Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CATALYTIC CRACKING METHOD AND APPARATUS
Document Type and Number:
WIPO Patent Application WO/2012/062173
Kind Code:
A1
Abstract:
Disclosed are a catalytic cracking method and apparatus. The apparatus is used for implementing the method. Catalytic cracking is carried out in a primary reactor and an secondary light material reactor, wherein a regenerated catalyst contacts and reacts with a raw material oil in a first reaction region of the primary reactor, the reaction mixture flows upward, and the catalyst is separated by a separator; the separated catalyst flows to a stripping section, the reaction oil gas flows upward along a delivery pipe and enters a second reaction region of the primary reactor; the catalyst to be generated from the secondary light material reactor enters the second reaction region of the primary reactor, is mixed with the reaction oil gas from the first reaction region for further reaction; after reaction, the oil gas is separated from the catalyst, and fed to a following fractionation system, and the catalyst flows to the stripping section, is stripped together with the catalyst separated by the separator in the first reaction region, and enters a regenerator for regeneration. By using the apparatus and method of the present invention, the production distribution and production quality are improved, the project investment is reduced, the energy consumption is lowered, and the implementation of the project is convenient.

Inventors:
SHI BAOZHEN (CN)
Application Number:
PCT/CN2011/081689
Publication Date:
May 18, 2012
Filing Date:
November 02, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SHI BAOZHEN (CN)
International Classes:
C10G51/00
Foreign References:
CN101045881A2007-10-03
CN1861753A2006-11-15
CN1912067A2007-02-14
CN201901660U2011-07-20
Attorney, Agent or Firm:
BEIJING SANYOU INTELLECTUAL PROPERTY AGENCY LTD. (CN)
北京三友知识产权代理有限公司 (CN)
Download PDF:
Claims:
权利要求书

1、 一种催化裂化方法, 该方法包括:

设置催化裂化主反应器、 辅助轻质原料反应器和催化剂再生器, 其中,

所述催化裂化主反应器自下而上至少设置有第一反应区、 输送管和第二反应区; 第一反应区与输送管之间断开, 在第一反应区出口设置有催化剂分流器; 输送管与第 二反应区之间设有催化剂进入通道; 主反应器与沉降器、 汽提段上下连体布置; 沉降 器、 汽提段之间由上、 下两层隔板隔开形成催化剂补充区, 上述催化剂进入通道位于 催化剂补充区内;

在催化裂化主反应器第一反应区内, 原料油与来自再生器的再生催化剂接触反 应, 反应混合物向上经分流器分离出催化剂; 分离出的催化剂直接流入汽提段, 反应 油气沿输送管向上进入主反应器第二反应区;

在辅助轻质原料反应器中, 在提升介质作用下, 轻质原料与来自再生器的再生催 化剂接触反应, 反应混合物沿反应器向上流动, 在辅助反应器中部, 一部分反应过的 尚有活性的待生催化剂引出辅助轻质原料反应器, 进入催化裂化主反应器第二反应 区; 或者, 在辅助轻质原料反应器出口进行气固分离, 分离出的待生催化剂用于主反 应器第二反应区的反应;

在催化裂化主反应器第二反应区, 来自辅助轻质原料反应器的待生催化剂与来自 第一反应区的反应油气混合, 使油气继续反应; 反应结束后分离油气和催化剂, 油气 经油气出口管线引出送入后续分熘系统, 催化剂则流入汽提段, 与第一反应区中经分 流器分离出的催化剂一起, 汽提后进入再生器再生。

2、 根据权利要求 1 所述的催化裂化方法, 其特征在于: 所述主反应器第一反应区 的反应混合物向上经分流器分离出全部催化剂; 或所述主反应器第一反应区的反应混 合物向上经分流器分离出全部催化剂的 40-90%。

3、 根据权利要求 1 所述的催化裂化方法, 其特征在于: 从所述辅助轻质原料反应 器分离出 50-100%的待生催化剂进入催化裂化主反应器第二反应区。

4、 根据权利要求 1 所述的催化裂化方法, 其特征在于: 来自再生器的再生催化剂 在进入主反应器之前先进行冷却降温。

5、 根据权利要求 1 所述的催化裂化方法, 其特征在于: 辅助轻质原料反应器反应 后的待生催化剂部分回流至辅助轻质原料反应器底部的预提升段。 6、 根据权利要求 1 所述的催化裂化方法, 其特征在于: 所述辅助轻质原料反应器 催化裂化反应后的反应油气和催化剂用独立的气固分离系统实现催化剂分离, 油气进 入独立的分熘系统。

