Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DERIVATIVES OF NATIVE LIGNIN
Document Type and Number:
WIPO Patent Application WO/2010/135804
Kind Code:
A1
Abstract:
The present invention provides derivatives of native lignin having an aliphatic hydroxyl content of 2.35 mmol/g or less Suprisingly, it has been found that consistent and predictable antioxidant activity may be provided by selecting for deriatives of native lignin having a certain aliphatic hydroxyl content.

Inventors:
BALAKSHIN MIKHAIL YUREVICH (CA)
BERLIN ALEX (CA)
DELLICOLLI HUMBERT THOMAS (US)
GRUNERT CHADRICK ADAM NATHANIEL JORDAN (CA)
GUTMAN VERA MAXIMENKO (CA)
ORTIZ DARWIN (CA)
PYE EDWARD KENDALL (US)
Application Number:
PCT/CA2010/000205
Publication Date:
December 02, 2010
Filing Date:
February 15, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LIGNOL INNOVATIONS LTD (CA)
BALAKSHIN MIKHAIL YUREVICH (CA)
BERLIN ALEX (CA)
DELLICOLLI HUMBERT THOMAS (US)
GRUNERT CHADRICK ADAM NATHANIEL JORDAN (CA)
GUTMAN VERA MAXIMENKO (CA)
ORTIZ DARWIN (CA)
PYE EDWARD KENDALL (US)
International Classes:
C07G1/00; A23K1/14; A23K10/32; A23L33/00; C08J3/20; C08K11/00; C09K15/34
Domestic Patent References:
WO2007129921A12007-11-15
Foreign References:
US4764596A1988-08-16
US7465791B12008-12-16
Other References:
CATETO, CA ET AL.: "Lignins as Macromonomers for Polyurethane Snthesis: A Comparative Study on Hydroxyl Group Determination", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 109, 2008, pages 3008 - 3017, XP008149420
FROASS, PM ET AL.: "Nuclear Magnetic Resonance Studies. 4. Analysis of Residual Lignin after Kraft Pulping", IND. ENG. CHEM. RES., vol. 37, 1998, pages 3388 - 3394, XP008149421
LUCIA, LA ET AL.: "Comparative Evaluation of Oxygen Delignification Processes for Low- and High-Lignin-Content Softwood Kraft Pulps", IND. ENG. CHEM. RES., vol. 41, 2002, pages 5171 - 5180, XP008149422
CHAKAR, FS ET AL.: "Biobleaching chemistry of laccase-mediator systems on high-lignin-content kraft pulps", CAN. J. CHEM., vol. 82, 2004, pages 344 - 352, XP008149423
ASGARI, F ET AL.: "Fundamentals of oxygen delignification. Part II. Functional group formation/elimination in residual ln-kraft lignin", CAN. J. CHEM., vol. 76, 1998, pages 1606 - 1615, XP008149424
GELLERSTEDT, G ET AL.: "Chemical Structures Present in Biofuel Obtained from Lignin", ENERGY & FUELS, vol. 22, 2008, pages 4240 - 4244, XP008149425
PU, Y ET AL.: "Investigation of the photo-oxidative chemistry of acetylated softwood lignnin", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A: CHEMISTRY, vol. 163, 2004, pages 215 - 221, XP008149219
TOHMURA, S ET AL.: "Determination of Arylglycerol-beta-aryl Ethers and Other Linkages in Lgnins Using DFRC/31 P NMR", J. AGRIC. FOOD CHEM., vol. 49, 2001, pages 536 - 542, XP008149297
YANG, R ET AL.: "Oxygen Degradation and Spectroscopic Characterization of Hardwood Kraft Lignin", IND. ENG. CHEM. RES., vol. 41, 2002, pages 5941 - 5948, XP008149426
PU, Y ET AL.: "Structural analysis of acetylated hardwood lignins and their photoyellowing properties", CAN. J. CHEM., vol. 83, 2005, pages 2132 - 2139, XP008149427
SEALEY, J ET AL.: "Residual Lignin Studies of Laccase Delignified Kraft Pulps", IPST TECHNICAL PAPER SERIES NUMBER 621, August 1996 (1996-08-01), XP008149431
CHAKAR, FS ET AL.: "Laccase-Lignin Reactions", IPST TECHNICAL PAPER SERIES NUMBER 876, August 2000 (2000-08-01), XP008149432
