Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CATIONIC DYEABILITY MODIFIER FOR USE WITH POLYESTER AND POLYAMIDE
Document Type and Number:
WIPO Patent Application WO/2001/058863
Kind Code:
A1
Abstract:
A compound having the formula: R¿1?OOC-(CH¿2?)¿n?-CH(CH¿2?CH¿2?SO¿3?X)-(CH¿2?)¿m?-COOR¿2? where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from the group consisting of lithium, sodium and potassium, and R¿1? and R¿2? are independently selected from hydrogen and alkyl groups having one to four carbon atoms is disclosed, and use thereof as a cationic dyeability modifier, e.g., for incorporation into polyesters and polyamides to increase their affinity for basic dyes.

Inventors:
SUN YANHUI
Application Number:
PCT/US2001/002655
Publication Date:
August 16, 2001
Filing Date:
January 29, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DU PONT (US)
International Classes:
C07C309/17; C08G63/688; C08G69/26; C08G69/48; C08J5/00; D01F6/80; D01F6/84; D06P3/24; D06P3/52; D06P5/22; (IPC1-7): C07C309/17; C08G63/183; C08G69/08; C08G69/26
Foreign References:
US3018272A1962-01-23
US3313778A1967-04-11
US3454535A1969-07-08
US3296204A1967-01-03
Other References:
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 05 30 June 1995 (1995-06-30)
Attorney, Agent or Firm:
Kuller, Mark D. (DE, US)
Download PDF:
Claims:
What Is Claimed Is :
1. A compound having the following formula : RiOOC (CH2) nCH (CH2CH2S03X) (CH2) mCOOR2 where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from the group consisting of lithium, sodium and potassium, and Rl and R2 are independently hydrogen or alkyl groups having one to four carbon atoms.
2. A copolymer selected from the group consisting of copolyesters and copolyamides, wherein the copolymer comprises a comonomer prepared from a compound of the formula : R) OOC (CH2) nCH (CH2CH2S03X) (CH2) mCOOR2 where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from the group consisting of lithium, sodium and potassium, and R, and R2 are independently hydrogen or alkyl groups having one to four carbon atoms, and wherein the comonomer is incorporated into the polymer chain of the copolymer in an amount sufficient to improve its affinity for basic dyes.
3. A shaped article comprising the copolymer of claim 2.
4. The shaped article of claim 3 which is a fiber.
5. A dyed composition comprising the copolymer of claim 2 which has been dyed.
6. A dyed shaped article comprising the copolymer of claim 2, wherein the copolymer is dyed.
7. A dyed fiber comprising the copolymer of claim 2.
8. A dyeing process, comprising providing the composition of claim 2 and dyeing the composition.
9. A process for preparing a copolyester comprising the steps of : (a) combining one or more materials selected from the group consisting of poly (alkylene terephthalate)forming monomers and polyoxyalkylene glycol oligomers with a comonomer of the formula : R, OOC (CH2) nCH (CH2CH2S03X) (CH2) mCOOR2 where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from the group consisting of lithium, sodium and potassium, and R, and R2 are independently hydrogen or alkyl groups having one to four carbon atoms ; and (b) mixing and heating the materials and the comonomer at a temperature sufficient to cause copolymerization to form a copolyester containing the comonomer in an amount sufficient to improve its affinity for basic dyes.
10. A process for preparing a copolyamide comprising the steps of : (a) combining one or more materials selected from the group consisting of poly (alkylene terephthalate)forming monomers and polyoxyalkylene glycol oligomers with a comonomer of the formula : R, OOC (CH2) nCH (CH2CH2S03X) (CH2) ,COOR2 where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from the group consisting of lithium, sodium and potassium, and R1 and R2 are independently hydrogen, alkali metal salts or alkyl groups having one to four carbon atoms ; and (b) mixing and heating the materials and the comonomer at a temperature sufficient to cause copolymerization to form a copolyamide containing the comonomer.
11. The compound, copolymer, article, composition, fiber or process of any of the preceding claims, wherein the compound is selected from the group consisting of alkali metal salts of 3 (2sulfoethyl) hexanedioic acid and of dimethyl3 (2sulfoethyl) adipate.
12. The compound, copolymer, article, composition, fiber or process of claim 11, wherein the compound is selected from the group consisting sodium salts of 3 (2sulfoethyl) hexanedioic acid and of dimethyl3 (2sulfoethyl) adipate.
13. The compound, copolymer, article, composition, fiber or process of any of the preceding claims, wherein the copolymer comprises from 0. 5 to 4 mole percent of the comonomer.
14. The compound, copolymer, article, composition, fiber or process of any of claims 19 and 1113, wherein the copolymer is a copolyamide derived from a polyamide selected from the group consisting of nylon 6, nylon 66 and copolymers thereof.
15. The compound, copolymer, article, composition, fiber or process of any of claims 110 and 1213, wherein the copolymer is a copolyester derived from a poly (alkylene terephthalate) selected from the group consisting of poly (ethylene terephthalate), poly (trimethylene terephthalate), poly (butylene terephthalate), and copolymers thereof.
16. The compound, copolymer, article, composition, fiber or process of claim 14, wherein the poly (alkylene terephthalate) is poly (trimethylene terephthalate).
Description:
TITLE CATIONIC DYEABILITY MODIFIER FOR USE WITH POLYESTER AND POLYAMIDE Field of the Invention This invention relates to a compound that provides improved basic dyeability for polyesters and polyamides, and use thereof.