7、 一种用于实现权利要求 1~6任一项所述催化裂化方法的催化裂化装置, 该装置 包括主反应器和辅助轻质原料反应器, 主反应器自下而上至少设置有第一反应区、 输 送管和第二反应区, 其中: 第一反应区与输送管之间断开, 在第一反应区出口设置有 催化剂分流器; 输送管与第二反应区之间设有催化剂进入通道; 主反应器与沉降器、 催化剂补充区、 汽提段上下连体布置; 沉降器、 汽提段之间由上、 下两层隔板隔开形 成催化剂补充区, 上述催化剂进入通道位于催化剂补充区内; 催化剂补充区、 辅助轻 质原料反应器之间设置有催化剂接力管; 沉降器与汽提段之间设置有催化剂回流管; 沉降器设置有油气出口管线。

8、 根据权利要求 7 所述的催化裂化装置, 其特征在于: 所述主反应器第一反应 区、 第二反应区为提升管型式。

9、 根据权利要求 7 所述的催化裂化装置, 其特征在于: 所述主反应器的第一反应 区、 输送管和第二反应区为同轴设置。

10、 根据权利要求 7 所述的催化裂化装置, 其特征在于: 所述辅助轻质原料反应 器出口设置有第二沉降器, 第二沉降器设置有第二油气出口管线, 用于单独引出辅助 反应器的反应油气; 或者所述辅助轻质原料反应器和主反应器共用沉降器, 沉降器内 设置有两级辅助轻质原料反应器出口气固旋分器和第二油气出口管线, 用于单独引出 辅助反应器的反应油气; 或者所述辅助轻质原料反应器和主反应器共用沉降器, 且两 反应器共用出口气固旋分器和油气出口管线, 用于引出两反应器的混合油气。

11、 根据权利要求 7 或 10所述的催化裂化装置, 其特征在于: 所述催化剂接力管 一端与催化剂补充区连通, 一端与辅助轻质原料反应器或第二沉降器连通, 用于向催 化剂补充区引入辅助轻质原料反应器的待生催化剂。 12、 根据权利要求 7 所述的催化裂化装置, 其特征在于: 在与所述主反应器底部 的预提升段连通的再生管路上设置催化剂冷却器。

13、 根据权利要求 7 所述的催化裂化装置, 其特征在于: 所述催化剂接力管上设 置有滑阀, 通过调节滑阀开度来控制待生催化剂向催化剂补充区的补入量。 14、 根据权利要求 7 所述的催化裂化装置, 其特征在于: 辅助轻质原料反应器设 置有催化剂回流管, 该催化剂回流管下端与辅助轻质原料反应器底部的预提升段连 通; 催化剂回流管上设置有滑阀, 用于控制催化剂回流量。

15、 根据权利要求 7 所述的催化裂化装置, 其特征在于: 所述催化剂补充区与汽 提段之间的隔板为带孔隔板。

Description:
一种催化裂化方法及装置 技术领域

本发明涉及石油化工技术领域, 具体是关于一种石油烃类原料催化裂化方法及 装 置。 背景技术

催化裂化技术是最主要的汽油生产技术, 世界绝大部分车用汽油来自催化裂化技 术, 常规催化裂化采用的装置为提升管反应器。

现有提升管反应器的最大弊端是提升管过长, 提升管出口处的催化剂活性只有初 始活性的 1/3 左右, 因此, 在提升管反应器的后半段, 催化剂活性及选择性已急剧下 降, 催化作用变差, 热裂化反应及其他不利二次反应增加, 不但限制了单程转化率的 提高, 同时导致催化汽油烯烃含量高达 45%以上, 远不能满足汽油的新标准要求。 随 着催化剂活性的降低, 催化反应的选择性必然下降, 副反应自然增加。

要提高催化过程的单程转化率, 核心问题是提高现有提升管反应器后半段的催 化 剂活性。

CN99213769.1 公开了一种用于催化裂化的想法: 把两套相同的反应、 再生装置上 下重叠, 实现反应油气两次和新再生剂接触, 从理论上讲, 该专利提出了通过采用催 化剂接力式的反应装置, 强化常规提升管催化裂化反应过程, 从而提高了催化剂的有 效活性和选择性的问题。 但该专利设想 (即发明点) 为上下重叠设置两套 "催化裂化 反再装置" , 还达不到技术阶段, 无论建设实施还是操作使用都有很多困难, 属于基 础原理构思。

