Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CONVERSION OF CARBON CONTAINING FEEDSTOCK
Document Type and Number:
WIPO Patent Application WO/2011/051902
Kind Code:
A1
Abstract:
This invention relates to a process for the conversion of carbon containing feedstock to a liquid chemical product, particularly a liquid fuel product, wherein carbon dioxide emissions are minimized by reacting the feedstock with an oxygen-containing gas and a co-feed substance which lies in a region bound by CH2-H2O-H2 points on a C-H-O ternary phase diagramm.

Inventors:
KAUCHALI SHEHZAAD (ZA)
Application Number:
PCT/IB2010/054887
Publication Date:
May 05, 2011
Filing Date:
October 28, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV WITWATERSRAND JHB (ZA)
KAUCHALI SHEHZAAD (ZA)
International Classes:
C10J3/00; C01B3/34; C07C29/151; C07C43/04; C10G2/00; C10G3/00
Domestic Patent References:
WO2006100572A12006-09-28
WO2008010994A22008-01-24
Foreign References:
US20030236312A12003-12-25
US20080237542A12008-10-02
US20070124997A12007-06-07
US20030115800A12003-06-26
US6293979B12001-09-25
Other References:
DATABASE WPI Week 200901, Derwent World Patents Index; AN 2009-A02518, XP002629564
DATABASE WPI Week 198348, Derwent World Patents Index; AN 1983-833298, XP002629565
Attorney, Agent or Firm:
BOWMAN GILFILLAN INC. (Sandtoin, 2146 Johannesburg, ZA)
Download PDF:
Claims:
CLAIMS 1. A process for producing a liquid chemical or fuel product wherein C02 emissions are minimised, the process including reacting a carbon-containing feedstock in a reaction with an oxygen-containing gas and a co-feed substance which is describable in a C-H-0 ternary phase diagram and which lies in a region bound by CH2-H2O-H2 points on said diagram. 2. The process of claim 1 , in which the reaction occurs in a single vessel, is overall thermally balanced, requires minimal 02, and produces minimal or no C02. 3. The process of claim 2, in which H20 is added as reagent to the reacting carbon- containing feedstock, oxygen-containing gas, and co-feed substance. 4. The process of any of the preceding claims, in which the reaction operate on, or very close to, a boundary line linking CH2 and H20 on the C-H-0 ternary phase diagram. 5. The process of any of claim 4, in which the product is dimethyl ether. 6. The process of claim 4, in which the product is a Fisher-Tropsch fuel. 7. The process of claim 4, in which the product is a Fisher-Tropsch fuel, H20, and unconverted synthesis gas. 8. The process of claim 7, in which the unconverted synthesis gas is combusted in a turbine to generate electricity. 9. The process of claim 5, in which the product is dimethyl ether fuel and unconverted synthesis gas. 10. The process of claim 9, in which the unconverted synthesis gas is combusted in a turbine to generate electricity. The process of claim 1 , in which multiple reactions occur in multiple vessels, a first vessel being arranged to subject the carbon-containing feedstock, in a first reaction, to a gasification reaction which is thermally balanced.

The process of claim 11 , in which H20 is added as reagent to the first reaction.

13. The process of claim 12, in which H20 is recycled from reaction products of a further reaction or reactions occurring in a further vessel or vessels in the process.

14. The process of claim 12 or 13, in which C02 is added as reagent to the first reaction. 15. The process of claim 14, in which C02 is recycled from reaction products of a further reaction or reactions occurring in a further vessel or vessels in the process.

16. The process of any of claims 11 to 15, in which the product is synthesis gas.

17. The process of any of claims 11 to 15, in which the product is C02 & H2 gas.

18. The process of any of claims 1 to 15, in which the product is dimethyl ether. 19. The process of any of claims 11 to 15, in which the product is a Fisher-Tropsch fuel.