Background of the Invention Polyesters, especially polyalkylene terephthalates, and polyamides, especially nylon 6 and nylon 66, have excellent physical and chemical properties and have been widely used for resins, films and fibers. In particular, polyester and polyamide fibers have relatively high melting points, and can attain high orientation and crystallinity. Accordingly, polyesters and polyamides have excellent fiber properties such as chemical, heat and light stability, and high strength.

However, polyesters, especially polyester fibers, are difficult to dye. The molecular structure and the high levels of orientation and crystallinity that impart desirable properties to the polyester also contribute to a resistance to coloration by dye compounds. Also contributing to the difficulty in dyeing polyester is the characteristics that polyesters, unlike protein fibers, do not have dye sites within the polymer chain that are reactive to basic or acid dye compounds. Although polyamides are not as difficult to dye as polyesters, one or more dyeability additives are nevertheless commonly incorporated into polyamides, e. g., in order to selectively increase the affinity of the polyamide fibers for certain types of dyes, e. g., acidic or basic, or to selectively increase the resistance of the fibers to staining with certain types of staining agents.

It is known that that certain materials, such as aromatic sulfonates and their sodium salts, including the sodium salt of 5-sulfoisophthalic acid or the sodium salt of dimethyl 5-sulfoisophthalate, can be copolymerized with the polyester or polyamide as a means of conferring basic dyeability. Other cationic dyeability modifiers have also been disclosed. For example, Sakurai, U. S. Patent No. 3, 313, 778, discloses a modified polyester which has linked to the main chain thereof a minor proportion of at least one organo sulfonic acid ester having the

formula (X-S02-O)"-Y, where n is an integer from 1 to 4 ; X is, e. an alkyl group of 1 to 12 carbon atoms ; and Y is, e. g., a lower alkyl group, having one or two ester-forming functional groups, for example beta-carbomethoxyethyl methanesulfonate.

Further, poly (trimethylene terephthalate) has many properties that make it desirable for use in manufacturing fibers for textile applications, including improved recovery and resilience, as compared with poly (ethylene terephthalate).

However, cationic dyeability modifiers that are particularly useful for improving the basic dyeability of poly (trimethylene terephthalate) have not been proposed.

It is desirable to provide a cationic dyeability modifier which can be incorporated into polyesters, especially poly (alkylene terephthalate), and polyamides, especially nylon 6 and nylon 66, to confer improved basic dyeability and which can be produced at lower cost than conventional cationic dyeability modifiers.

It is also desirable to provide a basic dyeable polyester, in particular poly (alkylene terephthalate), and more particularly poly (trimethylene terephthalate), which can be easily processed into fibers, films or other shaped articles and basic-dyed without the use of expensive cationic dyeability modifiers or additives, special solutions, and/or complicated application procedures.