COLODETTE, JL ET AL.: "Influence of pulping conditions on eucalyptus kraft pulp yield, quality, and bleachability", TAPPI JOURNAL, 2002, pages 14 - 20, XP008148500
MEGIATTO, JD ET AL.: "Sisal Fibers: Surface Chemical Modifications Using Reagent Obtained from a Renewable Source; Characterization of Hemicellulose and Lignin as Model Study", J. AGRIC. FOOD CHEM., vol. 55, 2007, pages 8576 - 8584, XP008149435
NIEMINEN, MOJ ET AL.: "Determination of Hydroxyl Groups in Kraft Pine Lignin by Silicon-29 NMR Spectroscopy", HOLZFORSCHUNG, vol. 43, no. 5, 1989, pages 303 - 307, XP008149433
DIZHBITE, T ET AL.: "Characterization of the radical scavenging activity of lignins - natural antioxidants", BIORESOURCE TECHNOLOGY, vol. 95, 2004, pages 309 - 317, XP008149292
KASPRZYCKA-GUTTMAN, T ET AL.: "Antioxidant properties of lignin and its fractions", THERMOCHIMICA ACTA, vol. 231, 1994, pages 161 - 168, XP026579269
KOSIKOVA, B ET AL.: "Lignin-stimulated protection of polypropylene films and DNA in cells of mice against oxidation damage", BIORESOURCES, vol. 4, no. 2, May 2009 (2009-05-01), pages 805 - 815, XP008149286
GREGOROVA, A ET AL.: "Stabilization effect of lignin in polypropylene and recycled propylene", POLYMER DEGRADATION AND STABILITY, vol. 89, 2005, pages 553 - 558, XP025279152
CATIGNANI, GL ET AL.: "Antioxidant Properties of Lignin", JOURNAL OF FOOD SCIENCE, 1982, XP008149296
VINARDELL, MP ET AL.: "Potential applications of antioxidant lignins from different sources", INDUSTRIAL CROPS AND PRODUCTS, 2008, pages 220 - 223, XP022398510
CATIGNANI G.L.CARTER M.E.: "Antioxidant Properties of Lignin", JOURNAL OF FOOD SCIENCE, vol. 47, 1982, pages 1745, XP008149296, DOI: 10.1111/j.1365-2621.1982.tb05029.x
PAN X. ET AL., J. AGRIC. FOOD CHEM., vol. 54, no. 16, 2006, pages 5806 - 5813
GREGOROVA ET AL.: "Radical scavenging capacity of lignin and its effect on processing stabilization of virgin and recycled polypropylene", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 106-3, 2007, pages 1626 - 1631, XP055676539, DOI: 10.1002/app.26687
C. POUTEAU ET AL.: "Antioxidant Properties of Lignin in Polypropylene", POLYMER DEGRADATION AND STABILITY, vol. 81, 2003, pages 9 - 18, XP004425568, DOI: 10.1016/S0141-3910(03)00057-0
DIZHBITE, T. ET AL.: "Characterization of the radical scavenging activity of lignins - natural antioxidants", BIORESOURCE TECHNOLOGY, vol. 95, 2004, pages 309 - 317, XP008149292, DOI: 10.1016/j.biortech.2004.02.024
X. PAN ET AL.: "Organosolv Ethanol Lignin From Hybrid Poplar as a Radical Scavenger: Relationship Between Lignin Structure", EXTRACTION CONDITIONS, AND ANTIOXIDANT ACTIVITY, vol. 54, no. 16, 2006, pages 5806 - 5813, XP008148495, DOI: 10.1021/jf0605392
BAURHOO: "Purified Lignin: Nutritional and Health Impacts on Farm Animals - A Review", ANIMAL FEED SCIENCE AND TECHNOLOGY, vol. 144, 2008, pages 175 - 184, XP022765342, DOI: 10.1016/j.anifeedsci.2007.10.016
See also references of EP 2435453A4
Attorney, Agent or Firm:
ALEXANDER, Sean et al. (Box 30 2300-550 Burrard Street,Vancouver, British Columbia, V6C 2B5, CA)
Download PDF:
Claims:
Claims:

1. A lignin derivative wherein said lignin derivative has an aliphatic hydroxyl content of 2.35 mmol/g or less.

2. A lignin derivative according to Claim 1 wherein the derivative has an aliphatic hydroxyl content of about 2.25 mmol/g or less.

