Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITION BASED ON LITHIUM BIS(FLUOROSULFONYL)IMIDE SALT
Document Type and Number:
WIPO Patent Application WO/2019/229367
Kind Code:
A1
Abstract:
The present invention relates to a composition comprising: at least 99.75% by weight of a lithium bis(fluorosulfonyl)imide salt; - CL- chlorides in a content by weight of strictly less than 20 ppm; - F- fluorides in a content by weight of strictly greater than 0 ppm; wherein: [S042-] + [CI- ] + [F- ] ≤<150 ppm.

Inventors:
SCHMIDT GRÉGORY (FR)
Application Number:
PCT/FR2019/051245
Publication Date:
December 05, 2019
Filing Date:
May 28, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ARKEMA FRANCE (FR)
International Classes:
B01D11/04; H01M10/052; B01D9/00
Domestic Patent References:
WO2015158979A12015-10-22
WO2009123328A12009-10-08
Foreign References:
EP2977349A12016-01-27
US20170133715A12017-05-11
US20160149262A12016-05-26
Attorney, Agent or Firm:
CHAHINE, Audrey (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Composition comprenant :

- au moins 99,75%, de préférence au moins 99,85%, avantageusement au moins 99,95%, encore plus avantageusement 99,99% en masse d’un sel de lithium de bis(fluorosulfonyl)imide ;

- des chlorures Cl , en une teneur massique strictement inférieure à 20 ppm ;

- des fluorures F- en une teneur massique strictement supérieure à 0 ppm ;

dans laquelle :

[S042 ] + [CI ] + [F ] < 150 ppm

2. Composition selon la revendication 1 , caractérisée en ce que :

[S042 ] + [CI ] + [P] < 120 ppm, préférentiellement [S042 ] + [CI ] + [P] < 100 ppm, avantageusement [S042 ] + [CI ] + [P] < 80 ppm, encore plus avantageusement [S042 ] + [CI ] + [P] < 50 ppm, en particulier [S042 ] + [CI ] + [P] < 30 ppm, et par exemple [S042 ] + [CI ] + [P] < 20 ppm.

3. Composition selon l’une quelconque des revendications 1 ou 2, dans laquelle la teneur massique en sulfates est inférieure ou égale à 150 ppm, de préférence inférieure ou égale à 100 ppm, préférentiellement inférieure ou égale à 50 ppm, avantageusement inférieure ou égale à 30 ppm, encore plus avantageusement inférieure ou égale à 20 ppm, en particulier inférieure ou égale à 10 ppm, par rapport à la masse totale de la composition.

4. Composition selon l’une quelconque des revendications 1 à 3, dans laquelle la teneur massique en sulfates est strictement supérieure à 0 ppm, de préférence supérieure ou égale à 0,1 ppm, par rapport à la masse totale de la composition.

5. Composition selon l’une quelconque des revendications 1 à 4, dans laquelle la teneur massique en chlorures Cl est inférieure ou égale à 18 ppm, de préférence inférieure ou égale à 15 ppm, préférentiellement inférieure ou égale à 12 ppm, avantageusement inférieure ou égale à 10 ppm par rapport à la masse totale de la composition.

6. Composition selon l’une quelconque des revendications 1 à 5, dans laquelle la teneur massique en chlorures CI est strictement supérieure à 0 ppm, de préférence supérieure ou égale à 0,1 ppm, préférentiellement supérieure ou égale à 0,5 ppm, encore plus préférentiellement supérieure ou égale à 1 ppm, avantageusement supérieure ou égale à 2 ppm, encore plus avantageusement supérieure ou égale à 3 ppm, et en particulier supérieure ou égale à 4 ppm par rapport à la masse totale de la composition.

7. Composition selon l’une quelconque des revendications 1 à 6, dans laquelle la teneur massique en chlorures Cl va de 0,1 ppm à moins de 20 ppm, de préférence de 0,1 ppm à 18 ppm, préférentiellement de 0,1 ppm à 15 ppm, avantageusement de 0,1 ppm à 12 ppm, et en particulier de 0,1 ppm à 10 ppm par rapport à la masse totale de la composition.

8. Composition selon l’une quelconque des revendications 1 à 7, dans laquelle la teneur massique en fluorures F est supérieure ou égale à 0,1 ppm, de préférence supérieure ou égale à 0,5 ppm, préférentiellement supérieure ou égale à 1 ppm, avantageusement supérieure ou égale à 2 ppm, encore plus avantageusement supérieure ou égale à 3 ppm, et en particulier supérieure ou égale à 4 ppm par rapport à la masse totale de la composition.

