsules to be stored in an aerosolgenerating device or other receptacle for dispensing a new capsule or receiving a depleted capsule. In an example embodiment, the capsule 100 has a thickness between 1 - 4 mm (e.g., between 1 - 2 mm).

[0040] The capsule 100 may include a housing 105 and a heater 170 within the housing 105. The housing 105 of the capsule 100 has interior surfaces defining a chamber configured to hold an aero sol- forming substrate 160 (e.g., FIGS. 2A and 2B). In addition, the housing of the capsule 100 has exterior surfaces constituting a first face, an opposing second face, and a side face of the capsule 100. The first face and the second face of the capsule 100 may be permeable to an aerosol. The side face of the capsule 100 is between the first face and the second face. The side face may be regarded as a periphery of the capsule 100. [0041] The housing of the capsule 100 includes a first frame 130 and a second frame 140. The first frame 130 and the second frame 1 0 may be of the same shape and size (e.g., based on a plan view) and aligned such that the outer sidewalls are substantially flush with each other, although example embodiments are not limited thereto. The first frame 130 and the second frame 140 may be formed of a suitable polymer, such as poly ether ether ketone (PEEK), liquid crystal polymer (LCP), and/or ultra- high molecular weight polyethylene (UHMWPE). The first frame 130 and the second frame 140 may be connected via a welded arrangement.

[0042] A first permeable structure 1 10 is secured and exposed by the first frame 130. Similarly, a second permeable structure 120 is secured and exposed by the second frame 140. As will be discussed in more detail herein, a third frame (or inner frame) 150 is disposed between the first permeable structure 1 10 and the second permeable structure 120 (as well as between the first frame 130 and the second frame 140). The capsule 100 is configured to hold an aerosol-forming substrate 160 (shown and described with respect to FIGS. 2 A and 2B), which may be within the third frame 150 and between the first permeable structure 1 10 and the second permeable structure 120. A first concavity 133 (e.g., first dimpled portion) in the first frame 130 and a second concavity 143 (e.g., second dimpled portion) in the second frame 140 may be from an injection molding process. In this regard, the size, location, and/or shape of the first concavity 133 and the second concavity 143 may differ (or may be absent altogether) depending on the fabrication technique.

[0043] The first permeable structure 110 and the second permeable structure 120 may be in a form of a mesh sheet, a perforated sheet, or a combination thereof. For instance, both the first permeable structure 1 10 and the second permeable structure 120 may be in a form of a mesh sheet. In another instance, both the first permeable structure 1 10 and the second permeable structure 120 may be in a form of a perforated sheet (e.g., 80, 100, or 250 mesh equivalent). The perforated sheet may be one that is perforated mechanically or chemically (e.g., via photochemical machining/ etching). In yet another instance, one of the first permeable structure 1 10 or the second permeable structure 120 may be in a form of a mesh sheet, while the other of the first permeable structure 110 or the second permeable structure 120 may be in a form of a perforated sheet. The first permeable structure 1 10 and the second permeable structure 120 (as well as the first frame 130 and the second frame 140) may be substantially the same size based on a plan view (e.g., ± 10% of a given dimension) .

[0044] As shown in FIG. 1A, the combination of the exposed surface of the first permeable structure 110 and the adjacent (e.g., substantially coplanar / parallel) surface the first frame 130 may be regarded as the first face of the capsule 100. Similarly, as shown in FIG. IB, the combination of the exposed surface of the second permeable structure 120 and the adjacent (e.g., substantially coplanar / parallel) surface of the second frame 1 0 may be regarded as the second face of the capsule 100. In at least one example embodiment, the first face, the second face, or both may include perforated sheets. In at least one example embodiment, the first face, the second face, or both may include mesh sheets. In yet another example embodiment, one of the first face or the second face may include a perforated sheet, while the other of the first face or the second face may include a mesh sheet.

[0045] As noted supra and as will be discussed herein in more detail, a heater 170 (e.g., FIGS. 2A and 2B) may be disposed within the capsule 100 to heat the aerosolforming substrate 160. The heater 170 may include, inter alia, a first end section 172 and a second end section 176 configured to receive an electric current from a power source during an activation of the heater 170. When the heater 170 is activated, the temperature of the aerosol- forming substrate 160 may increase, and an aerosol may be generated and released through the first permeable structure 1 10 and/or the second permeable structure 120 of the capsule 100.