It is also desirable to provide a basic dyeable polyamide, in particular nylon 6 or nylon 66, which can be easily processed into fibers, films or other shaped articles and basic-dyed without the use of expensive cationic dyeability modifiers or additives, special solutions, and/or complicated application procedures. The present invention provides such a cationic dyeability modifier and basic dyeable polyester and polyamide.

Summary of the Invention This invention is directed to a compound having the following formula : RiOOC- (CH2) n-CH (CH2CH2S03X)- (CH2) ,-COOR2 where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from the group consisting of lithium, sodium and potassium, and Rl and R2 are independently hydrogen or alkyl groups having one to four carbon atoms. The compound is useful as cationic dyeability modifier. For instance, it can be incorporated into polyesters and polyamides to increase their affinity for

basic dyes. Throughout this document, for convenience the compound is referred to as a"cationic dyeability modifier".

In addition, this invention is directed to a basic dyeable copolymer selected from the group consisting of copolyesters and copolyamides, wherein the copolymer comprises a comonomer prepared from a compound of the formula : Riooc- (CH2) n-CH (CH2CH2So3X)- (CH2) m-COOR2 where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from the group consisting of lithium, sodium and potassium, and Rl and R2 are independently hydrogen or alkyl groups having one to four carbon atoms, and wherein the comonomer is incorporated into the polymer chain of the copolymer in an amount sufficient to improve its affinity for basic dyes.

The invention is also directed to a shaped article comprising the copolymer, such as a fiber or film.

The invention is further directed to a dyed composition comprising the copolymer of which has been dyed and a dyed shaped article comprising the copolymer, wherein the copolymer is dyed, such as a dyed fiber comprising the copolymer.

The invention is also directed to a dyeing process, comprising providing the composition and dyeing the composition. Preferably, the invention is directed to a process for preparing a basic dyeable copolyester comprising the steps of : (a) combining one or more materials selected from the group consisting of poly (alkylene terephthalate)-forming monomers and polyoxyalkylene glycol oligomers with a comonomer of the formula : RtOOC- (CH2) n-CH (CH2CH2S03X)- (CH2) m-COOR2 where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from the group consisting of lithium, sodium and potassium, and R, and R2 are independently hydrogen or alkyl groups having one to four carbon atoms ; and (b) mixing and heating the materials and the comonomer at a temperature sufficient to cause copolymerization to form a copolyester containing the comonomer in an amount sufficient to improve its affinity for basic dyes.

In another preferred embodiment, the invention is directed to a process for preparing a copolyamide comprising the steps of : (a) combining one or more materials selected from the group consisting of poly (alkylene terephthalate)-

forming monomers and polyoxyalkylene glycol oligomers with a comonomer of the formula : R) OOC- (CH2) n-CH (CH2CH2S03X)- (CH2) m-COOR2 where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from the group consisting of lithium, sodium and potassium, and RI and R2 are independently hydrogen, alkali metal salts or alkyl groups having one to four carbon atoms ; and (b) mixing and heating the materials and the comonomer at a temperature sufficient to cause copolymerization to form a copolyamide containing the comonomer.

Preferably, the cationic dyeability modifier is selected from the group consisting of alkali metal salts of 3- (2-sulfoethyl) hexanedioic acid and of dimethyl-3- (2-sulfoethyl) adipate. More preferably, the cationic dyeability modifier is selected from the group consisting sodium salts of 3- (2-sulfoethyl) hexanedioic acid and of dimethyl-3- (2-sulfoethyl) adipate.

Preferably, the copolymer comprises from 0. 5 to 4 mole percent of the comonomer.

In one embodiment, the copolymer is preferably a copolyamide derived from a polyamide selected from the group consisting of nylon 6, nylon 66 and copolymers thereof.

In another embodiment, the copolymer is preferably a copolyester derived from a poly (alkylene terephthalate) selected from the group consisting of poly (ethylene terephthalate), poly (trimethylene terephthalate), poly (butylene terephthalate), and copolymers thereof. In one more preferred embodiment, the poly (alkylene terephthalate) is poly (trimethylene terephthalate).

