Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITIONS AND METHODS FOR STABILIZING CIRCULATING TUMOR CELLS
Document Type and Number:
WIPO Patent Application WO/2015/013244
Kind Code:
A1
Abstract:
Compositions and Methods for Stabilizing Circulating Tumor Cells Methods and compositions for stabilizing a biological sample for analysis, comprising the steps of obtaining in a sample collection device a biological sample from a subject, especially blood, the biological sample including at least one circulating tumor cell from the subject. The methods may include a step of contacting the biological sample with a protective agent composition that includes a preservative agent, an optional anticoagulant, and a quenching agent to form a mixture that includes the protective agent composition and the sample.

Inventors:
FERNANDO M ROHAN (US)
RYAN WAYNE L (US)
HUNSLEY BRAD (US)
Application Number:
PCT/US2014/047551
Publication Date:
January 29, 2015
Filing Date:
July 22, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
STRECK INC (US)
International Classes:
A01N1/02; G01N33/574
Domestic Patent References:
WO2003018757A22003-03-06
WO1998002740A11998-01-22
WO2011014741A12011-02-03
WO2013086428A12013-06-13
WO2013123030A22013-08-22
Foreign References:
US20050181353A12005-08-18
EP2228453A12010-09-15
Other References:
"Periodic Table of the Elements", 1989, CRC PRESS, INC.
Attorney, Agent or Firm:
PURSLEY, Kristen L. et al. (P.C.29 W. Lawrence Street, Suite 21, Pontiac MI, US)
Download PDF:
Claims:
CLAIMS

Claim 1 : A method for blood sample treatment comprising:

a. locating a protective agent into a tube, the protective agent including a preservative, EDTA and glycine;

b. drawing a blood sample into the tube, the blood sampie having a first circulating tumor cell concentration;

c. isolating circulating tumor cells from the sampie at least 24 hours after blood draw, the sampie having a second circulating tumor cell concentration, wherein the second circulating tumor ceil concentration is not lower or higher than the first circulating tumor cell concentration by any statistically significant value.

Claim 2; The method of claim 1, wherein the preservative is selected from the group consisting of; diazoiidinyi urea and imidazolidinyl urea.

Claim 3: The method of claim 1 or claim 2, wherein the concentration of the preservative prior to the contacting step is between about 0.1 g/m! and about 3 g/ml.

Claim 4; The method of any of claims 1 through 3S wherein the circulating tumor cells are isolated from the sampie at least 3 days after blood draw.

Claim 5; The method of any of claims 1 through 4, wherein the circulating tumor ceils are isolated from the sampie at least 7 days after blood draw.

Claim 6: The method of any of claims 1 through 5, wherein the circulating tumor cells are isolated from the sample at least 14 days after blood draw.

Claim 7; The method of any of claims 1 through 6, wherein the transporting step occurs without freezing the blood sample to a temperature colder than about -3CTC.

Ciaim 8; The method of any of claims 1 through 7, wherein the protective agent contacts the circulating tumor ceils so that after a period of at least 7 days from the time the blood sample is drawn, the amount of circulating tumor cells is at least about 90% of the amount of circulating tumor celis at the time the blood sample is drawn.

Ciaim 9: The method of any of claims 1 through 8, wherein the protective agent contacts the circuiatsng tumor ceils so that after a period of at least 7 days from the time the b!ood sample is drawn, the amount of circuiatsng tumor ceifs present in the sample is about 100% of the amount of circulating tumor cells present in the sample at the time the blood sample is drawn.

Ciaim 10: The method of any of ciaims 1 through 9, wherein th protective agent composition includes:

a. imidazoiidiny! urea in an amount of about 0.1 to about 1.0 % by weight of the total composition;

b. optionally, ethylenediaminetetraacetic acid in an amount of about 0.05 to about 0.75% by weight of the total composition; and

c. a quenching agent in an amount sufficient to react with an free formaldehyde that arises from the imidazoiidiny! urea form a reaction product that will not react to denature any protein of the biological sample.

Claim 11 : The method of any of claims 1 through 10, wherein the protective agent composition includes an amount of about 10 parts by weight of the preservative agent per about 1 parts by weight of the quenching agent.

Ciaim 12: The method of any of claims 1 through 1 1 , wherein there is no significant degradation of EpCAM proteins in the blood sample after 4 days at room temperature.

Claim 13: The method of any of claims 1 through 12, wherein there is no significant degradation of CK proteins in the blood sample after 4 days at room temperature.

Claim 14: The method of any of claims 1 through 13, wherei at least 40% of the circulating tumor cells are recovered for isolation after day 1 .

Claim 15: The method of any of ciaims 1 through 14, wherein at least 40% of the circulating tumor cells are recovered for isolation after day 4. Claim 16; The method of any of claims 1 through 15, wherein at ieast 50% of the circulating tumor ce!is are recovered for isolation after day 1.

Claim 7: The method of any of claims 1 through 18, wherein at least 50% of the circulating tumor ceils are recovered for isolation after day 4.

Claim 18: The method of any of claims 1 through 17, wherein C protein in the blood sample is stabilized.

Claim 19: The method of any of claims 1 through 18, wherein EpCAM protein in the blood sample is stabilized.

Claim 20: The method of any of claims 1 through 19, wherein c-fos mRNA in the circulating tumor ceils remains stable after 4 days at room temperature.

Description:
Compositions and Methods for Stabiiizing . Cjreulating Tumor Ceils

FIELD OF THE INVENTION

[0001] The teachings herein relate to devices and methods for stabilizing and preserving circulating tumor cells without damaging the tumor ceil integrity for improved protection and regulation of circulating tumor celis during collection, storage, and shipment.

BACKGROUND OF THE !NVENT!ON.