[0046] As shown in FIGS. 1A- 1B, the combination of the exposed surfaces of the third frame 150 and the adjacent sidewalls of the first frame 130 and the second frame 140 may be regarded as the side face of the capsule 100. Additionally, the first end section 172 and the second end section 176 may be external segments of the heater 170 that also constitute parts of the side face of the capsule 100. The outward- facing surfaces of the first end section 172 and the second end section 176 of the heater 170 may be coplanar, although example embodiments are not limited thereto.

[0047] As discussed herein, an aerosol-forming substrate is a material or combination of materials that may yield an aerosol. An aerosol relates to the matter generated or output by the devices disclosed, claimed, and equivalents thereof. The material may include a compound (e.g., nicotine, cannabinoid), wherein an aerosol including the compound is produced when the material is heated. The heating may be below the combustion temperature so as to produce an aerosol without involving a substantial pyrolysis of the aerosol-forming substrate or the substantial generation of combustion byproducts (if any). Thus, in an example embodiment, pyrolysis does not occur during the heating and resulting production of aerosol. In other instances, there may be some pyrolysis and combustion byproducts, but the extent may be considered relatively minor and / or merely incidental.

[0048] The aerosol-forming substrate may be a fibrous material. For instance, the fibrous material may be a botanical material. The fibrous material is configured to release a compound when heated. The compound may be a naturally occurring constituent of the fibrous material. For instance, the fibrous material may be plant material such as tobacco, and the compound released may be nicotine. The term “tobacco” includes any tobacco plant material including tobacco leaf, tobacco plug, reconstituted tobacco, compressed tobacco, shaped tobacco, or powder tobacco, and combinations thereof from one or more species of tobacco plants, such as Nicotiana rustica and Nicotiana tabacum.

[0049] In some example embodiments, the tobacco material may include material from any member of the genus Nicotiana. In addition, the tobacco material may include a blend of two or more different tobacco varieties. Examples of suitable types of tobacco materials that may be used include, but are not limited to, flue-cured tobacco, Burley tobacco, Dark tobacco, Maryland tobacco, Oriental tobacco, rare tobacco, specialty tobacco, blends thereof, and the like. The tobacco material may be provided in any suitable form, including, but not limited to, tobacco lamina, processed tobacco materials, such as volume expanded or puffed tobacco, processed tobacco stems, such as cut-rolled or cut-puffed stems, reconstituted tobacco materials, blends thereof, and the like. In some example embodiments, the tobacco material is in the form of a substantially dry tobacco mass. Furthermore, in some instances, the tobacco material may be mixed and / or combined with at least one of propylene glycol, glycerin, sub-combinations thereof, or combinations thereof.

[0050] The compound may also be a naturally occurring constituent of a medicinal plant that has a medically-accepted therapeutic effect. For instance, the medicinal plant may be a cannabis plant, and the compound may be a cannabinoid. Cannabinoids interact with receptors in the body to produce a wide range of effects. As a result, cannabinoids have been used for a variety of medicinal purposes (e.g., treatment of pain, nausea, epilepsy, psychiatric disorders) . The fibrous material may include the leaf and / or flower material from one or more species of cannabis plants such as Cannabis sativa, Cannabis indica, and Cannabis ruderalis. In some instances, the fibrous material is a mixture of 60-80% (e.g., 70%) Cannabis sativa and 20-40% (e.g., 30%) Cannabis indica.

[0051] Examples of cannabinoids include tetrahydrocannabinolic acid (THCA), tetrahydrocannabinol (THC), cannabidiolic acid (CBDA), cannabidiol (CBD), cannabinol (CBN), cannabicyclol (CBL), cannabichromene (CBC), and cannabigerol (CBG). Tetrahydrocannabinolic acid (THCA) is a precursor of tetrahydrocannabinol (THC), while cannabidiolic acid (CBDA) is precursor of cannabidiol (CBD). Tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) may be converted to tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively, via heating. In an example embodiment, heat from a heater (e.g., heater 170 shown in FIGS. 2A and 2B) may cause decarboxylation so as to convert the tetrahydrocannabinolic acid (THCA) in the capsule 100 to tetrahydrocannabinol (THC), and/or to convert the cannabidiolic acid (CBDA) in the capsule 100 to cannabidiol (CBD).