9. Composition selon l’une quelconque des revendications 1 à 8, dans laquelle la teneur massique en fluorures est inférieure ou égale à 100 ppm, de préférence inférieure ou égale à 80 ppm, préférentiellement inférieure ou égale à 60 ppm, avantageusement inférieure ou égale à 50 ppm, encore plus avantageusement inférieure ou égale à 30 ppm par rapport à la masse totale de la composition.

10. Composition selon l’une quelconque des revendications 1 à 9, caractérisée en ce qu’elle comprend moins de 200 ppm de K+, de préférence moins de 150 ppm, préférentiellement moins de 100 ppm, avantageusement moins de 50 ppm, encore plus avantageusement moins de 30 ppm, et en particulier moins de 10 ppm en masse par rapport à la masse totale de la composition.

1 1. Composition selon l’une quelconque des revendications 1 à 10, caractérisée en ce qu’elle comprend strictement plus de 0 ppm de K+, préférentiellement de strictement plus de 0 ppm à moins de 100 ppm, avantageusement de strictement plus de 0 ppm à moins de 50 ppm, encore plus avantageusement de strictement plus de 0 ppm à moins de 30 ppm, et en particulier de strictement plus de 0 ppm à moins de 10 ppm en masse par rapport à la masse totale de la composition.

12. Composition selon l’une quelconque des revendications 1 à 1 1 , caractérisée en ce

[S042 ] + [CI ] + [F ] + [K+] < 150 ppm

13. Composition selon l’une quelconque des revendications 1 à 12, caractérisée en ce qu’elle comprend moins de 200 ppm d’eau, de préférence moins de 150 ppm, préférentiellement moins de 100 ppm, avantageusement moins de 50 ppm, encore plus avantageusement moins de 30 ppm, et en particulier moins de 10 ppm en masse d’eau par rapport à la masse totale de la composition.

14. Composition selon l’une quelconque des revendications 1 à 13, caractérisée en ce qu’elle comprend strictement plus de 0 ppm d’eau, préférentiellement de strictement plus de 0 ppm à moins de 100 ppm, avantageusement de strictement plus de 0 ppm à moins de 50 ppm, encore plus avantageusement de strictement plus de 0 ppm à moins de 30 ppm, et en particulier de strictement plus de 0 ppm à moins de 10 ppm en masse par rapport à la masse totale de la composition.

15. Procédé de préparation de la composition telle que définie selon l’une quelconque des revendications 1 à 14, comprenant un procédé de purification d’un sel de lithium de bis(fluorosulfonyl)imide en solution dans un solvant organique S1 , ledit procédé de purification t comprenant les étapes suivantes :

a) extraction liquide-liquide dudit sel à partir de la solution contenant le solvant organique S1 et le sel, avec de l’eau désionisée pour former une solution aqueuse dudit sel de bis(fluorosulfonyl)imide ;

a’) éventuelle concentration de ladite solution aqueuse ;

b) extraction liquide-liquide du sel de lithium de bis(fluorosulfonyl)imide à partir de ladite solution aqueuse (obtenue à l’étape a ou à l’étape a’), avec un solvant organique S2;

c) concentration du sel de lithium de bis(fluorosulfonyl)imide obtenu à l’étape b) pour former une composition C,

d) cristallisation du sel de lithium de bis(fluorosulfonyl)imide à partir de la composition C;

e) éventuelle étape de filtration,

pour conduire à la composition telle que définie selon l’une quelconque des revendications 1 à 14,

ledit procédé de purification étant caractérisé en ce que la composition C comprend au moins 30% en poids d’un extrait sec ES, ledit extrait sec ES étant caractérisé en ce que : il comprend le sel de lithium de bis(fluorosulfonyl)imide, de préférence à une teneur supérieure ou égale à 99,90% en poids par rapport au poids total dudit extrait sec ES ;

- la somme des teneurs totales massiques en chlorures, en sulfates et fluorures est strictement supérieure à 0 et inférieure ou égale à 500 ppm, de préférence inférieure ou égale à 300 ppm, préférentiellement inférieure ou égale à 200 ppm en poids par rapport au poids total dudit extrait sec ES.