3. A lignin derivative according to Claim 1 wherein the derivative has an aliphatic hydroxyl content of about 1.75 mmol/g or less.

4. A lignin derivative according to Claim 1 wherein the derivative has an aliphatic hydroxyl content of about 0.1 mmol/g or greater.

5. A lignin derivative according to Claim 1 wherein the lignin is derived from hardwood biomass.

6. A lignin derivative according to Claim 1 wherein the lignin is derived from softwood biomass.

7. A lignin derivative according to Claim 1 wherein the lignin is derived from annual fibre biomass.

8. A lignin derivative according to Claim 1 wherein the lignin is derived from biomass comprising Populus spp, Eucalyptus spp., Acaάa spp., or combinations/hybrids thereof.

9. A lignin derivative according to Claim 1 wherein the biomass comprises Populus tremuloides, Eucaylptus globulus, Λcaάa dealbata, or combinations/hybrids thereof.

10. A lignin derivative according to Claim 1 wherein the lignin is derived from biomass comprising pine; spruce; or combinations /hybrids thereof

11. A lignin derivative according to Claim 1 wherein the lignin is derived from biomass comprising Pinus radiata, Pinus taeda, BC spruce, or combinations/hybrids thereof.

12. A lignin derivative according to Claim 1 wherein the lignin is derived from biomass comprising wheat straw, bagasse, corn cobs, or combinations/hybrids thereof.

13. An annual fibre lignin derivative wherein said lignin derivative has an aliphatic hydroxyl content of 3.75 mmol/g or less.

14. A lignin derivative according to Claim 1 having a normalized RSI of 15 or greater.

15. A lignin derivative according to Claim 1 wherein the derivative comprises alkoxy groups.

16. Use of a lignin derivative according to Claim 1 as an antioxidant.

17. Use of a lignin derivative according to Claim 1 as an antioxidant for thermoplastics.

18. Use of a lignin derivative according to Claim 1 in a for a nutritional supplement, nutraceutical, animal feed, and/ or functional food.

19. A composition comprising a lignin derivative according to Claim 1 and a polymer-forming component.

20. A thermoplastic composition comprising a lignin derivative according to Claim 1.

21. A poly olefin composition comprising a lignin derivative according to Claim 1.

22. A method of producing a lignin derivative according to Claim 1, said method comprising: a) pulping a fibrous biomass in a vessel with an organic solvent/ water solvent solution to form a liquor, wherein: i. the solution comprises about 30% or greater, by weight, of organic solvent; and ii. the pH of the liquor is from about 1 to about 6; b) heating the liquor to about 100°C or greater; c) maintaining the elevated temperature and pressure for 1 minute or longer; d) separating the cellulosic pulps from the pulping liquor; and e) recovering derivatives of native lignin.

Description:
TITLE: DERIVATIVES OF NATIVE LIGNIN

FIELD

This invention relates to derivatives of native lignin recovered from lignocellulosic feedstocks, and industrial applications thereof. More particularly, this invention relates to derivatives of native lignin having certain chemical properties as well as uses, processes, methods, and compositions thereof.

BACKGROUND

Native lignin is a naturally occurring amorphous complex cross-linked organic macromolecule that comprises an integral component of all plant biomass. The chemical structure of lignin is irregular in the sense that different structural units (e.g., phenylpropane units) are not linked to each other in any systematic order. It is known that native lignin comprises pluralities of two monolignol monomers that are methoxylated to various degrees (trans-coniferyl alcohol and trans-sinapyl alcohol) and a third non-methoxylated monolignol (trans-p-coumaryl alcohol). Various combinations of these monolignols comprise three building blocks of phenylpropanoid structures i.e. guaiacyl monolignol, syringyl monolignol and p-hydroxyphenyl monolignol, respectively, that are polymerized via specific linkages to form the native lignin macromolecule.