CN00122845.5 公开了一种烃油的催化裂化方法, 提出了以下基本概念: 并列设置 两套反应再生系统, 且在两套系统中使用不同的催化剂, 使烃油首先在第一套反应、 再生系统中与裂化催化剂接触并反应, 所生成的油气送入并列的第二套反应、 再生系 统中与含有五元环高硅沸石的催化剂接触并反 应, 所生成的油气送入分熘塔进行分 离。 该方法采用了两种催化剂, 使用两套反应 -再生系统, 系统复杂, 投资增加很多, 除使用两种催化剂外, 该专利在工艺技术构思方面与 CN99213769.1基本相同, 该专利 反应、 分离该部分与已有技术都没有变化, 仍然属于 "原理构思" 阶段, 各部分均无 如何实施的措施。 CN00134054.9 公开了一种两段提升管催化裂化的技术, 将提升管分为上下两段, 第一段催化剂来自再生器, 第一段反应结束, 催化剂、 油气通过设置在第一段末端的 中间分离器分离, 仅油气继续进入第二段提升管反应; 第二段提升管的催化剂为来自 再生器的经过外取热器取热的再生催化剂。 该技术是在反应第二段提升管用高活性的 经取热的低温再生催化剂与油气继续接触反应 , 提高了第二段提升管的催化剂活性, 提高了单程转化率。 但该技术中: 1、 在中间分离器等关键技术环节缺乏明确的技术 特 征, 根据其实施例及附图可知, 其中间分离器显然是常规技术中的沉降器, 第一段反 应结束的反应油气经较长时间的完全脱离催化 剂环境; 2、 进入第二段提升管的再生催 化剂也必须由输送介质输送才能进入第二段提 升管, 输送高度较大, 根据气力输送的 知识容易知道, 需要的输送介质量较多, 增加能耗和物耗; 3、 上述输送再生催化剂的 这些输送介质将全部进入第二段提升管参与反 应, 势必影响到第二段提升管的反应条 件及反应过程。 此外, 该技术实质是采用了两个沉降器、 两个汽提段, 投资大幅增 加。 发明内容

本发明的目的主要是提供一种既能改善产品分 布和产品质量又能减少工程投资、 降低能耗和方便工程实施的催化裂化方法, 本发明同时提供了实现该方法的装置。

一方面, 本发明提供了一种催化裂化方法, 该方法包括:

设置催化裂化主反应器、 辅助轻质原料反应器和催化剂再生器, 其中,

所述催化裂化主反应器自下而上至少设置有第 一反应区、 输送管和第二反应区; 第一反应区与输送管之间断开, 在第一反应区出口设置有催化剂分流器; 输送管与第 二反应区之间设有催化剂进入通道; 主反应器与沉降器、 汽提段上下连体布置; 沉降 器、 汽提段之间由上、 下两层隔板隔开形成催化剂补充区, 上述催化剂进入通道位于 催化剂补充区内;

在催化裂化主反应器第一反应区内, 原料油与来自再生器的再生催化剂接触反 应, 生成的反应油气和反应后的催化剂向上进入分 流器, 分离出的催化剂流入汽提 段, 反应油气沿输送管向上进入主反应器第二反应 区;

在辅助轻质原料反应器中, 在提升介质作用下, 轻质原料与来自再生器的再生催 化剂接触反应, 反应混合物沿反应器向上流动, 在辅助轻质原料反应器中部, 一部分 反应过的尚有活性的待生催化剂引出辅助轻质 原料反应器, 进入催化裂化主反应器第 二反应区; 或者, 也可以是在辅助轻质原料反应器出口进行气固 分离, 分离出的待生 催化剂用于主反应器第二反应区的反应;

在催化裂化主反应器第二反应区, 上述来自辅助轻质原料反应器的待生催化剂与 来自第一反应区的反应油气混合, 使油气继续反应; 反应结束后在沉降器内分离油气 和催化剂, 油气经油气出口管线引出送入后续分熘系统, 催化剂则流入汽提段, 与第 一反应区中经分流器分离出的催化剂一起, 汽提后进入再生器再生。

在上述的催化裂化方法中, 进一步地, 所述主反应器第一反应区的反应混合物向 上经分流器分离出全部催化剂; 或所述主反应器第一反应区的反应混合物向上 经分流 器分离出全部催化剂的 40-90%。

在上述的催化裂化方法中, 进一步地, 从所述辅助轻质原料反应器分离出 50- 100%的待生催化剂用于主反应器第二反应区的 应。

更具体地, 从辅助轻质原料反应器分离出的催化剂可以是 经催化剂接力管靠重力 输送到主反应器催化剂补充区, 通过输送管和第二反应区间的通道进入第二反 应区。 所述用于主反应器第二反应区反应的辅助反应 器待生催化剂的量可以由接力管滑阀开 度控制。 所述辅助轻质原料反应器的反应油气或者与主 反应器的反应油气混合后经共 用油气管线进入分熘系统, 或者经单独的油气管线引出沉降器后进入单独 的分熘系 统。 当从辅助轻质原料反应器中部分离出部分催化 剂用于主反应器第二反应区时, 其 余催化剂和油气一起在辅助轻质原料反应器出 口进行气固分离。