Detailed Description of the Invention The cationic dyeability modifier of the invention is an aliphatic sulfonate of the following formula : I RiOOC- (CH2) n-CH (CH2CH2S03X)- (CH2) m-COOR2 where n is an integer from 1 to 10, m is an integer from 1 to 10, X is an alkali metal selected from lithium, sodium and potassium, and Rl and R2 are independently selected from hydrogen and alkyl groups having one to four carbon atoms. These compounds have a metal ion. The preferred cationic dyeability modifier is 3- (2-sulfoethyl) hexanedioic acid, sodium salt, which has the following formula :

II HOOC- (CH2)-CH (CH2CH2SO3Na)- (CH2) 2-COOH and its dimethyl ester, namely dimethyl-3- (2-sulfoethyl) adipate, sodium salt, which has the following formula : III 1 2 3COOC-(CH2)-CH (CH2CH2SO3Na)-(CH2) 2-COOCH3 3- (2-Sulfoethyl) hexanedioic acid, sodium salt is prepared by addition reaction of 4-vinyl cyclohexene and formic acid in the presence of hydrogen peroxide to form a mixture of 4-vinylcyclohexane 1, 2-diformate, 4- vinylcyclohexane 1-monoformate, and 4-vinylcyclohexane 2-monoformate, followed by a hydrolysis with sodium hydroxide and then an addition reaction with sodium bisulfite and sodium persulfate in the presence of sodium hydroxide to form the sodium salt of 4- (2-sulfoethyl) cyclohexane-1, 2-diol, followed by oxidation in the presence of tungstic acid and hydrogen peroxide to form 3- (2- sulfoethyl) hexanedioic acid, sodium salt, as set forth in greater detail in Examples I to III. Dimethyl-3- (2-sulfoethyl) adipate, sodium salt is prepared from 3- (2- sulfoethyl) hexanedioic acid, sodium salt by reaction with anhydrous methanol, as described in greater detail in Example IV.

The cationic dyeability modifier of formula I is incorporated into the polymer chain of a polyester or polyamide to provide dye sites for basic dyes.

Polyester and polyamide copolymers containing the cationic dyeability modifiers of the invention, and fibers, films and other shaped articles made therefrom, have an improved affinity for basic dyes. Desirable results can be obtained using the aliphatic sulfonates of formula I with or without a dye opener ingredient polycondensed therewith.

The cationic dyeability modifier of formula I can be incorporated into the polyester or polyamide polymer chain by a variety of methods, including : (1) incorporating the cationic dyeability modifier into the polymer chain during polymerization ; (2) adding the cationic dyeability modifier to the polymerized resin prior to melt-spinning or other forming operation ; or (3) incorporating the cationic dyeability modifier into the polymer chain to form a highly sulfonated copolymer, which is then blended with unsulfonated polymer to form a basic dyeable copolyester. The preferred method is to incorporate the cationic dyeability modifier into the polymer during polymerization by adding the modifier to the other polymer-forming materials before any significant polymerization has taken place. For example, in the case of a dyeability modified

poly (alkylene terephthalate), the cationic dyeability modifier is mixed with polyester-forming materials such as alkylene glycol, terephthalic acid, one or more lower dialkyl esters of terephthalic acid, and/or low molecular weight oligomers of alkylene glycol and terephthalic acid, and then copolymerized using standard polymerization procedures. For example, in the case of a dyeability modified polyamide, the cationic dyeability modifier is mixed with polyamide- forming materials, such as epsilon-caprolactam, adipic acid, and/or hexamethylene diamine at the salt stage, and then copolymerized using standard polymerization procedures. The cationic dyeability modifier of the invention can also be incorporated in a copolyester or copolyamide that is manufactured in a continuous process in a manner that is conventional for other copolymer-forming cationic dyeability modifiers.

In accordance with one embodiment of the invention, the cationic dyeability modifier is used to form a dyeability modified copolyester of poly (trimethylene terephthalate). In this embodiment, the cationic dyeability modifier is mixed with dimethylterephthalate and propylene glycol in a reactor.

The temperature is raised to 180°C to carry out the transesterification in the presence of titanium catalyst. As methanol by-product is evolved and removed, the temperature is slowly raised to 230°C. A vacuum is then applied to the system to gradually reduce the pressure to 0. 5 mm Hg, and the temperature is raised to 250°C. The polymer viscosity is gradually increased. After about 1 hour under vacuum, the reaction is stopped and the polymer product is cooled down.

