Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITION FOR THE PREVENTION OF OSTEOPOROSIS COMPRISING A COMBINATION OF ISOFLAVONES AND POLYUNSATURATED FATTY ACIDS
Document Type and Number:
WIPO Patent Application WO/2002/074308
Kind Code:
A1
Abstract:
A composition, useful in the prevention of osteoporosis, wherein said composition comprises (a) least one isoflavone and/or isoflavone glycoside, preferably genistein and/or genistin; (b) at least one polyunsaturated fatty acid; (c) optionally vitamin D, and /or one or more derivatives thereof and /or vitamin K and/or one or more derivatives thereof; and (d) optionally adjuvants and excipients in quantities as required, preferably within the range of 0.1 to 20 % by weight, based on the total weight of the composition. Dietary compositions and galenical forms made therefrom and the use of said compositions for preventing osteoporosis and stimulating osteogenesis in mammals.

Inventors:
KRAMMER STEPHANIE (DE)
RIEGGER CHRISTOPH (CH)
SCHLACHTER MANFRED (DE)
WEBER PETER (DE)
Application Number:
PCT/EP2002/002646
Publication Date:
September 26, 2002
Filing Date:
March 11, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ROCHE VITAMINS AG (CH)
KRAMMER STEPHANIE (DE)
RIEGGER CHRISTOPH (CH)
SCHLACHTER MANFRED (DE)
WEBER PETER (DE)
International Classes:
A23K20/121; A23K20/158; A23K20/174; A23K50/40; A23L33/105; A61K9/12; A23L33/12; A61K9/14; A61K9/20; A61K9/48; A61K31/122; A61K31/19; A61K31/202; A61K31/353; A61K31/592; A61K31/593; A61K31/7048; A61K47/10; A61K47/36; A61K47/38; A61P19/10; (IPC1-7): A61K31/353; A61K31/19; A61K31/593; A61K31/122; A61P19/10
Domestic Patent References:
WO2000000043A12000-01-06
WO1996023504A21996-08-08
WO2000069272A12000-11-23
Foreign References:
EP0585026A11994-03-02
EP0517425A11992-12-09
Other References:
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 04 30 April 1999 (1999-04-30)
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 10 17 November 2000 (2000-11-17)
PATENT ABSTRACTS OF JAPAN vol. 017, no. 037 (C - 1019) 25 January 1993 (1993-01-25)
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; May 1999 (1999-05-01), WEBER PETER: "The role of vitamins in the prevention of osteoporosis - A brief status report.", XP002203922, Database accession no. PREV199900350120
Attorney, Agent or Firm:
Mueller, Ingrid (124 Grenzacherstrasse Basle, CH)
Download PDF:
Claims:
7. The composition according to any one of claims
1. 1 to 6, wherein component (b) is selected from the group consisting of linoleic acid, linolenic acid, eicosatetranoic acid, eicosapentaenoic acid and docosahexaenoic acid.
2. 8 The composition according to any one of the claims 1 to 7, wherein component (b) is selected from the group consisting of (cic, cis, cis) 9,12,15octadecatrienic acid, (cic, cis, cis) 6,9,12octadecatrienic acid, (cis) 5,8,11,14eicosatetranoic acid, (cis) 5,8,11,14,17eicosapentanoic acid and (cis) 4,7,10,13,16,19docosahexaenic acid.
3. 9 The composition according to any one of claims 1 to 8, wherein the polyunsaturated fatty acid is in a concentration so that the daily consumption is in the range of from 50 mg to 8000 mg, preferably 500 mg to 2000 mg.
4. 10 The composition according to any one of claims 1 to 9 comprising per 1 mg of component (a) about 5 to 200 mg, preferably 20 to 50 mg, of component (b).
5. 11 The composition according to any one of claims 1 to 10, wherein component (c) is selected from the group consisting of vitamin D3, vitamin Ki, and mixtures thereof.
6. 12 The composition according to any one of claims 1 to 11, wherein the concentration of vitamin D and vitamin D3, respectively, is such that a consumption results which is in the range of from 5 ig to 50 ug per day of vitamin D and vitamin D3, respectively, and the concentration of vitamin K and vitamin Kl, respectively, is such that a consumption results which is in the range of from 0.050 mg to 10 mg, preferably 0.1 mg to 1.0 mg per day of vitamin K and vitamin Kl, respectively.
7. The composition according to any one of claims 1 to 12, wherein component (d) is selected from the group consisting of starch, starch derivatives, cellulose, cellulose derivatives, polyol, and mixtures thereof.
8. The composition of claim 13 wherein the cellulose derivative is hydroxypropylmethylcellulose [HPMC], methylcellulose [MC], or a mixture thereof.
