Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CATALYST AND METHOD FOR HYDROGENATION OF CARBONYL COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/2006/005506
Kind Code:
A1
Abstract:
The invention relates to a method for hydrogenation of an organic compound comprising at least one carbonyl group, whereby the organic compound is brought into contact with a moulded body in the presence of hydrogen. Said body may be produced by a method in which i) an oxidic material is prepared, comprising copper oxide, aluminium oxide, and iron oxide, followed by ii) addition of powdered metallic copper, copper platelets, powdered cement, graphite, or a mixture thereof to the oxidic material and iii) moulding the mixture from (ii) to give a moulded body.

Inventors:
HOUSSIN CHRISTOPHE (DE)
JUNICKE HENRIK (DE)
HAUNERT ANDREA (DE)
Application Number:
PCT/EP2005/007339
Publication Date:
January 19, 2006
Filing Date:
July 07, 2005
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF AG (DE)
HOUSSIN CHRISTOPHE (DE)
JUNICKE HENRIK (DE)
HAUNERT ANDREA (DE)
International Classes:
B01J23/72; C07B41/02; C07C29/149; (IPC1-7): C07C29/149; B01J23/72; C07B41/02
Domestic Patent References:
WO1999033773A11999-07-08
Foreign References:
US3923694A1975-12-02
EP1027928A12000-08-16
Attorney, Agent or Firm:
BASF AKTIENGESELLSCHAFT (Ludwigshafen, DE)
Download PDF:
Claims:
Patentansprüche
1. Verfahren zur Hydrierung einer mindestens eine Carbonylgruppe aufweisenden organischen Verbindung, bei dem die organische Verbindung in Anwesenheit von Wasserstoff mit einem Formkörper in Kontakt gebracht wird, der herstellbar ist gemäß einem Verfahren, in dem (i) ein oxidisches Material, umfassend Kupferoxid, Aluminiumoxid und Eisen¬ oxid, bereitgestellt wird, (ii) dem oxidischen Material pulverförmiges metallisches Kupfer, Kupferblätt chen, pulverförmiger Zement, Graphit oder ein Gemisch davon zugegeben wird, und (iii) das aus (ii) resultierende Gemisch zu einem Formkörper verformt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das oxidische Mate¬ rial (a) Kupferoxid mit einem Anteil im Bereich von 50 ≤ x ≤ 80, vorzugsweise 55 ≤ x ≤ 75 Gew.%, (b) Aluminiumoxid mit einem Anteil im Bereich von 15 ≤ y ≤ 35, vorzugsweise 20 ≤ y ≤ 30 Gew.% und (c) Eisenoxid mit einem Anteil im Bereich von 1 ≤ z ≤ 30, bevorzugt 2 < z ≤ 25 Gew.%, jeweils bezogen auf das Gesamtgewicht des oxidischen Materials nach Calcinie rung, wobei gilt: 80 ≤ x + y + z ≤ 100, insbesondere 95 ≤ x + y + z ≤ 100, wobei Zement nicht dem oxidischen Material im obigen Sinne zugerechnet wird, um fasst.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass durch die Zu gäbe das pulverförmige metallische Kupfer, die Kupferblättchen, der pulverförmi ge Zement oder Graphit oder das Gemisch davon in einem Anteil im Bereich von 1 bis 40 Gew.%, bezogen auf das Gesamtgewicht des oxidischen Materials, zu¬ gegeben wird.
4. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass dem oxidischen Material oder dem aus (ii) resultierendem Gemisch Graphit in ei¬ nem Anteil im Bereich von 0,5 bis 5 Gew.%, bezogen auf das Gesamtgewicht des oxidischen Materials, zugegeben wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die organische Verbindung eine Carbonsäure, ein Carbonsäureester, ein Carbon¬ säureanhydrid oder ein Lacton ist.
6. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die organische Ver¬ bindung Adipinsäure oder ein Adipinsäureester ist.
7. Formkörper, umfassend ein oxidisches Material, das (a) Kupferoxid mit einem Anteil im Bereich von 50 ≤ x ≤ 80, vorzugsweise 55 ≤ x ≤ 75 Gew.%, (b) Aluminiumoxid mit einem Anteil im Bereich von 15 ≤ y ≤ 35, vorzugsweise 20 < y ≤ 30 Gew.% und (c) Eisenoxid mit einem Anteil im Bereich von 1 ≤ z ≤ 30, bevorzugt 2 ≤ z ≤ 25 Gew.%, jeweils bezogen auf das Gesamtgewicht des oxidischen Materials nach Calcinie rung, wobei gilt: 80 ≤ x + y + z ≤ 100, insbesondere 95 ≤ x + y + z ≤ 100 umfasst, metallisches Kupferpulver, Kupferblättchen oder Zementpulver oder Graphit oder ein Gemisch davon mit einem Anteil im Bereich von 1 bis 40 Gew.%, bezogen auf das Gesamtgewicht des oxidischen Materials, und Graphit mit einem Anteil von 0,5 bis 5 Gew.%, bezogen auf das Gesamtgewicht des oxidischen Materials, wobei die Summe der Anteile aus oxidischem Material, metallischem Kupferpul¬ ver oder Zementpulver oder einem Gemisch davon und Graphit mindestens 95 Gew.% des Formkörpers ergeben.
8. Verwendung von Eisenoxid als Zusatz bei der Herstellung des Katalysators zur Erhöhung sowohl der mechanischen Stabilität als auch der Aktivität und der Se lektivität des Katalysators.
9. i.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass der Katalysator als Aktivkomponente Kupfer umfasst. GEÄNDERTE ANSPRÜCHE beim Internationalen Büro am 12 Dezember 2005 (12.12.2005) eingegangen ursprüngliche Ansprüche 17 durch geänderte Ansprüche 17 ersetzt; Ansprüche 89 wurden gestrichen (2 Seiten)] 1 Verfahren zur Hydrierung einer mindestens eine Carbonylgruppe aufweisenden organischen Verbindung, bei dem die organische Verbindung in Anwesenheit von Wasserstoff mit einem Formkörper in Kontakt gebracht wird, der herstellbar ist gemäß einem Verfahren, in dem (i) ein oxidisches Material, umfassend Kupferoxid, Alumiπiumoxid und Eisen¬ oxid, bereitgestellt wirdj (ü) dem oxidischen Materia! pulverförmiges metallisches Kupfer, Kupferblätt chen, pulvβrförmiger Zement, Graphit oder ein Gemisch davon zugegeben wird, und (ifi) das aus (ii) resultierende Gemisch zu einem Formkörper verformt wird.
11. 2 Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das oxidische Mate¬ rial (a) Kupferoxid mit einem Anteil im Bereich von 50 ≤ x ≤ 80, vorzugsweise 55 ≤ x ≤ 75 Gew.%, (b) Aluminiumoxid mit einem Anteil im Bereich von 15 ≤ y ≤ 35, vorzugsweise 20 ≤ y ≤ 30 Gew.% und (c) Eisenoxid mit einem Anteil im Bereich von 1 £ z ≤ 30, bevorzugt 2 ≤ z ≤ 25 Gew.~%, jeweils bezogen auf das Gesamtgewicht des oxidischen Materials nach Calcϊnie rung, wobei gilt: 80 ≤ x + y + z ≤ 100, insbesondere 95 ≤ x + y + z ≤ 100, wobei Zement nicht dem oxidischen Material im obigen Sinne zugerechnet wird, um fasεt.
12. 3 Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass durch die Zu gäbe das pulverförmige metallische Kupfer, die Kupferblättchen, der pulverförmi ge Zement oder Graphit oder das Gemisch davon in einem Anteil im Bereich von 1 bis 40 Gew.%, bezogen auf das Gesamtgewicht des oxidischen Materials, zu¬ gegeben wird. 18 4, Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass dem oxidischen Material oder dem aus (ii) resultierendem Gemisch Graphit in ei¬ nem Anteil im Bereich von 0,5 bis 5 Gew.%, bezogen auf das Gesamtgewicht des oxidischβn Materials, zugegeben wird.
13. 5 Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die organische Verbindung eine Carbonsäure, ein Carbonsäureester, ein Carbon¬ säureanhydrid oder ein Lacton ist, 6 Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die organische Ver¬ bindung Adipinsäure oder ein Adipinsäureester ist.
14. 7 Formkörper, umfassend ein oxidisches Material, das (a) Kupferoxid mit einem Anteil im Bereich von 50 ≤ x ≤ 60, vorzugsweise 55 ≤ x ≤ 75 Gew.%, (b) Aluminiumoxid mit einem Anteil im Bereich von 15 ≤ y ≤ 35, vorzugsweise 20 ≤ y ≤ 30 Gew.% und (c) EΞisenoxid mit einem Anteil im Bereich von 1 ≤ z ≤ 30, bevorzugt 2 ≤ z ≤ 25 Gew.%, jeweils bezogen auf das Gesamtgewicht des oxidischen Materials nach Calcinie rung, wobei gilt: 8Q ≤ x + y + ∑ ≤ 100, insbesondere 95 ≤ x + y + z ≤ 100 umfasst, metallisches Kupferpulver, Kupferblättchen oder Zβmentpulver odθr Graphit oder ein Gemisch davon mit einem Anteil im Bereich von 1 bis 40 Gew,%, bezogen auf das Gesamtgewicht des oxidischen Materials, und Graphit mit einem Anteil von 0,5 bis 5 Gew.%, bezogen auf das Gesamtgewicht des oxidischen Materials, wobei die Summe der Anteile aus oxidischem Material, metallischem Kupferpul¬ ver oder Zementpulver oder einem Gemisch davon und Graphit mindestens 95 Gew.% des Formkörpers ergeben.
Description:
Katalysator und Verfahren zur Hydrierung von Carbonylverbindungen