16. Utilisation de la composition telle que définie selon l’une quelconque des revendications 1 à 14, dans une batterie, par exemple une batterie Li-ion, en particulier à une température supérieure ou égale à 25°C, de préférence comprise entre 25 °C et 80 °C, et/ou en particulier à une tenson comprise entre 3,5 et 5 volts, de préférence entre 4,2 et 4,5 volts.

17. Utilisation de la composition telle que définie selon l’une quelconque des revendications 1 à 14, pour améliorer la durée de vie d’une batterie.

Description:
Composition à base de sel de lithium de bis(fluorosulfonyl)imide

DOMAINE DE L'INVENTION

La présente invention concerne une composition à base de sel de lithium de bis(fluorosulfonyl)imide.

ARRIERE-PLAN TECHNIQUE

Les anions de type sulfonylimide, de par leur très faible basicité, sont de plus en plus utilisés dans le domaine du stockage d’énergie sous forme de sels inorganiques dans les batteries, ou de sels organiques dans les super condensateurs ou dans le domaine des liquides ioniques. Le marché des batteries étant en plein essor et la réduction des coûts de fabrication des batteries devenant un enjeu majeur, un procédé de synthèse à grande échelle et à bas coût de ce type d’anions est nécessaire.

Dans le domaine spécifique des batteries Li-ion, le sel actuellement le plus utilisé est le LiPF 6 mais ce sel montre de nombreux désavantages tels qu’une stabilité thermique limitée, une sensibilité à l’hydrolyse et donc une plus faible sécurité de la batterie. Récemment de nouveaux sels possédant le groupement FS0 2 ont été étudiés et ont démontré de nombreux avantages comme une meilleure conductivité ionique et une résistance à l’hydrolyse. L’un de ces sels, le LiFSI (LiN(FS0 2 ) 2 ) a montré des propriétés très intéressantes qui font de lui un bon candidat pour remplacer le LiPF 6 .

L’identification et la quantification des impuretés dans les sels et/ou électrolytes, et la compréhension de leurs impacts sur les performances de la batterie deviennent primordiales. Par exemple, les impuretés possédant un proton mobile, en raison de leur interférence avec les réactions électrochimiques, conduisent à des performances et une stabilité globale moindre des batteries Li-ion. D’autres impuretés peuvent induire une corrosion des composants d’une batterie, tels que les électrodes et/ou collecteur de courant.

Il existe donc un besoin pour de nouvelles compositions à base de sel de lithium de bis(fluorosulfonyl)imide permettant de remédier, au moins partiellement, à au moins l’un des inconvénients susmentionnés.

En particulier, il existe un besoin pour de nouvelles compositions à base de sel de lithium de bis(fluorosulfonyl) ayant une durée de vie améliorée et/ou ayant un impact limité sur la corrosion des constituants de la batterie (par exemple collecteur de courant, ...). DESCRIPTION DE L’INVENTION

La présente invention concerne une composition comprenant :

- au moins 99,75%, de préférence au moins 99,85%, avantageusement au moins 99,95%, encore plus avantageusement 99,99% en masse d’un sel de lithium de bis(fluorosulfonyl)imide ;

- des chlorures Cl , en une teneur massique strictement inférieure à 20 ppm ;

- des fluorures F- en une teneur massique strictement supérieure à 0 ppm ;

dans laquelle :

[S0 4 2 ] + [CI ] + [F ] < 150 ppm

Dans le cadre de l’invention, l’expression suivante :

[S0 4 2 ] + [CI ] + [F ] < 150 ppm

signifie que la somme des teneurs totales massiques en sulfates (S0 2 ), en chlorures (CI ) et en fluorures (F ) est inférieure ou égale à 150 ppm, par rapport à la masse totale de la composition.

Dans le cadre de l’invention, on utilise de manière équivalente les termes « sel de lithium de bis(fluorosulfonyl)imide », « lithium bis(sulfonyl)imidure », « LiFSI », « LiN(FS0 2 ) 2 » , « lithium de bis(sulfonyl)imide », ou « bis(fluorosulfonyl)imidure de lithium ».

Dans le cadre de l’invention, le terme de « ppm » ou « partie par million » s’entend de ppm en poids.