20. The process of claim 1 , in which multiple reactions occur in multiple vessels, a primary vessel being arranged to subject the carbon-containing feedstock, in a primary reaction, to an endothermic gasification reaction that thermally balances a further reaction or reactions occurring in a further vessel or vessels and which is/are exothermic so that the overall process for producing a liquid chemical or fuel product is thermally balanced.

21. The process of claim 20, in which the primary reaction is a synthesis gas producing reaction and the further reaction is a desired Fischer-Tropsch fuel producing reaction, said reactions overall being thermally balanced.

The process of claim 20, in which the primary reaction is a synthesis gas producing reaction and the further reaction is a dimethyl ether producing reaction, said reactions overall being thermally balanced.

The process of claim 20, in which the primary reaction is a synthesis gas producing reaction, the further reaction is a dimethyl ether producing reaction, and the yet further reaction is a desired Fisher-Tropsch fuel producing reaction, said reactions overall being thermally balanced.

24. The process as claimed in any of the preceding claims, in which the carbon- containing feedstock is selected from the group consisting of coal, petroleum refinery residue, biomass and waste.

25. The process as claimed in any of the preceding claims, in which the co-feed substance is methane.

26. The process as claimed in any of claims 1 to 24, in which the co-feed substance is hydrogen gas.

27. The process as claimed in any of the preceding claims, in which the oxygen- containing gas is air or oxygen.

28. A process for producing a liquid chemical or fuel product, substantially as herein described with reference to and as exemplified in any of Examples 1.1 to 1.3, 2.2 to 2.4, and 3.1 to 3.3 of the accompanying Examples.

Description:
CONVERSION OF CARBON CONTAINING FEEDSTOCK

FIELD OF THE INVENTION

This invention relates to conversion of carbon containing feedstock to other materials such as liquid chemicals and fuels. In particular, this invention relates to a process for producing a liquid chemical or fuel product wherein C0 2 emissions are minimised.

BACKGROUND TO THE INVENTION

In the conversion of carbon containing feedstock to other materials, traditional conversion plants are synonymous with the incorporation of processes that invariably lead to the production of carbon dioxide (C0 2 ), a green house gas.

For example, in Fischer-Tropsch processes a set of chemical reactions convert a mixture of carbon monoxide (CO) and hydrogen gas (H 2 ) into liquid hydrocarbons (CH 2 ). The CO and H 2 are, initially, produced by an endothermic reaction of a carbon containing feedstock such as, for example, coal (C) with steam (H 2 0) and oxygen (0 2 ) as represented by the following gasification process:

The CO is then partially converted to C0 2 and H 2 by the following water gas shift process in order to achieve a desired carbon monoxide to hydrogen gas ratio (synthesis gas ratio):

The water gas shift process is controlled so as to provide the required CO:H 2 molar ratio for the Fischer-Tropsch process in which synthesis gas is further reacted to a myriad of chemicals and fuels. Typically the CO:H 2 molar gas ratio is 1 :2. However, excess C0 2 is generated in the gas shift process and has to be removed from the system via a gas cleaning step which is undesirable and costly.

This process also requires a considerable amount of energy input to drive the endothermic reaction.

It is thus an object of this invention to address at least some of the abovementioned problems.

SUMMARY OF THE INVENTION

According to the invention there is provided a process for producing a liquid chemical or fuel product wherein C0 2 emissions are minimised, the process including reacting a carbon-containing feedstock in a reaction with an oxygen-containing gas and a co-feed substance which is describable in a C-H-0 ternary phase diagram and which lies in a region bound by CH 2 -H 2 0-H z points on said diagram. According to a first embodiment of the invention there is provided for the reaction to occur in a single vessel, to be overall thermally balanced, to require minimal 0 2 , and to produce minimal or no C0 2 . Preferably, H 2 0 is added as reagent to the reacting carbon- containing feedstock, oxygen-containing gas, and co-feed substance. There is further provided for the reaction to operate on, or very close to, a boundary line linking CH 2 and H 2 0 on the C-H-0 ternary phase diagram.