Extracting native lignin from lignocellulosic biomass during pulping generally results in lignin fragmentation into numerous mixtures of irregular components. Furthermore, the lignin fragments may react with any chemicals employed in the pulping process. Consequently, the generated lignin fractions can be referred to as lignin derivatives and/or technical lignins. As it is difficult to elucidate and characterize such complex mixture of molecules, lignin derivatives are usually described in terms of the lignocellulosic plant material used, and the methods by which they are generated and recovered from lignocellulosic plant material, i.e. hardwood lignins, softwood lignins, and annual fibre lignins.

Native lignins are partially depolymerized during the pulping processes into lignin fragments which dissolve in the pulping liquors and subsequently separated from the cellulosic pulps. Post-pulping liquors containing lignin and polysaccharide fragments, and other extractives, are commonly referred to as "black liquors" or "spent liquors", depending on the pulping process. Such liquors are generally considered a by-product, and it is common practice to combust them to recover some energy value in addition to recovering the cooking chemicals. However, it is also possible to precipitate and/or recover lignin derivatives from these liquors. Each type of pulping process used to separate cellulosic pulps from other lignocellulosic components produces lignin derivatives that are very different in their physico-chemical, biochemical, and structural properties.

Given that lignin derivatives are available from renewable biomass sources there is an interest in using these derivatives in certain industrial applications. For example, lignin derivatives obtained via organosolv extraction, such as the Alcell® process (Alcell is a registered trademark of Lignol Innovations Ltd., Burnaby, BC, CA), have been used in rubber products, adhesives, resins, plastics, asphalt, cement, casting resins, agricultural products, oil-field products and as feedstocks for the production of fine chemicals. However, large-scale commercial application of the extracted lignin derivatives, particularly those isolated in traditional pulping processes employed in the manufacture of pulp for paper production, has been limited due to, for example, the inconsistency of their chemical and functional properties. This inconsistency may, for example, be due to changes in feedstock supplies and the particular extraction/generation/recovery conditions. These issues are further complicated by the complexity of the molecular structures of lignin derivatives produced by the various extraction methods and the difficulty in performing reliable routine analyses of the structural conformity and integrity of recovered lignin derivatives. For instance, lignin derivatives are known to have antioxidant properties (e.g. Catignani G.L., Carter M.E., Antioxidant Properties of Lignin, Journal of Food Science, Volume 47, Issue 5, 1982, p. 1745; Pan X. et a/. J. Agric. Food Chem., Vol. 54, No. 16, 2006, pp. 5806-5813) but, to date, these properties have been highly variable making the industrial application of lignin derivatives as an antioxidant problematic.

Thermoplastics and thermosets are used extensively for a wide variety of purposes. Examples of thermoplastics include classes of polyesters, polycarbonates, polylactates, polyvinyls, polystyrenes, polyamides, polyacetates, polyacrylates, polypropylene, and the like. Polyolefins such as polyethylene and polypropylene represent a large market, amounting to more than 100 million metric tons annually. During manufacturing, processing and use the physical and chemical properties of certain thermoplastics can be adversely affected by various factors such as exposure to heat, UV radiation, light, oxygen, mechanical stress or the presence of impurities. Clearly it is advantageous to mitigate or avoid these problems. In addition, the increase in recycling of material has led to an increased need to address these issues.

Degradation caused by free radicals, exposure to UV radiation, heat, light, and environmental pollutants are frequent causes of the adverse effects. A stabilizer such as an antioxidant, anti-ozonant, or UV block is often included in thermoplastic resins for the purpose of aiding in the production process and extending the useful life of the product. Common examples of stabilizers and antioxidants include amine types, phenolic types, phenol alkanes, phosphites, and the like. These additives often have undesirable or even unacceptable environmental, health and safety, economic, and/or disposal issues associated with their use. Furthermore, certain of these stabilizers/antioxidants can reduce the biodegradability of the product.

