Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COKE OVEN DEVICE WITH CIRCUMFLOWED CIRCULAR CURRENT PATH FOR PRODUCING COKE AND METHOD FOR OPERATING THE COKE OVEN DEVICE AND CONTROL SYSTEM AND USE
Document Type and Number:
WIPO Patent Application WO/2019/053103
Kind Code:
A1
Abstract:
The invention relates to a coke oven device (10) for producing coke by carbonisation of coal with minimised nitrogen oxide emission by means of measures carried out inside the coke oven device, with a plurality of double flues (13) each with a heating channel (11) subjected to flame treatment and a heating channel (12) conducting exhaust gas, said heating channels being isolated by partitions (14) and by stretcher walls (15), the pairs of heating channels being coupled to each other in a flow-conducting manner by means of an upper and a lower coupling passage (14.2) for internal exhaust gas recirculation, on an outer circular current path (19, 19.1), and at least one inlet is provided on the bottom (5.4) of each double flue, selected from the following group: a coke oven gas inlet (18), a combustion air inlet (16), and a mixed gas inlet (17), the respective partition (14) comprising at least one other lower and upper coupling passage (14.2), which are arranged in a more central height position closer to the height centre of the heating channels than the outerlying circular current, and are designed to form an additional inner circular current path (19.2, 19.3). The invention also relates to a method for operating the coke oven device.

Inventors:
KIM RONALD (DE)
TSCHIRLEY THOMAS (DE)
BUCZYNSKI RAFAL GRZEGORZ (DE)
Application Number:
PCT/EP2018/074698
Publication Date:
March 21, 2019
Filing Date:
September 13, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THYSSENKRUPP IND SOLUTIONS AG (DE)
THYSSENKRUPP AG (DE)
International Classes:
C10B5/02; C10B21/18; C10B21/20; C10B21/22
Foreign References:
DE613606C1935-05-22
AT147818B1936-11-25
JP2000008043A2000-01-11
DE3443976A11986-06-12
EP0373358A21990-06-20
US5062925A1991-11-05
DE3443976C21993-04-22
DE3812558C22001-02-22
CN107033926A2017-08-11
DE3916728C11990-12-20
DE4006217A11990-11-29
DE102009015270A12010-10-14
Other References:
K. WESSIEPE ET AL.: "COKE MAKING INTERNATIONAL", vol. 9, 1997, VERLAG STAHLEISEN MBH, article "Optimization of Combustion and Reduction of NOx-Formation at Coke Chambers....", pages: 42 - 53
A.J. NOWAK ET AL.: "CFD model of coupled thermal processes within coke oven battery ....", COMPUTER ASSISTED MECHANICS AND ENGINEERING SCIENCES, vol. 17, 2010, pages 161 - 172
Attorney, Agent or Firm:
THYSSENKRUPP INTELLECTUAL PROPERTY GMBH (DE)
Download PDF:
Claims:
Patentansprüche:

1. Koksofenvorrichtung (10) zum Herstellen von Koks durch Verkokung von Kohle oder Kohlemischungen, wobei die Koksofenvorrichtung eingerichtet ist zur minimierten Stickoxidemission durch internen thermischen Energieausgleich mittels koksofeneigener Gase (G1 , G4, G5) durch Maßnahmen intern an der Koksofenvorrichtung, mit einer Vielzahl von Zwillingsheizzügen (13) jeweils mit einem mit Gas beflammten Heizkanal (1 1 ) und einem abgasführenden abwärts durchströmten Heizkanal (12), welche Heizkanäle jeweils paarweise durch eine Trennwand (14) voneinander abgegrenzt und durch zwei einander gegenüberliegende Läuferwände (15) von einer jeweiligen Ofenkammer (10.2) abgeschottet sind, wobei die paarweisen Heizkanäle strömungstechnisch mittels eines oberen koppelnden Durchlasses (14.2) und mittels eines unteren koppelnden Durchlasses jeweils für interne Abgasrezirkulation (19) auf einem äußeren Kreisstrompfad (19.1 ) aneinander gekoppelt sind, wobei im unteren Bereich am Boden (5.4) des jeweiligen Zwillingsheizzuges jeweils wenigstens ein Einlass aus der folgenden Gruppe vorgesehen ist: Koksofengas-Einlass (18), Verbrennungsluft-Einlass (16), Mischgas-Einlass (17);

d a d u r c h g e k e n n z e i c h n e t, dass die jeweilige Trennwand (14) wenigstens einen weiteren unteren und oberen koppelnden Durchlass (14.2) aufweist, welche in einer mittigeren Höhenposition näher zur Höhenmitte der Heizkanäle als der außenliegende Kreisstrom angeordnet sind und eingerichtet sind für einen zusätzlichen inneren Kreisstrom nach oben und nach unten zum Bilden einer Zwischenschicht auf einem zusätzlichen inneren Kreisstrompfad (19.2, 19.3).

2. Koksofenvorrichtung nach Anspruch 1 , wobei der zusätzliche innere Kreisstrompfad (19.2) über paarweise untere und/oder obere Durchlässe (14.2) verläuft, die jeweils paarweise in zumindest annähernd derselben Höhenposition angeordnet sind.

3. Koksofenvorrichtung nach einem der vorhergehenden Ansprüche, wobei mittels der Durchlässe (14.2) wenigstens ein weiterer innerer Kreisstrompfad (19.3) gebildet ist, der umströmt ist von wenigstens zwei äußeren Kreisströmen auf äußeren Kreisstrompfaden (19.1 , 19.2).

4. Koksofenvorrichtung nach einem der vorhergehenden Ansprüche, wobei wenigstens ein Abgasrezirkulations-Durchlass (14.2) in Bezug auf die Breite (x) des Heizkanals zentrischer angeordnet ist als wenigstens einer der Einlässe (16, 17, 18) und einen zentrischeren Strömungspfad (GP4) umströmt von wenigstens einem der eingelassenen Gase (G1 , G5) definiert, insbesondere alle Abgasrezirkulations-Durchlässe. 5. Koksofenvorrichtung nach einem der vorhergehenden Ansprüche, wobei der jeweilige Verbrennungsluft-Einlass (16) und/oder der jeweilige Mischgas-Einlass (17) und/oder der jeweilige Koksofengas-Einlass (18) eine Querschnittsfläche von maximal 0.06m2 aufweisen; und/oder wobei die Querschnittsfläche des jeweiligen unteren und/oder oberen Abgasrezirkulations-Durchlasses (14.2) größer als 0.005m2 ist, insbesondere größer als 0.01 m2.

6. Koksofenvorrichtung nach einem der vorhergehenden Ansprüche, wobei der Verbrennungsluft-Einlass (16) und/oder Mischgas-Einlass (17) und/oder Koksofengas-Einlass (18) in einem Winkel (a) von 0° in Bezug auf die Mittenlängsachse des Heizkanals oder in einem Winkel kleiner 30°, insbesondere kleiner 20° oder kleiner 10° ausgerichtet sind; und/oder wobei wenigstens einer der Einlässe, insbesondere der Koksofengas-Einlass (18), eine Einlass- Düse umfasst und in einer Höhenposition von 0.0 bis 0.45m, insbesondere 0.05 bis 0.25m oberhalb vom Boden des Heizkanals in den Heizkanal (1 1 , 12) mündet.

7. Koksofenvorrichtung nach einem der vorhergehenden Ansprüche, wobei in der Trennwand (14) wenigstens ein insbesondere zentrisch angeordneter Stufenluftkanal (14.1 ) mit wenigstens einem Stufenluft-Einlass (14.1 1 ) ausgebildet ist; oder wobei in der Trennwand (14) wenigstens zwei insbesondere parallel angeordnete Stufenluftkanäle (14.1 ) ausgebildet sind, welche sich oberhalb des oberen/obersten Abgasrezirkulations-Durchlasses (14.2) vereinigen und in einem obersten Stufenluft-Einlass (14.1 1 ) oberhalb aller Abgasrezirkulations-Durchlässe (14.2) in den beflammten Heizkanal (1 1 ) münden.

8. Koksofenvorrichtung nach einem der vorhergehenden Ansprüche, wobei in wenigstens einer der Trennwände (14) wenigstens zwei insbesondere parallel angeordnete Stufenluftkanäle (14.1 ) ausgebildet sind, welche oberhalb des oberen/obersten Abgasrezirkulations-Durchlasses (14.2) in zwei obersten Stufenluft-Einlässen (14.1 1 ) oberhalb aller Abgasrezirkulations- Durchlässe in den beflammten Heizkanal (1 1 ) münden.

9. Koksofenvorrichtung nach einem der vorhergehenden Ansprüche, wobei der jeweilige Abgasrezirkulations-Durchlass (14.2) wenigstens eine abgerundete Strömungskante (14.21 ) und/oder konvexe Wölbung aufweist, insbesondere mit einem Radius von mindestens einer viertel Wandlage oder mindestens 30°, insbesondere eine innen in Bezug auf den jeweiligen Kreisstrompfad liegende abgerundete Strömungskante oder konvexe Wölbung; und/oder wobei der jeweilige Abgasrezirkulations-Durchlass wenigstens eine scharfe Strömungskante (14.22) und/oder konkave Wölbung aufweist, insbesondere mit einem Radius von maximal einer oder zwei Wandlagen oder 120mm, insbesondere eine außen in Bezug auf den jeweiligen Kreisstrompfad liegende scharfe Strömungskante oder konkave Wölbung; und/oder wobei der jeweilige Abgasrezirkulations-Durchlass (14.2) wenigstens eine Umströmungskontur mit wenigstens einem Radius und wenigstens einer scharfen Strömungskante aufweist.

10. Verfahren zum Betreiben einer Koksofenvorrichtung (10) zum Herstellen von Koks durch Verkokung von Kohle oder Kohlemischungen bei optimierter minimierter Stickoxidemission durch internen thermischen Energieausgleich mittels koksofeneigener Gase (G1 , G4, G5) durch Maßnahmen intern an der Koksofen Vorrichtung, insbesondere zum Betreiben einer Koksofenvorrichtung nach einem der vorhergehenden Ansprüche, wobei in einem jeweiligen Zwillingsheizzug (13) der Koksofenvorrichtung mit einem beflammten Heizkanal (1 1 ) und einem abgasführenden Heizkanal (12) mittels wenigstens eines koppelnden oberen und unteren Durchlasses (14.2) durch eine Trennwand (14) eine interne Abgasrezirkulation (19) auf einem äußeren Kreisstrompfad (19.1 ) um die Trennwand herum eingestellt wird, wobei im unteren Bereich am Boden (5.4) des jeweiligen Zwillingsheizzuges wenigstens ein Gas aus der folgenden Gruppe eingelassen wird: Koksofengas (G1a), Verbrennungsluft (G1 ), Mischgas (Gi b),

d a d u r c h g e k e n n z e i c h n e t, dass die Abgasrezirkulation (19) auf wenigstens einem zusätzlichen inneren Kreisstrompfad (19.2, 19.3) geführt wird, insbesondere beidseitig umgrenzt von den eingelassenen Gasen.

1 1. Verfahren nach dem vorhergehenden Verfahrensanspruch, wobei die Abgasrezirkulation (19) auf wenigstens zwei zusätzlichen inneren Kreisstrompfaden (19.2, 19.3) geführt wird.

12. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei wenigstens ein zusätzlicher innerer Kreisstrom (19.2, 19.3) zentrischer als die eingelassenen Gase (G1 ) und weiter innen als der äußere Kreisstrompfad (19.1 ) und umgrenzt vom äußeren Kreisstrompfad eingestellt wird, insbesondere über wenigstens ein Paar zusätzlicher Durchlässe (14.2) oben und unten.

13. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei der Anteil des auf dem oder den Kreisstrompfaden (19.1 , 19.2, 19.3) intern rezirkulierten Abgases bei Starkgasbeheizung oder bei Mischgasbeheizung bei über 50%, insbesondere über 70%, insbesondere bei 80% eingestellt wird; und/oder wobei das Verfahren für Starkgasbeheizung durchgeführt wird, indem im Wesentlichen Koksofengas verwendet wird oder indem abgemagertes Starkgas mit abgesenktem unterem Heizwert insbesondere kleiner 17000kJ/Nm3 verwendet wird; oder wobei das Verfahren für Mischgasbeheizung durchgeführt wird, indem im Wesentlichen ein Gemisch aus Hochofengas, Koksofengas und optional auch Konvertergas verwendet wird; oder wobei das Verfahren mit Erdgas als zumindest teilweiser Ersatz von Koksofengas durchgeführt wird. 14. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei ein unterstöchiometrisches Verbrennungsverhältnis von <0.9 eingestellt wird, insbesondere ein

Verbrennungsverhältnis im Bereich von 0.5 bis 0.8, insbesondere 0.7, insbesondere in der Brennerebene (5.4) am Boden des jeweiligen Heizkanals (1 1 , 12). 15. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei mittels des rezirkulierten Abgases (G4) eine Zwischenschicht zwischen eingelassenem Gas (G1 ) und einem Stufenluftkanal (14.1 ) oder Gas (G5) aus dem Stufenluftkanal ausgebildet wird, insbesondere in einem Höhenbereich von 5 bis 75% oder 15 bis 50% der Höhe des Heizkanals oder über einen Höhenabschnitt von 0.25 bis 4m; und/oder wobei mittels des eingelassenen Gases (G1 ) ein Gasteppich zwischen der jeweiligen Läuferwand (15) und dem/den Kreisstrompfaden (19.1 , 19.2, 19.3) ausgebildet wird.

16. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei der Anteil der eingeleiteten Gasmengen zwischen einer ersten Stufe, insbesondere am Boden (5.4) durch den Verbrennungsluft- und Mischgas-Einlass (16, 17), und einer zweiten Stufe (z4) auf 50:50 oder mit noch geringerem Anteil der ersten Stufe eingestellt wird, insbesondere mit Starkgasbeheizung; und/oder wobei das Verhältnis der in die Heizkanäle (1 1 , 12) eingeleiteten Volumenströme wie folgt eingestellt wird: <30% durch den Verbrennungsluft-Einlass (16), <30% durch den Mischgas-Einlass (17), und >40% durch die Rezirkulations-Durchlässe und wahlweise wenigstens einen Stufenluft-Einlass (14.1 1 ), insbesondere mit Starkgasbeheizung; und/oder wobei der in die Ofenkammer am Verbrennungsluft-Einlass und am Mischgas-Einlass eingeleitete Volumenstrom auf zwischen 45 und 55% des durch die Rezirkulations-Durchlässe und wahlweise den wenigstens einen Stufenluft-Einlass eingeleiteten Volumenstroms eingestellt wird, insbesondere mit Starkgasbeheizung.

17. Steuerungseinrichtung (20) eingerichtet zum Ausführen eines Verfahrens nach einem der vorhergehenden Verfahrensansprüche, wobei die in die Heizkanäle (1 1 , 12) eingeleiteten Volumenströme (G1 , G4, G5) gemäß den Verhältnissen gemäß Anspruch 13 eingestellt werden.

18. Verwendung von abgemagertem Starkgas mit abgesenktem unterem Heizwert zum Betreiben einer Koksofenvorrichtung gemäß einem Verfahren nach einem der vorhergehenden Verfahrensansprüche, insbesondere in einer Koksofenvorrichtung nach einem der vorhergehenden Vorrichtungsansprüche.

Description:
Koksofenvorrichtung mit umströmtem Kreisstrompfad zum Herstellen von Koks und Verfahren zum Betreiben der Koksofenvorrichtung sowie

Steuerungseinrichtung und Verwendung Beschreibung:

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Herstellen von Koks sowie eine Steuerungseinrichtung und entsprechende Verwendungen. Insbesondere betrifft die Erfindung eine Vorrichtung und ein Verfahren gemäß dem Oberbegriff des jeweiligen unabhängigen Anspruchs.

Der Bedarf an Koksöfen ist weltweit nach wie vor hoch, und wird auch für die Zukunft als weiterhin hoch eingeschätzt, wie z.B. in der folgenden Veröffentlichung beschrieben: K. Wessiepe et al.: Optimization of Combustion and Reduction of NOx-Formation at Coke Chambers.... COKE MAKING INTERNATIONAL; 9, 2; 42-53; VERLAG STAHLEISEN MBH; 1997. Die Planung und der Bau von Koksöfen müssen vor langem Zeithorizont durchgeführt werden, zumal die Betriebsdauer bzw. Lebensdauer eines Koksofens auch recht lang sein kann, so dass es wichtig ist zu wissen, welche umwelttechnischen Verbesserungen sich in den nächsten Jahren bei Koksöfen realisieren lassen. Jedes Jahr werden noch heute, trotz immer strengerer Umweltkriterien, mehrere hundert Koksöfen neu gebaut und in Betrieb genommen. Gleichwohl ist auch den meisten Politikern mittlerweile gut bekannt, dass die Energiegewinnung mittels Koksöfen nicht sonderlich umweltfreundlich ist. An den Bau von neuen Koksöfen, oder auch an den Betrieb bestehender Koksöfen, werden daher von vielen Seiten zunehmend strenge Anforderungen an die Emissionen gestellt, insbesondere bezüglich Stickoxiden (NOx). In diesem Zusammenhang gibt es zahlreiche Bemühungen, die Effizienz der Verkokung oder die Umweltfreundlichkeit zu verbessern, wie z.B. in der folgenden Veröffentlichung und den darin zitierten Fachartikeln nachgelesen werden kann: A.J. Nowak et al.: CFD model of coupled thermal processes within coke oven battery .... Computer Assisted Mechanics and Engineering Sciences, 17: 161-172, 2010. Diese Veröffentlichung befasst sich mit der Simulation vorbekannter Optimierungs-Maßnahmen.