Moreover, there is provided for the product to be synthesis gas; alternatively, dimethyl ether; further alternatively, a Fisher-Tropsch fuel product. The process may also be arranged to produce a Fisher-Tropsch fuel product, H 2 0, and unconverted synthesis gas, wherein the unconverted synthesis gas may be combusted in a turbine to generate electricity.

According to a second embodiment of the invention there is provided for multiple reactions to occur in multiple vessels, a first vessel being arranged to subject the carbon- containing feedstock, in a first reaction, to a gasification reaction which is thermally balanced.

In accordance with an aspect of this embodiment of the invention, H 2 0 is, preferably, added as reagent to the first reaction. Further preferably, C0 2 is added as reagent to the first reaction. The reagents H 2 0 and C0 2 may be sourced via recycling from reaction products of a further reaction or reactions occurring in a further vessel or vessels.

In accordance with an additional aspect of this embodiment of the invention, there is provided for the product to be synthesis gas; alternatively, dimethyl ether; further alternatively, a Fisher-Tropsch fuel product.

According to a third embodiment of the invention there is provided for multiple reactions to occur in multiple vessels, a primary vessel being arranged to subject the carbon- containing feedstock, in a primary reaction, to an endothermic gasification reaction that thermally balances a further reaction or reactions occurring in a further vessel or vessels and which is/are exothermic so that the overall process for producing a liquid chemical or fuel product is thermally balanced. In accordance with an aspect of this embodiment of the invention, the primary reaction is a synthesis gas producing reaction and the further reaction is a dimethyl ether producing reaction, said reactions overall being thermally balanced.

In accordance with an additional aspect of this embodiment of the invention, the primary reaction is a synthesis gas producing reaction, the further reaction is a dimethyl ether producing reaction, and the yet further reaction is a desired Fisher-Tropsch fuel producing reaction, said reactions overall being thermally balanced. ln accordance with a further aspect of this embodiment of the invention, H 2 0 is, preferably, added as reagent to the primary reaction. Further preferably, C0 2 is added as reagent to the primary reaction. The reagents H 2 0 and C0 2 may be sourced via recycling from reaction products of the further reaction or reactions occurring in a further vessel or vessels.

There is also provided for the carbon-containing feedstock to be selectable from the group consisting of coal, petroleum refinery residue, biomass and waste. In a particular embodiment of the invention there is provided for the co-feed substance to be methane, alternatively, hydrogen gas. The oxygen-containing gas may either be air, enriched air or oxygen.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is now described by way of example with reference to the accompanying non-limiting diagrammatic drawings. In the drawings: Figure 1 shows a typical ternary C-H-0 phase diagram that can be used in embodiments of the invention;

Figure 2 shows a graphical representation of chemical species on a C-H-0 bond equivalent phase diagram;

Figure 3 shows a graphical representation of various feeds (C, H 2 0 & 0 2 only) and minimum C0 2 emissions on the C-H-0 bond equivalent phase diagram;

Figure 4 shows a region, on the C-H-0 bond equivalent phase diagram, containing choice for a co-feed substance in accordance with the invention;

Figure 5 shows a graphical representation of important gasification reactions on the C-H-0 bond equivalent phase diagram; Figure 6 shows a process flowsheet for fuel or chemical production from C0 2 and H 2 gases according to an embodiment of the invention;

Figure 7 shows a process flowsheet for Fisher Tropsch (FT) production from recycled C0 2 according to an embodiment of the invention;

Figure 8 shows a process flowsheet for FT production via dimethyl ether (DME) with recycled C0 2 according to an embodiment of the invention; Figure 9 shows a process flowsheet for fuel/chemical production with recycled C0 2 according to an embodiment of the invention; and

Figure 10 shows a process flowsheet for FT production via DME with C0 2 and recycled H 2 0 according to an embodiment of the invention;

DETAILED DESCRIPTION OF THE INVENTION

In the conversion of carbon containing feedstock such as coal to other materials, a ternary carbon/ hydrogen/oxygen phase diagram is particularly useful. Use of such a diagram allows one to plot compositions as bond-equivalent percentages, i.e. with each element given a weighting appropriate to its power of combining with the other elements.