[0052] In instances where both tetrahydrocannabinolic acid (THCA) and tetrahydrocannabinol (THC) are present in the capsule 100, the decarboxylation and resulting conversion will cause a decrease in tetrahydrocannabinolic acid (THCA) and an increase in tetrahydrocannabinol (THC). At least 50% (e.g., at least 87%) of the tetrahydrocannabinolic acid (THCA) may be converted to tetrahydrocannabinol (THC) during the heating of the capsule 100. Similarly, in instances where both cannabidiolic acid (CBDA) and cannabidiol (CBD) are present in the capsule 100, the decarboxylation and resulting conversion will cause a decrease in cannabidiolic acid (CBDA) and an increase in cannabidiol (CBD). At least 50% (e.g., at least 87%) of the cannabidiolic acid (CBDA) may be converted to cannabidiol (CBD) during the heating of the capsule 100. [0053] Furthermore, the compound may be or may additionally include a non- naturally occurring additive that is subsequently introduced into the fibrous material. In one instance, the fibrous material may include a synthetic material. In another instance, the fibrous material may include a natural material such as a cellulose material (e.g., non-tobacco and/or non-cannabis material). In either instance, the compound introduced may include nicotine, cannabinoids, and/or flavorants. The flavorants may be from natural sources, such as plant extracts (e.g., tobacco extract, cannabis extract), and/ or artificial sources. In yet another instance, when the fibrous material includes tobacco and / or cannabis, the compound may be or may additionally include one or more flavorants (e.g., menthol, mint, vanilla). Thus, the compound within the aerosol-forming substrate may include naturally occurring constituents and/or non-naturally occurring additives. In this regard, it should be understood that existing levels of the naturally occurring constituents of the aerosol- forming substrate may be increased through supplementation. For example, the existing levels of nicotine in a quantity of tobacco may be increased through supplementation with an extract containing nicotine. Similarly, the existing levels of one or more cannabinoids in a quantity of cannabis may be increased through supplementation with an extract containing such cannabinoids.

[0054] FIG. 2A is an exploded view of the capsule of FIGS. 1A and IB according to at least one example embodiment.

[0055] FIG. 2B is an exploded view of the capsule of FIGS. 1A and IB according to at least one example embodiment.

[0056] Referring to FIGS. 2A and 2B, the first frame 130 has a first interior face and a first exterior face. In addition, the first frame 130 defines a first opening 131. In an example embodiment, the sidewall of the first opening 131 has opposing linear sections and, optionally, opposing curved sections, wherein one curved section may be adjacent to the proximal end of the first frame 130, and the other curved section may be adjacent to the opposing distal end of the first frame 130. The first permeable structure 1 10 may be secured to the first interior face of the first frame 130 so as to be exposed by the first opening 131. From a difference perspective, the first permeable structure 110 may also be regarded as covering the first opening 131. Furthermore, the first permeable structure 110 may define a first aperture 1 12. The first aperture 1 12 may be positioned and sized so as to accommodate the first convexity (not shown), which corresponds to first concavity 133 shown in FIG. 2A, when the first permeable structure 1 10 is secured to the first frame 130.

[0057] The second frame 140 has a second interior face and a second exterior face. In addition, the second frame 140 defines a second opening 141. In an example embodiment, the sidewall of the second opening 141 has opposing linear sections and, optionally, opposing curved sections, wherein one curved section may be adjacent to the proximal end of the second frame 140, and the other curved section may be adjacent to the opposing distal end of the second frame 140. The second permeable structure 120 may be secured to the second interior face of the second frame 140 so as to be exposed by the second opening 141. From a different perspective, the second permeable structure 120 may also be regarded as covering the second opening 141. The size and shape of the second opening 141 may correspond to (e.g., mirror) the size and shape of the first opening 131. Furthermore, the second permeable structure 120 may define a second aperture 122. The second aperture 122 may be positioned and sized so as to accommodate the second convexity 145 when the second permeable structure 120 is secured to the second frame 140. [0058] The third frame 150 defines a cavity 151 configured to receive the aerosolforming substrate 160. The combination of the sidewall of the cavity 151 and the interior surfaces of the first permeable structure 1 10 and the second permeable structure 120 (which cover the cavity 151) may be regarded as defining a chamber. In an example embodiment, the sidewall of the cavity 151 has opposing linear sections and opposing curved sections, wherein one curved section is adjacent to the proximal end of the third frame 150, and the other curved section is adjacent to the opposing distal end of the third frame 150. The third frame 150 may be substantially the same size as the first permeable structure 1 10 and the second permeable structure 120 based on a plan view (e.g., ± 10% of a given dimension). The third frame 150 may also define at least one aperture 152 adjacent to an end of the third frame 150. In addition to the materials of construction for the first frame 130 and the second frame 140, the third frame 150 may also be formed of other suitable materials, such as ceramic, sintered glass, and/or consolidated fibers (e.g., cardboard).