在上述的催化裂化方法中, 进一步地, 作为优选方案, 所述催化裂化主反应器的 第一反应区、 输送管和第二反应区是同轴设置。

在上述的催化裂化方法中, 进一步地, 来自再生器的再生催化剂在进入催化裂化 主反应器之前先进行冷却降温。

在上述的催化裂化方法中, 进一步地, 辅助轻质原料反应器反应后的待生催化剂 部分回流至辅助轻质原料反应器底部的预提升 段。

在上述的催化裂化方法中, 进一步地, 辅助轻质原料反应器催化裂化反应后的反 应油气和催化剂用独立的气固分离系统实现催 化剂分离, 油气进入独立的分熘系统。

另一方面, 本发明还提供了一种催化裂化装置, 该装置包括主反应器和辅助轻质 原料反应器, 主反应器自下而上至少设置有第一反应区、 输送管和第二反应区, 其 中, 第一反应区与输送管之间断开, 在第一反应区出口设置有催化剂分流器; 输送管 与第二反应区之间设有催化剂进入通道; 沉降器、 汽提段之间由上、 下两层隔板隔开 形成催化剂补充区, 上述催化剂进入通道位于催化剂补充区内; 主反应器与沉降器、 催化剂补充区、 汽提段上下连体布置; 催化剂补充区、 辅助轻质原料反应器之间设置 有催化剂接力管; 沉降器与汽提段之间设置有催化剂回流管 (可供分离出的催化剂依 靠重力直接流入汽提段) ; 沉降器设置有油气出口管线。

根据本发明的具体实施方案, 所述第一反应区、 第二反应区为提升管型式。

进一步地, 所述辅助轻质原料反应器出口设置有第二沉降 器, 第二沉降器设置有 第二油气出口管线, 用于单独引出辅助反应器的反应油气; 或者所述辅助轻质原料反 应器和主反应器共用沉降器, 沉降器内设置有两级辅助轻质原料反应器出口 气固旋分 器和第二油气出口管线, 用于单独引出辅助反应器的反应油气; 或者所述辅助轻质原 料反应器和主反应器共用沉降器, 且两反应器共用出口气固旋分器和油气出口管 线, 用于引出两反应器的混合油气。

更进一步地, 所述催化剂接力管一端与催化剂补充区连通, 一端与辅助轻质原料 反应器或第二沉降器连通, 用于向催化剂补充区引入辅助轻质原料反应器 的待生催化 剂; 催化剂接力管上设置有滑阀, 通过调节滑阀开度来控制待生催化剂向催化剂 补充 区的补入量。

另外, 在与所述主反应器底部的预提升段连通的再生 管路上设置催化剂冷却器, 用于对输入预提升段的再生催化剂进行冷却降 温。

进一步地, 辅助轻质原料反应器设置有催化剂回流管, 该催化剂回流管下端与辅 助轻质原料反应器底部的预提升段连通; 催化剂回流管上设置有滑阀, 用于控制催化 剂回流量。

进一步地, 所述催化剂补充区与汽提段之间的隔板为带孔 隔板。

在本发明的技术方案中:

(1)主反应器、 辅助轻质原料反应器可设置一排到多排进料喷 嘴; 主反应器的原料 为重质石油烃类原料油; 辅助轻质原料反应器的反应原料可以是混合 c 4 组分、 轻汽油 等轻质烃类原料, 例如可以是主反应器产品汽油中沸点低于 110°C的轻汽油熘分;

(2)第一反应区出口分流器的设计, 可以实现对催化剂分离比例的控制;

(3)汽提段的蒸汽和油气, 以及第一反应区的油气和部分催化剂通过输送 管送入第 二反应区;

(4)输送管和第二反应区可不直接连通, 其中间断开区域形成催化剂进入通道; 或 者输送管和第二反应区直接连通, 而在连通管壁上水平方向间隔均匀布置圆孔等 催化 剂进入通道, 进入催化剂补充区的辅助轻质原料反应器的待 生催化剂由催化剂进入通 道进入第二反应区;

(5)催化剂补充区设有流化蒸汽, 使该区的催化剂保持流化状态, 均匀的进入第二 反应区, 有利于反应油气与催化剂的充分接触;

(6)催化剂补充区与沉降器之间设置的隔板, 使沉降器内的催化剂不返回催化剂补 充区;

(7)催化剂补充区与汽提段之间的隔板可以为带 孔隔板, 开孔的设计只允许部分汽 提段的蒸汽、 油气以及第一反应区的油气通过隔板上的开孔 进入催化剂补充区, 而催 化剂补充区的催化剂不进入汽提段;

(8)主反应器、 辅助轻质原料反应器的反应油气可根据工程实 施要求进行油气混合 或油气单独处理;