9. The composition according to any one of claims 1 to 14, said composition being provided in a form selected from the group consisting of concentrates, granules, tablets, pastes filled into hard or soft gelatine capsules, and effervescent formulations.
10. The composition of claim 15 in the form of a concentrate which is a simple powdery mixture of its components.
11. The composition in the form of powders or granules according to claim 15 or 16 obtainable by fluidizedbed granulation, highshear granulation, extrusion, spraydrying or wet granulation.
12. Use of the composition according to any one of claims 1 to 17 for the preparation of a dietary composition or a galenical formulation, preferably for the preparation of compositions or formulations selected from the group consisting of a fortified food, fortified feed, beverages, tablets, granules, pastes filled into hard or soft gelatine capsules, and effervescent formulations.
13. A dietary composition, preferably in the form of a fortified food, fortified feed or a beverage, comprising a composition according to any one of claims 1 to 17.
14. A galenical formulation, preferably in the form of tablets, granules, pastes filled into hard or soft gelatine capsules, or effervescent formulations, comprising a composition according to any one of claims 1 to 17.
15. Use of the composition according to any one of claims 1 to 20 for preventing osteoporosis and stimulating osteogenesis in mammals.
16. A method of preventing osteoporosis and stimulating osteogenesis in mammals which comprises administering to a mammal an effective amount of the composition according to any one of claims 1 to 20.
17. Use of the composition according to any one of claims 1 to 17 for the preparation of a dietary composition or a galenical formulation for the prevention of osteoporosis and the stimulation of osteogenesis in mammals.
18. Use of the composition according to claim 23, wherein the dietary composition or the galenical formulation is in a form which is selected from the group consisting of fortified food, fortified feed, beverages, tablets, granules, pastes filled into hard or soft gelatine capsules, and effervescent formulations.
19. A composition for use in the prevention or treatment of osteoporosis and for osteogenesis in mammals, said composition comprising the following components: (a) genistein, wherein the concentration is such that a consumption results which is in the range of from 5 to 100 mg per day; (b) a polyunsaturated fatty acid which is selected from the group consisting of linoleic acid, linolenic acid, eicosatetranoic acid, eicosapentaenoic acid and docosahexaenoic acid; (c) a vitamin which is selected from the group consisting of vitamin D, vitamin D3, and mixtures thereof; wherein the concentration of said vitamin is such that a consumption results which is in the range of from 5 g to 50 llg per day; (d) a vitamin which is selected from the group consisting of vitamin K, vitamin K1, and mixtures thereof; wherein the concentration of said vitamin is such that a consumption results which is in the range of from 0.050 mg to 10 mg per day; and (d) optionally adjuvants and excipients in quantities as required, preferably within the range of 0.1 to 20% by weight, based on the total weight of the composition.
Description:
COMPOSITION FOR THE PREVENTION OF OSTEOPOROSIS COMPRISING A COMBINATION OF ISOFLAVONES AND POLYUNSATURATED FATTY ACIDS

The present invention refers to a composition for the prevention of osteoporosis in the form of a concentrate or in the form of a dietary composition such as fortified foods, fortified feed and beverages, or in the form of different galenical formulations such as tablets, granules filled into capsules, or effervescent formulations.

Bone is made mostly of collagen and calcium phosphate. Collagen is the protein that provides a soft framework, and calcium phosphate is the mineral that adds strength and hardens this framework. The combination of collagen and calcium makes the bone strong yet flexible to withstand stress.

Throughout the lifetime, old bone is being resorbed and new bone is being formed. During childhood and teenage years, new bone is added faster than old bone is removed. Beyond the age of about twenty five to thirty years however, bone resorption slowly begins to exceed bone formation, leading to bone loss which ultimately results in osteoporosis.