[0002] in the peripheral blood of patients with so!id tumors of epithelial origin, studies have identified circulating cells that have characteristics of tumor ceils. These ceils that are present in the bloodstream of cancer patients (referred to as circulating tumor cells or CTCs) are thought to play an important role in cancer metastasis by breaking loose from a solid tumor, entering the circulation, and then migrating to distant organs to develop secondar tumors. As such, circulating tumor cell (CTC) enumeration and characterization in the blood of cancer patients is useful for cancer prognostic and treatment monitoring purposes. Even though the number of CTCs present in patient blood is very low, robust technologies have been developed to enumerate and characterize CTCs in patient blood samples. CTCs are detectable in the blood of patients with metastatic cancer using a number of different technologies. Since CTCs are rare they need to be enriched from patient blood for accurate enumeration and characterization. Most of the CTC enrichment and identification assays available today are based on enrichment with anti-EpCAM antibodies and subsequent identification using anti-cytokeratin antibodies. An example is the CelSSearcb® instrument system available from janssen Diagnostics, Rarifan, NJ.

[0003] While the presence of CTCs in patients with cancer has been known for over a century, utilization of these rare cells in cancer diagnosis and prognosis was not feasible since methodologies to detect, isolate and characterize CTCs have not been developed until recently. With the development of robust methodologies to enrich, isolate and characterize CTCs in different types of cancers that are found in solid organs, several clinical studies have been conducted to investigate the possible use of CTCs in cancer diagnosis and prognosis. Assays that enumerate CTCs using the Cell Search® system have been developed for use as an aid to monitor patients with metastatic breast, colorectal, and prostate cancers. It has also been shown the potential usefulness of CTC enumeration using the Ceii Search™ system for monitoring patients with melanoma, urothelial, and iung cancer.

[0004] Factors that limit the utility of CTCs in cancer diagnosis and prognosis are the Sow abundance and the fragility of the CTCs that may introduce variability in the evaluation of CTCs using different assay platforms. Transportatio of blood samples from the site of phlebotomy to another facility is commonly required for CTC enumeration and characterization, During post-phiebotomy blood sample transportation/storage, fragile CTCs may degrade and compromise the accuracy of CTC enumeration and characterization.

[0005] There is a growing interest in the use of CTCs in non-invasive diagnosis, prognosis and monitoring of treatment regimens. The low abundance of the CTCs and their fragile nature may introduce variabilit in the evaluation of CTCs using different assay platforms. This fragile nature of CTCs arises due to the apoptosis of CTCs which begins after separation from the tumor of origin and after removal of blood from a patient. Therefore, it is necessary to address several pre-analy icai issues that arise during the time between blood draw and CTC enrichment and characterization in order to effectively preserve the CTCs for analysis. These include delays i blood processing, blood storage temperature, and agitation of the sample during transport and shipment of blood. Such conditions may affect the integrity of already fragile CTCs causing accurate enumeration and characterization of CTCs difficult, As a result, it is important to consider the type of blood collection device and post-phiebotomy conditions while working with CTC samples.

[0006] There is thus a need for methods of stabilizing and protecting circulating tumor cells whereby structural integrity is maintained so that shipping and storage is possible with minimal deleterious effect on the circulating tumor cells. There is a further need for such methods where the detrimental effects of aldehyde fixation are avoided,

SUMMARY OF THE INVENTION

[0007] The teachings herein employ a protocol using a unique protective agent composition that successfully preserves samples while stabilizing CTC integrity for a prolonged period (e.g., which may be at least 14 days, and which may be at room temperature). The present teachings provide a consistent and efficient method for preserving CTCs in biological samples. Data demonstrated herei describes a method thai reduces cell lysis and nuclease activity, and also permits accurate and precise analytical analysis by virtue of the preservation of the final concentration of recoverable CTCs over time. In so doing, the teachings provide a novel approach that improves the downstream clinical analysis of CTCs. The present teachings describe protecting the CTCs by inhibiting all cellular metabolic activity in CTCs in biood. As a result of metabolic inhibition of CTCs in blood all apoptotic and necrotic pathways are inhibited and CTCs are protected from cell degradation. Therefore it is no longer necessary to isolate and characterize CTCs immediately after venipuncture. Furthermore, samples can be stored at room temperature for up to 14 days without deleterious effects to sample integrity, which eliminates the need for cold storage of the b!ood sample.

[0008] In one aspect, the present teachings contemplate a method for blood sample treatment comprising locating a protective agent into the blood collection devices described herein. The protective agent may include a preservative. A blood sample maybe drawn into the blood collection device, the biood sample having a first CTC concentration. The blood collection device containing a blood sample may be transported from a first location to a second location, wherein at least a portion of the transporting occurs at a temperature of greater than about 0°C. The CTCs from the sample may be isolated at least 24 hours after blood draw, the sample having a second CTC concentration, wherein the second CTC concentration is not lower or higher than the first CTC concentration by any statistically significant value.

[0009] The teachings herein further include that the preservative may be selected from the group consisting of diazo!idinyi urea and imidazolidinyl urea. The concentration of the preservative prior to the contacting step may be between about 0.1 g/m! and about 3 g/mi. The circulating tumor cells may be isolated from the sample at ieast 3 days after biood draw. The circulating tumor cells may be isolated from the sample at least 7 days after blood draw. The circuiating tumor cells may be isolated from the sample at least 14 days after blood draw. The transporting step may occur without freezing the blood sample to a temperature colder than about -SQ^C. The protective agent may contact the circulating tumor cells so that after a period of at least 7 days from the time the blood sample is drawn, the amount of circulating tumor ceils is at Ieast about 90% of the amount of circuiating tumor ceils at the time the blood sample is drawn. The protective agent may contact the circulating tumor cells so that after a period of at least 7 days from the time the blood sample is drawn, the amount of circulating tumor ceils present in the sample is about 100% of the amount of circulating tumor cells present in the sampie at the time the biood sample is drawn,