De préférence, la composition susmentionnée est telle que [S0 2 ] + [CI ] + [F ] < 120 ppm, préférentiellement [S0 2 ] + [CI ] + [F ] < 100 ppm, avantageusement [S0 2 ] + [CI ] + [F ] < 80 ppm, encore plus avantageusement [S0 2 ] + [CI ] + [F ] < 50 ppm, en particulier [S0 2 ] + [CI ] + [F ] < 30 ppm, et par exemple [S0 2 ] + [CI ] + [F ] < 20 ppm.

La composition peut comprendre une teneur massique en sulfates inférieure ou égale à 150 ppm, de préférence inférieure ou égale à 100 ppm, préférentiellement inférieure ou égale à 50 ppm, avantageusement inférieure ou égale à 30 ppm, encore plus avantageusement inférieure ou égale à 20 ppm, en particulier inférieure ou égale à 10 ppm, par rapport à la masse totale de la composition.

De préférence, la composition est telle que la teneur massique en sulfates est strictement supérieure à 0 ppm, de préférence supérieure ou égale à 0,1 ppm, par rapport à la masse totale de la composition.

Par exemple, la composition est telle que la teneur massique en sulfates va de 0,1 ppm à 100 ppm, de préférence de 0,1 ppm à 80 ppm, préférentiellement de 0,1 ppm à 50 ppm, avantageusement de 0,1 ppm à 20 ppm, encore plus avantageusement de 0,1 ppm à 10 ppm, et en particulier de 0,1 ppm à 5 ppm, par rapport à la masse totale de la composition. Selon un mode de réalisation préféré, la teneur massique en chlorures Cl dans la composition est inférieure ou égale à 18 ppm, de préférence inférieure ou égale à 15 ppm, préférentiellement inférieure ou égale à 12 ppm, avantageusement inférieure ou égale à 10 ppm par rapport à la masse totale de la composition.

De préférence, la teneur massique en chlorures Cl dans la composition est strictement supérieure à 0, de préférence supérieure ou égale à 0,1 ppm, préférentiellement supérieure ou égale à 0,5 ppm, encore plus préférentiellement supérieure ou égale à 1 ppm, avantageusement supérieure ou égale à 2 ppm, encore plus avantageusement supérieure ou égale à 3 ppm, et en particulier supérieure ou égale à 4 ppm par rapport à la masse totale de la composition.

En particulier, la teneur massique en chlorures CI dans la composition va de 0,1 ppm à moins de 20 ppm, de préférence de 0,1 ppm à 18 ppm, préférentiellement de 0,1 ppm à 15 ppm, avantageusement de 0,1 ppm à 12 ppm, et en particulier de 0,1 ppm à 10 ppm par rapport à la masse totale de la composition.

Selon un mode de réalisation préféré, la teneur massique en fluorures F dans la composition est supérieure ou égale à 0,1 ppm, de préférence supérieure ou égale à 0,5 ppm, préférentiellement supérieure ou égale à 1 ppm, avantageusement supérieure ou égale à 2 ppm, encore plus avantageusement supérieure ou égale à 3 ppm, et en particulier supérieure ou égale à 4 ppm par rapport à la masse totale de la composition.

La teneur massique en fluorures dans la composition peut être inférieure ou égale à 100 ppm, de préférence inférieure ou égale à 80 ppm, préférentiellement inférieure ou égale à 60 ppm, avantageusement inférieure ou égale à 50 ppm, encore plus avantageusement inférieure ou égale à 30 ppm par rapport à la masse totale de la composition.

En particulier, la teneur massique en fluorures F dans la composition va de 0,1 ppm à 100 ppm, de préférence de 0,1 ppm à 80 ppm, préférentiellement de 0,1 ppm à 60 ppm, avantageusement de 0,1 ppm à 50 ppm, et en particulier de 0,1 ppm à 30 ppm par rapport à la masse totale de la composition.

La composition peut comprendre moins de 200 ppm de K + , de préférence moins de 150 ppm, préférentiellement moins de 100 ppm, avantageusement moins de 50 ppm, encore plus avantageusement moins de 30 ppm, et en particulier moins de 10 ppm en masse par rapport à la masse totale de la composition.

De préférence, la composition comprend strictement plus de 0 ppm de K + , préférentiellement de strictement plus de 0 ppm à moins de 100 ppm, avantageusement de strictement plus de 0 ppm à moins de 50 ppm, encore plus avantageusement de strictement plus de 0 ppm à moins de 30 ppm, et en particulier de strictement plus de 0 ppm à moins de 10 ppm en masse par rapport à la masse totale de la composition.