[0059] In at least one example embodiment, a heater 170 is configured to extend through the third frame 150 and into the cavity 151. Additionally, the heater 170 may be regarded as being supported by the third frame 150. The heater 170 includes a first end section 172, an intermediate section 174, and a second end section 176 as will be further described with respect to FIGS. 3-4. The first end section 172 and the second end section 176 of the heater 170 are external segments that also constitute parts of the side face of the capsule 100. The intermediate section 174 of the heater 170 is an internal segment disposed within the capsule 100 (e.g., within the chamber of the housing containing the aerosol- forming substrate 160). The first end section 172, the intermediate section 174, and the second end section 176 of the heater 170 are sections of a continuous structure. In an example embodiment, the intermediate section 174 of the heater 170 has a planar form including a plurality of U-shaped, corrugated portions.

[0060] The aero sol- forming substrate 160 may be disposed within the cavity 151 of the third frame 150 so as to be on one (shown in FIG. 2A) or both sides (shown in FIG. 2B) of the intermediate section 174 of the heater 170. In at least one example embodiment, the aerosol-forming substrate 160 may be in a consolidated form (e.g., sheet, pallet, tablet) that is configured to maintain its shape so as to allow the aerosol- forming substrate 160 to be placed in a unified manner within the cavity 151 of the third frame 150. In such an instance, one mass of the aerosol- forming substrate 160 may be disposed on one side of the intermediate section 174 of the heater 170 as shown in FIG. 2A. In another example embodiment, as shown in FIG. 2B, one mass of the aerosol- forming substrate 160 may be disposed on one side of the intermediate section 174 of the heater 170, while another mass of the aerosolforming substrate 160 may be disposed on the other side of the intermediate section 174 of the heater 170 (e.g., so as to substantially fill the cavity 151 of the third frame 150 and sandwich/ embed the intermediate section 174 of the heater 170 in between). Alternatively, the aerosol- forming substrate 160 may be in a loose form (e.g., particles, fibers, grounds, fragments, shreds) that does not have a set shape but rather is configured to take on the shape of the cavity 151 of the third frame 150 when introduced.

[0061] The first permeable structure 110 and the second permeable structure 120 may be secured to the first frame 130 and the second frame 140, respectively, via a variety of attachment techniques. For instance, the attachment technique may involve injection molding (e.g., insert molding, over molding). In another instance, the attachment technique may involve ultrasonic welding. In other instances, the attachment technique may involve an adhesive (e.g., tape, glue) that has been deemed food-safe or otherwise acceptable by a regulatory authority. Alternatively, in lieu of a separate attachment technique, the first permeable structure 110 and the second permeable structure 120 may be clamped against the third frame 150 (or otherwise constrained) by the first frame 130 and the second frame 140, respectively. [0062] As shown in FIG. 2A, the first frame 130 includes at least one first connector protruding from the first interior face of the first frame 130. The at least one first connector of the first frame 130 may be in a form of a first connector 138. In an example embodiment, the first connector 138 may extend along an edge of the first interior face of the first frame 130 in a form a ridge (e.g., first ridge). The ridge may define a trench extending along its entire length so as to resemble an elevated trench or a recessed/ furrowed ridge. In addition or in the alternative, the ridge may have a tapered ridgeline and, as a result, may be referred to as a tapered ridge. Although the first connector 138 is shown as being separated into a plurality of discrete structures (e.g., four discrete structures), it should be understood that example embodiments are not limited thereto. For instance, alternatively, the first connector 138 may be a single, continuous structure extending along the edge so as to completely surround the first interior face of the first frame 130.