Als aktuell zulässige oder in bestehenden Anlagen noch tolerierte Emissions-Grenzwerte lassen sich nennen: 500mg/Nm 3 , entsprechend ca. 250ppm bei 5% Sauerstoff 02. Als zukünftige Grenzwerte lassen sich nennen: ca. 350mg/Nm 3 (ca. 170ppm bei 5% 02) in Europa, oder bald wohl sogar nur noch ca. 200mg/Nm 3 in Asien, insbesondere Japan, Korea, Taiwan und China. Anders ausgedrückt: Die NOx-Emission soll möglichst zeitnah wohl um die Hälfte oder mehr sinken. Einige Umweltbehörden fordern jedoch bereits jetzt einen oberen Grenzwert im Bereich von nur ca. 100mg/Nm 3 , insbesondere in Asien, was dem Faktor 5 entsprechen würde. In Hinblick auf immer strengere Anforderungen, insbesondere auch an dieselbetriebene Fahrzeuge, muss wohl auch für Europa erwartet werden, dass der zulässige Grenzwert schon in kurzer Zeit noch niedriger als 350mg/Nm 3 sein wird. Stickoxide werden insbesondere durch das durch Koksofengasverbrennung erzeugte Rauchgas freigesetzt bzw. bei der Verbrennung gebildet, insbesondere ab einer Düsensteintemperatur (im abgasführenden Heizkanal am Boden) von ca. 1.250°C (so genannte thermische NOx-Bildung). Die thermische NOx-Bildung wird mit höherer Temperatur exponentiell weiter begünstigt bzw. angefacht, so dass die Emission von Stickoxiden stark durch die thermischen Bedingungen im Koksofen bestimmt wird. Es ist bekannt, dass insbesondere in den vertikalen, rauchgasführenden Heizzügen des Koksofens durch Einstellen eines bestimmten Temperaturregimes Einfluss auf die NOx-Emission genommen werden kann. Dabei gilt die Faustformel: Je höher die Temperatur, desto stärker die NOx-Emission. Ein Ofenbetreiber ist also bemüht bzw. wird durch umwelttechnische Vorgaben dazu gezwungen, die Temperatur möglichst niedrig zu halten, insbesondere nicht über die Grenze von 1.250°C ansteigen zu lassen. Der Ofenbetreiber ist aber auch an einem effizienten Verkokungsprozess interessiert und wünscht sich einen Betriebsmodus bei Düsensteintemperaturen von bis zu 1.325°C; die Effizienz beim Verkoken steigt mit der Temperatur, und je höher die Betriebstemperatur, desto kompakter kann eine Ofenbatterie bei gleichem Output ausgelegt werden. Beispiel: Anstelle 100 Öfen müssen bei höherer Betriebstemperatur nur ca. 95 bis 98 Öfen gebaut werden, entsprechend einer apparativen Einsparung von 2 bis 5 Prozent (geringeres Investitionsvolumen, bis zu 5% weniger Anlagenkosten, z.B. in Bezug auf ein Investitionsvolumen von 100 bis 800 Mio. Euro). Zum Senken der NOx-Emission wird demnach nur sehr ungern versucht, während der Verkokung ein abgesenktes Temperaturniveau zu realisieren bzw. Temperaturspitzen in den Heizzügen zu vermeiden, insbesondere durch Anpassen der Betriebsart, denn dies bringt Leistungsverluste mit sich und macht die Koksproduktion unwirtschaftlicher. Für die Ofenbetreiber ist es daher eher nicht interessant oder nicht realisierbar, den Koksofen nicht im optimalen Betriebszustand zu betreiben. Folglich wird in Kauf genommen, dass die NOx- Emissionen nachteilig hoch bleiben. Der Ofenbetreiber weiß jedoch: Wenn es möglich wäre, bei vergleichsweise moderater, abgesenkter Temperatur den Wärmeenergieeintrag konstant hoch zu halten, so wirkt sich dies bei vergleichbarem Output positiv auf die NOx-Emissionen aus.

Diese Randbedingungen muss ein Ofenbetreiber bei unterschiedlichen Arten von Koksöfen beachten. Insbesondere wird gemäß der Ausdrückrichtung des Kokses zwischen Vertikalkammeröfen und Horizontalkammeröfen unterschieden: Bei Horizontalkammeröfen erfolgt das Verkoken chargenweise. Nach dem Verkoken wird der Koks in horizontaler Richtung ausgedrückt (Batch-Betrieb). Im Gegensatz dazu wird die Kohle in Vertikalkammeröfen kontinuierlich in vertikaler Richtung zu- und abgeführt (Conti-Betrieb). Die vorliegende Erfindung bezieht sich insbesondere auf Horizontalkammeröfen. Ofenkammern weisen üblicherweise eine Höhe im Bereich von 4 bis 8.5m auf, wobei die Höhe der Ofenkammern bzw. Heizkanäle auch durch die Betriebsweise vorgegeben wird. Die Höhe hat Einfluss auf die sich im Heizkanal einstellende Druckdifferenz. Ist eine große Druckdifferenz erforderlich, so muss eine große Höhe gewählt werden. Es ist anzunehmen, dass die Temperatur über die Höhe möglichst konstant gehalten werden sollte, denn nur dann dürfte es möglich sein, einen effizienten Betriebszustand einzustellen, ohne zu starken Anstieg der NOx- Emissionen. Das Temperaturgefälle soll möglichst deutlich kleiner als 40K bzw. 40°C sein, insbesondere bei einer Temperatur in der Ofenkammer im Bereich von 1.000 bis 1.100°C. Ein Temperaturmaximum deutlich über der Durchschnittstemperatur würde die thermische NOx- Bildung fördern. Ein Koksofen kann also dann bei einem optimalen Kompromiss aus hohem Output und niedrigen NOx-Emissionen betrieben werden, wenn die Temperatur homogen knapp unterhalb derjenigen Temperatur bleibt, ab welcher die thermische NOx-Bildung erfolgt.

Die Simulation von Betriebszuständen ist ein nützliches Werkzeug, um die Effekte einzelner Optimierungs-Maßnahmen besser einschätzen zu können. Ein Koksofen ist jedoch eine vergleichsweise komplexe Anlage, mit entsprechendem Simulationsaufwand. Beispielsweise kann eine neue Konstruktion mit einer neuen Art und Weise einer Gasführung einen Rechenaufwand von mehreren Wochen je Rechnung bedeuten, so dass auch bei Simulationen ein Arbeitsaufwand von mehreren Jahren (bei z.B. über 100 erforderlichen Variationen) entstehen kann. Nicht nur eine Erprobung von neuen Maßnahmen im technischen Maßstab muss daher unter eingeschränkten Möglichkeiten durchgeführt werden, sondern auch eine einfache konstruktive Maßnahme muss allein aus Kostengründen zunächst unter zahlreichen Aspekten überprüft werden, bevor diese Maßnahme durch Simulationen näher untersucht werden kann. Dies führt dazu, dass konstruktive Variationen an bestehenden Ofen-Designs eher nur auf sehr moderate, konservative Weise durchgeführt werden.

Bisher direkt am Koksofen bzw. an dessen konstruktivem Aufbau erprobte Maßnahmen, die auch bei leistungsoptimierter Betriebsart funktionieren sollen, sind üblicherweise die interne druckdifferenzgetriebene bzw. durch Temperatur- und Dichteunterschiede getriebene Rauchgasrückführung aus dem abwärts in den aufwärts durchströmten Heizzug (interne Kreislaufführung eines Teilvolumenstroms des Rauchgases, so genannter Kreisstrom), und/oder die Stufung der Verbrennungsluft, also das Einleiten von Verbrennungsgas aus Trennwänden bzw. Binderwänden in unterschiedlichen Höhenpositionen hinein in die Heizzüge. Die Stufen erfolgt dabei insbesondere in Hinblick auf folgende Kriterien: maximale Gassammeiraumtemperatur in der benachbarten Ofenkammer oberhalb der Kohlecharge muss kleiner 820°C sein; Deckenoberflächentemperatur muss möglichst kleiner gleich 60°C sein; Ofenkammerwandinnentemperaturdifferenz <= 40K, insbesondere zwischen den Höhenpositionen 500mm oberhalb der Ofensohle/Brennerebene und 500mm unterhalb der Ofenkammeroberkante.

Eine Kreisstromführung (teilweise an einem Ende des Heizkanals oder vollumfänglich im Kreis) wird dabei üblicherweise in so genannten Zwillingsheizzügen realisiert. Paarweise nebeneinander angeordnete Heizzüge bzw. Heizkanäle, insbesondere in vertikaler Ausrichtung, werden aneinander gekoppelt, indem das Gas aus dem beflammten Heizkanal in den nicht beflammten Heizkanal zurückgeführt wird, sei es nur an einem oberen/unteren Umkehrpunkt, oder sei es sowohl oben als auch unten. Bei einem Horizontalkammerofen können in Ausdrückrichtung ca. 24 bis 40 Heizkanäle vorgesehen sein, also ca. 12 bis 20 Zwillingspaare. Ein optional realisierbarer Kreisstrom kann sich dabei aufgrund der Druckdifferenzen autonom ausbilden, also ohne zusätzliche aktive strömungstechnische Regelung oder Unterstützung.

Das Optimieren einer Kreisstromführung insbesondere auch zwecks homogener Wärmeverteilung begann schon in den 1920er Jahren im industriellen Maßstab. Seit den 1970er Jahren wurden auch eingehender die Einflüsse der Kreisstromführung auf NOx- Emissionen untersucht.

Die Konfiguration bisher in den meisten Fällen verwendeter Koksöfen mit Kreisstromführung lässt sich wie folgt beschreiben: In paarweisen Heizkanälen (Zwillingsheizzüge) wird in Strömungsrichtung aufsteigend, also im beflammten Heizkanal, nach oben ein Beheizungsgas geführt und dabei insbesondere mehrstufig verbrannt, welches dann als Rauchgas durch den parallelen, abgasführenden Heizkanal nach unten zurück zum Boden geführt und dort abgesaugt wird, wobei ein Teilvolumenstrom des inerten (ausgebrannten) Abgases im Kreislauf zurück in den nach oben führenden, beflammten Heizkanal geführt wird. Die Heizkanäle können dabei am oberen und unteren Ende jeweils mittels einer Abgasrezirkulations-Öffnung bzw. eines Durchlass aneinander gekoppelt werden, insbesondere im Bereich des Bodens der Ofenkammer zumindest annähernd auf demselben Höhenniveau wie die Einlässe. Hierdurch kann die mittlere Düsenstein-Temperatur im Heizzug kontrolliert werden und insbesondere durch Absenken der lokalen Flammentemperatur (bei Starkgasbeheizung über 2000°C, bei Mischgasbeheizung unter 2000°C) auf einem moderaten Niveau gehalten werden (z.B. bei einer Düsenstein-Temperatur von 1240 bis 1300°C), mit dem Effekt, dass die sich die NOx- Emissionen absenken lassen. Beispielsweise kann die folgende Anordnung (Höhenposition) des unteren Durchlasses genannt werden: zwischen 0mm (also direkt auf dem Niveau der Brennerebene) bis 300mm oberhalb der Brennerebene. Dabei wird die Querschnittsfläche üblicherweise durch eine Lagenhöhe von ca. 120mm vorgegeben. Der untere Durchlass kann bei Bedarf in der Anordnung am Boden mittels einer Rolle verschlossen werden, welche auf der Brennerebene vor den Durchlass gerollt werden kann. Vorteilhafterweise wird der Durchlass mittels einer Aussparung in einer Wandlage realisiert (Lücke bzw. fehlender Stein).

Derartige paarweise angeordnete und in vertikaler Richtung ausgerichtete Heizkanäle bzw. Zwillingsheizzüge ermöglichen also bei vergleichsweise geringem Aufwand eine Einflussnahme auf das Temperaturprofil, insbesondere bei spezifischer Anpassung der Kreislaufführung von Rauchgas. Dabei werden immer zwei Typen von Heizzügen/Heizkanälen unterschieden: aufwärts durchströmter, beflammter Heizkanal; abwärts durchströmter, abgasführender Heizkanal. Die paarweisen Heizkanäle sind im oberen Bereich über einen freien Öffnungsquerschnitt miteinander verbunden, also einen Durchlass, über welchen die Heizkanäle strömungstechnisch aneinander gekoppelt sind. Ein üblicherweise zurück in den beflammten Heizkanal geführter Teilvolumenstrom des Rauchgases beträgt bei Starkgasbeheizung z.B. 30 bis 45% des gesamten im aufwärts durchströmten Heizkanal erzeugten Rauchgasvolumens. Ein Beispiel für diese Anordnung von Zwillingsheizzügen mit Kreisstrom ist das so genannte Combiflame-Beheizungssystem, welches sich seit Ende der 80er Jahre etabliert hat. Dabei erfolgte eine Kombination der Luftstufung mit der Kreisstromführung. Zuvor bis Mitte der 1980er Jahre erfolgte entweder eine Luftstufung (Otto- System) oder eine Kreisstromführung (Koppers-System).

Sofern in der vorliegenden Beschreibung von einem einzigen Durchlass die Rede ist, kann auch ein Paar von Durchlässen gemeint sein, welche paarweise in derselben Höhenposition angeordnet sind.

Wie zuvor angedeutet, kann auch eine Stufung der Verbrennung erfolgen, indem Gas bzw. Luft über wenigstens einen Stufenluftkanal in wenigstens einer Höhenposition über der Brennerebene (Boden) in den jeweiligen Heizzug geleitet wird, bzw. entsprechendes Abgas ausgeleitet wird. Die gestufte Verbrennung ist mit der Kreisstromführung kombinierbar.

Werden speziell die Maßnahmen direkt am Koksofen betrachtet, also Maßnahmen zum wärmetechnischen Optimieren insbesondere durch eine optimierte Art und Weise der Medienführung, so ist der konstruktive Aufbau des Koksofens und damit einher gehend die Stabilität des Koksofens von großer Relevanz, insbesondere der konstruktive Aufbau der einzelnen Wände einer jeweiligen Ofenkammer und des jeweiligen Heizzuges (Läuferwände, Trennwände). Kleine Maßnahmen am konstruktiven Aufbau können große Effekte auf das Temperaturgleichgewicht und den Verkokungsprozess haben. Jede Maßnahme hat jedoch auch gegebenenfalls sehr nachteilige, zu vermeidende Nebeneffekte, z.B. auf die Statik der Heizwände, auf den Strömungswiderstand, oder die sich letztendlich einstellenden Strömungsgeschwindigkeiten und Temperaturprofile. Es ist daher zu erwarten, dass Änderungen an dem im Folgenden näher beschriebenen Aufbau nur in einem engen Toleranzbereich durchgeführt werden können. Insbesondere steht der Fachmann vor der Aufgabe, durch neue Maßnahmen keine Schwächung des Heizwandverbundes zu riskieren. Denn auf jede Wand können je nach Betriebszustand hohe Lateralkräfte wirken. Beispielsweise entsteht nach etwa 75% der Garungszeit ein hoher lateraler Innendruck (Treibdruck der Kohlecharge) insbesondere auf Läuferwände in einer Höhe von ca. 1 m über der Brennerebene, welcher Treibdruck sogar dazu führen kann, dass sich Fugen weiten und dadurch ungewünschte Bypass-Strömungen (in Verbindung mit Koksofengasübertritten und der damit einhergehenden CO-Bildung) zwischen einzelnen Heizzügen und (benachbarten) Ofenkammern entstehen. Das Gleichgewicht des Gasgemisches wird dadurch gestört: Insbesondere steht für zusätzliche im Heizkanal zu verbrennenden Gasmengen nur ein unzureichend hohe Luftmenge zur Verfügung. Auch führen unterschiedliche Befüllungszeitpunkte, beispielsweise jeweils versetzt um 12 Stunden, bei den benachbarten Ofenkammern zu unterschiedlichen Lateralkräften in den jeweiligen Wänden. Die Stabilität des Ofens hat daher auch bei Maßnahmen zur Reduktion der Emissionen eine hohe Priorität. Hohe Stabilität wird üblicherweise durch eine Nut-Feder-Anordnung der Steine erzielt. Diese Bauweise wird auch in Hinblick auf Dichtigkeit zur Vermeidung von Bypass-Strömungen und Vorverbrennung bevorzugt.

Bei einer Batterie mit mehreren Ofenkammern, z.B. 40 oder 60 Ofenkammern, sind die Ofenkammern durch Läuferwände gegenüber gasführenden Heizkanälen abgegrenzt, insbesondere an einer relativ schmaleren Stirnseite des jeweiligen Kanals, insbesondere durch zwei sich entlang der gesamten jeweiligen Ofenkammer erstreckende gegenüberliegende Läuferwände. Die einzelnen Heizkanäle sind dabei durch so genannte Binderwände (Trennwände) voneinander abgeschottet, die sich insbesondere orthogonal zu den beiden Läuferwänden zwischen den Läuferwänden erstrecken, insbesondere an der relativ breiteren Seite der Ofenkammern. Drei Binderwände schotten zwei Kanäle voneinander bzw. einen Zwillingsheizzug von einem weiteren Zwillingsheizzug ab. Ein jeweiliger Heizkanal ist also durch zwei Läuferwand-Abschnitte und durch zwei Binderwände abgegrenzt. In der Ausdrückrichtung (Tiefe y) ist ein jeweiliger Heizkanal ca. 450 bis 550mm lang bzw. tief (Mitte bis Mitte). Eine Läuferwanddicke liegt dabei z.B. im Bereich von 80 bis 120mm. Eine Binderwanddicke liegt dabei z.B. im Bereich von 120 bis 150mm.

Der Begriff„Binderwand" hat sich im allgemeinen Sprachgebrauch etabliert. In der vorliegenden Beschreibung wird dieser Begriff synonym mit dem Begriff „Trennwand" verwendet, insbesondere um klarzustellen, dass eine Läuferwand und eine Binderwand/Trennwand in derselben Bauweise hergestellt sein können, nämlich durch jeweils an deren Schmalseite aneinander gereihte Steine. Die „Läuferwand" eines Horizontalkammerofens kann auch als längs in Ausdrückrichtung angeordnete Längswand beschrieben werden, und die„Binderwand" kann auch als quer zur Ausdrückrichtung angeordnete Quer(trenn)wand beschrieben werden.

An der Unterseite eines jeweiligen Heizkanals sind Verbrennungsluftöffnungen und Mischgasöffnungen vorgesehen, deren Funktion sich je nach Art der Beheizung (Mischgasoder Kokosofengasbeheizung) wählen bzw. einstellen lässt. An der Unterseite mündet eine Koksofengasöffnung in den Heizkanal. Bei einer Kreisstromführung ist jeweils ein Paar von Heizkanälen über an der Unterseite der Ofenkammern angeordnete Abgasrezirkulationsöffnungen aneinander gekoppelt, so dass ein Zwillingsheizzug mit Kreisstromführung gebildet wird. Der Volumenstrom durch die Abgasrezirkulationsöffnungen kann wahlweise geregelt werden, insbesondere mittels einer am Boden in der Brennerebene angeordneten und dort verlagerbaren Justierrolle. In den Binderwänden sind Stufengas-Kanäle vorgesehen, die an einer oder mehreren Höhenpositionen Verbrennungsluft (Stufengas) in die Ofenkammer einleiten (Luftstufe bzw. Binderwandöffnung). Als ein übliches Verhältnis der in die Ofenkammer eingeleiteten Volumenströme kann genannt werden: 30% durch den bodenseitige Verbrennungslufteinlass, 30% durch den bodenseitigen Mischgaseinlass, und 40% durch den wenigstens einen Stufengaseinlass (Binderwandöffnung). Dieses Verhältnis kann analog auch für das Ausleiten der Gase aus der Ofenkammer eingestellt werden, je nach Leistungsanforderungen.

Oberhalb vom Abgas-Wendepunkt (Rezirkulations-Durchlass) kann zum Anpassen von Verkokungsparametern eine Bypassströmung in der Art eines Beheizungsdifferentials ausgebildet werden. Die Bypassströmung kann über eine insbesondere horizontale Wand bzw. Decke von den Heizzügen abgeschottet sein, in welcher Decke Durchlässe vorgesehen sind, die beispielsweise mittels Schiebersteinen abgedeckt oder bzgl. des Querschnitts eingestellt werden können.

Die zuvor genannte Veröffentlichung von K. Wessiepe betrachtet insbesondere auch Maßnahmen an Öfen mit Zwillingsheizzügen (zumindest mittels eines oberen Durchlasses aneinander gekoppelte Heizzüge), wobei in den 90er Jahren auch bereits herausgearbeitet wurde, dass die so genannte Kreisstrom-Anordnung Vorteile hinsichtlich einer möglichst niedrigen NOx-Konzentration liefern kann. Beispielhaft genannt werden können die Patentschriften DE 34 43 976 C2 und DE 38 12 558 C2, in welchen die Frage einer optimalen Kreisstromrate und einer sinnvollen Höhenposition für gestufte Einleitung von Verbrennungsluft diskutiert wird, insbesondere am Beispiel des Koppers-Kreisstrom-Ofens. Darin wird auch erwähnt, dass eine Rückführung von Rauchgas in einer Höhenposition im Bereich der Heizzugsohle ein Absenken der Temperatur im jeweiligen Heizzug ermöglicht, mit dem Effekt einer Reduktion von NOx-Emissionen.