[0010] The teachings herein contemplate improved protective agent compositions, and methods of stabilizing a biological sample for analysis. The protective agent compositions will generally include a preservative agent as described herein, and a quenching agent for substantially abating any free aldehyde {e.g.. formaldehyde) from reacting with DNA within a sampie. The protective agent composition may also include one or more nuclease inhibitors. The protective agent composition may also include one or more metaboiic inhibitors. The methods described herein may comprise a step of obtaining in blood coilection device a biological sampie from a subject The biological sampie may include at least one circulating tumor ceil from the subject. The methods may include a step of contacting the biological sample while within the blood collection device with a protective agent composition that inciudes a preservative agent, an optional anticoagulant, and a quenching agent to form a mixture that inciudes the protective agent composition and the sample. The methods may include a step of quenching any free formaldehyde that may be present with the quenching agent from the protective agent composition so that the free formaldehyde reacts to form a reaction product that is inert to the CTCs within the biological sampie. The resulting mixture may be devoid of any aldehyde, and CTCs within the sample may he suitable for downstream applications.

[0011] For samples derived from blood, there may be a blood draw step of drawing biood from a patient into a blood coilection device that has the protective agent composition loaded therein prior to the blood draw step. The method may include a step of transporting the sampie while it is contacted with the protective agent composition from a blood draw site to a clinical laborator (e.g., one located at least 100 meters, 1000 meters, 10,000 meters from the blood draw site) at which a sample analysis will occur. The quenching occurs prior to and/or substantially simultaneously with the contacting step. The methods may include a step of isolating circulating tumor cells from the sample. The methods may be free of any step of centrifugation of the sample. The methods may be free of any step of isolating cell-free fetaf DNA, cell-free DNA, cell-free RNA or cellular RNA from a b!ood sampie. The methods may be free of any step of refrigerating the sample (e.g., to a temperature below room temperature, such as about 10°C or cooler) after it has been contacted with the protective agent composition. [0012] As can be appreciated from the above, the teachings herein provide for advantageous treatment of CTC-containing samples and provide stabilized samples that are essentially free of detectable covaient modifications that inhibit downstream testing of the characteristics of CTCs.

BRIEF DECSRiPTiON OF THE DRAWINGS

[0013] Fig. 1 shows a graph displaying the effect of two exemplary protective agent compositions and a standard K 3 EDTA composition on MCF-7 ceil recovery at Day 1 and Day 4 post biood draw.

[0014] Fig. 2 shows immunofluorescence celi staining results (EpCAM and Cytokeratin) of two exemplary protective agent compositions and a standard K 3 EDTA composition.

[0015] Fig. 3 shows fluorescence cell staining results showing levels of mRNA expression after contact with one exemplary protective agent composition and a standard K 3 EDT composition.

DETAiLED DESCRIPTION

[0016] This application is related to and claims the benefit of the filing date of U.S. Provisional Application Serial No. 61/857,847 filed July 24, 2013, the contents of this application being hereby incorporated by reference for all purposes.

[0017] The explanations and illustrations presented herein are intended to acquaint others skilled in the art with the teachings, its principles, and its practical application. Those skilled in the art may adapt and apply the teachings in its numerous forms, as may be best suited to the requirements of a particular use. Accordingly, the specific embodiments of the present teachings as set forth are not intended as being exhaustive or limiting of the teachings. The scope of the teachings should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of ail articles and references, including patent applications and publications, are incorporated by reference for ail purposes. Other combinations are also possible as will be gleaned from the following ciaims, which are also hereby incorporated by reference into this written description.

[0018] Unless otherwise stated, percentages as set forth herein refer to percent by weight. Further, unless the context of the discussion makes clear to the contrary, references to circulating tumor ceils refers not only to intact circulating tumor ceils, but to tumor cell fragments.

[0019] The present teachings contemplate a non-invasive screening method for the identification of circulating tumor cells that are potentially indicative of cancer diagnosis and progression. The teachings herein envision not only preserving the state of any cells in a sample but also envisions protecting the circulating tumor cells from any adverse effects during any deiay between sample collection and processing and/or testing. The methods of the teachings herein generally involve steps of contacting a biological sample (which may include multiple blood cells and cell-free biomo!ecuies), with an aldehyde-free (e.g., formaldehyde-free) protective agent composition in an amount and time that is sufficient to prevent degradation of the circulating tumor cells. The treatment is such that it substantially prevents an free aidehyde from adversely reacting with the CTCs of the sample such as by employing a quenching agent. In this manner, substantia! quantities of CTCs can be maintained within and isolated from the sample. The CTC integrity is substantially preserved in its as provided state (e.g., the state at the time of blood draw) by avoiding the damaging effects of any aidehyde (e.g., formaldehyde). Thus, accurate and precise analytical analysis of the CTCs of the sampie can be achieved. The method may further include steps of analyzing the CTCs from a sampie that has been treated in accordance with the above, or that have otherwise been contacted with the protective agent composition and the quenching agent therein. As noted, the teachings herein permit identification of CTC characteristics for prognostic and diagnostic use of various pathological conditions in the clinic.

[0020] Protective Agent Compositions A & B as described in the examples below and shown in the drawings include a formaldehyde free stabilization reagent that stabilizes CTCs in a blood sample for up to 14 days at room temperature. They do so by inhibiting cell metabolism in CTCs in blood and preventing cellular apoptos s and necrosis that degrade the CTCs in blood. These examples were designed to investigate the effectiveness of this b!ood collection devices for the stabilization of CTCs in a blood sample for an extended period of time at room temperature. [0021] The study was approved by the institutional review board of the Methodist Hospital, Omaha, ME, USA and informed consent was obtained from ali donors prior to blood draw. Blood specimens were collected from apparently healthy adult donors by standard phlebotomy techniques.

[0022] Breast cancer cell line, MCF-7 cells was obtained from American Type Culture Collection (Rockvi!le, SV1D, USA) and routinely passaged in Eagle's MEM medium containing 10% fetal bovine serum at 37 ,J C in humidified atmosphere of 5% CO 2 .