Selon un mode de réalisation, la composition est caractérisée en ce que : [S0 4 2 ] + [CI ] + [F ] + [K + ] < 150 ppm

Dans le cadre de l’invention, l’expression suivante :

[S0 4 2 ] + [CI ] + [F ] + [K + ] < 150 ppm

signifie que la somme des teneurs totales massiques en sulfates (S0 4 2 ), en chlorures (CI ), en fluorures (F ) et en ions potassium (K + ) est inférieure ou égale à 150 ppm, par rapport à la masse totale de la composition.

De préférence, la composition susmentionnée est telle que [S0 4 2 ] + [CI ] + [P] + [K + ] < 120 ppm, préférentiellement [S0 4 2 ] + [CI ] + [P] + [K + ] < 100 ppm, avantageusement [S0 4 2 ] + [CI ] + [P] + [K + ] < 80 ppm, encore plus avantageusement [S0 4 2 ] + [CI ] + [P] + [K + ] < 50 ppm, en particulier [S0 4 2 ] + [CI ] + [F ] + [K + ] < 30 ppm, et par exemple [S0 4 2 ] + [CI ] + [F ] + [K + ] < 20 ppm.

La composition peut également comprendre moins de 200 ppm d’eau, de préférence moins de 150 ppm, préférentiellement moins de 100 ppm, avantageusement moins de 50 ppm, encore plus avantageusement moins de 30 ppm, et en particulier moins de 10 ppm en masse d’eau par rapport à la masse totale de la composition.

De préférence, la composition comprend strictement plus de 0 ppm d’eau, préférentiellement de strictement plus de 0 ppm à moins de 100 ppm, avantageusement de strictement plus de 0 ppm à moins de 50 ppm, encore plus avantageusement de strictement plus de 0 ppm à moins de 30 ppm, et en particulier de strictement plus de 0 ppm à moins de 10 ppm en masse par rapport à la masse totale de la composition.

La composition selon l’invention peut être obtenue par un procédé de purification d’un sel de lithium de bis(fluorosulfonyl)imide en solution dans un solvant organique S1 , ledit procédé pouvant comprendre les étapes suivantes :

a) extraction liquide-liquide dudit sel à partir de la solution contenant le solvant organique S1 et le sel, avec de l’eau désionisée pour former une solution aqueuse dudit sel de bis(fluorosulfonyl)imide ;

a’) éventuelle concentration de ladite solution aqueuse ;

b) extraction liquide-liquide du sel de lithium de bis(fluorosulfonyl)imide à partir de ladite solution aqueuse (obtenue à l’étape a) ou étape a’)), avec un solvant organique S2; c) concentration du sel de lithium de bis(fluorosulfonyl)imide obtenu à l’étape b) pour former une composition C,

d) cristallisation du sel de lithium de bis(fluorosulfonyl)imide à partir de la composition C;

e) éventuelle étape de filtration, pour conduire à la composition selon l’invention,

ledit procédé étant caractérisé en ce que la composition C comprend au moins 30% en poids d’un extrait sec ES, ledit extrait sec ES étant caractérisé en ce que :

il comprend le sel de lithium de bis(fluorosulfonyl)imide, de préférence à une teneur supérieure ou égale à 99,90% en poids par rapport au poids total dudit extrait sec ES ;

- la somme des teneurs totales massiques en chlorures, en sulfates et fluorures est strictement supérieure à 0 et inférieure ou égale à 500 ppm, de préférence inférieure ou égale à 300 ppm, avantageusement inférieure ou égale à 200 ppm en poids par rapport au poids total dudit extrait sec ES.

La mesure d’extrait sec est typiquement réalisée sur une thermobalance Metler Toledo de type HR73 selon les étapes suivantes :

- i) une nacelle en aluminium est placée dans l’appareil thermobalance Metler Toledo de type HR73 ;

- ii) la nacelle est ensuite tarée ;

- iii) un disque en fibre de verre est placé sur la nacelle et est séché à 1 10°C jusqu’à l’obtention d’un poids constant ;

- iv) la nacelle et le disque en fibre de verre sont tarés ;

- v) le disque est alors imbibé avec 1 g de solution à analyser et est chauffé à 1 10°C ;

- vi) l’extrait sec est obtenu lorsque le poids devient constant.