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Hydrierung von organischen Ver¬ bindungen, die mindestens eine Carbonylgruppe aufweisen, unter Verwendung eines Katalysators, der sich unter anderem dadurch auszeichnet, dass dieser aus Kupfer¬ oxid, Aluminiumoxid und Eisenoxid besteht, und dass durch die Zugabe von Eisenoxid ein Katalysator mit hoher Selektivität und gleichzeitig hoher Stabilität entsteht. Bei sei- ner Herstellung kann zusätzlich Kupferpulver, Kupferblättchen oder Zement zugegeben werden. Ebenso betrifft die vorliegende Erfindung den Katalysator an sich sowie ganz allgemein die Verwendung von Lanthanoxid bei der Herstellung von Katalysatoren mit hoher Selektivität und gleichzeitig hoher Stabilität.

Die katalytische Hydrierung von Carbonylverbindungen wie beispielsweise Carbonsäu¬ ren oder Carbonsäureestern nimmt in den Produktionssträngen der chemischen Grundstoffindustrie eine bedeutende Stellung ein.

Die katalytische Hydrierung von Carbonylverbindungen wie z.B. Carbonsäureestern wird in technischen Verfahren fast ausschließlich in Festbettreaktoren durchgeführt. Als Festbettkatalysatoren werden, neben Katalysatoren vom Raney-Typ, vor allem geträ- gerte Katalysatoren, beispielsweise Kupfer-, Nickel- oder Edelmetall-Katalysatoren verwendet.

Die US 3,923,694 beschreibt beispielsweise einen Katalysator vom Typ Kupferoxid / Zinkoxid / Aluminiumoxid. Der Nachteil dieses Katalysators besteht darin, dass er wäh¬ rend der Reaktion mechanisch nicht ausreichend stabil ist und daher relativ schnell zerfällt. Daraus resultiert ein Aktivitätsverlust und ein Aufbau von Differenzdruck über den Reaktor durch die zerfallenden Katalysator-Formkörper. In der Folge muss die Anlage vorzeitig abgestellt werden.