Generally, sufficient cationic dyeability modifier of formula I is used to produce a copolyester or copolyamide containing from 0. 5 to 4 mole percent, preferably from 1 to 2 mole percent of the cationic dyeability modifier in the final copolymer. The cationic dyeability modifier can be incorporated into a polyester or polyamide in an amount up to 30 mole percent, preferably 20 to 25 mole percent, to form a highly sulfonated copolymer, which is then blended with unsulfonated polyester or polyamide to give a basic dyeable polyester having a mole percent sulfonate comonomer as set forth in the previous sentence.

The polyesters useful in the invention are poly (alkylene terephthalates), which are fiber-forming linear condensation polymers having ester linkages in the polymer chain. In the absence of an indication to the contrary, a reference to poly (alkylene terephthalates) is meant to encompass copolyesters, i. e., polyesters

made using 2 or 3 or more monomeric reactants, each having two ester forming groups. The poly (alkylene terephthalates) can, if desired, contain various catalysts and/or additives, e. g., dye openers (discussed below), delustrants, viscosity boosters, optical brighteners, toning pigments, color inhibitors and anti- oxidants. Examples of linear, fiber-forming polyesters useful in the present invention include poly (ethylene terephthalate), poly (trimethylene terephthalate), and poly (butylene terephthalate). Poly (trimethylene terephthalate) is preferred.

Dye openers, also known as"carriers", are described in"Encyclopedia of Chemical Technology"3rd edition, beginning at page 151, where it defines carriers as follows : Dye carriers are used to achieve complete dye penetration of polyester fibers. They loosen the interpolymer bonds and allow the penetration of dyes into fiber. The preferred carrier is butyl benzoate (e. g., Tanalon HIWTM (Sybron Chemicals, Inc.), a water emulsified, nonionic butyl benzoate carrier). Other carries include methyl benzoate and dimethyl phthalate.

The polyamides useful in the invention include nylon 6, nylon 66 and various nylon copolymers.

As indicated above, the basic dyeable copolyesters and copolyamides according to the present invention have a relatively high affinity for basic dyes and can be dyed in a range of colors. More specifically, the copolyesters and copolyamides contain sulfonate groups which have a strong tendency to exchange the sodium cation with the dye cation of basic dyes. For example, the basic dyeable copolyesters and copolyamides can be spun into fibers and dyed in either continuous or staple form with basic dyes. Alternatively, the copolymers can be mixed or blended. The skilled artisan will readily recognize that dyeing can be carried out at various times after the copolymers have been prepared. For instance, fibers comprising the copolymers can be dyed on the package or in skeins, fabrics, or piece-goods. As an example, bicomponent fibers (side-by-side, concentric sheath-core or eccentric sheath-core) can be made from two dyeable copolymers (e. g, copoly (ethylene terephthalate) and copoly (trimethylene terephthalate) or from dyeable copolymer and polymer not comprising the dyesite of the present invention (Of course, one or both portions of the bicomponent fiber can be formed from a blend containing a polyester and copolyester, or the like.) By a"basic dye"is meant a colored cationic organic substance such as those containing sulfonium, oxonium or quaternary ammonium functional groups.

The basic dye types include, for example, Victoria Green WB (C. I. Basic Green 4), a dye of the triphenyl methane type having the following chemical structure :

Victoria Pure Blue BO (C. I. Basic Blue 7), a triaryl methane type dye having the following chemical structure :

Sevron Blue 5G (C. I. Basic Blue 4), a dye of the oxazine type having the following chemical structure : Brilliant Green B (C. I. Basic Green 1), a triphenyl methane type dye having the following chemical structure : And Rhodamine B (C. I. Basic Violet 10), a dye of the xanthene type having the following chemical structure :

and the like. The dyes are preferably applied from an aqueous solution at a temperature of between 80°C and 125°C.

The intrinsic viscosity measurements described herein were made by dissolving polymer samples in 50/50 weight percent trifluoroacetic acid/dichloromethane solvent mixture to yield a solution having a concentration of 0. 4 g/dL. The viscosity of the resulting solution was measured using a Viscoteck Forced Flow Viscometer Model Y-900 at 19°C and Viscoteck software version V5. 7 to calculate the intrinsic viscosity (IV).