In der Offenlegungsschrift CN 107033926 A von August 2017 wird eine Anordnung mit Zwillingsheizzügen mit gestufter Einleitung von Verbrennungsluft und mit Kreisstromöffnungen beschrieben, welche beidseitig seitlich vom Stufenluftkanal angeordnet sind.

Auch wurde mit einer bestimmten Art von Gasleit-Komponenten oder Füllkörpern experimentiert, um Einfluss auf die Wärmeverteilung im Koksofen nehmen zu können. Beispielsweise in der Patentschrift DE 39 16 728 C1 werden Beheizungsräume (Heizzügen) mit Einbauten in Form von durchlässigen Wabenkörpern bzw. Wabengittern oder Kugelschüttungen versehen, wobei abschnittweise auch bestimmte Arten der Rauchgasführung vorteilhaft sein sollen. Dabei geht es um eine Verbesserung der Strömungsverhältnisse in den Beheizungsräumen, und es wird auch vorgeschlagen, Verbrennungsluft in unterschiedlichen Höhenpositionen zuzuführen.

Auch mit bestimmten Beschichtungen zum effektiven Ableiten oder Rückstrahlen von Wärmeenergie von inneren Oberflächen wurde bereits experimentiert.

Die zuvor beschriebenen Maßnahmen direkt am oder im Koksofen bzw. Heizzug können hier als primäre Maßnahmen bezeichnet werden. Bei allen zuvor beschriebenen Maßnahmen muss beachtet werden, dass die hier beschriebenen Öfen üblicherweise bei Selbstzündung (insbesondere bei über 800°C) betrieben werden, so dass die entsprechende Maßnahme zum Kühlen oder Absenken der Gastemperatur nur unter engen Randbedingungen bzw. nur in einem engen Temperaturbereich erfolgen kann, insbesondere um zu vermeiden, dass die Verbrennung erlischt.

Ferner wurden sekundäre Maßnahmen erprob, die stromab vom Koksofen in nachgeschalteten Anlagenkomponenten durchgeführt werden können, beispielsweise die Verwendung selektiver Katalysatoren im Kamin (SCR oder DeNOx), oder die externe Rückführung bereits evakuierten Rauchgases aus dem Kamin zurück in den Koksofen. Unabhängig von der Frage, wie effektiv diese nachgeschalteten Maßnahmen sind, scheitern sie in vielen Fällen an extrem hohen Kosten (bis zu 50% der Gesamtinvestition für den gesamten Koksofen) oder am zusätzlichen Wartungsaufwand. Diese Maßnahmen sind zwar effektiv, jedoch in vielen Fällen zu kostspielig.

Ferner kann die Patentanmeldung DE 40 06 217 A1 genannt werden, in welcher die Kombination mehrerer Maßnahmen umfassend sowohl Maßnahmen an Regeneratoren im Mittelbau des Ofens als auch Maßnahmen für externen Rauchgas-Kreisstrom beschrieben wird, mit dem Ziel homogener Beheizungs-Zustände und geringer NOx-Emission auch bei hohen Ofenkammern.

Die Veröffentlichung DE 10 2009 015 270 A1 beschreibt eine Verkokungsanlage mit Abgasrückführung, wobei Einzelkreisstromöffnungen zum Rückführen von Abgas vorgesehen sind.

Nicht zuletzt sind auch Maßnahmen chemischer, reaktiver Art wie z.B. das Einleiten von CH4- Gas oder das Erhöhen der Feuchtigkeit durch Einspritzen von Wasser erwogen worden. Das Einspritzen von Wasser oder Dampf ist jedoch nicht an beliebigen Stellen der Kammer möglich, sondern insbesondere nur zentral auf einer mittleren Höhenposition und hat nachteilige Effekte auf die verwendeten (Silikat-)Materialien. Eine Erhöhung der regenerativen Vorwärmtemperatur von Gas und Luft ist eine Maßnahme, die mittlerweile als ausgereizt und unökonomisch erachtet wird. Jedoch scheint es aktuell noch undenkbar, dass insbesondere mit den zuvor beschriebenen internen, primären Maßnahmen, sei es jeweils allein oder kumulativ, die zuvor beschriebenen Anforderungen erfüllt werden können. Ein Absenken der NOx-Emissionen um den Faktor 2 bis 5 dürfte damit nicht realisierbar sein, zumindest nicht unter vertretbarem Aufwand, also nicht auf wirtschaftliche Weise.

Trotz der zuvor geäußerten Bedenken ist die vorliegende Erfindung auf die Optimierung von Koksöfen durch Maßnahmen direkt am Koksofen bzw. an dessen konstruktivem Aufbau ausgerichtet, insbesondere durch Maßnahmen am etablierten Beheizungssystem mit Heizzügen wenigstens einer Rezirkulationsöffnung, insbesondere mit Kreisstromführung, insbesondere um die Option zu erhalten, den Koksofen bei leistungsoptimierter Betriebsart auch ganz ohne nachgeschaltete Anlagenkomponenten betreiben zu können. Hierin kann eventuell ein großes Verbesserungspotential erhofft werden, mit großen Vorteilen auch für die Ofenbetreiber, und damit auch mit guten Chancen für eine Durchsetzung des technischen Konzeptes am Markt.

Aufgabe der Erfindung ist es, eine Koksofenvorrichtung und ein Verfahren zum Betreiben der Koksofenvorrichtung bereit zu stellen, womit NOx-Emissionen gering gehalten werden können bzw. bei bestehenden oder neuen Anlagen auch bei Betrieb unter Volllast minimiert werden können, wobei die Koksofenvorrichtung ein vorteilhaft niedriges NOx-Emissionsniveau bevorzugt ohne nachgeschaltete Anlagenkomponenten ermöglichen soll. Insbesondere ist es Aufgabe, eine Koksofenvorrichtung und ein Verfahren zum Betreiben der Koksofenvorrichtung bereit zu stellen, womit sich die NOx-Emissionen durch Maßnahmen intern in den Heizzügen verringern lassen.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Koksofenvorrichtung zum Herstellen von Koks durch Verkokung von Kohle oder Kohlemischungen, wobei die Koksofenvorrichtung eingerichtet ist zur minimierten NOx-Emission durch internen thermischen Energie- bzw. Temperaturausgleich mittels koksofeneigener Gase bzw. Gasströme durch primäre Maßnahmen intern an der Koksofenvorrichtung, mit einer Vielzahl von Zwillingsheizzügen jeweils mit einem mit Gas bzw. Verbrennungsluft beflammten (und daher aufwärts durchströmten) Heizkanal und einem abgasführenden abwärts durchströmten Heizkanal, welche Heizkanäle jeweils paarweise durch eine Trennwand bzw. Binderwand voneinander abgegrenzt und durch zwei einander gegenüberliegende Läuferwände von einer jeweiligen Ofenkammer der Koksofenvorrichtung abgeschottet sind, wobei die paarweisen Heizkanäle, insbesondere sowohl am oberen als auch am unteren Ende, strömungstechnisch mittels eines oberen koppelnden Durchlasses und mittels eines unteren koppelnden Durchlasses jeweils für interne Abgasrezirkulation auf einem äußeren Kreisstrompfad aneinander gekoppelt sind, wobei im unteren Bereich am Boden des jeweiligen Zwillingsheizzuges jeweils wenigstens ein Einlass aus der folgenden Gruppe vorgesehen ist: Koksofengas-Einlass zum Einleiten von Koksofengas in den Heizkanal, Verbrennungsluft-Einlass, Mischgas-Einlass; wobei die jeweilige Trennwand wenigstens einen weiteren unteren und oberen koppelnden Durchlass aufweist, welche in einer mittigeren Höhenposition näher zur Höhenmitte der Heizkanäle als der außenliegende Kreisstrom angeordnet sind und eingerichtet sind für einen zusätzlichen inneren Kreisstrom nach oben und nach unten zum Bilden einer inerten Zwischenschicht auf einem zusätzlichen inneren Kreisstrom pfad. Die redundante Ausführung der Kreisstrompfade liefert insbesondere eine hohe Variabilität und einen starken Effekt in unterschiedlichen Höhenpositionen, was auch bei besonders hohen Ofenkammern vorteilhaft ist. Der Effekt erstreckt sich dabei auf beide Heizkanäle, indem die Maßnahme für einen vollumfänglichen, geschlossenen Kreisstrom vorgenommen wird. Hierdurch kann die Temperaturverteilung vergleichmäßigt werden, insbesondere auch im Bodenbereich. Insbesondere hat sich gezeigt, dass mittels zusätzlicher Rezirkulations- Durchlässe Temperaturspitzen in spezifischen Höhenpositionen effektiv vermieden werden können, insbesondere ohne eine Schwächung des Heizwandverbundes zu riskieren. Anders ausgedrückt: In der Trennwand zwischen den Heizkanälen kann mittels Gas eine wärmeisolierende Zwischenschicht gebildet werden, durch welche hindurch ein Teilvolumenstrom von Abgas/Rauchgas aus dem absteigenden Heizkanal leitbar ist und wieder zurück in den aufsteigenden Heizkanal führbar ist, wobei mittels der Zwischenschicht ein verbrennungsinerter Zwischenstrom mit verbrennungsverzögernder Wirkung generierbar ist. Gemäß einem Ausführungsbeispiel verläuft der zusätzliche innere Kreisstrompfad über paarweise untere und/oder obere Durchlässe, die jeweils paarweise in zumindest annähernd derselben Höhenposition angeordnet sind. Dies liefert in x-Richtung über eine große Breite eine homogene Temperaturverteilung. Wahlweise können in derselben Höhenposition auch mehr als zwei oder drei Durchlässe vorgesehen sein.

Gemäß einem Ausführungsbeispiel ist mittels der Durchlässe wenigstens ein weiterer innerer Kreisstrompfad gebildet, der umströmt ist von wenigstens zwei äußeren Kreisströmen auf äußeren Kreisstrompfaden. Die mehrfache Redundanz von Kreisströmen liefert eine besonders homogene Temperaturverteilung und ermöglicht große Variabilität.

Gemäß einem Ausführungsbeispiel ist wenigstens ein Abgasrezirkulations-Durchlass in Bezug auf die Breite (x) des Heizkanals, also zwischen den Läuferwänden, zentrischer (näher zu einer Mittenlängsachse des Heizkanals) angeordnet als wenigstens einer der Einlässe und einen zentrischen bzw. zentrischeren Strömungspfad umströmt von wenigstens einem der über die Einlässe eingelassenen Gase definiert. Insbesondere sind zumindest alle unteren Abgasrezirkulations-Durchlässe zentrischer als alle Einlässe. Dieser Abgasrezirkulations- Strömungspfad ist zentrischer angeordnet als die entsprechenden Strömungspfade bzw. Einströmpfade der eingelassenen Gase. Hierdurch kann in erster Linie die Wärmeverteilung im Heizkanal optimiert werden, insbesondere vergleichmäßigt werden. Dadurch kann der jeweilige Koksofengas-Einlass strömungstechnisch und wärmeenergietechnisch in Bezug auf wenigstens einen Durchlass oder Einlass angeordnet werden. Effekt: Einflussnahme auf die Wärmeverteilung und Gasdurchmischung insbesondere im Bodenbereich mittels interner Gasströme, also mittels interner strömungstechnischer Maßnahmen. Externe Maßnahmen sind nicht erforderlich. Die internen Maßnahmen können dabei rein passive Maßnahmen sein, insbesondere rein konstruktive Maßnahmen. Die Strömungsverhältnisse können sich dank konstruktiver Maßnahmen autonom einstellen. Dies erleichtert nicht zuletzt auch den Betrieb der Vorrichtung. Eine Steuerung/Regelung des Ofens kann vergleichbar zur bisheriger Art und Weise erfolgen.

Dabei kann die y-Position des jeweiligen Einlasses zwischen gegenüberliegenden Trennwänden bevorzugt jeweils zumindest annähernd zentrisch sein. Es hat sich gezeigt, dass die y-Position nachrangig nach der x-Position zu wählen ist und weitgehend unabhängig von der x-Position gewählt werden kann, insbesondere gemäß den jeweiligen konstruktiven Vorteilen oder in Abhängigkeit von einem gewünschten Einströmwinkel.

Der jeweilige obere Durchlass ist dabei unterhalb von einem optional vorhandenen Beheizungsdifferenzial angeordnet, insbesondere in einer sich in der xz-Ebene erstreckenden Trennwand. Öffnungen eines Beheizungsdifferenzials hingegen sind in einem sich in der xy- Ebene erstreckenden Trennschott angeordnet. Ein unterer Durchlass ist nicht notwendiger Weise vorgesehen.

Durch die in einer xy-Ebene gesehen möglichst zentrische Anordnung des/der Durchlässe kann ein innenliegender, umströmter Kreisstrom auf einem zusätzlicher innenliegenden, umströmten Kreisstrompfad bereitgestellt werden, welcher außen (exzentrischer) umströmt wird von wenigstens einem eingelassenen Gas oder auch von einem außenliegenden Kreisstrom auf einem außenliegenden Kreisstrompfad. Für den Fall dass eine Rezirkulation über einen oder mehrere untere Durchlässe nicht vorgesehen werden soll, kann der Begriff „Kreisstrom" bzw. „Kreisstrompfad" auch auf eine nicht vollumfänglich geschlossene, sondern z.B. nur über 180° oder 270° im Kreis geführte Strömung bezogen werden.

Diese Maßnahmen ermöglichen insbesondere eine verbrennungsinerte und mischungsverzögernde Zwischenschicht und ein Kühlen im Bodenbereich, und können direkt am Koksofen bzw. an dessen konstruktivem Aufbau vorgenommen werden, insbesondere am Beheizungssystem, ohne das Erfordernis nachgeschalteter Anlagenkomponenten. Dadurch kann insbesondere auch ein Temperaturmaximum zwischen der Brennerebene und dem untersten Durchlass abgesenkt werden. Insbesondere kann das Ziel erreicht werden, eine Temperaturdifferenz über die gesamte Höhe des Heizkanals deutlich unter 50K zu halten, bei einer mittleren Kohlechargen-Temperatur im Bereich von 1000°C und einer maximalen Temperatur im Bereich von 1050°C und jedenfalls kleiner 1 100°C. Mittels dieser Maßnahmen darf das Potential für eine NOx-Minderung im Bereich von 70 bis 80% in Bezug auf das aktuelle Niveau von 350 bis 500ppm NOx (bei 5% 02) erwartet werden. Insbesondere darf erwartet werden, dass ein Niveau von weniger als 100ppm NOx (bei 5% 02) realisiert werden kann. Auch darf erwartet werden, dass sich die Feuerfestmaterialmenge um bis zu 5% Prozent senken lässt, bei gleichem Output. Somit ist diese technische Lösung auch in wirtschaftlicher Hinsicht sehr interessant. Ein Ofenbetreiber kann den Ofen mit hohem Output, bzw. bei hohen Düsensteintemperaturen, bei vergleichsweise geringer NOx-Emission betreiben.

Die in der vorliegenden Beschreibung beschriebenen Maßnahmen können insbesondere bezogen werden auf Koksöfen mit Kammerbetriebszeiten zwischen Befüllungsvorgang und Ausdrückvorgang zwischen 15h und 28h, bzw. auf Koksöfen mit einer Heizzugtemperatur bzw. Düsensteintemperatur im Bereich von ca. 1200 bis 1350 °C.

Bisher war es üblich, die entsprechende Rezirkulationsöffnung nahe zur Läuferwand hin anzuordnen. Ebenso war es üblich, die Einlässe am Boden zentrisch anzuordnen. Es hat sich im Rahmen der Untersuchungen zum Optimieren der NOx-Emissionen im Rahmen der vorliegenden Erfindung gezeigt, dass sich eine hohe Verbrennungstemperatur dadurch ergibt, dass das Koksofengas zusammen mit der Verbrennungsluft ein sehr heißes Gasgemisch schon in einem unteren Bereich der Ofenkammer bildet. Durch die erfindungsgemäße Positionierung der Einlässe können Temperaturspitzen vermieden werden. Diese Anordnung kann auch mit einem Beheizungsdifferential (Bypassströmung) oberhalb der Abgas-Wendepunkte (Durchlässe) ausgestattet sein. Wahlweise können nachgeschaltete Anlagenkomponenten die NOx-Emission noch weiter absenken, sofern dies noch wirtschaftlich realisierbar ist.

Der Heizkanal kann dabei auch als Heiz-Schacht beschrieben werden. Der jeweilige Heizkanal ist nach unten hin durch den Boden abgegrenzt, welcher Boden auch als Brennerebene bezeichnet wird, auch wenn dort keine Brenner verwendet werden (Selbstzündung insbesondere bei über 800°C).

Als Heizkanal ist dabei ein Begriff für einen ganz bestimmten Vertikalheizzug der beiden Vertikalheizzüge eines Zwillingsheizzuges zu verstehen. Als Heizzug ist dabei ein beliebiger der beiden Vertikalheizzüge eines Zwillingsheizzuges zu verstehen. In einem jeweiligen Betriebszustand des Koksofens ist ein Heizkanal entweder nach oben beflammt oder nach unten durchströmt. Ist es im entsprechenden Zusammenhang der Erläuterungen nicht relevant, in welcher Richtung das Gas strömt, so wird hier der Begriff Heizzug anstelle des Begriffs Heizkanal verwendet. Der Begriff Heizzug kann sich also auf den nach oben oder auf den nach unten durchströmten Heizkanal beziehen.

Als Kohlemischung ist dabei eine Mischung hauptsächlich aus verschiedenen Kohlesorten zu verstehen, wobei die Mischung beispielsweise auch wenigstens einen Zusatz aus der folgenden Gruppe umfassen kann: Petrolkoks, Öl, Bitumensorten z.B. in Form von Altreifen, Kohle- und Koksstaub, Binde- oder Verkokungshilfsmittel wie z.B. Melasse, Ölrückstände, zelluloseartige Zuschläge, Sulfit- oder Sulfatverbindungen oder -laugen, wobei die Mischung auch Biomasse aufweisen kann.

Abstandsangaben werden bei Bezugnahmen auf Kanäle, Einlässe, Durchlässe oder Düsen jeweils auf die entsprechende Mittenlängsachse bezogen, und bei Mauerwerk oder Wänden jeweils auf eine Innenoberfläche, sofern nicht anders bezeichnet.

Es hat sich gezeigt, dass die erfindungsgemäße Luft- bzw. Gasführung nicht nur bei Zwillingsheizzügen realisiert werden kann, sondern auch bei so genannten Vierzugöfen oder alternativen Anordnungen, bei welchen das Konzept von strömungstechnisch gekoppelten Heizzügen aufgegriffen und insbesondere bei jeweils paarweiser Kopplung der Heizzüge multipliziert wird. Die eingeleitete Verbrennungsluft bzw. das Beheizungsgas dient zur Erzeugung der erforderlichen Prozesswärme, sei es im Bodenbereich, sei es in spezifischen gestuften Höhenpositionen.