The diagram thus allows one to represent the various process steps in fuel production thereon. As shown in Figure 1 C, 0 2 , H 2 , CO, C0 2 , CH 4 , CH 2 & H 2 0 bond equivalent mole fractions may be present. At the apexes of the phase diagram appear C, 0 2 and H 2 and any point, in the interior, represents any real molecule comprising C-H-O. Various boundaries can be created by joining the components by straight lines as shown in Figure 2. These lines represent important physio-chemical unit operations such as mixing, reaction or separation.

Traditional processes using natural gas (methane) have the potential of producing liquid fuels or chemicals whilst producing the least C0 2 to the environment. It is this salient feature of CH 4 that is exploited in this invention to obviate any C0 2 produced using coal. An important overall process may be summed as C+aCH +b0 2 ~>dCH 2 +eH 2 0. The mixing of a co-feed substance allows for the feed, to the process, to lie closely on the line joining the CH 2 and H 2 0 points and it is noted that the process does not produce C0 2 . This is quite different from the traditional coal processes where the overall processes may be represented by 3C+2H 2 0->2CH 2 + C0 2 or 3C+4H 2 0~>2CH 2 + 2H 2 0 +C0 2 which inherently produce C0 2 .

Referring to Figure 2, of particular interest are the Carbon-Steam, H 2 -CO, H 2 -C0 2 boundary lines. In order to minimise, or eliminate C0 2 -rejecting processes it is imperative to operate on, or very close to, the CH 2 -H 2 0 boundary line which represents the products of typical FT processes. Processes operating on this boundary do not require the rejection of C0 2 in the lever-arm rule but instead reject H 2 0.

Figure 3 represents three feed conditions (A,B,C) which represent various ratios of C:H 2 0:0 2 and lie between the CH 2 -C0 2 line. It can be shown that if coal is used as the only feedstock with steam and oxygen (Point A) then the carbon-steam boundary line represents the extreme operating condition for minimum C0 2 rejection. If any other point (e.g. B or C) are used then from the lever-arm rule more C0 2 will be emitted as the feed points are getting closer to the C0 2 point. Moreover, C0 2 rejection is inevitable in such processes as the lever-arm rule requires both C0 2 and fuels (CH 2 ) to be produced on either side of the straight line. Operating, strictly, within the region described by C-H 2 0- 0 2 points (shaded region) will require C0 2 rejection greater than the minimum achieved on the boundary of C-H 2 0.

Co-feed substance/agent

In order to minimise, or eliminate C0 2 -rejecting processes it is imperative to operate on, or very close to, the CH 2 -H 2 0 boundary line which represents the products of typical FT processes as shown in Figure 4. Processes operating on this boundary do no require the rejection of C0 2 in the lever-arm rule but instead reject H 2 0.

The invention thus uses methane (as co-feed substance), for example and carbon feedstock, for the production of liquid chemicals and fuels, in such proportions that avoids overall C0 2 -rejecting fundamental processes. In principle, any other available substance can be added to carbon containing feed on condition that it is describable in the CHO phase diagram and is above the CH 2 -H20 boundary line. Another possible agent, if produced economically, is hydrogen.

A region can now be defined (shaded in Figure 4) as being bound by CH2-H2O-H2 that allows any combination of co-feed substance to be added to the coal in order to bring the overall feed composition on the CH 2 -H 2 0 line. For example, we could use CH to add with C and H z O to obtain an operating point producing synthesis gas comprising of CO and H 2 in the ratio 1 :2, as required for FT. If H 2 is available, as a cheap resource, then a linear combination of C, H 2 and H 2 0 could be used to produce the syngas anywhere on the CH 2 -H 2 0 boundary to feed into the FT reactor. Any feed or combinations of co-feeds in the CH 2 -H 2 0-H 2 region can be used with coal to allow the operation on the CH 2 -H 2 0 line and thus eliminate C0 2 production.