Bone loss is more pronounced in females than in males. In females bone loss is accelerated during the decade directly following the menopause due to estrogen deficiency but osteoporosis is also age-related to both sexes and is a systemic skeletal disease resulting in low bone mass and micro- architectural deterioration of bone tissue, causing an increase in bone fragility and susceptibility to fracture. The same menopausal situation as described above is seen in female pets, e. g., dogs or cats, following their sterilization, leading to bone loss due to estrogen deficiency.

We have now found that compositions containing an isoflavone in combination with LC-polyunsaturated fatty acids, so called PUFAs, have a significant additive and synergistic effect preventing osteoporosis and stimulating osteogenesis. This effect is further increased if the composition contains vitamin D and vitamin K in defined amounts. The combined intake of genistein, PUFAs and defined amounts of vitamin K

and vitamin D surprisingly fully prevents the loss of bone mineral density induced by estrogen deficiency in an OVX-rat model.

Isoflavone is a 3-phenyl-benzo-gamma-pyron. Isoflavones as found in nature generally are substituted by hydroxy or methoxy. The preferred isoflavone within the scope of the present invention is genistein which is 4', 5,7-trihydroxy-isoflavone of formula (I) and which is also found as genistin in the form of its glycoside, for example in soy beans (e. g. Soya hispida). Polyunsaturated fatty acids are known per se (E. A. Trautwein, Eur. J. Lipid Sci. Technol. 103,2001, p. 45-55).

The present invention is defined in the claims. The present invention specifically refers to a composition, useful in the prevention of osteoporosis, characterized in that said composition comprises: (a) at least one isoflavone and/or isoflavone glycoside, preferably genistein and/or genistin; and (b) at least one polyunsaturated fatty acid, whereby said composition optionally further comprises (c) vitamin D and/or one or more derivatives thereof and/or vitamin K and/or one or more derivatives thereof, and (d) adjuvants and excipients in quantities as required, preferably within the range of 0.1 to 20% by weight, based on the total weight of the composition.

Said composition may be provided in the form of a concentrate, for example as a simple powdery mixture of its components, or in the form of granules as are obtained for example by spray drying an aqueous slurry of the components or by extruding the mixture, or in the form of tablets as are obtained by compressing the powder into tablets with conventional

tabletting methods and machinery, or as pastes filled into hard or soft gelatine capsules, or as effervescent formulations. The present invention further refers to a method of making said composition.

The present invention further refers to the use of said composition in the form of a concentrate for the preparation of a dietary composition or a galenical form, whereby said dietary composition preferably is a fortified food, a fortified feed or a beverage, and said galenical form preferably is a tablet, a granulate or a paste filled into hard or soft gelatine capsules, or an effervescent formulation.

The present invention further refers to a dietary composition, said dietary composition preferably being a fortified food, a fortified feed or a beverage, or to a galenical formulation, said galenical formulation being preferably in the form of a tablet, granules or a paste filled into hard or soft gelatine capsules, or an effervescent formulation, said dietary composition and said galenical formulation each containing the components (a), (b), (c) and (d) as defined above.

The present invention further refers to the use of said composition for preventing osteoporosis and stimulating osteogenesis in mammals, such as, for example humans and pets, including but not limited to cats and dogs.

The present invention further refers to a method of preventing osteoporosis and stimulating osteogenesis in mammals as defined above which comprises administering to a mammal an effective amount of said composition.

Different isoflavones are known, such as daidzein, glycitein, or genistein. Genistein is found as genistin in the form of its glycoside for example in soy beans. According to the present invention the isoflavone itself, or a derivative of isoflavone which yields isoflavone, such as the glycoside, may be used as active component [component (a)] in the composition.

Preferably, the composition contains the isoflavone and/or its derivative in a concentration so that the daily consumption is in the range of from 1 mg to 500 mg, preferably 5 mg to 100 mg.

Polyunsaturated fatty acids (PUFAs) are known per se. Preferred PUFAs are those having from 16 to 24 carbon atoms, preferably from 18 to

22 carbon atoms, more preferably with 18, 20 or 22 carbon atoms and having multiple unsaturated carbon-carbon double bonds.