Die DE 198 09 418.3 beschreibt ein Verfahren zur katalytischen Hydrierung einer Car- bonylverbindung in Gegenwart eines Katalysators, der einen Träger, der vornehmlich Titandioxid enthält, und als Aktivkomponente Kupfer oder ein Gemisch aus Kupfer mit mindestens einem der Metalle, ausgewählt aus der Gruppe Zink, Aluminium, Cer, ei¬ nem Edelmetall und einem Metall der VIII. Nebengruppe, umfasst, wobei die Kupfer¬ oberfläche maximal 10 ma/g beträgt. Bevorzugte Trägermaterialien sind Mischungen aus Titandioxid mit Aluminiumoxid oder Zirkonoxid oder Aluminiumoxid und Zirkonoxid. In einer bevorzugten Ausführungsform wird das Katalysatormaterial unter Zusatz von metallischem Kupferpulver oder Kupferblättchen verformt. Die DE-A 195 05 347 beschreibt ganz allgemein ein Verfahren von Katalysatortabletten mit hoher mechanischer Festigkeit, wobei dem zu tablettirrenden Material ein Metall¬ pulver oder ein Pulver einer Metall-Legierung zugegeben wird. Unter anderem wird als Metallpulver Aluminiumpulver oder Kupferpulver oder Kupferblättchen zugegeben. Bei der Zugabe von Aluminiumpulver wird bei einem Kupferoxid / Zinkoxid / Aluminium¬ oxid-Katalysator allerdings ein Formkörper erhalten, der eine schlechtere Seitendruck¬ festigkeit aufweist als ein Formkörper, der ohne Zusatz von Aluminiumpulver herge¬ stellt wurde, und der erfindungsgemäße Formkörper zeigte bei seiner Verwendung als Katalysator eine schlechtere Konvertierungsaktivität als Katalysatoren, die ohne Zusatz von Aluminiumpulver hergestellt wurden. Ebenfalls offenbart ist dort ein Hydrierkataly¬ sator aus NiO, ZrO2, MoO3 und CuO, dem bei der Herstellung unter anderem Cu- Pulver zugemischt wurde. Über die Selektivität oder die Aktivität sind in dieser Schrift jedoch keine Angaben gemacht.

Die DE 256 515 beschreibt ein Verfahren zur Herstellung von Alkoholen aus Synthe¬ segas, wobei Katalysatoren auf der Basis von Cu / AI / Zn eingesetzt werden, die durch gemeinsame Vermahlung und Verpillung mit metallischem Kupferpulver oder Kupfer¬ blättchen gewonnen werden. Das Hauptaugenmerk liegt bei dem beschriebenen Ver- fahren auf der Herstellung von Gemischen aus C1- bis C5-Alkoholen, wobei eine Ver¬ fahrensführung gewählt wird, in dem der Reaktionsreaktor im oberen Schichtdrittel ei¬ nen Katalysator enthält, der einen höheren Anteil an Kupferpulver oder Kupferblättchen aufweist, und im unteren Drittel einen Katalysator enthält, der einen geringeren Anteil an Kupferpulver oder Kupferblättchen aufweist.

Eine Aufgabe der vorliegenden Erfindung war es, ein Verfahren und einen Katalysator bereitzustellen, die die Nachteile des Standes der Technik nicht aufweisen und Verfah¬ ren zur katalytischen Hydrierung von Carbonylverbindungen sowie Katalysatoren be¬ reitzustellen, wobei die Katalysatoren sowohl hohe mechanische Stabilität als auch hohe Hydrieraktivität und Selektivität aufweisen.

Es wurde gefunden, dass durch die simultane Fällung von Kupfer-, Aluminium- und einer Eisenverbindung und durch die anschließende Trocknung, Calcinierung, Tablet¬ tierung und durch die Zugabe von metallischem Kupferpulver, Kupferblättchen oder Zementpulver oder Graphit oder ein Gemisch, ein Katalysator erhalten wird, der durch die Zugabe einer Eisenverbindung sowohl zu hohen Aktivitäten und Selektivitäten so¬ wie zu einer hohen Stabilität des Formkörpers, der als Katalysator eingesetzt wird, führt. Demgemäss betrifft die vorliegende Erfindung ein Verfahren zur Hydrierung einer min¬ destens eine Carbonylgruppe aufweisenden organischen Verbindung, bei dem die or¬ ganische Verbindung in Anwesenheit von Wasserstoff mit einem Formkörper in Kon¬ takt gebracht wird, der herstellbar ist gemäß einem Verfahren, in dem

(i) ein oxidisches Material, umfassend Kupferoxid, Aluminiumoxid und Eisenoxid bereitgestellt wird,

(ii) dem oxidischen Material pulverförmiges metallisches Kupfer, Kupferblättchen, pulverförmiger Zement oder Graphit oder ein Gemisch davon zugegeben werden kann, und

(iii) das aus (ii) resultierende Gemisch zu einem Formkörper verformt wird.

Unter Eisenoxid wird Fe(lll)oxid verstanden.

In bevorzugten Ausführungsformen werden die erfindungsgemäßen Formkörper als Voll,- Tränk-, Schalen- und Fällkatalysatoren eingesetzt.

Der in dem erfindungsgemäßen Verfahren verwendete Katalysator zeichnet sich da¬ durch aus, dass die Aktivkomponente Kupfer, die Komponente Aluminium und die Komponente Eisen bevorzugt mit einer Sodalösung simultan oder nacheinander gefällt werden, im Anschluss getrocknet, calciniert , tablettiert und nochmals calciniert wird.

Insbesondere kommt folgende Fällungsmethode in Betracht:

A) Eine Kupfersalzlösung, eine Aluminiumsalzlösung und eine Lösung eines Eisen¬ salzes oder eine Lösung, enthaltend Kupfer-, Aluminium- und ein Eisensalz, wird parallel oder nacheinander mit einer Sodalösung gefällt. Das gefällte Material im Anschluss getrocknet und ggf. calciniert.