[0023] For the MCF-7 cell spiking experiment, b!ood from each healthy donor (7 donors in total) was drawn into 10 mL K 3 EDTA tubes (BD Vacutainer®, Becton Dickinson, Franklin Lakes, NJ, USA), and 10 ml tubes containing Protective Agent A and 1 QmL tubes containing Protective Agent B. The blood volume was as close to 10 mL as possible for all tube types. MCF-7 cells {2000 cells 10 mL blood) were then spiked into all tubes and blood was mixed immediately after spiking by inverting 10 times each, Ali samples were shipped at ambient temperature to Geneuity Clinical Research Services (Maryviile, TN, USA) and analyzed on the CellSearch system on days 1 and 4 post phlebotomy to determine the stability of spiked MCF-7 cells. Blood samples were maintained at room temperature during the entire process,

[0024] While the CellSearch system was utilized for the examples herein, it is envisioned that the protective agent compositions described herein could be utilized with any device and/or platform equipped for tumor ceil enrichment and characterization, [0025] Examples

[0026] Blood was drawn from each donor into multiple 10 mL K 3 EDTA tubes and multiple 10 mL tubes for each of Protective Agent Compositions A & B. All tube types were spiked with MCF-7 breast cancer cells and stored at room temperature. Spiked MCF-7 cells were enumerated using the CellSearch™ system on days 1 and 4, Effect of storage on the stability of proteins and nucleic acids in MCF-7 cells isolated from K 3 EDTA tube and Protective Agent Compositions A & B was determined using fluorescent staining and confocal laser scanning microscopy.

[0027] Overall, enumeration of MCF-7 cells in K 3 EDTA blood showed a significant drop in recovered MCF-7 cells at day 1 and 4 compared to values obtained for Protective Agent Compositions A & B. However, in blood drawn into tubes containing Protective Agent Compositions A &. B, MCF-7 cell count was stable up to 4 days at room temperature. Epithelial cell adhesion molecule (EpCAM) and cytokeratin (CK) in MCF-7 ceils isolated from tubes containing Protective Agent Compositions A & 8 were stable at room temperature for up to 4 days, whereas in MCF-7 cells isolated from K 3 EDTA blood showed reduced EpCAM and CK protein expression. The CK protein expression showed no significant change over 4 days in tubes containing Protective Agent Compositions A & B. Similarly, Protective Agent Composition A showed improved stabilizing of c-fos rrsRNA as compared to K 3 EDTA tubes. No significant change in cyclin D1 mRNA expression was observed in all tubes.

[0028] As further discussed in the details below, Protective Agent Compositions A & B provide preservation and stabilization of CTCs in blood samples for at least 4 days at room temperature. In doing so, it facilitates the development of new non-invasive diagnostic and prognostic methodologies for CTC enumeration as weil as characterization.

[0029] Effect of storage on the stability of EpCAM and CK determined by immunofluorescence cell staining - Fig. 2

[0030] Blood was drawn from each donor into one 10 ml sEDTA tube, on 10 ml tube containing Protective Agent Composition A, and one 10 ml tube containing Protective Agent Composition B. Plasma was separated from blood within 2 h post collection. To separate plasma, blood samples were centrifuged at 300 x g for 20 min at room temperature. The upper plasma layer was carefully removed without disturbing the buffy coat and transferred to a new tube that was then centrifuged at 5000 x g for 10 min. The cell-free plasma was then spiked with CF-7 cells (~ 2,000 ceils / 4 - 5 mL of plasma) and stored at room temperature. On days 0 and 4, CF-7 cells were washed with phosphate buffered saline solution and centrifuged at 500 rpm for 7 minutes on glass slides using Shandon Cytospin^ 3 cytocentrifuge. Slides were then dried and immunostaining for EpCAM and Cytokeratin were carried out with a primary antibody cocktail containing a mouse anti-EpCAlvl antibody (VU-1 D9, #sc-51681 , 1 :1 :100) and a mouse anti-CK antibody (T-13, #sc-241376, 1 :100). After 1 h of incubation, slides were washed twice with PBS and probed with fluorescent labeled secondary antibodies for mouse anti-EpCA (donkey anti-mouse IgG-FITC, #sc~2099, 1 :200) and mouse anti-CK (donkey anti-goat !gG~PerCP-Cy5.5, #sc-45102, 1 :200) antibodies for 1 h. After washing slides twice with PBS, eoverslips were mounted onto slides with UitraCruz™ mounting medium (#sc- 24941 ) containing 4', 6-diamidino-2-phenylindole (DAPS) to eounterstain cell nuclei. All antibodies and mounting medium were purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX. USA) and manufacturer's protocol was followed. Fluorescent images were obtained using Zeiss LS 510 MET A NLO laser scanning confocai microscope (Oberkochen, Germany).

[0031] Effect of storage on the stability of mRNA molecules using molecuiar beacons™ Fig, 3

[0032] Cytospin slides of spiked MCF-7 ceils were prepared as described above. Ceils on the slides were treated with ice coid methanol {-10 °C) for 5 to 10 min. After air drying, the slides were stained with a mixture of 200 nmo!/L of fluorescent-tagged molecuiar beacons targeting c-fos or cyclin D1 mRNAs in Opti-MEM (!nvitrogen) at 37 °C for 1 h. Stained ceils on the slides were then washed, counterstained with DAPi and examined using a confocai microscope. The molecular beacons were purchased from Euroftns MWG Operon (Huntsvi!ie, AL).