Selon un mode de réalisation, la teneur totale massique en chlorures dans la composition C susmentionnée est supérieure à 20 ppm, de préférence supérieure ou égale à 30 ppm, préférentiellement supérieure ou égale à 50 ppm, avantageusement supérieure ou égale à 100 ppm, par exemple supérieure ou égale à 150 ppm.

De préférence, la composition C est caractérisée en ce que la somme des teneurs totales massiques en chlorures, sulfates, fluorures et ion potassium est supérieure ou égale 100 ppm, préférentiellement supérieure ou égale à 150 ppm, avantageusement supérieure ou égale à 180 ppm.

Selon un mode de réalisation, la composition C comprend au moins 35% en poids dudit extrait sec ES, préférentiellement au moins 40% en poids, et avantageusement au moins 50% en poids, par rapport au poids total de la composition C.

Le sel de lithium de bis(fluorosulfonyl)imide en solution dans le solvant organique S1 peut être obtenu par tout procédé connu de préparation dudit sel, par exemple tel que décrit dans WO2015/158979 ou W02009/1233328. Le sel LiFSI peut être obtenu soit sous forme solide, soit sous forme d’une solution dans un solvant organique S1 . La composition selon l’invention peut être obtenue par un procédé comprenant les étapes suivantes :

- i) procédé de préparation du sel de lithium de bis(fluorosulfonyl)imide, ledit sel pouvant être solide ou en solution dans un solvant organique S1 ;

- ii) étape de mise en contact avec un solvant organique S1 dans le cas où le sel LiFSI obtenu à l’étape i) est solide ;

- iii) procédé de purification tel que décrit ci-dessus.

Le solvant organique S2 susmentionné peut être choisi dans le groupe constitué des esters, des nitriles, des éthers, des solvants chlorés, des solvants aromatiques, et de leurs mélanges. De préférence, le solvant S2 est choisi parmi le dichlorométhane, l’acétate d’éthyle, l’acétate de butyle, le tétrahydrofurane, l’acétronitrile, le diéthyléther, et leurs mélanges. De préférence, le solvant organique S2 est l’acétate de butyle.

Selon l’invention, chacun des étapes a) et b) susmentionnée peuvent être répétée au moins une fois.

Selon un mode de réalisation, le solvant organique S1 est choisi dans le groupe constitué des esters, des nitriles, des éthers, des solvants chlorés, des solvants aromatiques, et de leurs mélanges. De préférence, le solvant S1 est choisi parmi les éthers, les esters, et leurs mélanges. Par exemple on peut citer le méthyl-t-butyl éther, le cyclopentylméthyl éther, l’acétate d’éthyle, l’acétate de propyle, l’acétate de butyle, le dichlorométhane, le tétrahydrofurane, l’acétronitrile, le diéthyléther, et leurs mélanges. De préférence, le solvant SOI est choisi parmi le méthyl-t-butyl éther, le cyclopentylméthyl éther, l’acétate d’éthyle, l’acétate de propyle, l’acétate de butyle, et leurs mélanges, le solvant organique S1 étant préférentiellement l’acétate de butyle.

L’étape c) susmentionnée peut être réalisée en deux temps :

- une pré-concentration de préférence réalisée à une température allant de 25°C à 45°C, de préférence de 30 °C à 40 °C ;

- une étape de concentration réalisée dans un évaporateur à film mince à court trajet, dans les conditions suivantes :

- température comprise entre 30 °C et 95 °C, de préféence entre 30 °C et 90 °C, préférentiellement entre 40 °C et 85 °C, en particufer entre 60 °C et 80 °C,

- pression comprise entre 10 3 mbar abs et 5 mbar abs, et en particulier à entre 5.10 1 et 2 mbar abs;

- temps de séjour inférieur ou égal à 5 min, de préférence inférieur ou égal à 3 min.

De préférence, l’étape de pré-concentration est réalisée sous pression réduite, par exemple à une pression inférieure ou égale à 50 mbar abs, en particulier à une pression inférieure ou égale à 30 mbar abs. L’étape de pré-concentration peut être réalisée par tout moyen permettant la concentration, par exemple à l’aide d’un évaporateur.

Dans le cadre de l’invention, et sauf mention contraire, on entend par « temps de séjour », le temps qui s’écoule entre l’entrée de la solution de sel de lithium de bis(fluorosulfonyl)imide (en particulier obtenue à l’issue de l’étape b) susmentionnée) dans l’évaporateur et la sortie de la première goutte de la solution.