EXAMPLES Example I Preparation of mixture of 4-vinyl cyclohexane 1, 2-diformate, 4-vinyl cyclohexane 1-monoformate and 4-vinyl cyclohexane 2-monoformate A one liter 3-necked round flask was equipped with a mechanical stirrer, one dropping funnel and a thermometer. 500 mL (10 mole) 96% formic acid and 130 mL (1 mole) 4-vinyl cyclohexene were charged to the flask. 106. 9 g. (1. 1 mole) 35% hydrogen peroxide solution was charged into the dropping funnel.

The reaction flask was cooled in a water bath. Under stirring, hydrogen peroxide solution was dropped in at a rate of 1. 5 mL per minute. After the addition was finished, the reaction mixture was stirred for two hours. The reaction temperature

was kept below 30°C. When the reaction was complete, water and formic acid were distilled out under vacuum at 40-45°C. The residue oil was distilled under high vacuum in the presence of 2% cuprous chloride. The boiling point of the mixture of formates and a small amount of 4-vinylcyclohexane-1, 2-diol was 100- 118°C at 0. 1 mm Hg. The yield was 71-80%. The nuclear magnetic resonance (1H NMR) spectra in CDC13 gave the following results : 1. 5 (m, 1H), 1. 58 (m, 1H), 1. 72 (m, 1H), 1. 81 (m, 1H), 2. 4 (m, 1H), 3. 0 (s, 1H), {3. 35-3. 82 (m, 1H), 4. 74-4. 91 (m, 1H) mixed isomer}, 4. 98 (m, 2H), 5. 72 (m, 1H), {7. 99 (s, 1H), 8. 03 (s, 1 H) mixture of diformate and monoformate}. The residue oil can be used in the reaction described in Example II without the above-described purification.

Example II Preparation of 4-(2-sulfoethyl ! cYclohexane-1, 2-diol sodium salt A one liter 4-necked round flask was equipped with mechanical stirrer, a dropping funnel and a thermometer. One mole of the mixture formed in the previous example was charged to the flask. Under stirring, 192 g. (1. 2 mole) 25% sodium hydroxide solution was added dropwise at 20-25°C. The stirring was maintained for 30 minutes after the addition. Then the mixture was allowed to separate for about two hours. The bottom aqueous solution of sodium formate was discharged. To the flask, 180 g. of water was added. Then 109. 3 g. sodium bisulfite (1. 05 mol) in 180 g. water and 2. 38 g. sodium persulfate (0. 01 mol) in 20 g. water were added dropwise into the mixture simultaneously from two dropping funnels under vigorous stirring at 20-25°C. The solution pH was maintained at about 6. 3-6. 6 by adding 12. 5% sodium hydroxide solution occasionally. The solution was stirred for 2 hours after the addition. The conversion was almost 100%. The nuclear magnetic resonance (1 H NMR) spectra in D2O gave the following results : 1H NMR : 1. 48-1. 89 (m, 9H), 2. 94 (m, 2H), {3. 55-3. 9 (m, 1H), 4. 73-5. 10 (m, 1H) mixed isomer}.

Example III Preparation of 3- (2-sulfoethyl) hexanedioic acid, sodium salt To the solution resulting from Example II, 291. 6 g (3 mole) 35% hydrogen peroxide solution and 1. 24 g. tungstic acid were charged. The mixture was heated slowly to reflux for 3 hours. (Caution must be taken during heating since some trace formic acid in the mixture can cause vigorous boiling.) The solution turned

from yellow to clear and colorless. The pH of the solution was 2-3. The reaction mixture was concentrated to about 65% 3- (2-sulfoethyl) hexanedioic acid, sodium salt, and cooled down to room temperature to allow the sodium sulfate by-product to precipitate. After filtering the salt, the solution was stirred slowly to crystallize the 3- (2-sulfoethyl) hexanedioic acid, sodium salt product. White crystals of 3- (2- sulfoethyl) hexanedioic acid, sodium salt were filtered and recrystallized and dried. The nuclear magnetic resonance (1H NMR) spectra showed the conversion of 4- (2-sulfoethyl) cyclohexane-formate, sodium salt to 3- (2- sulfoethyl) hexanedioic acid, sodium salt was 100%. The nuclear magnetic resonance (1H NMR) spectra in (CD30D) gave the following results : 1. 58 (m, 2H), 1. 75 (m, 2H), 1. 90 (m, 1H), 2. 18 (d, 2H), 2. 27 (t, 2H), 2. 73 (t, 2H).