B) Fällung einer Kupfersalzlösung und einer Lösung eines Eisensalzes oder einer Lösung, enthaltend Kupfersalz und mindestens ein Salz des Eisens, auf einen vorgefertigten Aluminiumoxidträger. Dieser liegt in einer besonders bevorzugten Ausführungsform als Pulver in einer wässrigen Suspension vor. Das Trägermate¬ rial kann aber auch als Kugeln, Stränge, Splitt oder Tabletten vorliegen.

B1) In einer Ausführungsform (I) wird eine Kupfersalzlösung und eine Lösung eines Eisensalzes oder ein Lösung, enthaltend Kupfersalz und ein Salz des Eisens, bevorzugt mit Sodalösung, gefällt. Als Vorlage wird eine wässrige Suspension des Trägermaterials Aluminiumoxid verwendet.

Ausgefällte Niederschläge, die aus A) oder B) resultieren, werden in üblicher Weise filtriert und vorzugsweise alkalifrei gewaschen, wie dies beispielsweise in der DE 198 09 418.3 beschrieben ist.

Sowohl die Endprodukte aus A) als auch die aus B) werden bei Temperaturen von 50 bis 15O0C, vorzugsweise bei 12O0C getrocknet und im Anschluss ggf. vorzugsweise 2 Stunden bei im allgemeinen 200 bis 6000C, insbesondere bei 300 bis 5000C calci- niert.

Als Ausgangssubstanzen für A) und/oder B) können prinzipiell alle in den bei der Auf¬ bringung verwendeten Lösungsmitteln löslichen Cu(I) und/oder Cu(ll)-Salze, wie bei- spielsweise Nitrate, Carbonate, Acetate, Oxalate oder Ammonium-Komplexe, analoge Aluminiumsalze und Salze des Eisens verwendet werden. Besonders bevorzugt für Verfahren gemäß A) und B) wird Kupfemitrat eingesetzt.

In dem erfindungsgemäßen Verfahren wird das oben beschriebene getrocknete und gegebenenfalls calcinierte Pulver bevorzugt zu Tabletten, Ringen, Ringtabletten, Extrudaten, Wabenkörpern oder ähnlichen Formkörpem verarbeitet. Hierfür sind sämt¬ liche aus dem Stand der Technik geeigneten Verfahren denkbar.

Die Zusammensetzung des oxidischen Material ist im allgemeinen so beschaffen, dass der Anteil an Kupferoxid im Bereich von 40 bis 90 Gew.-%, der Anteil an Oxiden des Eisenoxid im Bereich von 0 bis 50 Gew.-% und der Anteil an Aluminiumoxid im Bereich bis zu 50 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Summe der oben ge¬ nannten oxidischen Bestandteile, liegt, wobei diese drei Oxide zusammen mindestens 80 Gew.-% des oxidischen Materials nach Calcinierung darstellen, wobei Zement nicht dem oxidischen Material in obigem Sinne zugerechnet wird.

In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung daher ein Ver¬ fahren, wie oben beschrieben, das dadurch gekennzeichnet ist, dass das oxidische Material

(a) Kupferoxid mit einem Anteil im Bereich von 50 ≤ x ≤ 80, vorzugsweise 55 ≤ x ≤ 75 Gew.-%,

(b) Aluminiumoxid mit einem Anteil im Bereich von 15 ≤ y ≤35, vorzugsweise 20 ≤ y ≤ 30 Gew.-% und (c) Eisenoxid mit einem Anteil im Bereich von 1 ≤ z ≤ 30, bevorzugt 2 < z ≤ 25 Gew.-%,

jeweils bezogen auf das Gesamtgewicht des oxidischen Materials nach Calcinierung, wobei gilt: 80 ≤ x + y + z < 100, insbesondere 95 ≤ + y + z ≤ 100, umfasst.

Das erfindungsgemäße Verfahren und die erfindungsgemäßen Katalysatoren zeichnen sich dadurch aus, dass durch die Zugabe von Eisen bei der Fällung zu einer hohen Stabilität des Formkörpers, der als Katalysator eingesetzt wird, führt.

Im allgemeinen wird dem oxidischen Material pulverförmiges Kupfer, Kupferblättchen oder pulverförmiger Zement oder Graphit oder ein Gemisch davon im Bereich von 1 bis 40 Gew.-%, bevorzugt im Bereich von 2 bis 20 Gew.-% und besonders bevorzugt im Bereich von 3 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des oxidischen Materials, enthält.

Als Zement wird vorzugsweise ein Tonerdezement eingesetzt. Besonders bevorzugt besteht der Tonerdezement im wesentlichen aus Aluminiumoxid und Calciumoxid, und besonders bevorzugt besteht er aus ungefähr 75 bis 85 Gew.-% Aluminiumoxid und ungefähr 15 bis 25 Gew.-% Calciumoxid. Ferner kann ein Zement auf Basis Magnesi¬ umoxid/Aluminiumoxid, Calciumoxid/Siliciumoxid und Calciumoxid/Aluminiumoxid/ Eisenoxid verwendet werden.

Insbesondere kann das oxidische Material in einem Anteil von höchstens 10 Gew.-%, bevorzugt höchstens 5 Gew.-%, bezogen auf das Gesamtgewicht des oxidischen Ma¬ terials, mindestens eine weitere Komponente aufweisen, die ausgewählt wird aus der Gruppe bestehend aus den Elementen Re, Fe, Ru, Co, Rh, Ir, Ni, Pd und Pt.

In einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird dem oxidischen Material vor dem Verformen zum Formkörper zusätzlich zu dem Kup¬ ferpulver, der Kupferblättchen oder dem Zementpulver oder dem Gemisch davon Gra¬ phit zugesetzt. Vorzugsweise wird soviel Graphit zugegeben, dass die Verformung zu einem Formkörper besser durchgeführt werden kann. In einer bevorzugten Ausfüh- rungsform werden 0,5 bis 5 Gew.-% Graphit, bezogen auf das Gesamtgewicht des oxidischen Materials, zugegeben. Dabei ist es gleichgültig, ob Graphit dem oxidischen Material vor oder nach oder gleichzeitig mit dem Kupferpulver, den Kupferblättchen oder dem Zementpulver oder dem Gemisch davon zugesetzt wird. Demgemäss betrifft die vorliegende Erfindung auch ein Verfahren, wie oben beschrie¬ ben, das dadurch gekennzeichnet, ist, dass dem oxidischen Material oder dem aus (ii) resultierendem Gemisch Graphit in einem Anteil im Bereich von 0,5 bis 5 Gew.-%, be¬ zogen auf das Gesamtgewicht des oxidischen Materials, zugegeben wird.

In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung daher auch einen Formkörper, umfassend

ein oxidisches Material, das

(a) Kupferoxid mit einem Anteil im Bereich von 50 ≤ x < 80, vorzugsweise 55 ≤ x ≤ 75 Gew.-%,

(b) Aluminiumoxid mit einem Anteil im Bereich von 15 ≤ y ≤ 35, vorzugsweise 20 < y ≤ 30 Gew.-% und

(c) Eisenoxid mit einem Anteil im Bereich von 1 < z < 30, bevorzugt 2 bis 25 Gew.-%,

jeweils bezogen auf das Gesamtgewicht des oxidischen Materials nach Calcinierung, wobei gilt: 80 ≤ x + y + z < 100, insbesondere 95 ≤ x + y+ z ≤ 100 umfasst,

metallisches Kupferpulver, Kupferblättchen oder Zementpulver oder ein Gemisch da¬ von mit einem Anteil im Bereich von 1 bis 40 Gew.-%, bezogen auf das Gesamtgewicht des oxidischen Materials, und

Graphit mit einem Anteil von 0,5 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des oxidischen Materials,

wobei die Summe der Anteile aus oxidischem Material, metallischem Kupferpulver, Kupferblättchen oder Zementpulver oder einem Gemisch davon und Graphit mindes¬ tens 95 Gew.-% des Formkörpers ergeben.

Nach Zugabe des Kupferpulvers, der Kupferblättchen oder des Zementpulvers oder des Gemischs davon und gegebenenfalls Graphit zu dem oxidischen Material wird der im Anschluss an die Verformung erhaltene Formkörper gegebenenfalls mindestens einmal calciniert über eine Zeit von im allgemeinen 0,5 bis 10 h, bevorzugt 0,5 bis 2 Stunden. Die Temperatur bei diesem mindestens einen Calcinierschritt liegt im all¬ gemeinen im Bereich von 200 bis 6000C, bevorzugt im Bereich von 250 bis 5000C und besonders bevorzugt im Bereich von 270 bis 4000C. Im Falle der Formgebung mit Zementpulver kann es vorteilhaft sein, den vor der Calci- nierung erhaltenen Formkörper mit Wasser zu befeuchten und anschließend zu trock¬ nen.

Bei Einsatz als Katalysator in der oxidischen Form wird der Formkörper vor Beschi¬ ckung mit der Hydrierlösung mit reduzierenden Gasen, beispielsweise Wasserstoff, vorzugsweise Wasserstoff-Inertgasgemischen, insbesondere Wasserstoff/Stickstoff¬ gemischen bei Temperaturen im Bereich von 100 bis 5000C, bevorzugt im Bereich von 150 bis 3500C und insbesondere im Bereich von 180 bis 2000C vorreduziert. Bevorzugt wird dabei ein Gemisch mit einem Wasserstoffanteil im Bereich von 1 bis 100 Vol.-%, besonders bevorzugt im Bereich von 1 bis 50 Vol.-% verwendet.

In einer bevorzugten Ausführungsform wird der erfindungsgemäße Formkörper vor dem Einsatz als Katalysator in an sich bekannter Weise durch Behandlung mit reduzie¬ renden Medien aktiviert. Das Aktivieren erfolgt entweder vorab in einem Reduktions¬ ofen oder nach dem Einbau im Reaktor. Ist der Reaktor vorab im Reduktionsofen akti¬ viert worden, wird er in den Reaktor eingebaut und direkt unter Wasserstoffdruck mit der Hydrierlösung beschickt.

Bevorzugtes Einsatzgebiet der nach dem erfindungsgemäßen Verfahren hergestellten Formkörper ist die Hydrierung von Carbonylgruppen aufweisenden organischen Ver¬ bindungen im Festbett. Andere Ausführungsformen wie beispielsweise die Wirbelreak¬ tion mit in auf- und abwirbelnder Bewegung befindlichem Katalysatormaterial ist jedoch ebenfalls möglich. Die Hydrierung kann in der Gasphase oder in der Flüssigphase durchgeführt werden. Vorzugsweise wird die Hydrierung in flüssiger Phase durchge¬ führt, beispielsweise in Riesel- oder Sumpffahrweise.

Bei Arbeiten in Rieselfahrweise lässt man das flüssige, die zu hydrierende Carbonyl- Verbindung enthaltende Edukt in dem Reaktor, der unter Wasserstoffdruck steht, über das in diesem angeordnete Katalysatorbett rieseln, wobei sich auf dem Katalysator ein dünner Flüssigkeitsfilm ausbildet. Dagegen wird beim Arbeiten in Sumpffahrweise Wasserstoffgas in den mit der flüssigen Reaktionsmischung gefluteten Reaktor einge¬ leitet, wobei der Wasserstoff das Katalysatorbett in aufsteigenden Gasperlen passiert.