Examples of such polyunsaturated fatty acids are the known n-3 PUFAs. Preferred are for example PUFAs with 18 carbon atoms such as linoleic acid, e. g. (cic, cis, cis-) 9,12,15-octadecatrienic acid, linolenic acid, e. g. (cic, cis, cis-) 6,9,12-octadecatrienic acid, but also eicosatetranoic acid, eicosapentaenoic acid and docosahexaenoic acid, such as (cis-) 5,8,11,14- eicosatetranoic acid, (cis-) 5,8,11,14,17-eicosapentaenoic acid and/or (cis-) 4,7,10,13,16,19-docosahexaenoic acid.

Preferably, the composition contains the PUFA in a concentration so that the daily consumption is in the range of from 50 mg to 8000 mg, preferably 500 mg to 2000 mg. Preferably, the composition contains per one milligram of isoflavone or isoflavone derivative [component (a)] about 5 mg to 200 mg, preferably about 20 mg to 50 mg, of polyunsaturated fatty acid [component (b)].

The active metabolite of vitamin D (calcitriol) is known to increase intestinal absorption of calcium and is important for the normal mineralization of new bone. The presence of vitamin D, preferably vitamin D3, improves significantly the effect of the composition according to the present invention. Preferably, the composition contains vitamin D, more preferably vitamin D3, in concentrations known for vitamin D and vitamin D3, respectively. The concentration should be so that a consumption results which is in the range of from 5 llg to 50 ug per day of vitamin D and vitamin D3, respectively.

The classical role of vitamin K is as an antihemorrhagic factor.

However, vitamin K also interacts with selected proteins and is a cofactor for these proteins that play a role in bone formation. The presence of vitamin K, preferably vitamin Kl, improves the effect of the composition according to the present invention. Preferably, the composition contains vitamin K in concentrations known per se for vitamin K. The concentration of vitamin K and vitamin Kl, respectively, should be such that a consumption results which is in the range of 0.050 mg to 10 mg, preferably 0.1 mg to 1.0 mg per day.

As used herein, the terms"vitamin D"refers to both vitamin D and vitamin D3, respectively, as well as to derivatives thereof. The term

"vitamin K"refers to both vitamin K and vitamin Kl, respectively, and the corresponding derivatives thereof.

Adjuvants may optionally be added. Suitable adjuvants are for example starch, starch derivatives, cellulose, cellulose derivatives (e. g. hydroxypropylmethylcellulose [HPMC], methylcellulose [MC]), and polyol.

Preferably, no adjuvants are added to the concentrate.

The composition of this invention may be produced by any known method. The components may be simply mixed together by conventional methods. However, the concentrate is preferably produced in the form of a powder or in the form of granules. Preferred are fluidized-bed granulation, high-shear granulation, extrusion, spray-drying or wet granulation.

For obtaining the composition of the present invention by spray- drying it is convenient to prepare an aqueous slurry of all the components.

The slurry has preferably a solid content of about 10% to 70% by weight, more preferably about 25% to 50% by weight. The slurry is then spray- dried in a manner known per se. For obtaining the concentrate of the present invention by fluidized-bed granulation it is convenient to use a known fluidized-bed granulating apparatus which comprises a fluidized- bed drying device fitted with spray means and is operated in a manner known to the skilled person in the art.

The concentrate may further be used in the production of dietary compositions such as a fortified food, a fortified feed or beverages. Such fortified food, fortified feed or beverages are known in the literature and known to the skilled person in the art.

The concentrate may further be compressed into tablets with conventional tabletting methods and machinery. Optionally, the powder or the granules may further be mixed prior to compressing into tablets with a conventional lubricant, including but not limited to metallic stearates, stearic acid, hydrogenated vegetable oils (Sterotex), glyceryl monostearate, glyceryl palmitostearate, talcum, corn starch, polyethylene glycols, sodium benzoate, sodium acetate and sugar esters. A further possibility is mixing the powder or the granules with a mixture of such lubricants and then compressing it into tablets.

Pastes filled into hard or soft gelatine capsules or effervescent formulations are made in conventional manner, whereby these single units contain the same doses as given for tablets.

Experimental Section In the following experimental section dual-energy X-ray absorptiometry (DXA) was used to measure bone mineral density.

Osteocalcin, a biochemical marker for bone formation, is a bone- specific protein secreted primarily in osteoblasts, i. e. the bone forming cells. Serum osteocalcin was measured as marker for bone formation.