[0033] Stability of spiked MCF-7 cells in blood - Fig. 1

[0034] Experiments were carried out to determine the ability of Protective Agent Compositions A & B to stabilize CTCs during blood sample storage and transportation as compared to regular K 3 EDTA blood collection tubes. Parallel blood samples drawn into K 3 EDTA and tubes containing Protective Agent Compositions A & B and spiked with MCF-7 cells were analyzed using the CellSearch system for spiked tumor ceil recovery. As shown in Figure 1 , Protective Agent Compositions A & 8 demonstrated desired percentage recovery of the tumor ceils at room temperature for up to 4 days. In Protective Agent Compositions A & B, at day 1 , 80% (Standard deviation (SD) = 4%, coefficient of variation (CV) ~ 7.3%) of spiked MCF-7 ceils were recovered and at day 4 it was 58% (SD = 8%. CV ~ 14.3%). In contrast, K 3 EDTA tubes failed to preserve CTCs resulting in a much lower recovery rates for both day 1 and 4 as compared to Protective Agent Compositions A & B. In 3 EDTA tubes, at day 1 , recovery rate was 32% (SD = 12%, CV = 36.3%) of the spiked MCF-7 cells and at da 4 it was 16% (SD = 14%, CV = 87%).

[0035] Effect of storage on the stability of EpCAM and CK proteins determined by immunofluorescence ceil staining ~ Fig, 2

[0038] Figure 2 illustrates the effects of room temperature storage on the stability of tumor-associated transmembrane protein EpCAM and eytoskeleton protein cytokeratin of MCF-7 tumor cells spiked into blood plasma. According to Figure 2, EpCAM protein which is expressed on the celi membrane of MCF-7 ceils are stable up to 4 days at room temperature in tubes containing Protective Agent Compositions A & B whereas in K 3 EDTA tubes this membrane protein was partia!iy degraded by day 4. According to Figure 2, fluorescence signal for EpCAM cell membrane protein is very- weak and diffused in lv CF-7 cells spiked into 3 EDTA blood at day 4, CK protein is stabilized in tubes containing Protective Agent Compositions A & 8 at day 4, however this protein was less stable in K 3 EDTA tubes at day 4 as evidenced from reduced fluorescence intensity for this protein in spiked MCF-7 cells recovered from -sEDTA tubes. Staining of cells with DAPt shows that nucleus and nuclear content is stable in cells recovered from tubes containing Protective Agent Compositions A & B but not from cells recovered from K 3 EDTA tubes after 4 days of storage at room temperature (Figure 2).

[0037] Effect of storage on the stability of mRNA molecules using molecular beacons ~ Fig. 3

[0038] Experiments were carried out to study the stability of mRNA in spiked MCF- 7 ceils recovered from Protective Agent Composition A and ^EDTA tubes. Cytospsns of recovered MCF-7 cells were prepared as described above. To detect mRNA in situ, fluorescent-labeled molecular beacons and a scanning confoca! microscope was used. As shown in Figure 3, c-fos mRNA {green fluorescence) and cyclin D1 mRNA (red fluorescence) were both stable i Protective Agent Composition A up to 4 days at room temperature. However in K 3 EDTA tubes c-fos mRNA was not stable after 4 days of storage at room temperature, indicating that c-fos mRNA expression was significantly degraded or downreguSated. The change in cyclin D1 mRNA level in MCF-7 cells recovered from K 3 EDAT tube was minimal after 4 days incubation at room temperature.

[0039] in the example with results shown at Figure 1 , 2000 MCF-7 cells were spiked into each K 3 EDTA tube and tubes containing Protective Agent Compositions A & B and shipped from Omaha NE to Maryviile, TN by overnight shipping for analysis by the Cel!Search™ System. Thus, this example represents a combinatio of transportation as well as storage effect on CTCs i blood samples. As shown in Figure 1 , our CTC recovery study conducted using spiked MCF-7 cells and analyzed by Cel!Search™ System provided evidence that Protective Agent Compositions A & 8 are able to preserve CTCs during transportation and storage at room temperature for up to 4 days. Previous studies using Cell Search™ System have shown that the recovery rate for MCF-7 cells shortly after blood draw is between 62 - 89%. Our results show that in tubes containing Protective Agent Compositions A & B, post shipping day 1 and day 4 recovery rates of 61% and 57% respectively. There was no statistically significant difference between these two values indicating thai CTCs are stable in Protective Agent Compositions A & B for 4 days after shipping at room temperature. However in K 3 ED A tubes, CTC recovery rate was very low compared to Protective Agent Compositions A & B. in K 3 EDTA tubes post shipping day 1 and day 4 recovery rates were 32% and 16% respectively. There was a statistically significant decrease in CTC recovery in K 3 £DTA tube at day 1 and day 4 compared to Protective Agent Compositions A & 8. As shown in Figure 2. immunofluorescence staining of recovered CTCs for EpCAM and CK showed stability of these proteins in CTCs recovered from Protective Agent Compositions A & B 4 days after storage at room temperature. However cells recovered from K 3 EDTA tubes showed degrading EpCAM and CK proteins after 4 days at the same temperature. DAPI staining of cells showed stable nucleus and nuclear content in CTCs recovered from Protective Agent Compositions A & S whereas CTCs recovered from 3 EDTA tubes showed degrading nucleus and nuclear content (Figure 2).

[0040] The mo!ecuiar beacon example shows that both c-fos and cyciing D1 mRNA are stable in Protective Agent Composition A at room for up to 4 days (Figure 3), However, CTCs recovered from 3 EDTA tubes showed CTCs with degrading c-fos and cyciin D1 niRNAs as shown in Figure 3.

[0041] Analysis of the stabilizing reagent present in Protective Agent Compositions A & 8 by 5 ¾-NfvSR has shown that the reagent is free of formaldehyde. Aidehyde based chemicais traditionally used in cell stabilization, such as formaldehyde and glutara!dehyde, are known to damage DNA and NA by causing chemical modifications in nucleic acids and making nucleic acid-protein cross-links which make extraction of nucleic acids difficult. Application of such aldehyde based chemicais for CTC stabilization may cause problems for CTC characterization studies. Cell stabilizing reagent present in Protective Agent Compositions A & B have an advantage over aldehyde based stabilizing agents because of it has no negative effect on either nucleic acid extraction or amplification by PGR.