[0063] Similarly, the second frame 140 includes at least one second connector protruding from the second interior face of the second frame 140. The at least one second connector of the second frame 140 may be in a form of a second connector 148. The second connector 148 of the second frame 140 and the first connector 138 of the first frame 130 are complementary structures configured to mate with each other. In an example embodiment, the second connector 148 may extend along an edge of the second interior face of the second frame 140 in a form a ridge (e.g., second ridge). The ridge may define a trench extending along its entire length so as to resemble an elevated trench or a recessed/ furrowed ridge. In addition or in the alternative, the ridge may have a tapered ridgeline and, as a result, may be referred to as a tapered ridge. Although the second connector 148 is shown as being separated into a plurality of discrete structures (e.g., four discrete structures), it should be understood that example embodiments are not limited thereto. For instance, alternatively, the second connector 148 may be a single, continuous structure extending along the periphery so as to completely surround the second interior face of the second frame 140.

[0064] In the non-limiting embodiment illustrated in FIG. 2A where the first connector 138 of the first frame 130 is separated into four discrete structures, two of the structures may be elevated trenches, while the other two structures may be tapered ridges. Conversely, the second connector 148 of the second frame 140 may be separated into four discrete structures, wherein two of the structures are tapered ridges, while the other two structures are elevated trenches. The mixed set of elevated trenches and tapered ridges of the first frame 130 are configured to mate with the mixed set of tapered ridges and elevated trenches, respectively, of the second frame 140 during the assembly of the capsule 100. It should be understood that various combinations of elevated trenches and the tapered ridges are possible for the first frame 130 and the second frame 140. Furthermore, each of the first permeable structure 1 10 and the second permeable structure 120 may have tab-like extensions (e.g., four tab-like extensions) disposed between the discrete structures of the first connector 138 and the second connector 148, respectively, when the capsule 100 is assembled.

[0065] A tapered ridge of the first connector 138 and/ or the second connector 148 may have a shoulder portion and an inclined portion that rises from the shoulder portion to form a tapered ridgeline. The tapered ridgeline may function as an energy director during assembly (e.g., to facilitate welding). A corresponding elevated trench of the first connector 138 and/or the second connector 148 may have a rim portion and a trench bottom. As shown in FIG. 2 A, the trench bottom of the elevated trench may be a planar bottom. Alternatively, the trench bottom of the elevated trench may be a V-shaped bottom. In an example embodiment of a connection between the first frame 130 and the second frame 140, the inclined portion of a tapered ridge is configured to contact the trench bottom of a corresponding elevated trench, while the shoulder portion of the tapered ridge interfaces with the rim portion of the elevated trench. Thus, the engagement surfaces of the first connector 138 and the second connector 148 may be inversely or complementarity configured to facilitate mating.

[0066] When the mixed set of elevated trenches and tapered ridges of each frame are grouped such that the elevated trenches are on one linear side edge while the tapered ridges are on the other linear side edge, as shown in FIG. 2A, the first frame 130 and the second frame 140 may be identical parts. In such an instance, orienting the first frame 130 and the second frame 140 to face each other for mating will result in a complementary arrangement. As a result, one part may be used interchangeably as the first frame 130 or the second frame 140, thus simplifying the method of manufacturing.

[0067] To assemble the capsule 100, the first frame 130 may be connected to the second frame 140 after an aerosol- forming substrate 160 is disposed within the cavity 151 of the third frame 150 (e.g., so as to be on both sides of the intermediate section 174 of the heater 170). In such an instance, the third frame 150 will be sandwiched between the first permeable structure 1 10 and the second permeable structure 120 when the first frame 130 is connected to the second frame 140. During assembly, the at least one first connector of the first frame 130 is configured to engage with the at least one second connector of the second frame 140 to form at least one connection (e.g., four connections). For instance, an elevated trench (and/or tapered ridge) of the first connector 138 is configured to mate with a corresponding tapered ridge (and/or elevated trench) of the second connector 148. In addition, the joinder between the first connector 138 of the first frame 130 and the second connector 1 8 of the second frame 140 may be achieved via a welded arrangement (e.g., ultrasonic welding). Furthermore, the outer sidewall of the first frame 130 may be substantially flush with the outer sidewall of the second frame 140 when the capsule 100 is assembled, although example embodiments are not limited thereto. Once assembled, the capsule 100 is difficult or impracticable to open without damaging the connectors, the frames, and / or other aspects of the capsule 100. As a result, the capsule 100 is relatively tamper-proof against unauthorized actions by third parties.