In einer Ausführungsform wird die zu hydrierende Lösung im geraden Durchgang über die Katalysatorschüttung gepumpt. In einer anderen Ausführungsform des erfindungs¬ gemäßen Verfahrens wird ein Teil des Produkts nach Durchgang durch den Reaktor als Produktstrom kontinuierlich abgezogen und ggf. durch einen zweiten Reaktor, wie oben definiert, geleitet. Der andere Teil des Produkts wird zusammen mit frischem, die Carbonylverbindung enthaltendem Edukt dem Reaktor erneut zugeführt. Diese Verfah¬ rensweise wird im folgenden als Kreislauffahrweise bezeichnet.

Wird als Ausführungsform des erfindungsgemäßen Verfahrens die Rieselfahrweise gewählt, ist hierbei die Kreislauffahrweise bevorzugt. Weiter bevorzugt wird in Kreis¬ lauffahrweise unter Verwendung eines Haupt- und Nachreaktors gearbeitet.

Das erfindungsgemäße Verfahren eignet sich zur Hydrierung von Carbonylverbindun- gen wie z.B. Aldehyden und Ketonen, Carbonsäuren, Carbonsäureestern oder Car- bonsäureanhydriden zu den entsprechenden Alkoholen, wobei aliphatische und cycloa- liphatische gesättigte und ungesättigte Carbonylverbindungen bervorzugt sind. Bei aromatischen Carbonylverbindungen kann es zur Bildung unerwünschter Nebenpro¬ dukte durch Hydrierung des aromatischen Kerns kommen. Die Carbonylverbindungen können weitere funktionelle Gruppen wie Hydroxy- oder Aminogruppen tragen. Unge- sättigte Carbonylverbindungen werden in der Regel zu den entsprechenden gesättig¬ ten Alkoholen hydriert. Der Begriff "Carbonylverbindungen", wie er im Rahmen der Er¬ findung verwendet wird, umfasst alle Verbindungen, die eine C=O-Gruppe aufweisen, einschließlich Carbonsäuren und deren Derivaten. Selbstverständlich können auch Gemische aus zwei oder mehr als zwei Carbonylverbindungen gemeinsam hydriert werden. Ferner kann auch die einzelne, zu hydrierende Carbonylverbindung mehr als eine Carbonylgruppe enthalten.

Bevorzugt wird das erfindungsgemäße Verfahren zur Hydrierung aliphatischer Aldehy¬ de, Hydroxyaldehyde, Ketone, Säuren, Ester, Anhydride, Lactone und Zucker einge- setzt.

Bevorzugte aliphatische Aldehyde sind verzweigte und unverzweigte gesättigte und/oder ungesättigte aliphatische C2-C30-Aldehyde, wie sie beispielsweise durch Oxo- synthese aus linearen oder verzweigten Olefinen mit interner oder terminaler Doppel- bindung erhältlich sind. Ferner können auch oligomere Verbindungen, die auch mehr als 30 Carbonylgruppen enthalten, hydriert werden.

Als Beispiel für aliphatische Aldehyde sind zu nennen:

Formaldehyd, Propionaldehyd, n-Butyraldehyd, iso-Butyraldehyd, Valeraldehyd, 2-Methylbutyraldehyd, 3-Methylbutyraldehyd (Isovaleraldehyd), 2,2-Dimethylpropional- dehyd (Pivalinaldehyd), Capronaldehyd, 2-Methylvaleraldehyd, 3-Methylvaleraldehyd, 4-Methylvaleraldehyd, 2-Ethylbutyraldehyd, 2,2-Dimethylbutyraldehyd, 3,3-Dimethyl- butyraldehyd, Caprylaldehyd, Caprinaldehyd, Glutardialdehyd. Neben den genannten kurzkettigen Aldehyden sind insbesondere auch langkettige aliphatische Aldehyde geeignet, wie sie beispielsweise durch Oxosynthese aus linea¬ ren α-Olefinen erhalten werden können.

Besonders bevorzugt sind Enalisierungsprodukte, wie z.B. 2-Ethylhexenal, 2-Methyl- pentenal, 2,4-Diethyloctenal oder 2,4-Dimethylheptenal.

Bevorzugte Hydroxyaldehyde sind C3-Ci2-Hydroxyaldehyde, wie sie beispielsweise durch Aldolreaktion aus aliphatischen und cycloaliphatischen Aldehyden und Ketonen mit sich selbst oder Formaldehyd zugänglich sind. Beispiele sind 3-Hydroxypropanal, Dimethylolethanal, Trimethylolethanal (Pentaerythrital), 3-Hydroxybutanal (Acetaldol), 3-Hydroxy-2-ethylhexanal (Butylaldol), 3-Hydroxy-2-methylpentanal (Propienaldol), 2-Methylolpropanal, 2,2-Dimethylolpropanal, 3-Hydroxy-2-methylbutanal, 3-Hydroxy- pentanal, 2-Methylolbutanal, 2,2-Dimethylolbutanal, Hydroxypivalinaldehyd. Besonders bevorzugt sind Hydroxypivalinaldehyd (HPA) und Dimethylolbutanal (DMB).

Bevorzugte Ketone sind Aceton, Butanon, 2-Pentanon, 3-Pentanon, 2-Hexanon, 3-Hexanon, Cyclohexanon, Isophoron, Methylisobutylketon, Mesityloxid, Acetophenon, Propiophenon, Benzophenon, Benzalaceton, Dibenzalaceton, Benzalacetophenon, 2,3-Butandion, 2,4-Pentandion, 2,5-Hexandion und Methylvinylketon.