Selon un mode de réalisation préféré, la température du condenseur de l’évaporateur à film mince à court trajet est comprise entre -50‘G et 5°C, de préférence entre -35°C et 5°C En particulier, la température du condenseur est de -5°C.

Les évaporateurs à film mince à court trajet selon l’invention sont également connus sous la dénomination « Wiped film short path » (WFSP). Ils sont typiquement appelés ainsi car les vapeurs générées lors de l’évaporation effectuent un « court trajet » (courte distance) avant d’être condensées au condenseur.

Parmi les évaporateurs à film mince à court chemin (short path), on peut notamment citer les évaporateurs commercialisés par les sociétés Buss SMS Ganzler ex Luwa AG, UIC Gmbh ou VTA Process.

Typiquement, les évaporateurs à film mince à court trajet peuvent comprendre un condenseur des vapeurs de solvants placé à l’intérieur même de l’appareil (en particulier au centre de l’appareil), à la différence des autres types d’évaporateur à film mince (qui ne sont pas à court trajet) dans lesquels le condenseur se situe à l’extérieur de l’appareil.

Dans ce type d'appareil, la formation d’un film mince, de produit à distiller, sur la paroi chaude interne de l’évaporateur peut typiquement être assurée par étalement en continu sur la surface d’évaporation à l'aide de moyens mécaniques précisés ci-après.

L’évaporateur peut notamment être muni en son centre, d'un rotor axial sur lequel sont montés les moyens mécaniques qui permettent la formation du film sur la paroi. Il peut s'agir de rotors équipés de pales fixes : rotors lobés à trois ou quatre pales en matériaux souples ou rigides, distribuées sur toute la hauteur du rotor ou bien des rotors équipés de pales mobiles, palettes, balais racleurs, frotteurs guidés. Dans ce cas, le rotor peut être constitué par une succession de palettes articulées sur pivot montées sur un arbre ou axe par l'intermédiaire de supports radiaux. D'autres rotors peuvent être équipés de rouleaux mobiles montés sur des axes secondaires et lesdits rouleaux sont plaqués sur la paroi par centrifugation. La vitesse de rotation du rotor qui dépend de la taille de l'appareil, peut être déterminée aisément par l'homme de métier. Les différents mobiles peuvent être en matériaux divers, métalliques par exemple acier, acier allié (acier inoxydable), aluminium, ou polymériques, par exemple polytétrafluroéthylène PTFE ou des matériaux verres (émail) ; des matériaux métalliques revêtus de matériaux polymériques. L’étape de cristallisation d) peut être réalisée par mise en contact de la composition obtenue à l’issue de l’étape c) avec un solvant organique (« solvant de cristallisation ») choisi parmi les solvants chlorés, tel que par exemple le dichlorométhane, et les solvants aromatiques, tel que par exemple le toluène.

De préférence, la cristallisation est effectuée à une température inférieure ou égale à 25°C, préférentiellement inférieure ou égale à 15°C

La présente demande concerne aussi l’utilisation de la composition selon l’invention, dans une batterie, par exemple une batterie Li-ion, en particulier à une température supérieure ou égale à 25 °C, de préférence comprise entre 25° Cet 80 °C, et/ou en particulier à une tension comprise entre 3,5 et 5 volts, de préférence entre 4,2 et 4,5 volts. Par exemple, l’utilisation se fait dans des appareils nomades, par exemple les téléphones portables, les appareils photos, les tablettes ou les ordinateurs portables, dans des véhicules électriques, ou dans le stockage d’énergie renouvelable.

La présente invention concerne également un procédé de charge/décharge d’une batterie, en particulier une batterie Li-ion, ledit procédé comprenant :

- une étape de charge jusqu’à une tension Tsup comprise entre 4 et 4,7 volts, de préférence entre 4,2 et 4,5 volts ; et

- une étape de décharge jusqu’à une tension Tint comprise entre 2,5 et 3,5 volts, ladite batterie comprenant la composition telle que définie précédemment.

Les cycles étape charge/étape décharge peuvent être répétés plusieurs fois.

La présente invention concerne également l’utilisation de la composition selon l’invention pour améliorer la durée de vie d’une batterie, en particulier une batterie Li-ion, ladite batterie fonctionnant de préférence à une tension d’utilisation comprise entre 3,5 et 5 volts, préférentiellement entre 4,2 et 4,5 volts.