[0068] The capsule 100 has been described as including, inter alia, a first frame 130 that is separate from a second frame 140. Alternatively, in some instances, the first frame 130 and the second frame 140 may be fabricated as a single structure that is configured to fold during assembly such that the first connector 138 engages with the second connector 148. For example, the first frame 130 and the second frame 140 may resemble a clamshell structure, wherein the linear distal edge of the first frame 130 is connected to the linear distal edge of the second frame 140 with an integral section of reduced thickness that functions as a fold line. In another example, a linear side edge of the first frame 130 may be connected to a linear side edge of the second frame 140 with an integral section of reduced thickness that functions as a fold line. With a clamshell structure, it should be understood that one or more connections (e.g., along the fold line) may be omitted from the capsule

100. [0069] FIG. 3 is a perspective view of the capsule of FIGS. 1A and IB with the first and second permeable structures removed to show a heater according to at least one example embodiment. FIG. 4 is an side cross-sectional view of capsule of FIG. 3 according to at least one example embodiment.

[0070] In at least one example embodiment, as shown in FIGS. 3 and 4, the heater 170 is arranged within the cavity (or opening) 151 defined by the third frame 150. The heater 170 includes the first end section 172, the intermediate section 174, and the second end section 176. The first end section 172 and the second end section 176 extend through the aperture 152 in an end of the third frame 150 and beyond the housing of the capsule 100 (e.g., to facilitate an electrical connection with a power source). Each of the first end section 172 and the second end section 176 includes a tab portion 178a, 178b, which is connectable to a battery or other power supply via electrical leads (not shown). The tab portions 178a, 178b may be rounded or any other shape, and are sufficiently sized to allow for easy connection to the battery or other power supply. The first end section 172 and the second end section 176 of the heater 170 may be coplanar, although example embodiments are not limited thereto. The first end section 172 and the second end section 176 of the heater 170 may also define apertures.

[0071] In at least one example embodiment, the intermediate section 174 of the heater 170 includes at least one corrugated portion extending across at least a portion of the opening defined by the third frame 150, and arranged between the first end section 172 and the second end section 176. As shown in FIG. 4, when viewed from a side, the at least one corrugated portion may be in the form of a triangle wave. In other example embodiments, when viewed from a side, the at least one corrugated portion may be in the form of a sine wave, a sawtooth wave, a square wave, or any other wave form having a valley V and adjacent peak P formation. The at least one corrugated portion may include between 1 and 40 peaks P and valleys P (e.g., 2 to 35, 5 to 30, 10 to 25, or 15 to 20). A vertical distance VD between an adjacent peak P and valley V of the corrugated portion may be about 0.25 mm to about 1.5 mm (e.g., about 0.50 mm to about 1.25 mm, or about 0.75 mm to about 1.00 mm).

[0072] As shown in FIGS. 3 and 4, the intermediate section 174 of the heater 170 also includes multiple rows with each row being corrugated. The multiple corrugated rows may be connected to adjacent rows at ends thereof by a connecting portion 300. For example, as shown in FIG. 3, a first corrugated row is connected to a second corrugated row by a u-shaped connecting portion 300. A third corrugated row is connected to the second corrugated row by a second u-shaped connecting portion. In at least one example embodiment, the heater 170 may include 1 to 20 corrugated rows, with each row being connected to one or more adjacent rows by a connecting portion, such as the u-shaped connecting portion.

[0073] In at least one example embodiment, as shown in FIG. 4, the third frame 150 may have a thickness of about 0.5 mm to about 5 mm (e.g. , about 1.0 mm to about 4 mm, about 1.5 mm to about 3.5 mm, or about 1.0 mm to about 3.0 mm). For example, the third frame 150 may have a thickness of about 2 mm and the vertical distance VD between the peaks P and the valleys V may be about 1 mm. The heater 170 may be arranged in a middle of the third frame 150 with respect to the thickness thereof, such that the aerosol-forming substrate can be arranged on both sides of the heater 170. The corrugated portions at least partially extend into the aerosol-forming substrate thereby increasing a surface area contact between the aerosol- forming substrate and the heater 170.

[0074] When the heater 170 is activated, the temperature of the aerosol- forming substrate may increase, and an aerosol may be generated and released through the first permeable structure 1 10 and/or the second permeable structure 120 of the capsule 100.

[0075] In at least one example embodiment, the heater 170 may be formed from a sheet material that may be cut, photo-etched, and stamped into a corrugated form or otherwise processed (e.g., electrochemical etching, die cutting, laser cutting).