(9)从辅助反应器中引出一部分催化剂进入主反 应器或 /和返回辅助反应器底部, 催 化剂引出量通过调节相应的催化剂接力管或催 化剂回流管上的滑阀开度来控制。 本发明的方法中, 主反应器中反应过程为: 来自再生器的再生催化剂由再生立管 进入主反应器底部的预提升段, 在预提升介质的作用下向上进入第一反应区, 与经进 料喷嘴进入的雾化重质原料接触参与催化反应 , 反应混合物向上经分流器分离出的催 化剂直接进入汽提段, 反应油气则沿输送管向上, 与从催化剂补充区进入的辅助轻质 原料反应器的待生催化剂一起进入第二反应区 , 接触混合并继续反应; 反应结束后经 沉降器分离出的油气经油气出口进入后续分熘 系统, 催化剂则流入催化剂补充区下部 的汽提段, 与第一反应区中经分流器分离出的催化剂一起 , 汽提出催化剂中夹带的油 气, 返回再生器再生;

本发明方法中, 辅助轻质原料反应器中反应过程为: 一部分再生催化剂由再生立 管进入辅助反应器内, 在提升介质作用下, 向上与经进料喷嘴进入的雾化轻质原料接 触参与催化反应, 反应混合物沿反应器向上流动, 在辅助反应器中部, 一部分待生催 化剂分离出来并经催化剂接力管流入主反应器 的催化剂补充区, 并由催化剂进入通道 进入第二反应区, 参与主反应器的反应, 辅助轻质原料反应器内的其余反应物流继续 沿反应器上行, 完成轻质原料的催化反应, 反应结束后油气和催化剂进入沉降器分离 出催化剂, 油气可单独引出, 或者与主反应器的反应油气混合; 催化剂则进入沉降器 与主反应器的催化剂一起, 流入催化剂补充区下部的汽提段, 进行汽提、 再生过程。

当辅助反应器单独设置第二沉降器时, 辅助反应器中的反应混合物沿反应器向上 流动, 并在第二沉降器中进行气固分离, 分离出的待生催化剂由催化剂接力管进入主 反应器的催化剂补充区, 并由催化剂进入通道进入第二反应区, 参与主反应器的反 应; 反应油气则经第二沉降器上的第二油气出口单 独引出, 不与主反应器反应油气混 合。 采用本发明的技术方案, 至少具有以下有益效果:

(1)本发明要优化的是主反应器的反应活性, 相对而言, 主反应器原料重, 催化剂 快速失活, 到第二反应区时活性低, 相反辅助轻质原料反应器原料轻, 催化剂失活 慢, 本发明在主反应器第一反应区出口分离出部分 由于因结焦而失活的催化剂, 在第 二反应区补充来自辅助轻质原料反应器的高活 性的待生催化剂进行置换, 明显提高第 二反应区的催化剂活性, 总体强化了主反应器的催化反应选择性, 有效减少了热反应 及不利的二次反应; 此外, 催化剂活性并不是越高越好, 有一合适值, 两反应器催化 剂的结合正好实现需要;

(2)本发明提供的催化裂化工艺中, 采用主反应器与沉降器、 催化剂补充区、 汽提 段上下连体布置, 提出了明确的两反应器催化剂共用、 控制、 转送的技术方法, 打破 了已有技术通过 "沉降器系统"才能实现催化剂分离的限制, 有效解决了以往技术中 存在的置换失活催化剂、 增加分离、 沉降设备同时考虑汽提的技术实施难题; 失活催 化剂的分离、 置换、 待生催化剂的汽提, 均可以在本发明的主反应器中同时实现, 互 不影响, 且装置结构布置简单紧凑、 不因催化剂分离、 催化剂汽提额外占用场地, 经 济性显而易见;

(3)本发明的技术方案中, 即使在设置第二沉降器的情况下, 辅助反应器与主反应 器也可以实现共用汽提段, 工程实施简单, 投资大幅减少。 附图说明

图 1-图 3为本发明的催化裂化装置示意图。

图中主要编号说明: 10 主反应器; 1 1 第一反应区; 12 催化剂补充区; 13 第二 反应区; 14、 21 进料喷嘴; 15 分流器; 16 隔板; 17 输送管; 18 催化剂进入通道; 19 预提升段; 20 辅助轻质原料反应器; 22 接力管; 23、 31 催化剂回流管; 30 沉降 器; 32 汽提段; 33 分布管; 34 待生立管; 35 第二沉降器; 40 再生器; 41、 42 再 生立管; 43 催化剂冷却器; 50、 51、 52 油气出口。 具体实施方式

以下结合附图详细说明本发明的技术方案, 旨在帮助阅读者更好地理解本发明的 精神实质, 但本发明的保护范围包括但是不限于此。 实施方式一:

如图 1所示, 催化裂化装置包括主反应器 10和辅助轻质原料反应器 20, 辅助轻质 原料反应器 20 与主反应器 10 共用沉降器 30及设于其内的气固分离器; 主反应器 10 自下而上设置有预提升段 19、 第一反应区 11、 输送管 17和第二反应区 13, 第一反应 区 11出口设置有催化剂分流器 15 ; 输送管 17与第二反应区 13之间设有催化剂进入通 道 18; 沉降器 30和汽提段 32之间由上、 下两层隔板 16隔开形成催化剂补充区 12, 催化剂进入通道 18位于催化剂补充区 12内; 主反应器 10与沉降器 30、 催化剂补充区 12、 汽提段 32为上下连体布置; 在催化剂补充区 12和辅助轻质原料反应器 20之间设 置有催化剂接力管 22; 沉降器 30与汽提段 32之间设置有催化剂回流管 31 ; 沉降器 30 顶部设置有两反应器共用的油气出口管线 50。

本实施方式具体工艺过程如下:

辅助轻质原料提升管反应器中, 来自再生器 40 的再生催化剂经再生立管 42进入 辅助轻质原料提升管反应器 20下部, 在预提升蒸汽的提升下向上流动; 轻汽油被喷嘴 21 雾化后进入反应器 20反应区, 与上述再生催化剂接触反应; 在反应器 20中部, 反 应过的待生催化剂自接力管 22引入主反应器 10的催化剂补充区 12内, 反应油气和剩 余的催化剂继续沿反应器 20 向上, 完成辅助轻质原料提升管反应器 20 的催化反应; 反应结束, 反应混合物进入沉降器 30内进行油剂分离;

主提升管反应器中, 来自再生器 40 的再生催化剂经再生立管 41 进入主提升管反 应器 10下部的预提升段 19内, 在预提升蒸汽的提升下向上进入第一反应区 11 内, 与 经喷嘴 14 雾化后的重油原料接触反应; 生成的油气和反应后的催化剂向上进入分流器 15; 在分流器 15 内, 采用气固向外旋流方式使催化剂切向分流并靠 重力向下流入催化 剂汽提区 32进行汽提, 油气和未被分离的催化剂沿输送管 17 向上, 经催化剂进入通 道 18进入第二反应区 13内; 此时, 上述由辅助轻质原料提升管反应器 20引出经接力 管 22进入催化剂补充区 12的待生催化剂也由催化剂进入通道 18引入第二反应区 13 内; 两股物流在第二反应区 13 内接触混合并继续反应, 完成主反应器 10 内的催化反 应; 反应结束, 反应混合物进入沉降器 30 内进行油剂分离, 分离出的催化剂与辅助轻 质原料提升管反应器 20反应后分离出的催化剂混合, 并经催化剂回流管 31 进入汽提 段 32内, 与经分离器 15分离并进入汽提段 32的催化剂混合, 在自分布管 33引入的 汽提蒸汽下汽提, 汽提后的催化剂自待生立管 34 引入再生器 40进行再生; 主反应器 10的反应油气与辅助轻质原料提升管反应器 20的反应油气一起经油气出口 50引出装 置。

本实施方式中, 接力管 22在辅助轻质原料提升管反应器 20 的引出位置 (即反应 器 20 中部的扩径段) 设有气固分离单元 (图中未标示) , 当反应器 20 中的催化剂、 反应油气混合物流沿反应器 20上行时, 经气固分离单元使一部分催化剂从混合物流中 分离出来; 催化剂的分离、 引出量是可调的, 当需要的催化剂引出量减少时, 原分离 而未引出的催化剂可以进入催化剂混合物流继 续上行; 待生催化剂引出量通过催化剂 接力管 22上的滑阀进行控制。

本实施方式中, 所述分流器 15可采用现有分流器, 根据本发明的优选方案, 在主 反应器 10第一反应区 11出口的分流器 15内设置有 3-7件旋流叶片形成旋流区, 通过 设计旋流区面积比例来控制催化剂分流比例, 克服了常规伞帽等惯性分流器分流比例 不可调节的弊端。 另外, 接力管 22在辅助轻质原料提升管反应器 20 的引出位置的气 固分离单元也可为与分流器 15原理相同的结构。

关于催化剂的分流及引出, 以下各实施方式与本实施方式原理相同, 以后不再赘 述。 实施方式二:

某炼油厂催化裂化装置设计如图 2所示, 在再生立管 41上设置催化剂冷却器 43, 辅助轻质原料提升管反应器 20设置催化剂回流管 23 ; 反应器 20与主反应器 10共用沉 降器 30, 但不共用气固分离器, 两反应器油气分开处理, 其余部分装置结构同图 1。 实施方式三:

某炼油厂催化裂化装置设计如图 3所示, 在辅助反应器 20出口单独设置第二沉降 器 35 ; 辅助反应器 20的待生催化剂自第二沉降器 35引出, 并经催化剂补充区 12进入 第二反应区 13, 两反应器油气分开处理。 其余部分装置结构同图 1。 实施例 1 :

某炼油厂催化裂化装置设计如图 1 所示, 采用 220°C的重油经喷嘴 14 雾化后, 进 入主提升管反应器 10 的第一反应区 11 内, 与 640°C左右的再生催化剂混合气化后, 沿第一反应区 11 向上流动, 并不断反应, 反应时间 1.0s, 反应温度 520°C, 反应结束 混合物经分流器 15 分离出催化剂, 油气沿输送管 17 向上, 进入第二反应区 13 内; 同时, 自辅助轻质原料提升管反应器 20引出的待生催化剂进入催化剂补充区 12, 并进 入第二反应区 13, 与进入第二反应区 13 的反应油气接触混合并继续反应, 反应温度 510°C, 反应时间 1.5s。

在辅助轻质原料提升管反应器 20内, 预热 60-70°C沸点低于 85 °C的轻汽油由喷嘴 21 雾化后进入反应器 20, 与 640 °C左右的再生催化剂混合并不断反应, 反应时间 2.5s, 反应温度 520°C。

两反应器反应结束后, 油气进入共用的沉降器 30 内, 分离出催化剂的混合油气经 出口管线 50 引出; 催化剂则通过催化剂回流管 31 流入汽提段 32 内, 汽提出催化剂 中夹带的油气, 返回再生器 40 再生。

本实施例中, 自辅助轻质原料提升管反应器 20 引出的待生催化剂引出量通过催化 剂接力管 22 上的滑阀进行控制。

本实施例与已有技术相比, 单程转化率平均提高 10%以上, 液收增加 2%左右。 实施例 2:

采用上述实施方式二。 本实施例中, 重油原料与 600°C左右的再生催化剂在第一反 应区 11 内接触反应; 自反应器 20回流的待生催化剂循环量通过催化剂回流管 23上的 滑阀进行控制, 回流量为 40%; 反应器 20 的反应原料为混合 C 4 组分。 本实施例中, 提升管反应器 10第一反应区的反应温度 500°C, 反应时间 1.0s; 第二反应区的反应温 度 495 °C, 反应时间 1.5s; 提升管反应器 20的反应温度 510°C, 反应时间 2.4s; 第一反 应区 11 及辅助反应器 20 的热裂化副反应大大减少, 与已有技术相比, 主反应器单程 转化率平均提高 12%以上, 液收增加 3%左右。 实施例 3 :

某炼油厂 180 万吨 /年催化裂化装置, 主反应器第一反应区直径 1.12m, 高度 20.4m, 第二反应区直径 1.12m, 高度 13.8m, 催化剂补充区直径 3.6m, 高度 2.5m, 催 化剂补入口标高 16868 ; 轻质原料反应器直径 0.8m, 高度 27.4m, 中部扩径段直径 1.6m, 高度 7.0m, 催化剂引出点标高 38000; 汽提段直径 3.6m, 高度 8.0m。

220°C的重质石油烃类原料油进入主反应器第一 反应区, 与 640°C的再生催化剂接 触混合, 在剂油比 7: 1、 温度 520°C下反应, 反应时间 1.0s, 油气和催化剂上行进入分 流区分离出 76%的待生催化剂, 油气和剩余催化剂进入第二反应区; 同时, 在辅助反 应器中, 预热 70°C沸点低于 85 °C的轻汽油与 640°C的再生催化剂接触混合, 在剂油比 14: 1、 温度 520°C下反应, 反应时间 2.5s, 有 90%的待生催化剂分离出来经补充区进入 第二反应区; 进入第二反应区的上述反应物流在剂油比 5: 1、 反应温度 510°C的条件下 反应, 反应时间 1.5s; 沉降器顶部压力为 0.26MPa, 主反应器第二反应区的物料从反应 器出来后在沉降器中经旋分分离后油气进入分 熘系统, 其中低于 85 °C的轻汽油熘分打 入辅助反应器反应, 待生催化剂进入汽提段, 与上述第一反应区出口分离出的催化剂 一起经汽提后引入再生器再生。 辅助轻质原料反应器 20的反应油气与主反应器的油气 分开处理。

重质原料油的主要性质列于表 1, 重质原料油采用熘分油掺炼 12%减压渣油, 辅 助反应器原料油采用产品轻汽油熘分; 催化剂采用 CC-20DF平衡剂, 活性为 65.4。 主 要反应条件列于表 2, 实施结果产品分布列于表 3。 对比例 1 : 和已有的重质油提升管技术比较装置变化