Example IV Preparation of dimethvl-3- (2-sulfoethvl) adipate, sodium salt 3- (2-Sulfoethyl) hexanedioic acid, sodium salt was converted to the dimethyl ester by reacting 35 equivalents of anhydrous methanol at reflux in the presence of 2 equivalents of toluene and 0. 15 equivalent of sulfuric acid. After two hours reaction, the solvents were partially removed by distillation. The residue was neutralized to a pH of 6-7 and rotovapped to dryness. The crude product was extracted with a mixture of ethanol and methanol and dried to white solid. The nuclear magnetic resonance (1H NMR) spectra in (CD30D) gave the following results : 1. 57 (m, 2H), 1. 72 (m, 2H), 1. 90 (m, 1H), 2. 23 (dd, 2H), 2. 29 (t, 2H), 2. 70 (t, 2H), 3. 58 (s, 6H).

Comparative Example A Comparative example : Polyester homopolymer containing no dyeability modifier A 5 liter three-necked flask was charged with 2, 097. 25 grams of dimethylterephthalate (10. 8 mole), 1255. 7 grams of 1, 3-propanediol (16. 5 moles), and 1. 24 grams of a 10 weight percent solution of titanium tetraisobutoxide (TyzorX TPT, DuPont Performance Chemicals) in isopropanol. The mixture was stirred and heated to 190°C under nitrogen gas. Methanol was distilled within two hours. Then the flask was connected to a vacuum pump and the pressure lowered to 0. 2 mm Hg. The mixture temperature was slowly raised to 250°C and maintained at 250°C for about two hours. The resulting final poly (trimethylene terephthalate) homopolymer had an intrinsic viscosity of 0. 6 dl/g. The

homopolymer was solid state polymerized at 200°C under nitrogen purge for four hours, thereby increasing the intrinsic viscosity to 1. 0 dl/g.

The homopolymer was ground into flakes, spun into fiber at 250°C and dyed at 100°C under atmospheric pressure in an aqueous bath containing one weight percent Sevron Blue (Crompton & Knowles, Gibralter, PA) based on fibers. The dyed fibers showed an off-white color.

Example V Copolyester containing dyeabilitv modifier of the invention The procedure of Example IV was followed, except that 69 grams (0. 22 mole) of dimethyl-3- (2-sulfoethyl) adipate, sodium salt were charged to the three- neck flask, along with the dimethylterephthalate and 1, 3-propanediol. The final copolymer had an intrinsic viscosity of 0. 6 dl/g, and was solid state polymerized to an intrinsic viscosity of 1. 0 dl/g before spinning into fibers. The dyeability modified copolyester fibers turned a blue shade when dyed at 100°C under atmospheric pressure with Sevron Blue.

Comparative Example B Comparative example : Copolyester containing conventional dyeability modifier A 200 pound autoclave was charged with 69. 9 pounds (31. 7 kg) of dimethyl terephthalate (0. 36 lb. mole, 163. 3 mole), 41. 93 pounds (19. 0 kg) of 1, 3- propanediol (0. 55 lb. mole, 249. 9 moles), 2. 17 pounds (0. 98 kg) of dimethyl sulfoisophthalate, sodium salt (0. 007 lb. mole), and 9. 97 grams of Tyzor TPT.

The mixture was buffered with 21 grams of sodium acetate and 36 grams of zinc acetate. The mixture was stirred and heated to 160°C to distill methanol. The temperature was increased to 240°C during the distillation. After 1. 5 hours, the mixture was transferred into a clave, which was connected to a vacuum pump.