Here, the processes are multiple steps that do not include external pre-heating of the feedstock with combustible fuels that are secondary sources of C0 2 (in addition to C0 2 formed due to 0 2 production).

Dimethyl-ether (DME), a clean diesel-substitute, is traditionally produced from the dehydration of methanol. However, there are methods that use syngas (CO:H 2 =1 :2), produced from the partial oxidation of methane, directly to DME (with methanol production as intermediate step). DME may also be produced from coal where syngas with ratio CO:H 2 =1 :1 is used. The advantage of this process is that it has a higher equilibrium conversion than using a higher CO:H 2 (1 :2) and separation of DME from C0 2 is fairly easy. However, producing DME from coal only results in the formation of large amounts of C0 2 in the DME reactor as well as the gasifier. The key advantage of producing DME, amongst others, is that it is also a feedstock to FT products. This is achieved by further dehydrating DME over appropriate catalyst to the desired FT fuels. The resulting fuels do not require intense refinery steps as in conventional FT processes.

Incorporating CH 4 in coal gasification and operating at thermally neutral conditions for the production of liquid chemicals and fuels has several advantages. Firstly, a potent green-house gas is removed from the environment and no C0 2 is released in return, less of the expensive oxygen is required and more fuel can be produced per mol of carbon in the feed than the traditional coal-steam method. The invention will now be described and exemplified by way of specific examples which are not intended to limit the invention in any way, but which are provided only to describe specific preferred embodiments of the invention.

EXAMPLE 1 One-Step Processes & Fuels/Chemicals Production

It is noted that C0 2 recycling processes and gasification and fuel production reactions may be incorporated into a single process. It is acknowledged that these processes are indeed catalytically controlled and may require further development in order to function simultaneously at the same reaction temperature. For example, the operating temperature may require high temperature FT catalyst and low temperature catalyst to produce the synthesis gas ("syngas") in the gasification process. It is not the objective here to develop catalyst for this process but to highlight the need to develop the catalyst in order to perform the one-step process efficiently. The advantages of operating a one step process include: 1) equipment reduction 2) no external recycling 3) ease of final product separation 4) potential use of air instead of pure oxygen (i.e. no air separation required) 5) simultaneous sulphur (or other catalyst poisoning) cleaning 6) No intermediate C0 2 removal step required.

The endothermic reaction in the gasification and the exothermic reaction in the fuel process may occur in an overall thermally balanced manner. This would, for example, require a fixed bed of coal blended with the bi-functional catalyst (or mix of catalyst) which would be fluidised (or non-fluidised) with a mix of methane, oxygen or steam to produce dimethyl ether ("DME") or a desired Fisher-Tropsch ("FT") fuel product (for ease of reference referred to herein further as "CH 2 "). The reactions can also occur in a slurry bed reactor where coal and catalyst are dispersed in an inert liquid and the reactive gases are bubbled through the bed.

In the examples below, it should be noted that necessary gas cleanup steps, prior to catalyst usage, have been omitted. Furthermore, it is assumed that the feed to the processes are received at the appropriate temperatures and pressures required for further processing. EXAMPLE 1.1

One-Step Process: FT production

The endothermic reaction in the gasification and the exothermic reaction in the FT process are shown below:

The two processes may occur in a single vessel thereby operating in an overall thermally balanced manner. The overall thermally balanced single-step process is given by

It is noted that enriched air (less N 2 ) or air may be used. However, the system may have to run slightly exothermically to account for the presence of inert nitrogen in the system as well as to pre-heat the feed to reaction temperatures.