Es hat sich gezeigt, dass die erfindungsgemäße Anordnung auch einen Verzicht auf mehrere Stufenluft-Einlässe ermöglicht (indem insbesondere nur eine einzige Gasstufung vorgesehen wird), insbesondere bei Ofenkammerhöhen unter 8m. Eine erfindungsgemäße Abwandlung der Position der unteren, bodenseitigen Einlässe ermöglicht also an anderer Stelle eine Reduzierung des konstruktiven Aufwandes bzw. der Komplexität des Ofens. Bevorzugt weist die jeweilige Trennwand eine Breite (Wandstärke) von 80 bis 200mm auf, weiter bevorzugt 120 bis 150mm. Bevorzugt weist die jeweilige Läuferwand eine Breite (Wandstärke) von 80 bis 120mm auf. Dies liefert jeweils eine ausreichend starke Isolierung und Stabilität. In der Trennwand kann unabhängig von den einzelnen beschriebenen Optimierungs- Maßnahmen wenigstens ein Verbrennungsluft- bzw. Stufenluft-Einlass zum Einleiten von Verbrennungsluft aus einem in der Trennwand verlaufenden Stufenluftkanal in den Heizkanal in wenigstens einer Verbrennungsstufen-Höhenposition vorgesehen sein. Der untere Bereich am Boden des Heizzuges kann dabei der Brennerebene entsprechen, oder auch einem Höhenbereich über maximal 2 bis 3 Lagen Steine eines gemauerten Ofens (2 bis 3 Wandlagen), bei einer Höhe einer jeweiligen Lage im Bereich von ca. 120mm. Der Bodenbereich gemäß der Definition der vorliegenden Beschreibung kann sich z.B. auch bis in eine Höhe von 1200mm erstrecken. Bevorzugt wird der Bodenbereich definiert als ein Bereich von der Brennerebene bis in eine Höhe von 100 bis max. 800mm oberhalb der Brennerebene. Höhenangaben in der vorliegenden Beschreibung beziehen sich dabei auf die Brennerebene, also auf den untersten Punkt eines jeweiligen Heizkanals. Ein unterer Durchlass ist ein Durchlass, der einen unteren Wendepunkt eines Kreisstroms oder einer Strömung definiert, insbesondere unterhalb von einem oberen Durchlass. Der jeweilige untere Durchlass muss nicht notwendigerweise im Bodenbereich angeordnet sein.

Gemäß einem Ausführungsbeispiel sind alle Abgasrezirkulations-Durchlässe zentrischer angeordnet als wenigstens einer der Einlässe. Dies ermöglicht eine besonders effektive Entkopplung von den Läuferwänden. Gemäß einem Ausführungsbeispiel ist wenigstens ein Abgasrezirkulations-Durchlass zentrischer angeordnet als alle Einlässe. Dies ermöglicht, die Läuferwände durch einen Gasteppich aus eingelassenem neuem Gas von rezirkuliertem Abgas abzuschotten. Gemäß einem Ausführungsbeispiel sind alle Abgasrezirkulations-Durchlässe zentrischer angeordnet als alle Einlässe. Dies liefert eine besonders effektive Anordnung.

Gemäß einem Ausführungsbeispiel sind wenigstens zwei der Einlässe umfassend den Koksofengas-Einlass derart beidseitig des/der koppelnden Durchlässe näher zu den Läuferwänden angeordnet, dass der aus dem/den Durchlässen strömende Kreisstrom auf einem Kreisstrompfad weiter innen näher zur Mittenlängsachse des Heizkanales angeordnet ist als ein Einströmpfad der über die entsprechenden Einlässe eingeleiteten Gase. Hierdurch kann insbesondere eine zu abrupte Durchmischung von Koksofengas und Verbrennungsluft bzw. Mischgas verhindert werden. Gemäß einem Ausführungsbeispiel sind wenigstens zwei der Einlässe derart beidseitig der koppelnden Durchlässe näher zu den Läuferwänden angeordnet, dass der jeweilige Abgasrezirkulations-Durchlass zwischen den Einlässen seitlich umfasst bzw. abgegrenzt von den Einlässen angeordnet ist und sich im entsprechenden Heizkanal wenigstens drei oder vier aufwärts strömende Teilströme auf Strömungspfaden bilden, die zumindest über einen gewissen Höhenabschnitt (insbesondere im Höhenbereich von 0 bis 1000mm) zumindest annähernd parallel zueinander oder zumindest nebeneinander verlaufen und zu einer verzögerten Durchmischung in diesem Höhenabschnitt führen. Erst oberhalb dieses Höhenabschnittes erfolgt eine vollständigere Durchmischung. Gemäß einem Ausführungsbeispiel ist der jeweilige Koksofengas-Einlass angrenzend zur korrespondierenden Läuferwand angeordnet, und/oder der jeweilige Verbrennungsluft-Einlass ist gegenüberliegend vom Koksofengas-Einlass angrenzend zur korrespondierenden Läuferwand angeordnet. Diese Anordnung möglichst nahe relativ zur Läuferwand ermöglicht eine zentrische Rezirkulation auch in einem Bodenbereich, was Vorteile hinsichtlich homogener Wärmeverteilung liefert. Insbesondere hat sich gezeigt, dass die Durchmischung der einzelnen Gasströme dadurch verzögert bzw. weiter in eine höhere Höhenposition verlagert werden kann. Gemäß einem Ausführungsbeispiel ist der jeweilige Verbrennungsluft- und/oder Mischgas- Einlass angrenzend zur korrespondierenden Läuferwand angeordnet und der jeweilige Abgasrezirkulations-Durchlass ist mittig angeordnet, insbesondere spiegelsymmetrisch in Bezug auf eine Mittenlängsachse im jeweiligen Heizkanal. Diese Kombination von Optimierungs-Maßnahmen liefert einen besonders starken Effekt.

Gemäß einem Ausführungsbeispiel weist die jeweilige Trennwand wenigstens einen weiteren koppelnden unteren und/oder oberen Durchlass auf, welcher in einer mittigeren Höhenposition (mittiger in z-Richtung) näher zur Höhenmitte der Heizkanäle als der außenliegende Kreisstrompfad angeordnet ist und eingerichtet ist zum Bilden einer inneren inerten Zwischenschicht auf einem/dem zentrischen Strömungspfad zwischen den Gas- und Luftvolumenströmen. Der Strömungspfad kann einen Kreisstrom bilden oder ergänzen.

Erfindungsgemäß kann bereits mittels eines einzigen zusätzlichen Durchlasses ein spürbarer Effekt zur NOx-Reduktion erzielt werden. Abgas bzw. ein größerer Abgas-Volumenstrom kann derart in den aufwärts durchströmten Heizkanal geleitet werden, insbesondere an unterschiedlichen Höhenpositionen, insbesondere weit unten im Bodenbereich, dass die lokale Temperatur gesenkt und das Temperaturprofil in der Breite und/oder in der Höhe vergleichmäßigt wird. Erfindungsgemäß kann die jeweilige Trennwand weiter oben wenigstens einen weiteren koppelnden Durchlass aufweisen, welcher weiter innen näher zur Höhenmitte der Heizkanäle als der außenliegende Kreisstrompfad angeordnet ist und eingerichtet ist zum Bilden einer (verbrennungstechnisch oder durchmischungstechnisch wirkenden) inneren inerten Zwischenschicht zwischen den Gas- und Luftvolumenströmen. Dies ermöglicht ein homogenes Temperaturprofil auch an höheren Höhenpositionen.

Es hat sich gezeigt, dass es für die Strömungsverhältnisse vorteilhaft ist, dass wenigstens ein zusätzlicher Abgasrezirkulations-Durchlass (für rückgeführten Abgasvolumenstrom durch die Binderwand zurück in den aufwärts durchströmten Heizkanal) in einer Höhenposition zwischen den Stufenluft-Einlässen und den bodenseitigen Gaseinlässen des Heizkanals angeordnet ist. Erfindungsgemäß kann durch internes Einleiten von intern wiederverwendetem inertem Abgas eine inerte Trennschicht gebildet werden, mit wärmeisolierender Funktion, mit dem Effekt einer verzögerten, späteren Durchmischung. Insbesondere kann eine trennende laminare Schicht gebildet werden, welche eine Quervermischung verhindert oder zumindest etwas weiter nach oben in eine höhere Höhenposition verlagert.

Dabei beruht die Erfindung auch auf der Erkenntnis, dass das Abgas zusätzlich auch in eine mittlere Höhenposition des jeweiligen Heizkanals geführt werden kann, bei geringerem Druckunterschied als am oberen und unteren Ende, im Sinne eines in Bezug auf die am weitesten außen liegenden Abgasrezirkulations-Durchlässe weiter innenliegenden Bypass. Der weiter innen liegende, vom äußeren Kreisstrom umschlossene Bypass oder Kreisstrom beeinträchtigt dabei den äußeren Kreisstrom nicht oder nicht spürbar, insbesondere aufgrund der geringeren Druckdifferenz. Gleichwohl kann eine Einflussnahme auf den Wärmeübergang oder die örtliche Temperatur auf effektive Weise erfolgen.

Insbesondere hat sich gezeigt, dass auch bei einem oder mehreren inneren Kreisstrompfaden kein Risiko besteht, den äußeren Kreisstrom kurzzuschließen oder zu stark im Volumenstrom zu vermindern. Ein Kurzschluss mit dem äußeren Kreisstrom oder zwischen einzelnen Durchlässen kann insbesondere dadurch effektiv vermieden werden, dass eine Beabstandung zwischen den Durchlässen und/oder die Durchmesserverhältnisse auf die Druckverhältnisse im jeweiligen Ofen angepasst wird. Auch ein Risiko, dass sich ein Kreisstrom in entgegengesetzter Richtung ausbildet, kann kontrolliert werden, insbesondere indem ein Strömungsimpuls der eingelassenen Gase genutzt wird.

Gemäß einem Ausführungsbeispiel weist die jeweilige Trennwand wenigstens einen weiteren koppelnden unteren und oberen Abgasrezirkulations-Durchlass auf, welche in einer mittigeren Höhenposition näher zur Höhenmitte der Heizkanäle als der außenliegende Kreisstrom angeordnet sind und eingerichtet sind für einen zusätzlichen inneren Bypass-Kreisstrom (zusätzliche Rezirkulation) nach oben oder nach unten zum Bilden einer (verbrennungstechnisch oder durchmischungstechnisch wirkenden) inneren inerten Zwischenschicht zwischen den Gas- und Luftvolumenströmen auf einem zusätzlichen inneren Bypass-Kreisstrompfad, wobei die innere inerte Zwischenschicht umgrenzt ist vom äußeren Kreisstrompfad.

Gemäß einem Ausführungsbeispiel weist die jeweilige Trennwand eine Mehrzahl von weiteren koppelnden Abgasrezirkulations-Durchlässen auf, welche ober- und unterhalb wenigstens einer Luftstufe in der Trennwand angeordnet sind und eingerichtet sind für wenigstens zwei zusätzliche Bypass-Kreisströme weiter innen näher zur Höhenmitte der Heizzüge als der außenliegende Kreisstrom um eine oder mehrere der Luftstufen herum, zum Bilden von einer oder mehreren (verbrennungstechnisch oder durchmischungstechnisch wirkenden) inneren inerten Zwischenschichten zwischen den Gas- und Luftvolumenströmen auf einem zusätzlichen inneren Bypass-Kreisstrompfad, wobei die jeweilige innere inerte Zwischenschicht bevorzugt umgrenzt ist vom äußeren Kreisstrompfad. Dies ermöglicht eine gestufte Einflussnahme auf das Strömungs- und Temperaturprofil in unterschiedlichen Höhenpositionen, unabhängig von Stufenluftkanälen.

Eine Quervermischung rückgeführter Abgase mit neu eingeleiteten Gasen kann erfindungsgemäß verhindert oder zumindest verzögert werden, insbesondere dank vornehmlich laminarer Strömungsverhältnisse in wenigstens einer inerten Zwischenschicht. Das Verzögern der Quervermischung kann in Abhängigkeit der Strömungsverhältnisse mehr oder weniger effektiv erfolgen, insbesondere jedoch zumindest derart, dass eine Quervermischung frühestens oberhalb der einer NOx-Bildungszone erfolgt. Das energetisch und wirtschaftlich vorteilhafte Konzept der Kreisstromführung kann dabei vorteilhafter Weise auch dann weiterhin voll ausgenutzt werden, wenn eine sehr hohe Flammentemperatur vorherrscht, also bei Starkgasbeheizung.

Gemäß einem Ausführungsbeispiel sind die unteren und wahlweise auch die oberen Abgasrezirkulations-Durchlässe in Höhenrichtung über wenigstens 2 bis 5, insbesondere über wenigstens 3 bis 4 Wandlagen ausgebildet, und/oder über maximal 8 bis 10 Wandlagen. Dies liefert einen guten Kompromiss zwischen ausreichender Stabilität der Konstruktion und adäquatem Strömungswiderstand bzw. Strömungsgeschwindigkeit des rezirkulierten Gases. Gemäß einem Ausführungsbeispiel erstreckt sich der jeweilige untere/unterste Abgasrezirkulations-Durchlass über mehrere Wandlagen bzw. Feuerfestlagen in Höhenrichtung, insbesondere über wenigstens 2 bis 5 Wandlagen. Dies ermöglicht auch ein adäquates Strömungsprofil. Auch kann auf einfache Weise eine Integration in eine bestehende Konstruktion erfolgen.

Gemäß einem Ausführungsbeispiel ist die innere inerte Zwischenschicht in x-Richtung weiter innen bzw. zentrischer angeordnet als die Strömungspfade der einströmenden Gase und weiter mittig bzw. in einer mittigeren Höhenposition als der äußere Kreisstrompfad. Dies begünstigt die gestufte Einflussnahme in der jeweils relevanten Höhenposition.

Gemäß einem Ausführungsbeispiel sind die Abgasrezirkulations-Durchlässe im Bereich der mittigen Breite (x) des Heizkanals angeordnet, insbesondere in einem x-Abstand zur Mittenlängsachse von weniger als 30 oder 20 oder 10% der Breite des Heizkanals. Hierdurch ergeben sich zuvor bezüglich der inerten Zwischenschicht erläuterte Vorteile.

Gemäß einem Ausführungsbeispiel ist der jeweilige untere Abgasrezirkulations-Durchlass zwischen dem jeweiligen Koksofengas-Einlass und dem jeweiligen Verbrennungsluft- und/oder Mischgas-Einlass angeordnet. Dies ermöglicht die zuvor erläuterte Einflussnahme auf das Temperatur- und Strömungsprofil insbesondere im Bodenbereich, insbesondere eine Separierung der einzelnen Gasströme. Gemäß einem Ausführungsbeispiel ist der jeweilige Koksofengas-Einlass näher als die drittel Breite (näher als ein Drittel der Breite) des Heizzuges (x-Abstand zwischen gegenüberliegenden Läuferwänden) zur Läuferwand hin angeordnet, insbesondere in einem x-Abstand von 10 bis 350mm, insbesondere weniger als 300mm zu einer Innenoberfläche der Läuferwand, wobei der jeweilige untere Abgasrezirkulations-Durchlass näher als die drittel Breite des Heizzuges zum Zentrum bzw. zur Mittenlängsachse des Heizzuges hin angeordnet ist, insbesondere in einem x-Abstand von 30 bis 300mm. Dies liefert eine effektive Separierung der Gasströme. Die Strömungspfade können parallel verlaufen, ohne dass oder bevor eine Quervermischung erfolgt. Gemäß einem Ausführungsbeispiel ist der jeweilige Verbrennungsluft-Einlass und/oder Mischgas-Einlass näher als die drittel Breite des Heizzuges (x-Abstand zwischen gegenüberliegenden Läuferwänden) zur Läuferwand hin angeordnet, und der jeweilige untere Abgasrezirkulations-Durchlass ist näher als die drittel Breite des Heizzuges zum Zentrum des Heizzuges hin angeordnet, insbesondere in einem x-Abstand von 30 bis 300mm. Dies liefert eine effektive Separierung der Gasströme. Die Strömungspfade können parallel verlaufen, ohne dass oder bevor eine Quervermischung erfolgt. Es hat sich insbesondere im Rahmen von Strömungsversuchen gezeigt, dass eine Verlagerung der unteren Abgasrezirkulations-Durchlässe näher zum Heizzug-Zentrum hin eine Separierung von einströmenden Gasen und eine Verminderung von Quervermischung ermöglicht. Dadurch kann gezielter Einfluss auf die Temperaturverteilung genommen werden, insbesondere in ausgewählten Höhenpositionen. Es hat sich gezeigt, dass sich dadurch eine vergleichsweise niedrige, homogene Verbrennungstemperatur T2 insbesondere im unteren Bereich der Ofenkammer einstellen lässt, mit positivem Effekt auf die NOx-Emission.

Gemäß einer Variante ist der jeweilige Koksofengas-Einlass näher zur korrespondierenden Läuferwand angeordnet als der jeweilige untere Abgasrezirkulations-Durchlass, insbesondere mit dessen Mittenlängsachse in einem Abstand von 10 bis 350mm, insbesondere weniger als 300mm zu einer Innenoberfläche der Läuferwand. Dies kann auch konstruktive Vorteile liefern.

Gemäß einem Ausführungsbeispiel ist je Zwillingsheizzug wenigstens ein weiterer unterer Abgasrezirkulations-Durchlass oder wenigstens ein weiteres Paar von unteren Abgasrezirkulations-Durchlässen vorgesehen, insbesondere in wenigstens einer weiteren Höhenposition oberhalb des (ersten) unteren koppelnden Durchlasses, insbesondere unterhalb wenigstens eines Stufenluft-Einlasses. Dies ermöglicht gezielte Einflussnahme auf das Temperatur- und Strömungsprofil in ausgewählten Höhenpositionen. Gemäß einem Ausführungsbeispiel sind je Zwillingsheizzug zwischen zwei Stufenluft-Einlässen bis zu fünf weitere untere Abgasrezirkulations-Durchlässe oder bis zu fünf Paaren von unteren Abgasrezirkulations-Durchlässen vorgesehen. Dies liefert eine besonders große Flexibilität bei der Einflussnahme in der jeweiligen Höhenposition. Gemäß einem Ausführungsbeispiel sind je Zwillingsheizzug wenigstens zwei weitere Paare von unteren Abgasrezirkulations-Durchlässen in wenigstens zwei weiteren Höhenpositionen über einem untersten Paar von Durchlässen vorgesehen, insbesondere drei bis sieben Paare von unteren Abgasrezirkulations-Durchlässen in drei bis sieben weiteren Höhenpositionen. Dies liefert eine große Variabilität mit bis zu sieben inneren Kreisströmen.

Gemäß einem Ausführungsbeispiel sind je Zwillingsheizzug bis zu zehn weitere untere Abgasrezirkulations-Durchlässe oder bis zu zehn Paare von unteren Abgasrezirkulations- Durchlässen in weiteren Höhenpositionen unterhalb von dem/den Stufenluft-Einlässen angeordnet. Dies ermöglicht eine Verteilung des rezirkulierten Gases derart, dass der Kreisstrom sich homogen ausbilden kann und die Gase sich in der jeweiligen Höhenposition nach und nach miteinander vermischen können. Eine höhere Anzahl von Durchlässen eröffnet auch die Option, die Durchlässe ohne zu enge Randbedingungen geometrisch auf den gewünschten Strömungszustand anzupassen.

Der Begriff Stufenluft wird hier synonym zum Begriff Stufengas verwendet. Ein Stufenluftkanal kann also auch Gas ungleich Luft führen.