The clave pressure was reduced to 0. 4 mm Hg while raising the temperature to 250°C. The reaction was stopped when the agitator reached 1250 watts. The copolyester obtained was discharged and quenched in water. The product was solid state polymerized at 200°C for 4 hours to raise the intrinsic viscosity from 0. 83 to 1. 07 dl/g. The copolymer was spun into fibers.

Example VI Comparison c f inventive and conventional dyeability modifiers This example st owed that fibers made from poly (trimethylene terephthalate) containing the cationic dyeability modifier of the invention have improved dye exhaust performance over fibers made from poly (trimethylene terephthalate) containing a conventional cationic dyeability modifier, namely, sodium sulfoisophthalate.

A portion of the fibers prepared in Comparative Example B (poly (trimethylene terephthalate)/sodium dimethyl sulfoisophthalate copolymer, designated polymer A in Table I), a portion of the fibers prepared in Example V (poly (trimethylene terephthalate)/sodium dimethyl-3- (2-sulfoethyl) adipate copolymer, designated polymer B in Table I), and a portion of the fibers prepared in Comparative Example A (poly (trimethylene terephthalate) homopolymer, designated polymer C in Table I) were knitted into socks using a Fiber Analysis Knitter Model 121 (Lawson-Hemphill Company, Spartanburg, SC). The socks were dyed in aqueous dye bathes containing one weight percent of various Sevron dyes (Crompton & Knowles, Gibralter, PA) for one hour under varying conditions, as set forth in Table I. The dye absorptivity was measured using a Bausch & Lomb Spectronic 21 spectrophotometer (Spectronic Instruments, Inc., Rochester, NY), using the wavelengths indicated in Table I. The dye concentrations were determined using a calibration curve, and the dye exhaust was calculated using the equation { (X-Y)/X} x 100%, where X is the initial concentration of dye in the dye bath, and Y is the concentration of dye after removal of the dyed fibers. The results are set forth in Table I, below : TABLE I Sevron Dye Exhaust, % 0 Sample Polymer Blue (655 nm) Red (510 nm) Yellow (440nom) 3 (no carrier, atmospheric pressure, 100°C) 1 A 55.8 2.3 23.7 2 B 38. 0 21. 0 26. 1 3 C 0 0 0 (with carrier, * atmospheric pressure, 100°C) 4 A 85. 1 63. 63. 74. 8 5 B 100. 0 96. 1 97. 2 (no carrier, 25. 3 psi (1. 746 x 10 N/m pressure, 116°C) 6 A 75. 3 60. 9 65. 1 7 B 98. 6 97. 4 96. 7

* The carrier is Tanalon HIWTM (Sybron Chemicals, Inc.), a water emulsified, nonionic butyl benzoate carrier.

Example VII Copolyamide containing dyeability modifier of the invention A 35 pound autoclave was charged with 16, 698 grams of 51. 5% 6, 6 salt solution (32. 78 moles), 149. 11 grams of 78. 34% hexamethylene diamine solution (1. 01 moles), and 231. 54 grams (0. 838 moles) of 3- (2-sulfoethyl) hexanedioic acid, sodium salt. The mixture was heated to 272°C and 250 pounds per square inch (1. 72 x 106 N/m2) pressure. Over a period of 30 minutes, the pressure was reduced to atmospheric. After one hour steam finish, the polymer was extruded and cut into flakes. As a control, nylon 6, 6 homopolymer was prepared using the same procedure, but omitting the hexamethylene diamine solution and the 3- (2- sulfoethyl) hexanedioic acid, sodium salt. The flakes of the copolyamide and nylon 6, 6 homopolymer were each spun into fiber yarn at 285°C. A portion of the copolyamide fibers and a portion of the nylon 6, 6 homopolymer were each knitted into socks, and the socks were dyed in aqueous dye bathes containing one weight percent of various Sevron dyes for one hour at 100°C under atmospheric pressure, using no carrier. The dye absorptivity was measured in the same manner as described in Example VI, and the results are shown in the following Table II.

TABLE II Sevron Dye Exhaust, % Polymer Blue (655nm) Red (510 nm) Yellow (440 nm) Nylon 6, 6 homopolymer 10. 7 10. 8 8. 8 Copolyamide 94. 5 63. 5 94. 5