EXAMPLE 1.2

One-Step Process: DME production With Oxygen/Air The endothermic reaction in the gasification and the exothermic reaction in the DME process are shown below:

The two processes may occur in a single vessel thereby operating in an overall thermally balanced manner. The overall thermally balanced single-step process is given by This reaction scheme requires only the addition of methane, steam and oxygen to coal. It is noted that no C0 2 is formed from the overall single process as it is consumed internally in the gasification reaction.

If pure oxygen is used, then pure DME may be formed. It is noted that enriched air (less N 2 ) or air may be used. However, the system may have to run slightly exothermically to account for the presence of inert nitrogen in the system.

Most DME catalysts operate optimally at around 550K. This either requires that efficient gasification catalyst be obtained to operate at 550K to produce syngas (CO:H 2 =1 :1) or develop a DME catalyst to operate at higher temperatures. However, the DME equilibrium drops considerably at higher temperatures and may be required to operate at high pressures in order to increase equilibrium conversions.

EXAMPLE 1.3

One-Step Process: DME & FT production

It is possible that an additional catalyst be added in the blend to dehydrate DME to FT products. This would, in principle, be a tri-catalyst system enabling the internal recycling of C0 2 as well as H 2 0. For example if we consider the DME system that requires oxygen then the overall process is

The feed to the system here is only methane, oxygen and coal. It is noted that the feed lies on the line joining CH 2 and H 2 0 on the bond equivalent phase diagram. The reaction is overall exothermic since the FT catalyst has been added on an existing thermally balanced DME operation.

A tri-catalyst system may operate overall thermally neutrally according to the overall reaction below:

This system requires the DME reaction to produce the C0 2 as well as the FT reaction to form the H 2 0 required to feed the endothermic gasification process internally. The heat from both the DME and FT process drives the endothermic reaction in an overall thermally balanced manner. It is further noted that operation in this method requires the least oxygen and produces the least waste water and more hydrocarbons per mol methane. EXAMPLE 2

Thermally Balanced Operations for Gasification Processes

It is common practice to operate gasification processes near thermally balanced conditions. This condition is achieved when the endothermic reactions (see Figure 5) are simultaneously driven by a set of exothermic reactions within the gasifier. The important reactions can thus be represented graphically on the bond equivalent phase diagrams as points of intersection between the various species as shown in Figure 5. For example the intersection of the carbon-steam line and the CO-H 2 line represents the reaction C+H 2 0->CO+H 2 or may also represent 2C+2H 2 0-->CH 4 +C0 2 . For downstream processes the former gas (syngas) is more desirable as an intermediate.

EXAMPLE 2.1

Thermally Balanced Operations for Gasification Processes: Coal & Methane Processes

Methane and coal can be reacted thermally neutrally, in a gasifier, to obtain a gas with a C0 2 :H 2 ratio =1 :3. The advantage of using this stoichiometry is in the fact that the gasifier operates directly on the line linking CH 2 -H 2 0. The thermally balanced reaction, G, is given by

This reaction uses a relatively significant amount of coal with the methane. However, a large amount of water is also required, but may be offset by recycling. The C0 2 -H 2 rich gas may be used directly as feed for methanol, DME or FT. The overall process is shown in Figure 6, and Table 1 represents the mole balances for the process.

Table 1. Mole balances for C0 2 :H 2 =1:3

Table 2. Products Formed per mole methane in Feed

The distinct advantage of this process is that no C0 2 is formed and that a reasonable amount of coal is used relative to the methane. However, methane is still considered to be the dominant amount in the overall feed. This process might be of particular interest for isolated coal mines that produce captured methane. The captured methane with low grade, unwashed coal and air can be used to produce liquid fuels, which can be transported via conventional methods. Here the methane is thus converted to fuels without methane or C0 2 emissions.