[0076] In an example embodiment, the heater 170 is configured to undergo Joule heating (which is also known as ohmic/ resistive heating) upon the application of an electric current thereto. Stated in more detail, the heater 170 may be formed of one or more conductors and configured to produce heat when an electric current passes therethrough. The electric current may be supplied to the first end section 172 and the second end section 176 of the heater 170 from a power source (e.g., battery) within the aerosol-generating device. Suitable conductors for the heater 170 include an iron-based alloy (e.g., stainless steel, iron aluminides), a nickel-based alloy (e.g., nichrome), and/or a ceramic (e.g., ceramic coated with metal). The intermediate section 174 of the heater 170 prior to corrugation may have a thickness of about 0. 1 - 0.3 mm (e.g., 0.15 - 0.25 mm) and a resistance of about 0.5 - 2.5 Ohms (e.g., 1 - 2 Ohms).

[0077] The electric current from the power source within the aerosol-generating device may be transmitted via electrodes configured to electrically contact the first end section 172 and the second end section 176 of the heater 170 when the capsule 100 is inserted into the aerosol-generating device. In a non-limiting embodiment, the electrodes within the aerosol-generating device may be spring- loaded to enhance an engagement with the heater 170 of the capsule 100. For instance, a spring-loaded first electrode within the aerosol-generating device may have a rounded or beveled engagement portion configured to electrically contact the first end section 172 of the heater 170 such that the engagement portion is seated within the aperture in the first end section 172. Similarly, a spring-loaded second electrode within the aerosolgenerating device may have a rounded or beveled engagement portion configured to electrically contact the second end section 176 of the heater 170 such that the engagement portion is seated within the aperture in the second end section 176. In such instances, the engagement of the first electrode and the second electrode of the aerosol-generating device with the first end section 172 and the second end section 176, respectively, of the heater 170 may produce a confirmatory click. The springloading of the electrodes may be in a direction that is orthogonal to the plane of the heater 170. In addition to or in lieu of the spring-loading, the movement (e.g., engagement, release) of the electrodes may be achieved by mechanical actuation. Furthermore, the supply of the electric current from the aerosol-generating device to the capsule 100 may be a manual operation (e.g., button- activated) or an automatic operation (e.g., puff- activated).

[0078] FIG. 5 is perspective view of a capsule for an aerosol-generating device according to a second example embodiment. FIG. 6 is a side cross-sectional view of the capsule of FIG. 5 along line VI- VI.

[0079] Referring now to FIGS. 5 and 6, the capsule 100 is the same as in FIGS. 1A-4, except that the third frame 150 is shown without the outer housing, the third frame 150 is thicker, and the heater 170 includes fewer corrugations. As shown, in at least one example embodiment, the heater 170 may have fewer peaks and valleys and a larger vertical distance VD between the peaks P and valleys V. For example, the heater 170 may include 2-3 peaks and 2-3 valleys and may have a vertical distance VD between the peaks P and valleys V of about 2.0 mm to about 3.0 mm or about 2.5 mm. The third frame 150 may be about 3.5 mm to about 4.0 mm thick or about 3.5 mm thick. Because of the increased third frame 150 thickness and larger corrugations, additional aerosol-forming substrate may be included in the capsule. [0080] Referring to FIG. 7, an aero sol- generating device 1000 (e.g., heat-not-burn aerosol-generating device) includes a mouthpiece 1015 having an outlet 1017 and a device body 1025. A power source 1035 and control circuitry 1045 may be disposed within the device body 1025 of the aerosol-generating device 1000. The power source 1035 may include one or more batteries (e.g., rechargeable dual battery arrangement), such as Lithium ion batteries. The aerosol-generating device 1000 is configured to receive a capsule 700, which may be as described in connection with any of the embodiments herein. The aerosol-generating device 1000 also includes an engagement assembly 1055 configured to electrically contact the capsule 700. In an example embodiment, the engagement assembly 1055 includes a first electrode 1060 and a second electrode 1062 configured to electrically contact a first end section 172 and a second end section 176, respectively, of a heater of the capsule 700.

[0081] After the capsule 700 is inserted into the aerosol-generating device 1000, the control circuitry 1045 may instruct the power source 1035 to supply an electric current between the first electrode and the second electrode of the engagement assembly 1055. The supply of current from the power source 1035 may be in response to a manual operation (e.g., button- activation) or an automatic operation (e.g., puff- activation). As a result of the current, the capsule 700 may be heated to generate an aerosol. In addition, the change in resistance of the heater may be used to monitor and control the aerosolization temperature. The aerosol generated may be drawn from the aerosol- generating device 1000 via the mouthpiece 1015.