Gemäß einem Ausführungsbeispiel ist je Zwillingsheizzug wenigstens ein weiterer unterer Abgasrezirkulations-Durchlass oder wenigstens ein weiteres Paar von unteren Abgasrezirkulations-Durchlässen in wenigstens einer weiteren Höhenposition zwischen wenigstens zwei Stufenluft-Einlässen angeordnet. Dies ermöglicht eine Optimierung durch Kombination von Kreisstrompfaden von rezirkuliertem Gas und Einströmpfaden von Stufengas.

Gemäß einem Ausführungsbeispiel ist je Zwillingsheizzug wenigstens ein weiterer unterer Abgasrezirkulations-Durchlass oder wenigstens ein weiteres Paar von unteren Abgasrezirkulations-Durchlässen sowohl unterhalb als auch oberhalb von dem oder von allen Stufenluft-Einlässen angeordnet. Dies liefert besonders hohe Variabilität.

Gemäß einem Ausführungsbeispiel ist je Zwillingsheizzug wenigstens ein weiterer unterer Abgasrezirkulations-Durchlass oder wenigstens ein weiteres Paar von unteren Abgasrezirkulations-Durchlässen in wenigstens einer weiteren Höhenposition oberhalb von dem oder von allen Stufenluft-Einlässen angeordnet. Dies ermöglicht auch einen inneren Kreisstrom(pfad) entkoppelt von gestuft eingeleitetem Gas. Gemäß einem Ausführungsbeispiel sind je Zwillingsheizzug bis zu fünf weitere obere Abgasrezirkulations-Durchlässe oder bis zu fünf weitere Paare von oberen Abgasrezirkulations- Durchlässen oberhalb von dem oder von allen Stufenluft-Einlässen angeordnet. Dies liefert besonders hohe Variabilität.

Durch die zuvor beschriebenen Maßnahmen kann eine erhöhte Verweilzeit und ein vollständigerer Ausbrand sichergestellt werden, insbesondere bei vermindertem CO-Anteil, und auch ein höherer und in vertikaler Höhenrichtung homogenerer Wärmeeintrag in die Ofenkammer erzielt werden. Insbesondere hat sich gezeigt, dass bei einer Abgasrezirkulation von mehr als 50% sichergestellt werden kann, dass die brennbaren Gasbestandteile vollständig zu Abgas verbrennen. Dadurch kann der Energiegehalt des Mediums besser genutzt werden, insbesondere kontinuierlich über den zeitlichen Verlauf. Dadurch kann auch der CO-Anteil von üblicherweise 200 bis 400ppm im Abgas weiter verringert werden. Sind die Abgasrezirkulations-Durchlässe oberhalb von allen Stufengaseinlässen angeordnet, so kann ein Teil des heißen Abgases bereits vor der Umkehrstelle in den abwärts durchströmten Heizkanal geführt werden, was positive Einflüsse auf die Temperaturführung insbesondere auch im Gassammeiraum oberhalb der Charge hat. Hier sind üblicherweise 800 bis 820°C nicht zu überschreiten (Rußbildung, chemische Qualität des Rohgases). Durch weiter unten rückgeführtes Abgas kann auch die Temperatur der jeweiligen Ofenkammer abgesenkt werden.

Die Abgasrezirkulations-Durchlässe können jeweils paarweise oder einzeln vorgesehen sein, also auch bei ungerader Anzahl, z.B. drei oder fünf weitere Abgasrezirkulations-Durchlässe. Es hat sich gezeigt, dass je nach Bauart der Koksofenvorrichtung eine Anzahl zwischen zwei und zehn weiterer Abgasrezirkulations-Durchlässen vorteilhaft ist.

Gemäß einem Ausführungsbeispiel sind zwischen den einzelnen Durchlässen jeweils wenigstens zwei Zwischenlagen vorgesehen. Dies liefert auch gute Stabilität. Eine derartige Stabilisierung des aus Läufer- und Binderwand bestehenden Heizwandverbundes ist hinsichtlich Standfestigkeit gegenüber Kohle-Treibdrücken vorteilhaft (Maximum bei etwa 75% des Garungszyklus). Koksöfen werden üblicherweise lagenweise aufgebaut, mit Lagenhöhen inklusive Fuge zwischen 100 und 160mm, insbesondere ca. 120 bis 130mm. Die Baulehre für Koksöfen lehrt eine Verbindung möglichst aller Steine einer Heizwand über eine Nut-Feder- Verbindung, bzw. mittels Nut- und Federwölbung. Ist eine große Durchlass-Querschnittsfläche über mehrere Lagen wünschenswert, wird der Heizwandverbund geschwächt, und es besteht ein Risiko hinsichtlich Deformation und Rohgasübertritten aus der Ofenkammer durch sich aufweitende Fugen. Dies kann nachteiliger Weise zu CO-Bildung infolge unzureichend vorhandener Verbrennungsluftmengen im Heizkanal führen. Daher ist eine hohe Stabilität in lateraler (horizontaler) Richtung sehr wichtig.

Auch in vertikaler Richtung ist eine Vorspannung der Heizwand erwünscht, um den Heizwandverbund vor vertikalem Durchbiegen zu schützen. Daher wird auch auf den Ober- und Unterseiten der Steine eine Nut-Feder-Verbindung bevorzugt. Die vertikale Vorspannung der Heizwand erfolgt insbesondere über ein hinreichend großes Deckengewicht.

Weitere große Belastungskräfte auf den Wandverbund treten beispielsweise beim horizontalen Ausdrücken der Kokscharge am Ende des Garungszyklus durch einen durch die Kammer hindurchfahrenden Stahlstempel auf und müssen durch eine hinreichend große Vorspannung des Heizwandverbundes in lateraler und vertikaler Richtung berücksichtigt werden. Zusätzlichen Durchlässe, insbesondere solche mit vergleichsweise großen Querschnittsflächen, bedürfen daher ausgereifter Überlegungen zur Stabilität und Langlebigkeit eines Ofens.

Gemäß einer Variante sind die Rezirkulations-Durchlässe wie folgt angeordnet: jeweils eine Wandlage mit einem Rezirkulations-Durchlass und darüber eine verbundstabilisierende Feuerfestmateriallage ohne Durchlass, immer abwechselnd bis z.B. max. zehn Durchlässen; oder jeweils eine Wandlage mit einem Rezirkulations-Durchlass und darüber zwei verbundstabilisierende Feuerfestmateriallagen ohne Durchlass und daraufhin eine Wandlage mit einem Rezirkulations-Durchlass und darüber eine oder zwei verbundstabilisierende Feuerfestmateriallagen ohne Durchlass. Dies liefert eine gute Stabilität. Die Durchlässe sind vergleichsweise klein, können aber gut integriert werden in die Bauform des Ofens. Gemäß einem Ausführungsbeispiel ist in der Trennwand wenigstens ein insbesondere zentrisch angeordneter Stufenluftkanal mit wenigstens einem Stufenluft-Einlass ausgebildet, insbesondere mit wenigstens einem Stufenluft-Einlass oberhalb von wenigstens einem Rezirkulations-Durchlass. Dies eröffnet weitere Möglichkeiten der Einflussnahme auf das Strömungs- und Temperaturprofil.

Gemäß einem Ausführungsbeispiel sind in der (jeweiligen) Trennwand wenigstens zwei insbesondere parallel angeordnete Stufenluftkanäle ausgebildet, welche sich oberhalb des oberen/obersten Abgasrezirkulations-Durchlasses vereinigen und in einem obersten Stufenluft- Einlass oberhalb aller Abgasrezirkulations-Durchlässe in den beflammten Heizkanal münden. Dies ermöglicht z.B. auch eine Optimierung der Temperatur- und Strömungsprofile mittels gestuft eingeleitetem Gas an unterschiedlichen Breiten-Positionen bzw. (x)-Positionen. Dabei lässt sich der vereinte Durchlass auf einfache Weise von oben von der Decke per Justierorgan oder Schieber justieren.

Gemäß einem Ausführungsbeispiel sind in wenigstens einer der Trennwände wenigstens zwei insbesondere parallel angeordnete Stufenluftkanäle ausgebildet, welche oberhalb des oberen/obersten Abgasrezirkulations-Durchlasses in zwei obersten Stufenluft-Einlässen oberhalb aller Abgasrezirkulations-Durchlässe in den beflammten Heizkanal münden. Hierdurch kann das gestuft eingeleitete Gas homogen über die Breite (x-Richtung) in den Heizkanal eingeleitet werden. Die redundante Ausführung der Stufenluftkanäle, sei es jeweils mit separatem Einlass oder mit einem gemeinsamen Einlass, liefert den Vorteil, dass der Kreisstrom insbesondere im unteren Bereich des Heizkanals beliebig weit ins Zentrum gerückt werden kann und damit sehr effektiv von den eingelassenen Gasen entkoppelt werden kann. Hierbei können sich auch konstruktive Vorteile ergeben, auch Kostenvorteile beim Bau der Vorrichtung, oder Vorteile für den Betrieb. Auch die Stufenluftkanäle können nach außen verlegt werden, so dass ein inerter Abgasstrom möglichst zentrisch (zumindest zentrischer als die weiteren Gase) mittels rezirkulierten Gasen ausgebildet werden kann. Auch kann eine vorteilhafte Sekundärwärmeverteilung erzielt werden. Nicht zuletzt ergeben sich konstruktive Vorteile. Gemäß einem Ausführungsbeispiel ist der jeweilige untere/unterste Abgasrezirkulations- Durchlass in einem Abstand von mindestens 50mm über dem unteren Bereich bzw. über dem Boden des Heizkanals angeordnet. Hierdurch kann ein guter strömungstechnischer Effekt insbesondere in Abstimmung mit der Anordnung der Einlässe erzielt werden. Insbesondere wird eine Unterkante des untersten Rezirklationsdurchlasses im Bereich 0 bis 150 mm über der Brennerebenen angeordnet, darüber eine stabilisierende Trennlage mit einer Höhe von ca. 120 bis 130mm, darüber ein weiterer Durchlass mit einer Mindesthöhe von z.B. ca. 120mm, wobei sich dieser Wechsel zwischen Durchlass und Trennlage bis in eine Höhe von 800mm erstrecken kann.

Gemäß einem Ausführungsbeispiel ist der Koksofengas-Einlass bzw. der entsprechende Gaszug (Düse oder Rohr) in einem Abstand zur Mittenlängsachse von mindestens 50% der Breite des Heizkanals angeordnet. Diese Beabstandung liefert eine effektive Entkopplung von den zentrischer angeordneten Strömungspfaden der Rezirkulations-Gase.

Gemäß einer Variante ist die Stufung nur im aufsteigenden Heizkanal vorgesehen.

Gemäß einer Variante sind wenigstens drei zusätzliche koppelnde Abgasrezirkulations- Durchlässe vorgesehen, wobei wenigstens zwei innere zusätzliche Kreisströme ausgebildet werden, wobei oberhalb und unterhalb einer Gasstufe (Auslass eines Stufenluftkanals) jeweils ein Abgasrezirkulations-Durchlass vorgesehen ist. Dies ermöglicht eine effektive Kombination der Maßnahmen. Gemäß einem Ausführungsbeispiel sind der Verbrennungsluft-Einlass und/oder Mischgas- Einlass und/oder Koksofengas-Einlass in einem Winkel von 0° in Bezug auf die Mittenlängsachse des Heizkanals (bzw. in Bezug auf eine Normale zum Boden oder in Bezug auf die Vertikale) oder in einem Winkel kleiner 30°, insbesondere kleiner 20° oder kleiner 10° in Bezug auf die Vertikale (z) ausgerichtet, insbesondere alle Einlässe in derselben Richtung geneigt oder ausgerichtet. Diese möglichst vertikal nach oben ausgerichtete Ausrichtung ermöglicht eine zentrisch angeordnete Flamme, was Vorteile hinsichtlich der Temperaturverteilung liefert. Hierdurch können die Abgas-Volumenströme zentrisch und nahezu lotrecht nach oben, also in Normalenrichtung in vertikaler Höhenrichtung z im Heizkanal einströmen, und die neuen, eingelassenen Gase können einen Gasteppich zur Abschottung bilden. Die Volumenströme prallen, im Gegensatz zu einer stark geneigten Ausrichtung, nicht gegen die Wände. Hierdurch kann die Verbrennung auf das Heizkanalzentrum gerichtet werden, also nicht an die äußeren Flächen, wodurch moderate Temperaturen eingestellt werden können. Lokale Temperaturspitzen können effektiv vermieden werden. Es hat sich gezeigt, dass der jeweilige Einströmimpuls dabei besonders vorteilhaft für zusätzliches Ansaugen von Rauchgas aus dem unbeflammten Heizkanal oder für eine gezieltere Durchmischung der Gase genutzt werden kann. Der jeweilige Einströmimpuls kann an die weiteren Gase abgegeben werden, dissipiert also nicht an den Wänden. Im Gegensatz dazu sind die Einlässe bei bisherigen Öfen üblicherweise schräg in einem großen Neigungswinkle von über 30° ausgerichtet. Es hat sich gezeigt, dass der Einströmimpuls des jeweiligen Gases bei dieser Ausrichtung nicht besonders effektiv genutzt werden, insbesondere nicht zum Ansaugen von Rauchgas aus dem unbeflammten Heizkanal. Die erfindungsgemäße Ausrichtung ermöglicht besonders hohe Rezirkulationsraten.

Gemäß einem Ausführungsbeispiel weisen der jeweilige Verbrennungsluft-Einlass und/oder der jeweilige Mischgas-Einlass und/oder der jeweilige Koksofengas-Einlass eine Querschnittsfläche von maximal 0.06m 2 auf, insbesondere auch bei Ofenkammerhöhen über 6m. Bei dieser Obergrenze kann sichergestellt werden, dass das eingelassene Gas mit einem gewissen Mindestimpuls oder einen gewissen Mindestgeschwindigkeit in den Heizkanal einströmt, so dass mittels der Einlässe auf effektive Weise Einfluss auf die Strömungszustände im Heizkanal genommen werden kann. Durch eine derart vergleichsweise kleine Querschnittsfläche kann eine hohe Injektor-Wirkung erzielt werden. Insbesondere können die Gase derart eingelassen werden, dass die Kreisstromrate bzw. der Anteil des rezirkulierten Gases erhöht wird. Durch derart verringerte oder kleine Querschnitte kann der Eintrittsimpuls der Medien auch derart erhöht werden, dass die Rate des rückgeführten Abgases erhöht werden kann, insbesondere von ca. 30 bis 45% auf ca. 50 bis 80% bei Koksofengasbeheizung. Es kann eine hohe Strömungsgeschwindigkeit eingestellt werden, mit dem Effekt, dass sich der Volumenstrom eingesaugten bzw. mitgerissenen Abgases erhöht. Insbesondere können hohe Einströmgeschwindigkeiten in den Heizzug von größer als 2m/s realisiert werden. Auch kann eine stabile Flammenkontur sichergestellt werden, was eine verzögerte Ausbrandcharakteristik begünstigt.

Gemäß einem Ausführungsbeispiel ist die Querschnittsfläche des jeweiligen unteren und/oder oberen Abgasrezirkulations-Durchlasses größer als 0.005m 2 , insbesondere größer als 0.01 m 2 . Dies ermöglicht einen vergleichsweise schwachen Strömungsimpuls des rezirkulierten Abgases, mit dem Effekt, dass der Strömungsimpuls des neu eingelassenen Gases stärker wirkt. Mit einem vergleichsweise kleinen neu eingelassenen Volumenstrom lässt sich dadurch ein großer Effekt erzielen, und es kann eine hohe Kreisstromrate gewählt werden.

Gemäß einem Ausführungsbeispiel weist die Querschnittsfläche des jeweiligen unteren Abgasrezirkulations-Durchlasses eine rechteckige, insbesondere in Breitenrichtung (x), quer zur Ausdrückrichtung, langgestreckte Geometrie auf. Dies ermöglicht auf einfache Weise eine Integration in die Wände, mit der Option einer Größenanpassung bei minimalem konstruktivem Aufwand. Ebenso kann die Querschnittsfläche des jeweiligen oberen Abgasrezirkulations- Durchlasses eine rechteckige, insbesondere in Breitenrichtung (x), quer zur Ausdrückrichtung, langgestreckte Geometrie oder eine quadratische Geometrie aufweisen.

Die jeweiligen Einlässe und/oder die jeweiligen Durchlässe können dabei gleich groß sein, oder spezifisch je Höhenposition angepasst sein. Gemäß einem Ausführungsbeispiel weist der jeweilige Abgasrezirkulations-Durchlass wenigstens eine abgerundete Strömungskante und/oder konvexe Wölbung auf, insbesondere mit einem Radius von mindestens einer viertel Wandlage (entsprechend in Grad oder Millimetern) oder mindestens 30°, insbesondere eine innen in Bezug auf den jeweiligen Kreisstrompfad liegende abgerundete Strömungskante oder konvexe Wölbung. Dies erleichtert den Kreisstrom, insbesondere auch bei nur geringen Druckdifferenzen. Gleichzeitig kann ein vorteilhaftes Strömungsprofil im aufwärts durchströmten Heizkanal sichergestellt werden.

Gemäß einem Ausführungsbeispiel weist der jeweilige Abgasrezirkulations-Durchlass wenigstens eine scharfe Strömungskante und/oder konkave Wölbung auf, insbesondere mit einem Radius von maximal einer oder zwei Wandlagen (entsprechend in Grad oder Millimetern), insbesondere eine außen in Bezug auf den jeweiligen Kreisstrompfad liegende scharfe Strömungskante oder konkave Wölbung. Dies kann sicherstellen, dass die Strömung auf einem optimalen Strömungspfad strömt. Es können mittels der Durchlässe oder in den Durchlässen Gasleitkonturen bereitgestellt werden.

Gemäß einem Ausführungsbeispiel weist der jeweilige Abgasrezirkulations-Durchlass wenigstens eine Umstromungskontur mit wenigstens einem Radius und wenigstens einer scharfen Strömungskante (bzw. Abrisskante) auf. Diese kombinierte Kontur liefert einen besonders guten strömungstechnischen Effekt und hat den Vorteil, dass sich ein zusätzlicher innerer Kreisstrom bereits bei sehr geringen Differenzdrücken ausbilden kann. Der jeweilige Radius kann insbesondere über einen Winkel von 30 bis 60° ausgebildet sein. Eine derartige Strömungsoptimierung kann die Anordnung der Durchlässe flexibler gestalten, insbesondere da auch in vergleichsweise hohen Heizkanälen nur sehr geringe Druckdifferenzen im Bereich von wenigen Pascal (Pa) vorliegen können. Mittels der Kanten kann ein Strömungshindernis im Durchlass geschaffen werden, mit dem Effekt, dass die Strömung nur zurück in den jeweils aufwärts durchströmten Heizkanal weitergeleitet wird. Gemäß einem Ausführungsbeispiel sind die unteren Abgasrezirkulations-Durchlässe versetzt übereinander beidseitig eines in der Trennwand verlaufenden Stufenluftkanals angeordnet, insbesondere in Verbindung mit einem stabilisierenden Steg in der Trennwand. Hierdurch kann auch in einem größeren Breitenbereich (x) Einfluss auf das Strömungsprofil genommen werden. In Bezug auf die Horizontale kann ein Versatz zwischen 10 und 200mm vorteilhaft sein, insbesondere zwecks verbesserter Kühlwirkung.