Deoxypyridinoline (DPD) crosslinks excretion provides a highly specific marker for bone resorption. DPD crosslinks excretion was measured as a marker for bone resorption. The values have to be corrected for urinary concentration by creatinine measurement as it is known in the art.

In the experimental set up data were elaborated using the ovariectomized rat osteoporosis (OVX) model. This model mimics the estrogen deficient status as found in postmenopausal women or poststerilized female pets leading to osteoporosis. The SHAM group with intact ovaries served as control. Each test group consisted of 10-12 animals. The feed used was free of isoflavones, such as, for example, genistein. The test compounds in various combinations as given in Table 1 have been administered by feed admix. In rats the genistein dosage of 15 mg/kg BW per day leads to a plasma genistein level comparable to the one found in Japanese people on a traditional diet, i. e. 280 nM. The administration of vitamin Kl in an amount of 20 llg/kg feed corresponds to a daily dosage of about 1 ug/kg BW, the estimated daily requirement of vitamin Kl. The amount of vitamin D3 was 500 IU/kg feed which corresponds to a daily dosage of 25 IU/kg BW, the estimated daily requirement. For fortification, PUFA (5% of ROPUFA"30"n-3 Food Oil) was added to the feed corresponding to a PUFA fortification of % in feed as given in Table 1. Bone mineral density, osteocalcin, and deoxypyridinolin have been measured 84 days post intervention.

Table 1: Experimental groups and concentration of test compounds in feed Group SHAM/Feed Genistein n-3 PUFA Vitamin Kl Vitamin D3 No. OVX description mg/kg BW % feed llg/kg IU/kg feed feed 1 SHAM Vit. K+D suppl. 2000 1500 2 OVX Vit. K+D 2000 1500 Suppl. 3 OVX 20 500 4 OVX n-3 PUFA 5 20 500 5 OVX Genistein 15 20 500 6 OVX Vit. K+D suppl. 15 5 2000 1500 n-3 PUFA Genistein

SHAM: intact ovaries model (as a control) OVX: ovariectomized rat osteoporosis model BW: body weight Genistein: Roche No. 24-2076, Roche Vitamins AG, Basel, Switzerland PUFA: ROPUFA"30"n-3 Food Oil, Roche Vitamins AG, Basel, Switzerland

Bone mineral density (BMD) measurement in the femur of OVX rats: Compared to the SHAM operated animals of group 1, the ovariectomized animals of group 2 and 3 on either a high or low vitamin K and D diet showed a significant decrease in BMD as expected. Group 2 on high vitamin K and D feed did not preserve BMD significantly better than group 3 animals on a low vitamin K and D feed.

The animals of group 4 on a low vitamin K and D feed supplemented with PUFA showed significant preservation of BMD compared to group 3 on a low vitamin K and D feed. However, this group performed not significantly better than group 2 on a high vitamin K and D feed without

PUFA supplementation. At the same time BMD of group 4 was not significantly different from the one of the SHAM operated animals. The same result was obtained with group 5 on a low vitamin K and D feed supplemented with genistein. Group 6 on a high vitamin K and D feed supplemented with PUFA and genistein in combination showed a significantly improved BMD compared to group 2 and 3. No significant difference in BMD was found compared to the control group 1. Results are given in Table 2. Supplementation of n-3 PUFA or genistein improved BMD to control values but did not significantly exceed the effect of vitamin D and vitamin K supplementation. Supplementation of vitamin K and D in combination with n-3 PUFA and genistein resulted in the greatest regain of BMD which significantly exceeded the effect of vitamin D and K supplementation and even slightly exceeded the BMD in the SHAM- operated control animals.

Table 2: Bone mineral density of femur at day 84 postintervention Group SHAM/Feed Mean Standard Significant No. OVX description glcm2 Deviation difference (*) 1 SHAM Vit. K+D 0.143 0.006 a suppl. 2 OVX Vit. K+D suppl. 0.135 0.012 bc 3 OVX 0.133 0.004 b 4 OVX n-3 PUFA 0.142 0.011 ac 5 OVX Genistein 0.143 0.013 ac 6 OVX Vit. K+D suppl. 0.145 0.011 a n-3PUFA Genistein (*) Different letters indicate significant differences (p<0.05) between groups.