采用实施例 3 主反应器的重质原料油和催化剂; 但对比例 1 中所采用的反应器为 常规 FCC工艺装置, 没有辅助反应器, 主反应器仅设置有一个反应区, 没有第二反应 区和催化剂补充区, 反应条件同实施例 3。

对比例 1的反应过程为: 原料油预热至 220°C, 经蒸汽雾化后进入反应器下部, 与 640°C的再生催化剂接触、 反应, 反应温度 520°C, 反应时间 2.5s, 反应结束分离油气 和催化剂, 油气送入分熘系统分离成各种产品, 催化剂经汽提后进入再生器烧焦再生 后返回反应器循环使用。

主要反应条件列于表 2, 实施结果产品分布列于表 3。 从表 3 的产品分布可以看到, 与对比例 1相比, 实施例 3可大幅度提高重质原料 提升管的原料转化深度, 处理量增加达 20.5%, 显著改善了产品分布, 轻质产品收率 提高 3%以上; 干气和焦炭大大降低; 产品质量明显提高, 汽油烯烃含量下降 12%。

实施例 3重质原料油的主要性质

项目 原料油

密度, 20 °C , kg/m 3 936

残炭, w% 4.6

氢, w% 12.1

饱和烃, w% 39.5

芳烃, w% 47.3 表 2 实施例 3、 对比例 1的主要反应条件

反应条件 对比例 1 实施例 3

催化剂活性 65.4 65.4

装置处理量, t/h 205 246 主反应器第一反应区

温度, 520 520

反应时间, s 2.5 1.0

剂油比 7.0 7.0

主反应器第二反应区

温度, 一 510

反应时间, s 一 1.5

剂油比 一 5.0

辅助反应器

温度, 一 520

反应时间, s 一 2.5

剂油比 一 14.0 表 3 实施例 3、 对比例 1的产品分布与汽油性质 项目 对比例 1 实施例 3

主反应器产品分布

干气 +损失 4.55 3.04

液化气 12.34 12.82

汽油 43.52 46.85

柴油 29.29 29.19

油浆 3.81 2.01

焦炭 6.49 6.09

轻质油收率% 72.81 76.04

总收率% 85.15 88.86

转化率% 66.92 68.81

汽油烯烃含量 /V% 58.1 46.1

汽油 MON 79.5 78.5

辅助反应器产品分布

干气 +损失 一 1.92

液化气 一 17.04

汽油 一 72.44

柴油 一 6.27

油浆 一 0.00

焦炭 一 2.32 实施例 4:

采用上述实施方式三。 本实施例中, 提升管反应器 20 的反应原料为 C 4 组分, 提 升管反应器 10反应条件为: 第一反应区的反应温度 520°C, 反应时间 1.0s; 第二反应 区的反应温度 510°C, 反应时间 1.5s; 提升管反应器 20 的反应温度 520°C, 反应时间

2.5s。 原料油性质列于表 4; 催化剂采用 CC-20DF, 活性 62; 第一反应区 40 %的催化 剂进入第二反应区; 辅助提升管 100 %催化剂进入提升管 10的第二反应区。 重质原料油的主要性质列于表 4, 主要反应条件与产品分布列于表 5。 对比例 2: 和已有的双提升管技术比较全装置变化

设置重油提升管和轻油提升管双提升管装置, 两提升管的反应原料分别采用实施 例 4主反应器的重质原料油和辅助反应器的轻质 料油, 催化剂与实施例 4相同, 但 主反应器仅设置有一个反应区, 没有第二反应区和催化剂补充区。

对比例 2的主要反应条件与产品分布列于表 6。 从表 5、 6的产品分布可以看到, 与常规双提升管反应相比, 采用本发明的方法可 大幅度提高全装置的原料转化深度, 汽油和液化气收率由 53.23%提高到 53.41%, 反应 总液收由 79.01%提高到 81.71%, 干气和焦炭产率降低近 2%, 显著改善了产品分布。

原料油分析性质

实施例 4主要反应条件与产品分布

重油提升管底部 640 685

混合催化剂温度, V

反应时间, s 3.3 3.1

干气 3.78 2.17 4.51 液化气 16.3 17.0 22.04 产 汽油 (<205 °C ) 40.2 73.34 31.19

P

柴油 (205 °C~350°C ) 23.92 5.50 25.78 分 油浆 6.00 0.00 6.00 布 焦炭 9.30 2.00 9.98 w%

损失 0.50 0.00 0.50 总和 100.00 100.00 100.00 收 汽油 +液化气 56.5 90.34 53.23 率 总液收 80.42 95.84 79.01 w% 汽油中的烯烃 v% 35 6.0 16.5 最后所应说明的是: 以上说明仅用以说明本发明而非限制, 尽管参照较佳实施方 式对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明进行修 改或者等同替换, 而不脱离本发明的精神和范围, 其均应涵盖在本发明的保护范围当 中。