Gemäß einem Ausführungsbeispiel ist unterhalb des/der Abgasrezirkulations-Durchlässe, insbesondere in einem Mittelbau oberhalb eines Regenerators der Koksofenvorrichtung, wenigstens ein Übertritts-Durchlass eingerichtet zum Einleiten von rezirkuliertem Abgas an der Unterseite des jeweiligen Heizkanals an einer Position zwischen Mischgas-Einlass und Verbrennungsluft-Einlass angeordnet. Diese Übertritts-Durchlässe haben einen größeren Strömungsweg und sind kanalartig (rund oder rechteckig) aufgebaut, und können in Kombination mit den zuvor beschriebenen Bypass-Öffnungen (Beheizungsdifferential) vorgesehen sein.

Gemäß einem Ausführungsbeispiel umfasst wenigstens einer der Einlässe im unteren Bereich, insbesondere der Koksofengas-Einlass eine Einlass-Düse und mündet in einer Höhenposition von 0.0 bis 0.45m, insbesondere 0.05 bis 0.25m oberhalb vom Boden des Heizkanals in den Heizkanal. Es hat sich gezeigt, dass eine solche Beabstandung vom Boden einen positiven Effekt auf das Strömungsprofil im Bodenbereich hat. Diese Ausgestaltung der Düse kann als Gasstufung bezeichnet werden, und ist vorteilhaft mit den weiteren hier geschilderten Maßnahmen kombinierbar. Ein am Boden des Heizkanals angeordnetes Düsenrohr endet bevorzugt ca. 0.25m hoch oberhalb der Kanalsohle (Brennerebene) und besteht bevorzugt aus Feuerfestmaterial. Aus diesem strömt Rohr das Koksofengas also in einer Höhenposition von ca. 0.25m ein und durchmischt sich mit der am Boden einströmenden Luft.

Eine Einlassdüse zur Volumenstromkalibrierung kann bei kopfbeheizten Öfen (=Seitenbrenneröfen) innerhalb dieses Düsenrohrs angeordnet werden, bevorzugt an dessen Boden auf Höhe der Kanalsohle/Brennerebene. Eine Höhenposition des Düsenrohres kleiner 500mm oder bevorzugt kleiner 350 oder 300mm kann die darin angeordnete Düse auch vor den Strömungsquerschnitt verringernden Kohlenstoff- oder Rußanbackungen und vor hohen Temperaturen schützen, und es kann einem Leistungsverlust vorgebeugt werden. Bei Unterbrenneröfen ist die Düse unter der Brennerebene im Batteriekeller angeordnet, welcher unter atmosphärischen Bedingungen betrieben wird (keine Gefährdung durch hohe Temperaturen). Das Düsenrohr ragt bei beiden Arten von Öfen 0.05 bis 0.5m, bevorzugt 0.25m in den Heizkanal hinein, so dass das Gas bei Unterbrenneröfen auf der gleichen Höhenposition eingelassen wird wie bei Seitenbrennern.

Gemäß einem Ausführungsbeispiel ist die Einlass-Düse orthogonal zum Boden des Heizkanals ausgerichtet, insbesondere senkrecht. Bevorzugt sind auch die weiteren Einlässe zumindest annähernd orthogonal bzw. senkrecht ausgerichtet. Die zuvor genannte Aufgabe wird erfindungsgemäß auch gelöst durch ein Verfahren zum Betreiben einer Koksofenvorrichtung zum Herstellen von Koks durch Verkokung von Kohle oder Kohlemischungen bei optimierter minimierter NOx-Emission durch internen thermischen Energieausgleich mittels koksofeneigener Gase durch primäre Maßnahmen intern an der Koksofenvorrichtung, insbesondere zum Betreiben einer zuvor beschriebenen Koksofenvorrichtung, wobei in einem jeweiligen Zwillingsheizzug mit einem beflammten Heizkanal und einem rauchgas- bzw. abgasführenden Heizkanal, insbesondere sowohl am oberen als auch am unteren Ende des Heizkanals, um eine Trennwand herum mittels wenigstens eines koppelnden oberen und unteren Durchlasses durch die Trennwand eine interne Abgasrezirkulation auf einem äußeren Kreisstrom pfad um die Trennwand herum eingestellt wird, wobei im unteren Bereich am Boden des jeweiligen Zwillingsheizzuges Koksofengas und/oder Verbrennungsluft und/oder Mischgas eingelassen wird, also wenigstens ein Gas aus der folgenden Gruppe: Koksofengas, Verbrennungsluft, Mischgas; wobei die Abgasrezirkulation auf wenigstens einem zusätzlichen inneren Kreisstrompfad geführt wird, insbesondere beidseitig umgrenzt von den eingelassenen Gasen. Dies ermöglicht eine Einflussnahme insbesondere in unterschiedlichen Höhenpositionen.

Dabei kann die Abgasrezirkulation auf einem/dem jeweiligen Kreisstrom pfad oder wenigstens einem zentrischen Strömungspfad jeweils zentrischer (also näher zur Mittenlängsachse in der xy-Ebene) als die eingelassenen Gase geführt werden, insbesondere beidseitig umgrenzt bzw. umströmt von den eingelassenen Gasen, insbesondere jeweils vollumfänglich im Kreis. Dies liefert zuvor genannte Vorteile. Dabei kann mittels wenigstens eines der eingelassenen Gase strömungstechnisch und wärmeenergietechnisch eine Entkopplung von der Abgasrezirkulation realisiert werden.

Indem insbesondere im Bodenbereich des aufwärts durchströmten Heizkanals wenigstens ein rückgeführter Teilabgasvolumenstrom zwischen dem Beheizungsgasvolumenstrom und mindestens einem der am Boden in den Kanal einströmenden Luftteilvolumenströme eingeleitet wird, kann der rückgeführte Teilgasvolumenstrom als inerte Zwischenschicht derart weitergeleitet und genutzt werden, dass die inerte Zwischenschicht die Reaktanzen Gas und Luft im unteren Bereich des Heizkanals zunächst separiert (verbrennungstechnische Entkopplung) und im weiteren Strömungsverlauf in vertikaler Richtung weiter oben eine verzögerte Ausbrandcharakteristik hervorruft. Dies kann eine NOx-reduzierende Wirkung hervorrufen.

Gemäß einer Ausführungsform wird die Abgasrezirkulation auf wenigstens zwei zusätzlichen inneren Kreisstrompfaden geführt. Dies ermöglicht, in weiteren Höhenpositionen Einfluss zu nehmen auf das Strömungsprofil und die Temperaturverteilung. Die wenigstens zwei zusätzlichen inneren Kreisstrompfade können jeweils konzentrisch außen umgrenzt von dem jeweils äußeren Kreisstrompfad und/oder nebeneinander über die Breite (x) des Heizkanals verteilt angeordnet sein, insbesondere in Abhängigkeit der Anordnung eines Stufenluftkanals.

Gemäß einer Ausführungsform wird dabei in einer Vielzahl von Zwillingsheizzügen jeweils mit paarweisen Heizkanälen jeweils in einer Trennwand zwischen den Heizkanälen wenigstens eine wärmeisolierende Zwischenschicht aus einem Teilvolumenstrom von Abgas/Rauchgas aus dem absteigenden Heizkanal gebildet. Gemäß einer Ausführungsform wird wenigstens ein zusätzlicher innerer Kreisstrom zentrischer als die eingelassenen Gase und weiter innen als der äußere Kreisstrompfad und umgrenzt vom äußeren Kreisstrompfad eingestellt, insbesondere über wenigstens ein Paar von zusätzlichen Durchlässen oben und unten. Es hat sich gezeigt, dass ein weiterer, weiter innen vorgesehener innerer Kreisstrom bereits dann ausgebildet werden kann, wenn ein Druckunterschied im Bereich von einigen Pascal vorliegt. Der Druckunterschied kann deutlich unter 1 mbar liegen, insbesondere im Bereich von weniger als 10 oder 5 Pascal (Pa), beispielsweise 2 bis 4Pa, und dennoch kann der zusätzliche Kreisstrom ausgebildet werden. Gemäß einer Ausführungsform wird der Anteil des auf dem oder den Kreisstrompfaden intern rezirkulierten Abgases bei Starkgasbeheizung oder bei Mischgasbeheizung bei über 50%, insbesondere über 70%, insbesondere bei 80% eingestellt. Im Gegensatz dazu lag der Anteil rezirkulierten Abgases bisher bei maximal 25 bis 45% bei Starkgasbeheizung oder bei maximal 10 bis 20% Mischgasbeheizung. Die hohe Rezirkulationsrate kann durch optimierte Gasführung erzielt werden und ermöglicht einen energieeffizienten Prozess bei minimierten Emissionen.

Gemäß einer Ausführungsform wird das Verfahren für Starkgasbeheizung durchgeführt, indem im Wesentlichen Koksofengas verwendet wird; oder wobei das Verfahren für Mischgasbeheizung durchgeführt wird, indem im Wesentlichen ein Gemisch aus Hochofengas, Koksofengas und optional auch Konvertergas verwendet wird; oder wobei das Verfahren mit Erdgas als zumindest teilweiser Ersatz von Koksofengas durchgeführt wird. Es hat sich gezeigt, dass das erfindungsgemäße Strömungskonzept bei einer beliebigen dieser Betriebsarten realisierbar ist. Mischgas setzt sich üblicherweise aus zwei oder drei Gasen oder Gasgemischen zusammen: Hochofengas (zu großem Anteil), Koksofengas (zu geringem Anteil), und optional auch Konvertergas. Üblicherweise wird ein Koksofen (insbesondere ein Verbundofen) nur ca. 5% der Betriebsdauer im Jahr mit Starkgas beheizt, bei einer deutlich höheren Flammentemperatur über 2.000°C (hoher Heizwert des Starkgases bzw. Koksofengases). Bei Mischgasbeheizung (Hochofengas) hingegen liegt die Flammentemperatur beispielsweise nur im Bereich von ca. 1.700°C. Jedoch gibt es auch Öfen, die nicht im Verbund betrieben werden, und zu 100% mit Koksofengas bzw. Starkgas betrieben werden müssen. Erfindungsgemäß hat sich gezeigt, dass sowohl für Stark- als auch für Mischgasbeheizung, trotz der sehr unterschiedlichen Flammentemperatur, eine vergleichbar niedrige NOx-Emission realisiert werden kann. Dies liefert dem Ofenbetreiber maximale Flexibilität beim Betrieb seiner Öfen, mehr oder weniger unabhängig von möglicherweise zeitlich oder bezüglich Kalendertagen vordefinierten Emissions- Vorschriften. Insbesondere kann der Ofenbetreiber bedenkenlos einen Betriebsmodus bei Starkgasbeheizung wählen.

Als Starkgas wird insbesondere in nachgeschalteten Anlagenkomponenten gereinigtes Koksofengas mit unteren Heizwerten zwischen 17000 bis 19000KJ/Nm3 verwendet. Starkgas besteht üblicherweise aus CO, H2, CH4, 02, N2, C02 und höheren Kohlenwasserstroffen.

Erfindungsgemäß kann die Kreisstromrate des rückgeführten Abgases bei Starkgasbeheizung von bisher ca. 30 bis 45% auf über 50% gesteigert werden, und bei Mischgasbeheizung von bisher ca. 15 bis 25% ebenfalls auf über 50%. Dies ermöglicht ein sehr effektives Kühlen der Flammentemperatur im aufwärts durchströmten Heizkanal mit vergleichsweise kaltem Abgas. Insbesondere kann ein Kühleffekt im Bereich von mindestens 5 bis 60°C realisiert werden, wodurch eine Minimierung von thermisch gebildeten Stickoxiden erzielt werden kann. Abgesehen davon kann insbesondere dank eines sehr homogenen Wärmestroms auch eine gleichmäßige Koksqualität erzielt werden, und dank geringerer Temperaturgefälle kann eine thermische Belastung der Kammerwandungen minimiert werden. Der Ofen kann bei geringeren Beheizungstemperaturen betrieben werden, bei zumindest annähernd gleicher Verkokungsgeschwindigkeit wie bei bisher auf höheren Temperaturen mit stärkeren NOx- Emissionen betriebenen Öfen.

Dabei kann über den Einlass für Koksofengas auch Erdgas eingespeist werden, insbesondere bereitgestellt als LNG (Flüssigerdgas). Erdgas besteht je nach Förderort/Herkunft zu 90 bis 100% aus Methan (CH4) sowie marginal weiteren, höheren Kohlenwasserstoffen. Durch die geringe Flammentemperatur von Methan ist Methan ein bevorzugter Ersatz für Koksofengas (weniger thermisches NOx wird gebildet). Methan/Erdgas ist jedoch teurer. Zudem würde das eigene selbst im Werk produziert, gereinigte Koksofengas keinen Abnehmer finden. Je nach Betriebsweise kann Koksofengas zumindest teilweise durch Erdgas ersetzt werden. Die Effekte der vorliegenden Erfindung können auch bei Verwendung von Erdgas erzielt werden. Gemäß einer Ausführungsform wird ein unterstöchiometrisches Verbrennungsverhältnis von <0.9 eingestellt, insbesondere ein Verbrennungsverhältnis im Bereich von 0.5 bis 0.8, insbesondere 0.7, insbesondere im Bodenbereich in der Brennerebene am Boden des jeweiligen Heizkanals. Je kleiner der Luftüberschuss (Lambda) unterhalb der ersten Verbrennungsstufe eingestellt wird, umso schwächer kann die Verbrennung bzw. Wärmeübertragung im unteren Bereich des Heizzuges eingestellt werden. Es hat sich gezeigt, dass bei Luftzahlen im Bodenbereich der Heizkanäle kleiner 0.9, insbesondre im Bereich 0.5 bis 0.8 die geforderten Grenzwerte für NOx-Emissionen mit gutem Sicherheitsfaktor eingehalten werden können. Im Kopfbereich kann unabhängig davon die Luftzahl im Bereich von 1.2 bis 1.3 eingestellt werden.

Das Verbrennungsverhältnis kann über die Zufuhr der Gesamtluftmenge einer aus z.B. 10 bis 25 Zwillingsheizzügen bestehenden Heizwand in die Luftventile vor der gesamten Batterie geregelt werden. Dazu werden z.B. Bleche als Widerstand in den Eintrittsquerschnitt des jeweiligen Ventils gelegt, um z.B. eine Verringerung der eingesaugten Luftmenge und damit der so genannten Luftzahl der gesamten Heizwand zu erwirken. Zusätzlich können in den Luftventilen Regulierklappen zur weiteren Beeinflussung der Gesamtmenge oder der Richtung von Teilmengen vorgesehen sein, welche Teilmengen jeweils in einzelne Regeneratorsegmente einströmen. Beispielsweise wärmt ein erster Regenerator das jeweilige Gas und Luft der am Boden einströmenden Teilmengen vor, und ein zweiter Regenerator wärmt Teilmengen für Stufenluft vor.

Gemäß einer Ausführungsform wird mittels des rezirkulierten Abgases eine bevorzugt laminare Zwischenschicht zwischen eingelassenem Gas und einem Stufenluftkanal oder Gas aus dem Stufenluftkanal ausgebildet, insbesondere in einem Höhenbereich von 5 bis 75%, bevorzugt 15 bis 50% der Höhe des Heizkanals, insbesondere über einen Höhenabschnitt von 0.25 bis 4m. Dies kann das Separieren der Gasströme erleichtern.

Gemäß einer Ausführungsform wird mittels des eingelassenen Gases ein isolierender und mischungsverzögernder Gasteppich zwischen der jeweiligen Läuferwand und dem/den Kreisstrompfaden ausgebildet. Die laminare Strömung oder Zwischenschicht kann insbesondere durch Reynoldszahlen kleiner 2320 gekennzeichnet sein. Gemäß einer Ausführungsform wird der Anteil der eingeleiteten Gasmengen zwischen einer ersten Stufe, insbesondere am Boden durch den Verbrennungsluft- und Mischgas-Einlass, (Bodenstufe) und einer zweiten Stufe (eine oder mehrere Binderwandstufen) auf 50:50 oder mit noch geringerem Anteil der ersten Stufe eingestellt. Durch einen höheren Anteil rezirkulierten Gases kann optional ein Absenken des Anteils der am Boden in der ersten Stufe eingeleiteten Gases erfolgen. Dies ermöglicht weitere Variationen bei der Einflussnahme auf das Strömungsprofil insbesondere auch im Bodenbereich.

Gemäß einer Ausführungsform wird das Verhältnis der in die Heizkanäle eingeleiteten Volumenströme wie folgt eingestellt: <30% durch den Verbrennungsluft-Einlass, <30% durch den Mischgas-Einlass, und >40% durch die Rezirkulations-Durchlässe und wahlweise wenigstens einen Stufenluft-Einlass. Gemäß einer Ausführungsform wird der in die Ofenkammer am Verbrennungsluft-Einlass und am Mischgas-Einlass eingeleitete Volumenstrom auf zwischen 45 und 55% des durch die Rezirkulations-Durchlässe und wahlweise den wenigstens einen Stufenluft-Einlass eingeleiteten Volumenstroms eingestellt bzw. geregelt. Dies ermöglicht jeweils auch eine effektivere Einflussnahme auf unterschiedlichen Höhenpositionen. Das Verfahren wird dabei insbesondere mit Starkgasbeheizung durchgeführt. Bevorzugt wird das Verfahren mit Starkgasbeheizung mit abgemagertem Starkgas mit abgesenktem unterem Heizwert im Starkgasbeheizungsmodus durchgeführt, indem als Starkgas ein Gas mit einem unteren Heizwert im Bereich von 14000 bis max. 17000 kJ/Nm3 bereitgestellt wird. Dadurch kann die Flammentemperatur in Verbindung mit den zuvor beschriebenen Maßnahmen beträchtlich gesenkt werden, insbesondere um einen Differenz von 50 bis 300K. Die zuvor genannte Aufgabe wird erfindungsgemäß auch gelöst durch eine Logikeinheit bzw. Steuerungseinrichtung eingerichtet zum Ausführen eines zuvor beschriebenen Verfahrens, wobei die in die Heizkanäle eingeleiteten Volumenströme gemäß den zuvor erläuterten Verhältnissen eingestellt werden, und/oder wobei die Strömungsrichtung in den Heizzügen zyklisch umgestellt wird, insbesondere alle 15 bis 25min. Hierdurch kann ein sehr homogenes Temperaturprofil auch bei häufigem Umschalten erzielt werden. Die Umschalt-Zeit liegt dabei z.B. im Bereich von 1 bis 2min. Die zuvor genannte Aufgabe wird erfindungsgemäß auch gelöst durch Verwendung wenigstens einer Trennwand mit wenigstens einem weiter innen in Breitenrichtung (x) zentrischer als wenigstens ein Gaseinlass, insbesondere zentrischer als alle Gaseinlässe positionierten Abgasrezirkulations-Durchlass in einem Zwillingsheizzug einer Koksofenvorrichtung, insbesondere in einer zuvor beschriebenen Koksofenvorrichtung. Hierdurch ergeben sich zuvor genannte Vorteile.