Serum Osteocalcin (bone formation marker) measurement in OVX rats: Estrogen deficiency results in an increased bone turnover resulting in higher levels of serum osteocalcin. Compared to the control group, group 2 and 3 exhibited significantly increased osteocalcin levels, whereas the one of group 3 that was on a low vitamin K and D feed was again significantly higher than the one of group 2 on a high vitamin D and K level.

Supplementation of n-3 PUFA or genistein on top of a low vitamin K and D level, group 4 and 5, reduced osteocalcin levels to control values. There was no significant difference in effect between n-3 PUFA and genistein.

Group 6 on a feed high in vitamin K and D containing n-3 PUFA and genistein showed the best results, i. e. best effects on osteocalcin levels, and was significantly better than group 4. Results are given in Table 3.

Table 3: Serum osteocalcin serum concentration at day 84 postintervention Group SHAM/Feed Mean serum conc. Standard Significant No. OVX description ng/ml Deviation difference (*) 1 SHAM Vit. K+D suppl. 15.5 2.7 bd 2 OVX Vit. K+D suppl. 28.4 4.8 c 3 OVX 39.6 4.9 a 4 OVX n-3 PUFA 17.8 2.9 d 5 OVX Genistein 14.6 3.8 bd 6 OVX Vit. K+D suppl. 12.8 3.6 b n-3PUFA Genistein (*) Different letters indicate significant differences (p<0.05) between groups.

Deoxypyridinoline (bone resorption marker) measurement in OVX rats: Estrogen deficiency resulted in a significant increase of deoxypyridinoline (DPD) excretion which is significantly higher in the group on a low vitamin K and D feed compared to the one on a feed with high vitamin K and D content. The effect of n-3 PUFA supplementation is comparable to the one of a high vitamin K and D feed. The genistein containing feed with low vitamin K and D levels (group 5) restores DPD excretion to values of the control group. Group 6 did not exhibit significant further improvement compared to group 5. Results are given in Table 4, showing that among the compounds tested genistein is the most effective one in restoring control DPD excretion values (group 5), whereas addition of n-3 PUFAs to the feed (group 4) did not exceed the effect obtained by a high vitamin K and D diet (group 2).

Table 4: Deoxypyridinoline excretion at day 84 postintervention Group SHAM/Feed Mean nmol DPD/Standard Significant No. OVX description mmol Creatinine Deviation difference (*) 1 SHAM Vit. K+D suppl. 210.3 19.1 b 2 OVX Vit. K+D suppl. 281.6 27.9 cd 3 OVX 339.6 25.4 a 4 OVX n-3 PUFA 265.8 17.5 d 5 OVX Genistein 220.5 23.5 b 6 OVX Vit. K+D suppl. 214.3 33.3 b n-3 PUFA Genistein (*) Different letters indicate significant differences (p<0.05) between groups.

From the experimental data shown above one can conclude that the combined intake of genistein, n-3 PUFAs and high amounts of vitamin K and D surprisingly fully prevents the loss of bone mineral density induced by estrogen deficiency.

Claims 1. A composition useful for the prevention of osteoporosis comprising the following components: (a) at least one isoflavone, one isoflavone glycoside, or a mixture thereof; (b) at least one polyunsaturated fatty acid, (c) optionally a vitamin which is selected from the group consisting of vitamin D, derivatives of vitamin D, vitamin K, derivatives of vitamin K, and mixture thereof; and (d) optionally adjuvants and excipients in quantities as required, preferably within the range of 0.1 to 20% by weight, based on the total weight of the composition.

2. The composition of claim 1, wherein component (a) is selected from the group consisting of daidzein, daidzein glycoside, glycitein, glycitein glycoside, genistein, and genistein glycoside.

3. The composition of claim 1 or 2, wherein component (a) is genistein, genistin, or a mixture thereof.

4. The composition according to any one of claims 1 to 3, wherein component (b) is a polyunsaturated fatty acid with 16 to 24 carbon atoms containing multiple unsaturated carbon-carbon double bonds.

5. The composition of claim 4 with a polyunsaturated fatty acid of 18 to 22 carbon atoms, preferably with 18,20 or 22 carbon atoms.

6. The composition of claim 4, wherein the polyunsaturated fatty acid is an n-3 polyunsaturated fatty acid.