[0082] In at least one example embodiment, upon activating the aerosol-generating device 1000, the capsule 700 within the device body 1025 may be heated to generate an aerosol. In at least one example embodiment, activation of the aerosol-generating device 1000 may be triggered by the detection of an air flow by a sensor 1075 and / or the generation of a signal associate with the pressing of a first button 1080 and / or a second button 1085. With regard to the detection of an air flow, a draw or application of negative pressure on the aerosol outlet 1017 of the mouthpiece 1015 will pull ambient air into the device body 1025 via an air inlet 1065. Once inside the device body 1025, the air travels through an inlet channel 1095 and is detected by the sensor 1075. A portion of the air also enters the capsule 700 as described herein. [0083] The detection of the air flow by the sensor 1075 causes the control circuitry 1045 to instruct the power source 1035 to supply an electric current to the capsule 700 via the first end section 172 and the second end section 176 of the heater (as described herein). As a result, the temperature of the intermediate section 174 of the heater will increase which, in turn, will cause the temperature of the aerosolforming substrate (e.g., aerosol- forming substrate 160) to increase such that volatiles are released by the aerosol- forming substrate 160 to produce an aerosol. The aerosol produced will be entrained by the air flowing through the capsule 700. In particular, the aerosol produced will pass through the capsule 700 before exiting the aerosolgenerating device 1000 from the aerosol outlet 1017 of the mouthpiece 1015.

[0084] The processing circuitry (control circuitry) may be hardware including logic circuits; a hardware / software combination such as a processor executing software; or a combination thereof. For example, the processing circuitry more specifically may include, but is not limited to, a central processing unit (CPU) , an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA), a System-on-Chip (SoC), a programmable logic unit, a microprocessor, application-specific integrated circuit (ASIC), etc.

[0085] Additional details of the capsule 700 and the aerosol-generating device 1000, including the mouthpiece 1015, the device body 1025, the power source 1035, the control circuitry 1045, the electrodes may be found in U.S. Application No. 15/845,501, filed December 18, 2017, titled "VAPORIZING DEVICES AND METHODS FOR DELIVERING A COMPOUND USING THE SAME," Atty. Dkt. No. 24000DM-000012-US, the disclosure of which is incorporated herein in its entirety by reference. The capsule, aerosol-forming substrate, and related aspects discussed herein are also described in more detail in U.S. Application No. 16/252,951, filed January 21, 2019, titled "CAPSULE, HEAT-NOT-BURN (HNB) AEROSOLGENERATING DEVICES, AND METHODS OF GENERATING AN AEROSOL," Atty. Dkt. No. 24000NV-000521-US, the disclosure of which is incorporated herein in its entirety by reference.

[0086] Additional details of the substrates, capsules, devices, and methods discussed herein may also be found in U.S. Application No. 16/451,662, filed June 25, 2019, titled "CAPSULES, HEAT-NOT-BURN (HNB) AEROSOL-GENERATING DEVICES, AND METHODS OF GENERATING AN AEROSOL," Atty. Dkt. No. 24000NV-000522-US; U.S. Application No. 16/252,951, filed January 21, 2019, titled "CAPSULES, HEAT-NOT-BURN (HNB) AEROSOL-GENERATING DEVICES, AND METHODS OF GENERATING AN AEROSOL," Atty. Dkt. No. 24000NV-000521- US; U.S. Application No. 15/845,501, filed December 18, 2017, titled "VAPORIZING DEVICES AND METHODS FOR DELIVERING A COMPOUND USING THE SAME," Atty. Dkt. No. 24000DM-000012-US; U.S. Application No. 15/559,308, filed September 18, 2017, titled "VAPORIZER FOR VAPORIZING AN ACTIVE INGREDIENT," Atty. Dkt. No. 24000DM-000003-US-NP; and U.S. Application No. 16/909, 131, filed June 23, 2020, titled “CAPSULES INCLUDING INTERNAL HEATERS, HEAT-NOT-BURN (HNB) AEROSOL-GENERATING DEVICES, AND METHODS OF GENERATING AN AEROSOL,” Atty. Dkt. No. 24000NV-000603-US, the disclosures of each of which are incorporated herein in their entirety by reference. [0087] While a number of example embodiments have been disclosed herein, it should be understood that other variations may be possible. Such variations are not to be regarded as a departure from the spirit and scope of the present disclosure, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.