Die zuvor genannte Aufgabe wird erfindungsgemäß auch gelöst durch Verwendung wenigstens einer Trennwand mit wenigstens einem weiter innen in Breitenrichtung (x) zentrischer als Gaseinlässe positionierten Abgasrezirkulations-Durchlass ausschließlich in der zur Koksseite einer Koksofenvorrichtung weisenden Hälfte der Zwillingsheizzüge der Koksofenvorrichtung, insbesondere in einer zuvor beschriebenen Koksofenvorrichtung. Hierdurch ergeben sich zuvor genannte Vorteile. Die zuvor genannte Aufgabe wird erfindungsgemäß auch gelöst durch Verwendung wenigstens einer Trennwand mit wenigstens zwei insbesondere parallel angeordnete Stufenluftkanälen, welche sich oberhalb eines/des oberen/obersten Abgasrezirkulations-Durchlasses vereinigen und in einem obersten Stufenluft-Einlass oberhalb aller Abgasrezirkulations-Durchlässe in einen beflammten Heizkanal münden; und/oder durch Verwendung wenigstens einer Trennwand mit wenigstens zwei insbesondere parallel angeordneten Stufenluftkanälen, welche oberhalb eines/des oberen/obersten Abgasrezirkulations-Durchlasses in zwei obersten Stufenluft- Einlässen oberhalb aller Abgasrezirkulations-Durchlässe in den beflammten Heizkanal münden, insbesondere jeweils in einer zuvor beschriebenen Koksofenvorrichtung. Dies liefert hohe Variabilität hinsichtlich einzelner Optimierungs-Maßnahmen.

Es hat sich gezeigt, dass durch diesen Aufbau der konstruktive Aufwand minimiert werden kann. Die koksseitige Hälfte wird in vielen Betriebszuständen heißer als die kohleseitige Hälfte, so dass es ausreichen kann, die hier beschriebenen Maßnahmen in der koksseitigen Hälfte zu realisieren, also bei z.B. 6 bis 25, insbesondere in maximal 20 in Ausdrückrichtung weiter hinten angeordneten Zwillingspaaren, also je Ofenkammer in ca. 6 bis 25, insbesondere in maximal 20 Trennwänden. Die zuvor genannte Aufgabe wird erfindungsgemäß auch gelöst durch Verwendung einer zuvor beschriebenen Koksofenvorrichtung zum Verkoken von Kohle oder einer Kohlemischung umfassend wenigstens einen Zusatz aus der folgenden Gruppe: Petrolkoks, Öl, Bitumensorten z.B. in Form von Altreifen, Kohle- und Koksstaub, Binde- oder Verkokungshilfsmittel wie z.B. Melasse, Ölrückstände, zelluloseartige Zuschläge, Sulfit- oder Sulfatverbindungen oder - laugen, wobei die Mischung auch Biomasse aufweisen kann.

Die zuvor genannte Aufgabe wird erfindungsgemäß auch gelöst durch Verwendung von abgemagertem Starkgas mit abgesenktem unterem Heizwert beim Betreiben einer zuvor beschriebenen Koksofenvorrichtung. Das abgemagerte Starkgas wird dabei insbesondere durch Mischen von Hochofengas und Starkgas bereitgestellt.

Insbesondere können als bevorzugte Zusammensetzungen in Vol.-% (Feuchtzustand) sowie als untere Heizwerte (in KJ/m3, Trockenzustand, wasserfrei) sowohl für Hochofengas (Gichtgas) als auch für Starkgas (in der Nebengewinnung gereinigtes Koksofengas) die folgenden Werte genannt werden:

Hochofengas: 1.92% H2, 59.5% N2, 24.24% CO, 1 1.96% C02, 2.37% H20, mit einem unteren Heizwert von ca. 3349

Starkgas: 54.98% H2, 0.66% 02, 5.33% N2, 5.75% CO, 1.52% C02, 26.66% CH4, 2.74% C2H6, 2.37% H20, mit einem unteren Heizwert von ca. 18422

In der Summe ergeben die Prozentangaben jeweils gemäß der Auswahl des Fachmanns dabei für die jeweilige Gasmischung 100%. Die Bestandteile der jeweiligen Gasmischung addieren sich auf 100 Prozent. Dabei können im Spurenbereich weitere Bestandteile, insbesondere höhere Kohlenwasserstoffe sowie NH3 und H2S im jeweiligen Gasgemisch enthalten sein, insbesondere jeweils unter 1.5%. Als Schwankungsbereiche für die einzelnen Bestandteile kann eine Toleranz von +-15% genannt werden.

Insbesondere kann aus dem Hochofengas und dem gereinigten Starkgas ein Mischgas bzw. ein abgemagertes Starkgas gemischt werden, insbesondere gemäß den folgenden auf die erste Nachkommastelle gerundeten Bestandteilen, jeweils mit einem Schwankungsbereich für die einzelnen Bestandteile von +-15% Toleranz: Mischgas: 5.6% H2, 0.1 % 02, 55.7% N2, 23.0% CO, 1 1.2% C02, 1.9% CH4, 0.2% C2H6, 2.4% H20, mit einem unteren Heizwert von ca. 4396

Abgemagertes Starkgas: 45.1 % H2, 0.6% 02, 14.4% N2, 8.9% CO, 3.3% C02, 22.2 CH4, 2.3% C2H6, 2.4% H20, mit einem unteren Heizwert von ca. 15910

Es hat sich gezeigt, dass die Verwendung von abgemagertem Starkgas bereits eine NOX- Minderung um 30 bis 50ppm (bezogen auf 7% 02 im Abgas) ermöglichen kann, insbesondere indem die lokale Flammentemperatur auf einen Bereich unter 2000°C abgesenkt wird. In Kombination mit den zuvor beschriebenen Maßnahmen wird der vorteilhafte Effekt der NOx- Minderung weiter verstärkt.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der Beschreibung wenigstens eines Ausführungsbeispiels anhand der folgenden Figuren, sowie aus den Figuren selbst. Dabei zeigt

Fig. 1A, 1 B, 1 C, 1 D, 1 E, 1 F, 1 G, 1 H jeweils in schematischer Darstellung in geschnittenen

Seitenansichten und Draufsichten Zwillingsheizzüge bzw. Koksöfen gemäß dem Stand der Technik;

Fig. 2, 3, 4, 5, 6, 7 jeweils in schematischer Darstellung in geschnittenen Seitenansichten in Breiten- und Tiefenrichtung Zwillingsheizzüge gemäß Ausführungsbeispielen; Fig. 8A, 8B, 8C, 8D, 8E jeweils in schematischer Darstellung in geschnittenen

Seitenansichten und in Draufsichten Zwillingsheizzüge bzw.

Koksofenvorrichtungen gemäß Ausführungsbeispielen;

Fig. 9 in schematischer Darstellung in geschnittener Seitenansicht einen Querschnitt bzw. eine Querschnittskontur eines Durchlasses in Zwillingsheizzügen gemäß

Ausführungsbeispielen;

Fig. 10 ein Verfahrensschaubild bezüglich des Betreibens einer Koksofenvorrichtung gemäß Ausführungsbeispielen; und

Fig. 1 1 , 12 jeweils in schematischer Darstellung in geschnittenen Seitenansichten

Zwillingsheizzüge gemäß Ausführungsbeispielen.

Bei Bezugszeichen, die nicht explizit in Bezug auf eine einzelne Figur beschrieben werden, wird auf die anderen Figuren verwiesen. In Figuren, welche den Stand der Technik beschreiben, sind die Positionen und winkeligen Ausrichtungen der einzelnen Einlässe und Durchlässe oder Strömungspfade nur exemplarisch (insbesondere nur in einzelnen Heizkanälen) und nicht vollständig illustriert oder nicht exakt winkelig angeordnet. In Figuren, welche die vorliegende Erfindung beschreiben, sind die Positionen und winkeligen Ausrichtungen der einzelnen Einlässe und Durchlässe oder Strömungspfade schematisch illustriert (insbesondere nur in einzelnen Heizkanälen), wobei die Beträge der jeweiligen Abstände oder die winkelige Ausrichtung in der Beschreibung näher definiert werden.

Die Figuren 1A, 1 B, 1 C, 1 D, 1 E, 1 F, 1 G, 1 H zeigen einen Koksofen 1 in der Art eines Horizontalkammerofens, mit mehreren Ofenkammern 2 jeweils mit Kohle-Charge. Die Ofenkammern 2 weisen eine Höhe z2 von z.B. 6 bis 8m auf. Die Ofenkammern 2 sind durch Läuferwände 3 abgeschottet, die sich jeweils in einer yz-Ebene erstrecken. Zwischen zwei Läuferwänden 3 bilden paarweise Heizkanäle 5.1 , 5.2 jeweils einen Zwillingsheizzug 5, dessen Innenwandung 5.3 den (frei von Kohle) von Gasen durchströmten Heizraum von der jeweiligen Ofenkammer abgrenzt. Die Heizkanäle 5.1 , 5.2 werden abwechselnd als beflammter oder abgasführender Heizkanal betrieben, was ein Umschalten der Strömungsrichtung erfordert und in einem Zyklus von z.B. 20min. erfolgt.

Die paarweisen Heizkanäle sind jeweils durch eine koppelnde Trennwand (Binderwand) 4 voneinander getrennt, in welcher oben und unten ein koppelnder Durchlass 4.4 vorgesehen ist, über welchen ein Kreisstrom 9 von rezirkuliertem Abgas realisierbar ist.

Benachbarte Zwillingsheizzüge sind durch eine abschottende Trennwand 4a ganz ohne Durchlässe vollständig voneinander abgeschottet.

In den Trennwänden 4, 4a ist jeweils ein Stufenluftkanal 4.1 angeordnet, welcher über wenigstens eine Verbrennungsstufe 4.2 bzw. den entsprechenden Einlass oder Auslass an den Heizkanal gekoppelt ist. Die jeweilige Verbrennungsstufe 4.2 ist in einer charakterisierenden Höhenposition z4 angeordnet. Beispielsweise werden zwei oder drei Höhenpositionen z4 definiert, in welchen Stufenluft eingelassen wird.

Die jeweiligen Wände sind aus Steinen gemauert, die jeweils eine Wandlage 3.1 definieren. Die x-Richtung kennzeichnet die Breite des Ofens 1 , die y-Richtung kennzeichnet die Tiefe (bzw. die horizontale Ausdrückrichtung bei einem Horizontalkammerofen), und die z-Richtung kennzeichnet die Vertikale (Hochachse). Die Mittenlängsachse M des jeweiligen Heizkanals verläuft durch das in x- und in y-Richtung zentrisch in Bezug auf die Innenoberflächen/Innenwandungen angeordnete Zentrum des jeweiligen Heizkanals. Das Zentrum des jeweiligen Zwillingsheizzuges ist nicht gekennzeichnet. Es liegt etwa im Zentrum der jeweiligen kreisumströmten Trennwand, insbesondere im Zentrum eines zentrisch angeordneten Stufenluftkanals. Der Begriff„zentrisch" oder„Zentrum" bezieht sich hier auf eine Mitte in der xy-Ebene, und der Begriff „mittig" oder„Mitte" bezieht sich hier auf die Höhen- Richtung (z).

In der so genannten Brennerebene 5.4 bzw. am Boden eines jeweiligen Heizkanals sind mehrere Einlässe angeordnet, nämlich ein (erster) Verbrennungsluft-Einlass 6, insbesondere für Koksofengasbeheizung, und ein weiterer Verbrennungsluft-Einlass 7, insbesondere für Mischgasbeheizung, und ein Koksofengas-Einlass 8. Über die Einlässe eingeleitetes Gas strömt an den Wandoberflächen 4.3 der Trennwände sowie an den Innenwandungen der Läuferwände nach oben.

Als Temperaturen am Koksofen 1 lassen sich nennen: Düsensteintemperatur T1 , (Gas- )Temperatur T2 im jeweiligen Heizkanal, und Temperatur T3 in der Ofenkammer. Die vorliegende Erfindung betrifft insbesondere eine möglichst homogene Verteilung der Temperatur T2.

Unter Bezugnahme auf die Figuren 1 F bis 8E werden im Folgenden die einzelnen Gasströme beschrieben. Der Gasstrom G1 kennzeichnet neu eingelassenes bzw. zugeführtes Beheizungsgas bzw. Verbrennungsluft. Der Gasstrom G1 kann einen Gasstrom G1a (Koksofengas) und/oder einen Gasstrom Gi b (Mischgas) umfassen. Der Gasstrom G4 kennzeichnet Rezirkulationsabgase, welche zurückgeführt bzw. im Kreis geführt werden. Der Gasstrom G5 kennzeichnet Gas bzw. Luft aus einer jeweiligen Verbrennungsstufe 4.2, 14.1 1 , und der Gasstrom G6 kennzeichnet Abgase, die aus dem jeweiligen Heizkanal oder Heizzug ausgeleitet werden. Unter Bezugnahme auf die Figuren 1 D, 1 E werden im Folgenden die bisher üblichen Abstände und Relativpositionen der einzelnen Einlässe und Durchlässe beschrieben.

Der Abstand d4 vorbekannter Durchlässe 4.4 in x-Richtung zueinander ist vergleichsweise groß. Der Abstand d5 des Koksofengas-Einlasses 8 zu den weiteren Einlässen 6, 7 in x- Richtung, insbesondere ein Abstand zwischen dem Koksofengas-Einlass 8; G1a und den weiteren eingelassenen Gasströmen G1 ist vergleichsweise klein. Der Abstand d5 ist kleiner als der Abstand d4. Der Abstand x4 des jeweiligen Durchlasses 4.4 zur Innenwandung der Läuferwand 3 ist vergleichsweise klein (insbesondere wurde bisher ein Abstand von 120 bis 140mm zwischen der Läuferwand und der Außenkante des Durchlasses eingehalten). Der Abstand x6, x8 des Einlasses 6, 8 zur Läuferwand 3 ist vergleichsweise groß. Der Abstand x8 ist kleiner als der Abstand x6. Der Abstand x4 ist deutlich kleiner als der Abstand x6, x8.

Die in Fig. 1 D gezeigten Rezirkulations-Pfeile sind nur schematisch dargestellt und geben nicht exakt die Richtung des jeweiligen Gasstroms wieder.

Fig. 1 G zeigt schematisch ein Beheizungsdifferential 5.6 mit einzelnen Öffnungen 5.61 , über welche das Gas in einem Kopfbereich des Heizkanals umgeleitet werden kann. Das Beheizungsdifferential 5.6 ist durch eine (Zwischen-)Decke 5.7 vom jeweiligen Zwillingsheizzug abgeschottet. Das Beheizungsdifferential 5.6 ist unabhängig vom Kreisstrom 9.

Auf eine Illustration des unter der Brennerebene 5.4 angeordneten Mittelbaus des Ofens wird bewusst verzichtet, zwecks besserer Übersichtlichkeit. Im Mittelbau kann die Zuleitung der Gase und das Regeln der Volumenströme erfolgen.

Die Fig. 2, 3, 4, 5, 6, 7 zeigen die einzelnen erfindungsgemäßen Maßnahmen zum Optimieren des Temperaturprofils im jeweiligen Heizkanal. In den Figuren 8A, 8B, 8C, 8D, 8E werden einzelne Maßnahmen weiter im Detail illustriert. Eine Koksofenvorrichtung 10 mit Ofenkammern 10.2, insbesondere mit Horizontalkammerofenkammern weist eine Vielzahl von Zwillingsheizzügen 13 jeweils mit einem beflammten Heizkanal 1 1 und einem abgasführenden Heizkanal 12 aus. Die Heizkanäle definieren mit deren Innenwandung 1 1.1 einen Heizzug zum Durchleiten von Gasen. Die einzelnen Heizkanäle sind durch Trennwände (Binderwand) 14 mit koppelnden Durchlässen

14.2 und abschottende Trennwände 14a ohne Durchlässe voneinander abgegrenzt. In den Trennwänden 14, 14a ist jeweils wenigstens ein Stufenluftkanal 14.1 mit einer oder mehreren Verbrennungsstufen 14.1 1 bzw. Einlässen oder Auslässen vom/zum Heizkanal vorgesehen. Läuferwände 15 begrenzen die Ofenkammern und Heizkanäle in y-Richtung.

Gas kann über mehrere Einlässe 16, 17, 18 in den jeweiligen Heizkanal einströmen, insbesondere über einen ersten Verbrennungsluft-Einlass 16, insbesondere für Koksofengasbeheizung, über einen weiteren Verbrennungsluft-Einlass 17, insbesondere für Mischgasbeheizung, und über einen Koksofengas-Einlass 18 bzw. eine Koksofengas-Düse. Das eingelassene und rezirkulierte Gas strömt sowohl zentrisch als auch an Innenoberflächen 14.3, 15.1 der jeweiligen Trennwand bzw. Läuferwand durch den jeweiligen Heizkanal nach unten oder oben. In Fig. 2 wird vorrangig eine der erfindungsgemäßen Maßnahmen illustriert. Ein Kreisstrom 19 wird gebildet durch mehrere Kreisströme, die auf mehreren Pfaden umeinander herum strömen. In Fig. 2 ist ein äußerer Kreisstrompfad 19.1 gezeigt, welcher zwei weiter innen angeordnete Kreisstrompfade 19.2, 19.3 umgrenzt und umströmt, wobei die inneren Kreisstrompfade 19.2,

19.3 über die entsprechenden zusätzlichen Abgasrezirkulations-Durchlässe 14.2 definiert sind.

Fig. 2 zeigt eine Anordnung mit drei Kreisstrompfaden 19.1 , 19.2, 19.3, welche um einen zumindest annähernd auf halber Höhenposition im Heizkanal angeordneten Stufenluftauslass 14.1 1 herum verlaufen. Aus dem Stufenluftauslass 14.1 1 strömt Stufengas G5. Wahlweise können auch mehrere Stufenluftauslässe vorgesehen sein, insbesondere auch oberhalb des innerste Kreisstrompfades 19.3. Die Optimierung des Strömungs-und Wärmeprofils kann dabei vornehmlich mittels des rezirkulierten Gases G4 erfolgen, sowohl im Bodenbereich als auch in mehreren Höhenpositionen darüber.

Fig. 3 zeigt eine Anordnung mit mehr als drei Kreisstrompfaden, wobei die Anzahl unterer Durchlässe größer ist als die Anzahl oberer Durchlässe. Die Optimierung kann dabei insbesondere im Bodenbereich vornehmlich mittels rezirkuliertem Gas G4 erfolgen, ohne das Erfordernis von gestuftem Einlass von Stufengas. Im Kopfbereich des Heizkanals ist ein Beheizungsdifferential 5.6 vorgesehen, welches z.B. mittels Schiebersteinen unabhängig von den jeweiligen Kreisströmen hinzuschaltbar ist.

Fig. 4 zeigt eine Anordnung mit mehr als drei Kreisstrompfaden, wobei die Anzahl unterer Durchlässe deutlich größer ist als die Anzahl oberer Durchlässe. Insbesondere sind sechs untere Durchlässe (bzw. Paare von Durchlässen) in sechs unterschiedlichen Höhenpositionen vorgesehen. Die unteren Durchlässe sind allesamt unter einem Stufenluftauslass 14.1 1 eines zentrischen Stufenluftkanals angeordnet. Die sechs unteren Durchlässe sind paarweise angrenzend zum Stufenluftkanal vorgesehen, und die oberen Durchlässe sind einzeln vorgesehen und zentrisch angeordnet. Oberhalb vom Stufenluftauslass ist ein einzelner zentrischer unterer Durchlass angeordnet. Bei dieser Anordnung ergibt sich ein besonders breiter zentrischer zweistromiger Strömungspfad von unten nach oben, welcher weitre oben durch Stufengas und das zentrisch eingeleitete Rezirkulationsgas ergänzt wird. Unter Bezugnahme auf die Figuren 5, 6, 7 wird die Querschnittsfläche Q14 des jeweiligen koppelnden Durchlasses 14.2 an der Innenoberfläche zum Heizkanal beschrieben. Die Querschnittsfläche Q14 von oberhalb von einem Stufenluftkanal 14.1 angeordneten Durchlässen 14.2 ist breiter bzw. langgestreckter als die Querschnittsfläche Q14 von seitlich neben dem Stufenluftkanal 14.1 angeordneten Durchlässen 14.2.