EXAMPLE 2.2

Thermally Balanced Operations for Gasification Processes: Coal & Methane with C0 2 recycle Process for Direct FT

Here we consider the case where we determine the parameters a,b,d,e and f for the following reaction so that the overall heat of reaction is zero and maximum C0 2 is used

The resulting thermally balanced solution is given by reaction A, below:

Notice that there is no steam required for this particular CO:H 2 =1 :0.5 ratio. The syngas produced can further react to form FT products as shown (in an exothermic reaction)

The C0 2 formed in the FT process is recycled to the thermally balanced gasifier. The overall process is shown in Figure 7, and Table 3 represent the mole balances for the process.

Table 4. Products Formed per mole methane in Feed for FT

EXAMPLE 2.3 Thermally Balanced Operations for Gasification Processes: Coal & Methane with C0 2 recycle Process for FT via DME

Here we consider the case where we determine the parameters a,b,d,e and f for the following reaction so that the overall heat of reaction is zero and maximum C0 2 is used

The resulting thermally balanced solution is given by reaction C, below:

The syngas further reacts to form DME according to

DME is further dehydrated to FT products and water The flowsheet is shown in Figure 8 below. The mole balances are given in Tables 5 and 6. The C0 2 in stream 4 is removed prior to FT processing.

Table 5. Mole balances for FT via DME

Table 6. Products Formed per mole methane in Feed for FT via DME

EXAMPLE 3.

Non-Thermally Balanced Operations for Gasification Processes

In this example we remove the requirement that the gasification occurs under thermally balanced conditions. Here, we let the gasification occur sufficiently endothermically so that the exothermic fuel/chemical production step is precisely matched and the overall process is thermally balanced. The advantage of operating in this mode enables operating the overall process with lower C0 2 production. The overall process flowsheet is given in Figure 9. It is noted that Qi=-Q 2 so that the overall process is thermally balanced and no excess heat is required to be added or removed from the process.

Table 7 below lists the heat of reaction for the compounds at 650K where CH 2 is represented by one eighth of octene (C 8 H 16 )

Table 7. Heat of reaction (KJ/mol) for compounds at 650K

EXAMPLE 3.1

Non-thermally balanced gasification operation: FT Production

For the FT production, the reaction schemes that need to be determined are represented by A and B, below:

Hence, for Q. ! —Q.2, the resulting reaction schemes are:

The mole balances are given in Tables 8 and 9 below: Table 8. Mole balances for FT (Non-thermally balanced gasifier)

Table 9. Products Formed per mole methane in Feed for FT

EXAMPLE 3.2

Non-thermally balanced gasification operation: FT Production via DME

For the DME production the reaction schemes that need to be determined are represented by D and E, below:

Hence, for Q^^, the resulting reaction schemes are: This is followed by the dehydration of DME to FT products and H 2 0 according to:

The H 2 0 and C0 2 are recycled and the process is shown in Figure 10.

The mole balances are given in Tables 10 and 11 below.

Table 10. Mole balances for FT via DME (Non-thermally balanced gasifier)

Table 11. Products Formed per mole methane in Feed for FT via DME

Table 12 shows the heat balance for the system that produces DME with oxygen in feed.

Table 12. Heat Balances for Gasification & DME process

This particular system is of tremendous interest as there is no C0 2 formed by the overall process. All C0 2 that gets produced in the DME reactor is recycled and utilised in the gasifier with only FT (and H 2 0) in the final product stream.

It is noted that the overall process here is exothermic and the feed (stream 1 ) lies on the line joining CH 2 and H 2 0 on the bond equivalent phase diagram.

EXAMPLE 3.3

Non-thermally balanced gasification operation: FT Production via DME overall thermally balanced For the FT production that is overall balanced, the reaction schemes that need to be determined are represented by D, E and F, below:

Hence, for = -Q 2 -Q 3 , the resulting process reactions are

The overall process is:

The mole balances are given in Tables 13 and 14 below for a flowsheet similar to Figure Table 13. Mole balances for FT via DME (Non-thermally balanced gasifier)

Table 14. Products Formed per mole methane in Feed for FT via DME

Table 15 below shows the heat balance for the tri-catalyst system that produces FT DME.

Table 15. Heat Balances for Gasification, DME & FT process