Darüber hinaus können Carbonsäuren und Derivate davon, vorzugsweise solche mit 1-20 C-Atomen umgesetzt werden. Insbesondere sind die folgenden zu nennen:

Carbonsäuren, wie z.B. Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobut¬ tersäure, n-Valeriansäure, Trimethylessigsäure ("Pivalinsäure"), Capronsäure, Önanth- säure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearin¬ säure, Acrylsäure, Methacrylsäure, Ölsäure, Elaidinsäure, Linolsäure, Linolensäure, Cyclohexancarbonsäure, Benzoesäure, Phenylessigsäure, o-Toluylsäure, m-Toluyl- säure, p-Toluylsäure, o-Chlorbenzoesäure, p-Chlorbenzoesäure, o-Nitrobenzoesäure, p-Nitrobenzoesäure, Salicylsäure, p-Hydroxybenzoesäure, Anthranilsäure, p-Amino- benzoesäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pi¬ melinsäure, Korksäure, Azelainsäure, Sebacinsäure, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure, Terephthalsäure;

Carbonsäureester, wie z.B. die CrCiO-Alkylester der oben genannten Carbonsäuren, insbesondere Methylformiat, Essigester, Buttersäurebutylester, Phthalsäure-, Iso¬ phthalsäure-, Terephthalsäure-, Adipinsäure-, Maleinsäuredialkylester wie z.B. die Di- methylester dieser Säuren, (Meth)acrylsäuremethylester, Butyrolacton, Caprolacton und Polycarbonsäureester, wie z.B. Polyacryl- und Polymethacrylsäureester und deren Copolymere und Polyester, wie z.B. Polymethylmethacrylat, Terephthalsäureester und andere technische Kunststoffe, wobei hier insbesondere Hydrogenolysen, also die Umsetzung von Estern zu den entsprechenden Säuren und Alkoholen, durchgeführt werden;

Fette;

Carbonsäureanhydride, wie z.B. die Anhydride der oben genannten Carbonsäuren, insbesondere Essigsäureanhydrid, Propionsäureanhydrid, Benzoesäureanhydrid und Maleinsäureanhydrid;

Carbonsäureamide, wie z.B. Formamid, Acetamid, Propionamid, Stearamid, Tereph- thalsäureamid.

Ferner können auch Hydroxycarbonsäuren, wie z.B. Milch-, Äpfel-, Wein- oder Zitro¬ nensäure, oder Aminosäuren, wie z.B. Glycin, Alanin, Prolin und Arginin, und Peptide umgesetzt werden.

Als besonders bevorzugte organische Verbindungen werden gesättigte oder ungesät- tigte Carbonsäuren, Carbonsäureester, Carbonsäureanhydride oder Lactone oder Ge¬ mische aus zwei oder mehr davon hydriert.

Demgemäss betrifft die vorliegende Erfindung auch ein Verfahren, wie oben beschrie¬ ben, das dadurch gekennzeichnet ist, dass die organische Verbindung eine Carbon- säure, ein Carbonsäureester, ein Carbonsäureanhydrid oder ein Lacton ist.

Beispiele dieser Verbindungen sind unter anderem Maleinsäure, Maleinsäureanhydrid, Bernsteinsäure, Bernsteinsäureanhydrid, Adipinsäure, 6-Hydroxycapronsäure, 2-Cyclo- dodecylpropionsäure, die Ester der vorgenannten Säuren wie z.B. Methyl-, Ethyl-, Pro- pyl- oder Butylester. Weitere Beispiele sind γ-Butyrolacton und Caprolacton.

In einer ganz besonders bevorzugten Ausführungsform betrifft die vorliegende Erfin¬ dung ein Verfahren, wie oben beschrieben, das dadurch gekennzeichnet ist, dass die organische Verbindung Adipinsäure oder ein Adipinsäureester ist.

Die zu hydrierende Carbonylverbindung kann dem Hydrierungsreaktor allein oder als Gemisch mit dem Produkt der Hydrierungsreaktion zugeführt werden, wobei dies in unverdünnter Form oder unter Verwendung von zusätzlichem Lösungsmittel gesche¬ hen kann. Als zusätzliches Lösungsmittel eigenen sich insbesondere Wasser, Alkohole wie Methanol, Ethanol und der Alkohol, der unter den Reaktionsbedingungen entsteht. Bevorzugte Lösungsmittel sind Wasser, THF und NMP, besonders bevorzugt ist Was¬ ser.

Die Hydrierung sowohl in Sumpf- als auch in Rieselfahrweise, wobei jeweils bevorzugt in Kreislauffahrweise gearbeitet wird, führt man im allgemeinen bei einer Temperatur im Bereich von 50 bis 3500C, bevorzugt im Bereich von 70 bis 3000C, besonders be¬ vorzugt im Bereich von 100 bis 27O0C und einem Druck im Bereich von 3 bis 350 bar, bevorzugt im Bereich von 5 bis 330 bar, besonders bevorzugt im Bereich von 10 bis 300 bar durch.

In einer ganz besonders bevorzugten Ausführungsform werden die erfindungsgemä¬ ßen Katalysatoren in Verfahren zur Herstellung von Hexandiol und/oder Caprolacton eingesetzt, wie sie in DE 196 07 954, DE 196 07955, DE 19647 348 und DE 19647 349 beschrieben sind.

Mit dem erfindungsgemäßen Verfahren unter Verwendung der erfindungsgemäßen Katalysatoren werden hohe Umsätze und Selektivitäten erzielt. Gleichzeitig weisen die erfindungsgemäßen Katalysatoren eine hohe chemische und mechanische Stabilität auf.

Ganz allgemein betrifft die vorliegende Erfindung daher die Verwendung Cu-Al-Kataly- satoren, die durch die Zugabe von Lanthan-, Wolfram-, Molybdän-, Titan- und/oder Zirkoniumoxide bei der Herstellung eines Katalysators zur Erhöhung sowohl der me¬ chanischen Stabilität als auch der Aktivität und der Selektivität des Katalysators.

In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung eine Verwen¬ dung, wie oben beschrieben, die dadurch gekennzeichnet ist, dass der Katalysator als Aktivkomponente Kupfer umfasst.

Die mechanische Stabilität von Festkörperkatalysatoren und speziell der erfindungs¬ gemäßen Katalysatoren wird beschrieben durch den Parameter Seitendruckfestigkeit in verschiedenen Zuständen (oxidisch, reduziert, reduziert und unter Wasser suspen¬ diert).