[0042] In these examples, Protective Agent Compositions A & B provide preservation and stabilization of CTCs in blood samples for up to 4 days at room temperature. In doing so, the protective agent compositions support the development of new non-invasive diagnostic and prognostic methodologies for CTC enumeration as well as characterization.

[0043] The teachings herein envision that a single protective agent composition may be employed thai includes a preservative composition and a quenching agent. Such protective agent composition may be preloaded into a sample collection device, such as a blood collection tube {which may be evacuated to a pressure below atmospheric pressure afte loading). Thus, it is possible that a sample may be taken from a subject directly into the sample collection device (e.g., a blood collection tube), at which time it will be contacted with the protective agent composition. It is also possible that a sample can be taken from a subject into a first container and th sample subsequently transferred to one or more second containers in which the protective agent composition is present.

[0044] The a!dehyde-free (e.g., formaldehyde-free) protective agent composition may include a preservative composition such as one selected from the group consisting of; diazolsdsnyl urea, imidazolidinyl urea, dimethoyloi-5,5-dimethylhydantoin, diethyl urea, 2-bromo-2- nitropropane- 1 , 3-diol , oxazolidines, sodium hydroxymethyl glycinate, 5- hydroxymethoxymethy!-1-iaza-3,7-dioxabicyclo [3.3.0] octane, 5-hydroxymethyM -laza- 3,7-dioxabicyclo [3.3.0] octane, 5-hydroxypoly[methyleneoxy]methyl-1-laza-3,7- dioxabicyclo [3.3.0] octane, quaternary adamantine and any combination thereof. Though the aldehyde-free (e.g., formaldehyde-free) protective agent composition may release an aldehyde (e.g., formaldehyde), the teachings herein envision a specific step of quenching the aldehyde to render it inert to the CTCs,

[0045] The preservative composition is desirably used in combination with a quenching agent for helping to assure that nucleic acid (e.g., DMA) in the sample avoids being subjected to free aldehyde (e.g., free formaldehyde) which may cause one or more deleterious effects upon the nucleic acid. Accordingly, the teachings herein contemplate the use of at least one aldehyde quenching agent, which is employed in an amount and in a manner sufficient so that any free aldehyde (e.g., formaldehyde) released from the protective agent composition reacts to form a reaction product that is inert to the nucleic acid of the biological sample. Further, the resulting mixture is preferably devoid of any aldehyde, and nucleic acids within the sample are suitable for polymerase chain reaction and DNA sequencing, and will exhibit structural integrity comparable to native nucleic acids (e.g., DNA will exhibit e!lipticity that is substantially similar that of untreated native DNA, as measured by circular dichroism spectroscopy or will exhibit DNA-dye fluorescence that is substantially similar to that of untreated native DNA, as measured by fluorescence spectroscopy).

[0046] The concentration of the preservative composition after sample contact may be greater than about 20 mg ml, 10 mg/ S, 5 mg/mi, 2 mg/ml, less than about 0.8 g/m! of the mixture of protective agent composition and biological (e.g., blood) sample. The concentration of the preservative composition after sampie contact may be more than about 0,1 g/m! of the mixture of protective agent compositio and biological (e.g., Wood) sampie. By way of example, the concentration of the preservative composition after sampie contact may be between approximately 0.1 g/rni to approximately 0.8 g/ml of the mixture of protective agent composition and biological (e.g., blood) sampie. The concentration of the preservative composition after sample contact may be between approximately 0.3 g/ml to approximately 0,6 g/ml of the mixture of protective agent composition and biological (e.g., blood) sample. The concentration of the preservative composition both before and after contact with a blood sampie may be modified depending upon what diagnostic procedures a sampie may undergo. As an example, the concentration may be modified in the event that a sample is to undergo flow cytometry analysis. More specifically, the concentration may be increased in the event that a sampie is to undergo flow cytometry analysis. Thus, the concentration of the preservative composition after sampie contact may be greater than about 15 mg/ml, greater than about 25 mg/ml, or even greater than about 30 mg/ml after sample contact. The formulation of the protective agent composition (and the preservative composition contained therein) may also be modified such that a sampie that will undergo fiow cytometry analysis may contain diazo!idsnyl urea. The protective agent composition may also include a quenching agent. The protective agent composition may also include one or more metabolic inhibitors, one or more nuclease inhibitors and EDTA.

[0047] The quenching agent may be one or more compounds that include at least one functional group capable of reacting with an electron deficient functional group of an aldehyde (e.g., an amine compound that reacts with formaldehyde to form methy!ol and/or imine Schiff base or a cis-dio! compound that reacts with formaldehyde to form a cyclic acetal). The quenching agent may be selected from amino acids, alky! amines, poiyamines, primary amines, secondary amines, ammonium salts, nueieobases or any combination thereof. The quenching agent may be selected from glycine, lysine, ethylene diamine, arginine, urea, adinine, guanine, cytosine, thymine, spermidine, or any combination thereof.

[0048] The concentration of the quenching agent is an amount that is sufficiently large that after contacting the sample with the protective agent composition, there is an absence of free aldehyde (e.g. , an absence of free formaldehyde). However, the concentration is sufficiently small that dilution of the sample will not materially impact any analyzed characteristic of the sample. The concentration of the formaldehyde-quenching reagent after the sample contacting step may be above about 0.001 g/ml, 0,002 g/ml or even about 0.004 g/ml of the mixture of protective agent composition and biological (e.g., blood) sample. The concentration of the formaldehyde-quenching reagent after the sampie contacting step may be below about 0.03 g/ml, 0.01 g/ml, or even about 0.008 g/ml of the mixture of protective agent composition and biological (e.g., blood) sample. By way of example, the concentration of the formaldehyde-quenching reagent after the sampie contacting step may be between about 0.004 g/mi to about 0.008 g/m!.