La composition selon l’invention présente avantageusement au moins l’un des avantages suivants :

- amélioration de la durée de vie de la batterie;

- diminution voire suppression de la corrosion des constituants de la batterie, tel que le collecteur d’AI.

Dans le cadre de l’invention, par « compris entre x et y », ou « allant de x à y », on entend un intervalle dans lequel les bornes x et y sont incluses. Par exemple, la température «comprise entre -20 et 80 °C » inclus notamment les valeurs -20 °C et 80 °C.

Tous les modes de réalisation décrits ci-dessus peuvent être combinés les uns avec les autres. La présente invention est illustrée par l’exemple suivant, auquel elle n’est cependant pas limitée.

PARTIE EXPERIMENTALE

Préparation du LiFSI des exemples 1 et 2 :

Du LiFSI brut en solution dans l’acétate de butyle est obtenu à l’issue du procédé décrit dans WO 2015/158979. La solution de LiFSI est soumise à un procédé de purification comprenant l’extraction liquide-liquide dudit sel avec de l’eau désionisée pour former une solution aqueuse, puis l’extraction liquide-liquide du sel de lithium de bis(fluorosulfonyl)imide à partir de ladite solution aqueuse avec de l’acétate de butyle. La solution obtenue a été soumise à une étape de concentration pour conduire à une composition comprenant plus de 30% en poids d’un extrait sec caractérisé en ce qu’il comprend plus de 99,75% en poids de LiFSI et en ce que la somme des teneurs totales massiques en chlorures, en sulfates et fluorures est strictement supérieure à 0 et inférieure à 500 ppm. La composition est ensuite soumise à une étape de cristallisation et de filtration, pour conduire au LiFSI de l’exemple 1 .

Le LiFSI de l’exemple 2 a été obtenu selon un procédé similaire.

Préparation du LiFSI de l’exemple 3 :

Du LiFSI brut en solution dans l’acétate de butyle est obtenu à l’issue du procédé décrit dans WO 2015/158979. La solution de LiFSI est soumise à un procédé de purification comprenant l’extraction liquide-liquide dudit sel avec de l’eau désionisée pour former une solution aqueuse, puis l’extraction liquide-liquide du sel de lithium de bis(fluorosulfonyl)imide à partir de ladite solution aqueuse avec de l’acétate de butyle. La solution obtenue a été soumise à une étape de concentration pour conduire à une composition comprenant un extrait sec caractérisé en ce qu’il comprend moins de 99,75% en poids de LiFSI, et en ce que la somme des teneurs totales massiques en chlorures, en sulfates et fluorures est strictement supérieure à 600 ppm. La composition est ensuite soumise à une étape de cristallisation et de filtration, pour conduire au LiFSI de l’exemple 3.

Tests

Des tests de voltamétrie cycliques ont été réalisés. Pour cela des piles boutons CR2032 ont été fabriqués munies d’une feuille d’aluminium de diamètre 20 mm comme électrode de travail, d’une pastille de lithium métal de diamètre 8 mm comme électrode de référence et d’un séparateur en fibre de verre de diamètre 18 mm imbibé avec 12 gouttes (0.6 mL) d’une solution de LiFSI de différentes compositions à 1 mol/L dans un mélange de solvant composé de carbonate d’éthylène et de carbonate d’éthyle méthyle (CAS = 623-53-0) dans un rapport 3/7 en volume.

Ensuite un balayage en tension est réalisé aux bornes de la pile bouton à 4,5 V. Deux balayages préalables sont réalisés permettant la formation des couches de passivation telle que la SEI et la passivation de l’aluminium. Ensuite, le courant d’oxydation à 4,5V (après les deux balayages) généré a été mesuré et enregistré. Les valeurs sont les suivantes :

Le courant d’oxydation observé peut traduire de nombreux phénomènes : corrosion de l’aluminium, dégradation de l’électrolyte et la formation de dendrites de lithium. Tous ces phénomènes sont responsables de la dégradation de la durée de vie des batteries Li-ion. Plus ce courant est faible plus la durée de vie de la batterie est améliorée. A 4,5 V, les résultats montrent que l’emploi d’un LiFSI ayant notamment une teneur en chlorures inférieure à 20 ppm permet avantageusement de diminuer ce courant d’oxydation par rapport à un LiFSI ayant une teneur en chlorures de 20 ppm, et donc d’améliorer la durée de vie des batteries Li-ion.