Fig. 5 zeigt eine Anordnung mit im Vergleich zur Fig. 4 mehreren zentrischen Stufenluftauslässen 14.1 1 und mit Durchlässen mit unterschiedlichem Querschnitt: die unteren Durchlässe sind zumindest teilweise langgestreckt in z-Richtung, und die oberen Durchlässe sind langgestreckt in x-Richtung. Bei dieser Variante wird der Stufenluftkanal beidseitig von mehreren unteren Durchlässen eingefasst, jedoch nicht paarweise. Die Anzahl der unteren Durchlässe auf der einen Seite ist ungleich der Anzahl der Durchlässe auf der anderen Seite. Die in z-Richtung gestreckten Durchlässe ermöglichen eine vorteilhafte relative Anordnung, insbesondere sehr weit zentrisch (vergleichsweise kleiner Abstand d2), und insbesondere auch bei optimiertem Strömungsprofil. Der vergleichsweise große Querschnitt Q14 des auf der rechten Seite dargestellten Durchlasses ermöglicht einen starken Strömungs-Effekt des eingelassenen Gases G1 , insbesondere über einen großen Höhenabschnitt. In Fig. 5 ist ein Abstand d2 zwischen einer innenliegenden Wand/Kante des entsprechenden Durchlasses 14.2 und einer außenliegenden Wand/Kante eines insbesondere zentrisch im Heizzug angeordneten Stufenluftkanals 14.1 in x-Richtung zueinander dargestellt. Dieser Abstand d2 ist erfindungsgemäß sehr klein, insbesondere 30 bis 100mm, bevorzugt 50 bis 70mm. Insbesondere bei zentrischer Anordnung des Stufenluftkanals 14.1 können die Durchlässe 14.2 erfindungsgemäß so nahe wie möglich in x-Richtung daneben positioniert sein.

Fig. 6 zeigt eine Anordnung mit zwei Stufenluftkanälen, die separat in mehreren Höhenpositionen in den Heizkanal münden. Alle unteren Durchlässe 14.2 unterhalb des obersten Stufenluftauslasses sind zentrisch angeordnet, insbesondere symmetrisch in Bezug auf die Mittenlängsachse. Oberhalb von den Stufenlufteinlässen 14.1 1 sind zwei weitere Paare von unteren Durchlässen (vier Durchlässe) in einer Breitenposition (x) zumindest annähernd entsprechend der Breitenposition der Stufengasauslässe 14.1 1 angeordnet. Die paarweisen Durchlässe können auch auf mehreren Höhenpositionen, auch seitlich direkt nebeneinander, angeordnet sein.

Die unteren Durchlässe können alternativ auch schmaler als der/die oberen Durchlässe und/oder schmaler als die obersten unteren Durchlässe ausgeführt sein. Die die obersten unteren Durchlässe können auch als einzelnen Durchlässe (keine Paare) vorgesehen sein und in einer derartigen Breitenposition angeordnet sein, dass Stufengas am jeweiligen Durchlass vorbei/entlang strömen kann und sich mit dem rezirkulierten Gas vermengen kann.

Fig. 7 zeigt eine Anordnung mit zwei Stufenluftkanälen, die zusammen vereint in einer Höhenposition zwischen einzelnen unteren Durchlässen 14.2 zentrisch in den Heizkanal münden, wobei im jeweiligen Stufenluftkanal optional weitere separate Stufenluftauslässe vorgesehen sein können. Der zentrische Stufenlufteinlass 14.1 1 erstreckt sich insbesondere über eine Breite, welche den darüber liegenden unteren Durchlass vollständig überlappt. Die unteren Durchlässe sind zueinander in x-Richtung versetzt um den Versatz x2 angeordnet. Der Versatz x2 liefert auch den Vorteil einer besonders breiten, homogenen Strömung (ohne stärker strömendem Kern), insbesondere bei in x-Richtung vergleichsweise breiten Durchlässen 14.2. Der Kreisstrom kann dadurch noch homogener ausgestaltet werden. Wahlweise können mehrere obere Durchlässe vorgesehen sein. Ein solcher Versatz kann auch bei der in Fig. 6 gezeigten Anordnung vorgesehen sein. In Fig. 7 ist ein Versatz x2 in x-Richtung illustriert. Dieser Versatz zwischen benachbarten Durchlässen 14.2 beträgt insbesondere 50 bis 100mm und liefert den Vorteil einer guten Wärmeverteilung.

Unter Bezugnahme auf die Figuren 8A, 8B, 8C, 8D, 8E werden im Folgenden die erfindungsgemäßen Abstände und Relativpositionen der einzelnen Einlässe und Durchlässe an einem weiteren Ausführungsbeispiel beschrieben. In Fig. 8A ist schematisch (in einigen Heizkanälen) die Anordnung der Einlässe 16, 17, 18 gegenüberliegend voneinander, und in x-Richtung beabstandet von der Mittenlängsachse möglichst nahe an den Läuferwänden 15 gezeigt. Diese Anordnung kann bei jedem der Heizkanäle gewählt werden, oder auch abgewandelt werden. In Fig. 8B ist gezeigt, dass die Einlässe 16, 17, 18 in x-Richtung weiter außen als die Durchlässe 14.2 angeordnet sind. Die Durchlässe sind in einem Abstand d14 zueinander angeordnet, der kleiner ist als der Abstand d15 der Einlässe.

In Fig. 8C ist gezeigt, dass das am weitesten in der Mitte, zentrisch einströmende Stufengas G5 weiter außen beidseitig von rezirkuliertem Gas G4 umströmt wird, welches weiter außen jeweils von eingelassenem Gas G1 , G1a, Gi b umströmt wird. Der in Fig. 8C dargestellte Winkel a, insbesondere den Koksofengas-Einlass 18 betreffend, ist zwecks besseren Verständnisses übermäßig groß eingestellt. Erfindungsgemäß kann der Winkel α besonders klein sein, insbesondere gegen Null konvergieren oder 0° sein. Je nach Ausgestaltung des Mittelbaus kann auch ein Winkel im Bereich von 5 bis 10° ein rationaler Kompromiss aus zusätzlichem konstruktivem, anlagentechnischem Aufwand und erzieltem strömungstechnischen Effekt sein.

Die in Fig. 8C gezeigten Durchlässe 14.2 bzw. der Stufengaseinlass 14.1 1 können in der Anordnung, Anzahl und Geometrie gemäß den in Fig. 2 bis 7 diskutierten Varianten variiert werden. Die in Fig. 8C gezeigten einzelnen Gasströme G1 , G1a, G4, G5 lassen erkennen, auf welche Weise erfindungsgemäß eine Separation der Gasströme bzw. ein paralleles Strömen zumindest über einen gewissen Höhenabschnitt realisierbar ist. Der Abstand d14 der Durchlässe 14.2 in x-Richtung zueinander ist vergleichsweise klein, insbesondere kleiner als 50, 45, 40, 35 oder 30 Prozent der Breite (x) des Heizkanals. Der Abstand d15 des Koksofengas-Einlasses 18 zu den weiteren Einlässen 16, 17 in x-Richtung ist vergleichsweise groß, insbesondere größer als 70, 75, 80 oder 85 Prozent der Breite (x) des Heizkanals. Der Abstand d15 ist deutlich größer als der Abstand d14, insbesondere mindestens 35, 40, 45, 50 oder 55 Prozent größer. Der Abstand x14 des jeweiligen Durchlasses 14.2 zur Innenwandung der Läuferwand 3 ist vergleichsweise groß, insbesondere größer als 35, 40 oder 45 Prozent der Breite (x) des Heizkanals (bei paarweisen Durchlässen). Besonders bevorzugt ist der Abstand x14 mindestens größer als 40 Prozent der Breite (x) des Heizkanals, insbesondere im Bodenbereich. Der Abstand x16, x18 des Einlasses 6, 8 zur Läuferwand 15 ist vergleichsweise klein, insbesondere kleiner als 20, 15 oder 10 Prozent der Breite (x) des Heizkanals. Der Abstand x16, x18 ist jeweils kleiner als der Abstand x14. Insbesondere ist der Abstand x14 mindestens doppelt oder mindestens dreifach so groß wie der Abstand x16, x18. Unter Bezugnahme auf die Figuren 8B bis 8E werden im Folgenden die einzelnen Gasströme beschrieben. Der jeweilige Gasstrompfad GP1 kennzeichnet erfindungsgemäße Einströmpfade bzw. Strömungspfade für wenigstens eines der über die Einlässe eingeleiteten Gase G1. Der jeweilige Gasstrompfad GP4 kennzeichnet erfindungsgemäße Strömungspfade von rezirkuliertem Abgas/Rauchgas G4, und der jeweilige Gasstrompfad GP5 kennzeichnet erfindungsgemäße Strömungspfade von gestuft eingeleitetem Gas G5.

Der in Fig. 8C, 8E illustrierte Einströmwinkel a, insbesondere für Koksofengas, ist bevorzugt kleiner als 30°, insbesondere kleiner als 10° jeweils in Bezug auf die z-Achse. Der Einströmwinkel α kann analog auch für die weiteren Einlässe 17, 18 realisiert werden.

Die jeweilige y-Position der einzelnen Einlässe kann insbesondere zentrisch sein.

Die in Bezug auf die jeweiligen Einlässe und Durchlässe erwähnten Abstände und Relativpositionen können sich reziprok auch auf die Abstände und Relativpositionen der jeweiligen Gastrompfade/Kreisstrompfade beziehen, zumindest in einem Abschnitt stromauf von einer nachfolgenden Durchmischung mit benachbarten Gasströmen. In Fig. 9 ist ein Durchlass-Querschnitt in der yz-Ebene gezeigt. Das rezirkulierte Gas G4 durchströmt den jeweiligen unteren Durchlass 14.2 von oben kommend und strömt auch wieder nach oben ab. Das Gas G4 umströmt dabei zwei abgerundete Strömungskanten 14.21 , und strömt an zwei scharfen Strömungskanten 14.22 vorbei. Die Trennwand 14 begrenzt den Durchlass oben mit einer konvexen Wölbung nach unten. Dies begünstigt einen niedrigen Strömungswiderstand. Die Trennwand 14 begrenzt den Durchlass auch unten. Der kreisförmige Kreisstrom, der hier einen sehr engen Radius aufweist, kann somit ohne starke Verwirbelungen durch den Durchlass strömen und nach oben umgeleitet werden. Nach unten können eine oder mehrere scharfe Kanten 14.22 eine Strömung begrenzen. Diese Art der Strömungsoptimierung ermöglicht auch, mittels der Art und Weise, die neuen Gase einzulassen, einen großen Effekt zu erzielen. Insbesondere erzeugen die rezirkulierten Gase G4 keine oder nur geringe Turbulenzen, so dass das Strömungsprofil effektiv mittels der Einlässe optimiert werden kann.

In Fig. 10 ist schematisch illustriert, dass die Koksofenvorrichtung 10 eine Steuerungseinheit 20 aufweisen kann, eingerichtet zum Steuern/Regeln eines der zuvor beschrieben Volumenströme V(t), insbesondere zumindest der Volumenströme G1 , G1a, G1 b, G4, G5, G6. Das Steuern und Einstellen der Volumenströme ermöglicht eine Einflussnahme auf das Strömungs- und Temperaturprofil im jeweiligen Heizkanal 1 1 , 12. Somit kann über die Volumenströme mittelbar auch die NOx-Emission eingestellt werden.

Die Fig. 1 1 , 12 zeigen Varianten des in Fig. 5 gezeigten Ausführungsbeispiels. In Fig. 1 1 sind einige der oberhalb des obersten Stufenluftauslasses angeordneten unteren Durchlässe paarweise ausgebildet, wobei ein einzelner größerer, breiterer unterer Durchlass vorgesehen ist.

In Fig. 12 sind nur zwei Rezirkulationsdurchlässe zwischen der untersten Stufengasöffnung und der Brennerebene vorgesehen, insbesondere in einer vergleichsweise hohen Höhenposition größer 500mm. Dies ermöglicht, auf weiter unten im Bodenbereich angeordnete Durchlässe zu verzichten.

Die in den Fig. 2 bis 12 gezeigten Positionen der Einlässe und Durchlässe sind exemplarisch gezeigt. Jeder Einlass bzw. Durchlass kann individuell angeordnet und ausgerichtet werden. Die gezeigten Ausführungsbeispiele können insbesondere auch durch Variation der Anordnung der unteren Durchlässe variiert werden.

Insbesondere unter Bezugnahme auf die Ausführungsbeispiele der Figuren 5, 6, 1 1 , 12 kann eine Variation der Anordnung und Größe der Durchlässe, insbesondere der oberhalb des obersten Stufenluftauslasses angeordneten Durchlässe und/oder der in einer Höhenposition zwischen einzelnen Stufenluftauslässen angeordneten Durchlässe, jeweils durch Wechsel auf paarweise Durchlässe erfolgen. Dabei kann auch auf einige oder alle der im Bodenbereich angeordneten Durchlässe verzichtet werden, bei einer Verlagerung dieser Durchlässe weiter nach oben in einen Höhenbereich oberhalb von 500mm. Die Anzahl der Stufenluftauslässe bzw. der Höhenpositionen mit Stufung ist nicht auf die dargestellten Varianten limitiert.

Bezugszeichenliste:

1 Koksofen, insbesondere Horizontalkammerofen

2 Ofenkammer mit Kohle-Charge

3 Läuferwand

3.1 Wandlage

4 koppelnde Trennwand bzw. Binderwand

4a abschottende Trennwand ohne Durchlässe

4.1 Kanal bzw. Stufenluftkanal in Trennwand

4.2 Verbrennungsstufe bzw. Einlass oder Auslass am Stufenluftkanal vom/zum Heizkanal

4.3 Wandoberfläche

4.4 zwei Heizkanäle koppelnder Durchlass

(bzw. Abgasumkehrstelle bzw. Umkehrstelle für Beheizungsgas)

5 Zwillingsheizzug (paarweise Anordnung von zwei Vertikalheizzügen)

5.1 beflammter Heizkanal (Vertikalheizzug)

5.2 abgasführender Heizkanal (Vertikalheizzug)

5.3 Innenwandung

5.4 Brennerebene bzw. Boden eines Heizkanals

5.6 Beheizungsdifferential

5.61 einzelne Öffnung im Beheizungsdifferential

5.7 (Zwischen-)Decke eines Heizkanals

6 (erster) Verbrennungsluft-Einlass, insbesondere für Koksofengasbeheizung

7 weiterer Verbrennungsluft-Einlass bzw. Einlass für Mischgasbeheizung

8 Koksofengas-Einlass bzw. Koksofengas-Düse

9 Kreisstrom

10 Koksofenvorrichtung, insbesondere mit Horizontalkammerofen

10.2 Ofenkammer

1 1 beflammter Heizkanal (Vertikalheizzug)

1 1.1 Innenwandung

12 abgasführender Heizkanal (Vertikalheizzug)

13 Zwillingsheizzug (paarweise Anordnung von zwei Vertikalheizzügen)

14 Trennwand bzw. Binderwand 14a abschottende Trennwand ohne Durchlässe

14.1 Kanal bzw. Stufenluftkanal in Trennwand

14.1 1 Verbrennungsstufe bzw. Stufenluft-Einlass oder Auslass am Stufenkanal vom/zum Heizkanal

14.2 zwei Heizkanäle koppelnder Durchlass

14.21 abgerundete Strömungskante

14.22 scharfe Strömungskante

14.3 Innenoberfläche der Trennwand

15 Läuferwand

15.1 Innenoberfläche der Läuferwand

16 (erster) Verbrennungsluft-Einlass, insbesondere für Koksofengasbeheizung

17 weiterer Verbrennungsluft-Einlass bzw. Einlass für Mischgasbeheizung

18 Koksofengas-Einlass bzw. Koksofengas-Düse

19 Kreisstrom

19.1 äußerer Kreisstrompfad

19.2 (erster) innerer Kreisstrompfad

19.3 (weiterer) innerer Kreisstrom pfad

20 Logikeinheit bzw. Steuerungseinrichtung d2 Abstand zwischen einer innenliegenden Wand/Kante des entsprechenden Durchlasses

14.2 und einer außenliegenden Wand/Kante eines insbesondere zentrisch im Heizzug angeordneten Stufenluftkanals 14.1 in x-Richtung zueinander

d4 Abstand vorbekannter Durchlässe 4.4 eines Zwillingsheizzuges in x-Richtung zueinander

d5 Abstand des Koksofengas-Einlasses 8 zu weiteren Einlässen in x-Richtung, insbesondere Abstand zwischen dem Koksofengas-Einlass 8; G1a und den weiteren eingelassenen Gasströmen G1

d14 Abstand erfindungsgemäßer Durchlässe 14.2 eines Zwillingsheizzuges in x-Richtung zueinander

d15 erfindungsgemäßer Abstand des Koksofengas-Einlasses 16 zu weiteren Einlässen in x-

Richtung, insbesondere zwischen G1 und G1a G1 Beheizungsgas bzw. Verbrennungsluft

G1a Koksofengas

Gi b Mischgas

G4 Rezirkulationsabgas

G5 Stufengas bzw. Stufenluft aus Verbrennungsstufe

G6 Abgas

GP1 Einströmpfad bzw. Strömungspfad für wenigstens eines der über die Einlässe eingeleiteten Gase

GP4 Strömungspfad von rezirkuliertem Abgas/Rauchgas

GP5 Strömungspfad von gestuft eingeleitetem Gas

M Mittenlängsachse des jeweiligen Heizkanals Q14 Querschnittsfläche des koppelnden Durchlasses an der Innenoberfläche zum Heizkanal

T1 Düsensteintemperatur

T2 (Gas-)Temperatur im Heizzug/Heizkanal

T3 Temperatur in der Ofenkammer

Volumenstrom des jeweiligen Gasstroms, z.B. in m3/h x horizontale Richtung (Breite oder Länge)

x2 Versatz in x-Richtung

x4 Abstand des vorbekannten Durchlasses 4.4 zur Innenwandung der Läuferwand 3 x6 Abstand des vorbekannten Einlasses 6 zur Innenwandung der Läuferwand 3 x8 Abstand des vorbekannten Einlasses 8 zur Innenwandung der Läuferwand 3 x14 Abstand des erfindungsgemäßen Durchlasses 14.2 zur Läuferwand

x16 Abstand des erfindungsgemäßen Einlasses 16 zur Läuferwand

x18 Abstand des erfindungsgemäßen Einlasses 18 zur Läuferwand y Tiefe bzw. horizontale Ausdrückrichtung

z vertikale Richtung (Hochachse) z2 Ofenkammerhöhe

z4 Höhenposition eines jeweiligen Stufenluftein-/auslasses

α Einströmwinkel für Koksofengas in Bezug auf die z-Achse (Vertikale)