[0049] Upon being brought into contact with a sample to form a mixture of the sample and protective agent composition {e.g., at time of a blood draw into a blood collection device containing a protective agent composition of the teachings herein), the protective agent composition may be present in an overal! small fraction of the mixture volume. For example, it may be present in an amount that is less than about 5%, 2%, 0.5% or even less than about 0.3% of the overall mixture volume. For example, the protective agent composition may be present in an amount of from about 1 :20 parts by volume to about 1 :300 parts by volume of the mixture. The amount of the protective agent composition may be present from about 1 :50 parts by volume to about 1 :200 parts by volume of the mixture.

[0050] During at least the contacting step, the amount of the protective agent composition is present from about 1 :20 (1 part protective agent composition to 20 parts total mixture) parts by volume to about 1 :300 parts by volume of the total mixture (which Includes both the protective agent composition and the biological sample). For instance, during at least the contacting step, the amount of the protective agent composition is present from about 1 ; 100 parts by volume to about 1 :200 parts by volume of the mixture.

[0051] The protective agent composition may inciude at least one preservative composition selected from diazoSidinyi urea, imidazoSidinyS urea, dimeihoyio!~5,5~ dimethylhydantoin, dimethy!oS urea, 2-bromo-2.-nitropropane-1 ,3-dioi, oxazoiidines, sodium hydroxymethyl giycinate, 5-hydroxymethoxymethyl-1--1aza-3,7- dioxabicycSo[3.3.0]octane, 5~hydroxymethyl-1-1aza~3,7dioxabicyclo[3.3.0 octane, 5- hydroxypolyJmethyteneoxyJmethyl-l-laza-SJdioxabicyciofS.S.OI octane, quaternary adamantine, 2-aminoacetic acid or any combination thereof. By way of illustration, the contacting step may include employing as the protective agent composition, a composition that includes imidazoSidinyi urea in an amount of about 0.1 to about 2.0% by weight of the total mixture of the protective agent composition plus a biological sampie; optionally, ethylenediamineieiraacetic acid (EDTA) in an amount of about 0,05 to about 0.75% by weight of the total mixture of the protective agent composition plus a biological sample; and a quenching agent in an amount sufficient to react with any free aldehyde (e.g., formaldehyde) that may arise from the imidazolidinyl urea to form a reaction product that will not react to denature any protein of the biological sample. The protective agent composition (prior to contact with any biological sample) may include from about 20% to about 60% by weight imidazolidinyl urea. The protective agent composition may include at least about 30% by weight imidazolidinyl urea. The protective agent composition may include at least about 40% by weight imidazolidinyl urea and less than about 55% by weight imidazolidinyl urea. The protective agent composition may include from about 1% to about 10% by weight of the quenching agent. The protective agent composition may include at least about 2% by weight of the quenching agent. The protective agent composition may include at least about 4% by weight of the quenching agent and less than about 8% by weight of the quenching agent. The protective agent composition may include from about 1 % to about 20% by weight EDTA. The protective agent composition may include at least about 5% by weight EDTA. The protective agent composition ma include at least about 7% b weight EDTA and less than about 0% by weight EDTA.

[0052] The protective agent composition may be pre-loaded into a tube and may be pre-loaded in amount of from about 50 to about 400μ! of protective agent composition. The pre-loaded amount may be at least about 100μΙ and less than about 300μΙ. The pre-loaded amount may be at ieast about ΙδΟμΙ and less than about 250μΙ. Within the pre-loaded protective agent composition, the protective agent composition may comprise at Ieast about 80 mg and less than about 100 mg of the protective agent composition. The quenching agent may comprise at Ieast about 1 mg and less than about 15 mg of the protective agent composition. EDTA may comprise at least about 10 mg and less than about 25 mg of the protective agent composition. For the protective agent composition, it may include an amount of about 10 parts by weight of the protective agent composition per about 1 parts by weight of the quenching agent. The quenching agent may include a compound that includes at least one functiona! group capable of reacting with an electron deficient functiona! group of formaldehyde (e.g., an amine compound that reacts with formaldehyde to form methylol or imine Schiff base or a cis-dioi compound that reacts with formaldehyde to form a cyclic acetai). The quenching agent may be an ingredient selected from amino acids, alkyl amines, poiyamines, primary amines, secondary amines, ammonium salts, or a combination thereof, it may be an ingredient selected from glycine, lysine, ethylene diamine, arginine, urea, adinine, guanine, cytosine, thymine, spermidine, or any combination thereof. It may be an ingredient selected from glycine, lysine, ethylene diamine, urea or any combination thereof. The quenching step may include reacting any free aldehyde (e.g., formaldehyde) for forming a methyiol, inline Sen iff base, a Schiff base-quencher crosslink reaction product, a Schiff base dimer, or any combination thereof.

[0053] The protective agent may include one or more preservative agents, one or more nuclease inhibitors, one or more metabolic inhibitors, or any combination thereof. The one or more nuclease inhibitors may be selected from the group consisting of: diethyl pyrocarbonate, ethanoS, aurintricarboxySic acid (ATA), glyceraidehydes, sodium fluoride, ethyfenediamine tetraacetic acid (EDTA), formamide, vanadyi-ribonucieoside complexes, maca!oid, heparin, hydroxy !amine-oxygen-cupric ion, bentonite, ammonium sulfate, dithiothreitoS {DTT), beta-mercaptoethano!, cysteine, dithioerythritol, tris (2- carboxyethyl) phosphene hydrochloride, a divalent cation such as g* 2 , M ' n* 2 , Zn +2 , Fe* 2 , Ca *2 « Cu 'f2 and any combination thereof. The one or more metabolic inhibitors may be selected from the group consisting of; g!yceraSdehyde, dihydroxyacetorse phosphate, g!ycera!dehyde 3-phosp ate, 1 ,3-bisphosphoglycerate, 3-phosphogfycerale, 2- phosphog!ycerafe, phosphoenolpyruvate, pyruvate and glycerate dihydroxyacetaie, sodium fluoride, and any combination thereof.