Die Seitendruckfestigkeit wurde im Rahmen der vorliegenden Anmeldung bestimmt mit einem Gerät des Typs „Z 2.5/T 919" der Firma Zwick (Ulm). Sowohl bei den reduzier¬ ten als auch bei den gebrauchten Katalysatoren wurden die Messungen unter Stickstoffatmosphäre durchgeführt, um eine Re-Oxidation der Katalysatoren zu vermeiden. Beispiele

Beispiel 1 : Herstellung des Katalysators 1

Herstellung des Katalysators

Ein Gemisch aus 12,41 kg einer 19,34%igen-Kupfemitratlösung, und 14,78 kg einer 8,12%igen-Aluminiumnitratlösung und 1 ,06 kg einer 37,58%igen Eisennitratlösung x 9H2O wurden in 1 ,5 I Wasser gelöst (Lösung 1). Lösung 2 beinhaltet 60 kg einer 20 %igen-wasserfreies Na2CO3. Lösung 1 und Lösung 2 werden über getrennte Lei¬ tungen in ein Fällgefäß, das mit einem Rührer versehen ist und 10 1 auf 8O0C erhitztes Wasser enthält, geleitet. Hierbei wurde durch entsprechende Einstellung der Zufuhrge¬ schwindigkeiten der Lösungl und Lösung 2 der pH-Wert auf 6,2 gebracht.

Unter Konstanthaltung des pH-Wertes bei 6,2 und der Temperatur bei 800C wurde die gesamte Lösungl mit Soda zur Reaktion gebracht. Die so gebildete Suspension wurde anschließend 1 Stunden lang nachgerührt, wobei der pH-Wert durch gelegentliche Zu¬ gabe von verdünnter Salpetersäure bzw. Sodalösung 2 auf bei 7,2 gefahren wird. Die Suspension wird filtriert und mit destilliertem Wasser so lange gewaschen, bis der Nit- ratgehalt des Waschwassers < 10 ppm betrug.

Der Filterkuchen wurde 16 h lang bei 12O0C getrocknet und anschließend 2h lang bei 3000C calciniert. Das so erhaltene Katalysatorpulver wird mit 1 Gew.-% Graphit vor- kompaktiert. Das erhaltene Kompaktat wird mit 5 Gew.% Cu-Blättchen Unicoat und anschließend mit 2 Gew.% Graphit gemischt und zu Tabletten von 3 mm Durchmesser und 3 mm Höhe verpresst. Die Tabletten wurden schließlich 2 h lang bei 3500C calci¬ niert.

Der so hergestellte Katalysator hat die chemische Zusammensetzung 57% CuO / 28,5 % AI2O3 / 9,5% Fe2O3/ 5 % Cu. Die Seitendruckfestigkeit im oxidischen Zustand betrug 117 N, im reduzierten Zustand 50 N, wie in Tabelle 1 angegeben.

Beispiel 2: Hydrierung von Adipinsäuredimethylester an Katalysator 1

Adipinsäuredimethylester wurde kontinuierlich in Rieselfahrweise mit Rückführung (Verhältnis Zulauf/Rückführung = 10/1) bei einer Belastung von 0,3 kg/(l*h), einem Druck von 200 bar und Reaktionstemperaturen von 1900C in einem senkrechten Rohr¬ reaktor, der mit 200 ml Katalysator 1 gefüllt war, hydriert. Die Versuchsdauer betrug insgesamt 7 Tage. GC-analytisch wurden im Reaktoraustrag bei 1900C Esterumsätze von 99,9 %, eine Hexandiol-Selektivität von 97,5 % detektiert. Nach Ausbau war der Katalysator noch voll erhalten und wies eine hohe mechanische Stabilität auf. Die Ver¬ suchsergebnisse sind in Tabelle 1 zusammengefasst.

Beispiel 3: Herstellung des Vergleichkatalysators ohne Eisen

Der Vergleichskatalysator wurde analog dem Katalysator 2 hergestellt, jedoch ohne die Zugabe der Eisennitratlösung, das bedeutet: 14,5 kg einer 19,34%igen Kupfernitratlö¬ sung und 14,5 kg einer 8,12%igen Aluminiumnitratlösung (Lösung 1) werden mit einer Sodalösung analog Katalysator 1 gefällt.

Der so hergestellte Katalysator hat die chemische Zusammensetzung 66,5 % CuO / 28,5 % AI2O3 / 5 % Cu. Die Seitendruckfestigkeit im oxidischen und reduzierten Zu¬ stand sind in Tabelle 1 aufgeführt.

Beispiel 4: Hydrierung von Adipinsäuredimethylester am Vergleichskatalysator

Adipinsäuredimethylester wurde kontinuierlich in Rieselfahrweise mit Rückführung (Verhältnis Zulauf / Rückführung = 10/1) bei einer Belastung von 0,3 kg/(l*h), einem Druck von 200 bar und Reaktionstemperaturen von 190cC in einem senkrechten Rohr¬ reaktor, der mit 200 ml Katalysator 2 gefüllt war, hydriert. Die Versuchsdauer betrug insgesamt 7 Tage. GC-analytisch wurden im Reaktoraustrag bei 22O0C bzw. 24O0C Esterumsätze von jeweils 80,2 %, Hexandiol-Anteile von 86,6 % detektiert. Nach Aus¬ bau war der Katalysator noch voll erhalten und wies eine hohe mechanische Stabilität auf. Die Versuchsergebnisse sind in Tabelle 1 zusammengefasst.

Die Daten in der folgenden Tabelle 1 zeigen, dass die erfindungsgemäßen Katalysato¬ ren signifikant höhere Hydrieraktivitäten, d.h. höhere Umsätze an Adipinsäuredimethyl¬ ester bei 1900C aufweisen als der Vergleichskatalysator, sowie auch höhere Wertpro- duktselektivitäten, d.h. Gehalte an den Zielprodukten Hexandiol im Austrag.

Tabelle 1