[0054] The amount of any active ingredient within the protective agent may generally be at least about 0,01% by weight. The amount of any active ingredient within the protective agent may general!y be less than about 70% by weight The protective agent may comprise at least about 10% diazoSidinyS urea. The protective agent may comprise less than about 40% diazolidinyl urea. The protective agent may further contain at Ieast about 1% of one or more enzyme inhibitors (e.g., nuclease inhibitors) such as EDTA and ATA. The protective agent may contain less than about 30% of one or more enzyme inhibitors. The protective agent may also contain at least about 1 % of one or more metabolic inhibitors. The protective agent may contain less than about 20% of one or more metabolic inhibitors.

[0055] The protective agent composition optionally may include a nuclease inhibitor selected from the group consisting of: diethyl pyrocarbonate, ethanol, aurintricarboxyiic acid (ATA), formamide, vanadyl-ribonucleoside complexes, macaioid, efhylenediamine tetraacetic acid (EDTA), proteinase K, heparin, hydroxylamtrte-oxygen- cupric ion, bentonite, ammonium sulfate, dithiothreitol (DTT), beta-mercaptoeihanol (8ME), cysteine, dithioerythritol, tris(2-carboxyethyl} phosphene hydrochloride, a divalent cation such as g 2 \ n 2 \ Zn 2+ , Fe 2t , Ca 2 \ Cu 2* , and any combination thereof. The protective agent composition may include a preservative composition, an aldehyde quenching agent, and an anticoagulant, in one preferred embodiment, the protective agent composition may include imidazolidinyl urea, glycine, and ethy!enediamine tetraacetic acid.

[0056] The teachings herein contemplate applications including but not limited to extracting circulating tumor cells for use in detecting cancer (including but not limited to carcinomas, leukemia, and/or lymphoma). For instance, th teachings herein may be employed for detecting abnormal methylation for breast cancer, prostate cancer, gastric cancer, ovarian, colorectal cancer, bladder cancer, testicular cancer, esophogea! cancer, melanoma or other cancers.

[0057] The explanations and illustrations presented herein are intended to acquaint others skilled in the art with the invention, its principles, and its practical application. Those skilled in the art may adapt and apply the invention in its numerous forms, as may be best suited to the requirements of a particular use. Accordingly, the specific embodiments of the present invention as set forth are not intended as being exhaustive or limiting of the invention. The scope of the invention should, therefore, be determined not only with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. Other combinations are also possible as will be gleaned from the following claims, which are also hereby incorporated by reference into this written description. As to all of the foregoing general teachings, as used herein, unless otherwise stated, the teachings envision that any member of a genus (list) may be excluded from the genus; and/or any member of a a kush grouping may be excluded from the grouping.

[0058] Unless otherwise stated, any numerical values recited herein inc!ude all values from the Sower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value. As an example, if it is stated that the amount of a component, a property, or a value of a process variable such as, for example, temperature, pressure, time and the like is, for example, from 1 to 90, preferably from 20 to 80, more preferabl from 30 to 70, it is intended that intermediate range values (for example, 15 to 85, 22 to 68, 43 to 51 , 30 to 32 etc.) are within the teachings of this specification. Likewise, individual intermediate values are a!so within the present teachings. For values which are less than one, one unit is considered to be 0.0001 , 0.001, 0.01 or 0.1 as appropriate. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner. As can be seen, the teaching of amounts expressed as "parts by weight" herein also contemplates the same ranges expressed in terms of percent by weight and vice versa. Thus, an expression In the Detailed Description of the Invention of a range in terms of at "x" parts by weight of the resulting polymeric blend composition" also contemplates a teaching of ranges of same recited amount of V in percent by weight of the resulting polymeric blend composition."

[0059] Unless otherwise stated, all ranges includ both endpoints and ail numbers between the endpoints. The use of "about" or "approximately" in connection with a range applies to both ends of the range. Thus, "about 20 to 30" is intended to cover "about 20 to about 30", inclusive of at least the specified endpoints. Concentrations of ingredients identified in Tables herein may vary ±10%, or even 20% or more and remain within the teachings,

[0060] The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for ail purposes. The term "consisting essentia!ly of to describe a combination shall include the elements, ingredients, components or steps Identified, and such other elements ingredients, components or steps that do not materially affect the basic and novel characteristics of the combination. The use of the terms "comprising" or "including" to describe combinations of elements, ingredients, components or steps herein also contemplates embodiments that consist essentially of, or even consist of the elements, ingredients, components or steps. Plural elements, ingredients, components or steps can be provided by a single integrated element, ingredient, component or step. Alternatively, a single integrated element, ingredient, component or step might be divided into separate plural elements, ingredients, components or steps. The disclosure of "a" or "one" to describe an element, ingredient, component or step is not intended to foreclose additional elements, ingredients, components or steps. Ail references herein to elements or metals belonging to a certain Group refer to the Periodic Table of the Elements published and copyrighted by CRC Press, inc., 1989. Any reference to the Group or Groups shall be to the Group or Groups as reflected in this Periodic Table of the Elements using the SUPAC system for numbering groups.

[0061] Even if not expressiy stated, teachings from a description of one embodiment may be combined wit teachings for other embodiments unless the description makes clear that such embodiments are mutuality exclusive, or that the resulting combination would be cieariy inoperative in the absence of unreasonable experimentation.

[0062] Si is understood that the above description is intended to be illustrative and not restrictive. Many embodiments as well as many applications besides the examples provided will be apparent to those of skill in the art upon reading the above description. The scope of the invention should, therefore, foe determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The omission in the foiiowing claims of any aspect of subject matter that is disclosed herein is not a disclaimer of such subject matter, nor should it be regarded that the inventors did not consider such subject matter to be part of the disclosed inventive subject matter.