It has been suggested that lignin may provide a suitable polymeric natural antioxidant which has an acceptable toxicity, efficacy, and environmental profile. See, for example, A. Gregorova et a/., Radical scavenging capacity of lignin and its effect on processing stabilization of virgin and recycled polypropylene, Journal of Applied Polymer Science 106-3 (2007) pp. 1626- 1631; C. Pouteau et al. Antioxidant Properties of Lignin in Polypropylene, Polymer Degradation and Stability 81 (2003) 9-18. Despite the advantages of lignin, for a variety of reasons, it has not been adopted for widespread use as an antioxidant. For instance, it is often problematic to provide lignins that perform consistently in terms of antioxidant activity. Also, the processing of the lignin may introduce substances that are incompatible for use with chemicals such as polyolefins. Additionally, the cost of producing and/or purifying the lignin may make it uneconomic for certain uses.

SUMMARY

The present invention provides derivatives of native lignin having a certain aliphatic hydroxyl content. Surprisingly, it has been found that consistent and predictable antioxidant activity may be provided by selecting for derivatives of native lignin having certain aliphatic hydroxyl contents.

As used herein, the term "native lignin" refers to lignin in its natural state, in plant material.

As used herein, the terms "lignin derivatives" and "derivatives of native lignin" refer to lignin material extracted from lignocellulosic biomass. Usually, such material will be a mixture of chemical compounds that are generated during the extraction process.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the HSQC spectrum of non-acetylated hardwood lignin derivatives (arrows indicate the signals corresponding to the ethoxyl groups).

Figure 2 shows the quantitative 13 C NMR spectrum of non-acetylated hardwood lignin derivatives.

Figure 3 shows the quantitative 13 C NMR spectrum of acetylated hardwood lignin derivatives.

DETAILED DESCRIPTION

The present invention provides derivatives of native lignin having certain aliphatic hydroxyl contents. Lignin derivatives having lower aliphatic hydroxyl contents have been found to score more highly on the Radical Scavenging Index (RSI), a measure of antioxidant activity. Thus, selecting for derivatives of native lignin having a lower aliphatic hydroxyl content results in a product having a higher and more predictable antioxidant activity. It has been found that derivatives of native lignin having an aliphatic hydroxyl content of about 2.35 mmol/g or less result in a good level of antioxidant activity. For example, about 2.25 mmol/g or less, about 2 mmol/g or less, or about 1.75 mmol/g or less.

Radical Scavenging Index (RSI) is a measure of radical scavenging capacity. The assay uses

2,2-diphenyl-l-picrylhydrazyl (DPPH), a stable free radical which absorbs light strongly at 515 nm, to measure a compound's radical scavenging index (RSI). In its radical form, DPPH • absorbs strongly at 515 nm and has a deep purple colour. As DPPH gives up its free electron to radical scavengers, it loses its purple colour and its absorbance shifts to 520 nm. The greater the drop in DPPH absorbance at 515 nm after a test compound has been added to the DPPH solution, the higher the compound's free RSI and also, its antioxidant activity. In the present invention, Vitamin E (Vit. E) and butylated hydroxytoluene (BHT) are used as positive controls. The lignin derivative samples (1.0 - 2.0 mg), Vit. E control samples (1.0-2.0 mg), and BHT control samples (6.0 - 8.0 mg) are prepared for testing by being placed into microcentrifuge tubes after which each was diluted with 1.0 mL of 90% (v/v) aqueous dioxan, vortexed, transferred to new microcentrifuge tubes and further diluted 50/50 with 90% aqueous dioxane to give stock concentrations of 0.5-1.0 mg/mL for samples and Vitamin E and 3.0-4.0 mg/mL for BHT. An indicating (purple) DPPH stable free radical solution is made by dissolving 3.78 mg DPPH in 100 mL 90% dioxane (95.9 μM). Samples and standards are serially diluted to fill columns of a quarto 96-well plate (8 dilutions). The assays are performed by placing aliquots of the sample stock solutions into two rows of wells in a 96-well plate. The first row served as the reference row while the second row received DPPH aliquots. 165 μL of 90% dioxane was added to each well and mixed. Aliquots of the mixed samples in each row are transferred to the adjacent row which is further diluted with 165 μL of 90% dioxane in each well. The mixing, transferring and dilution are repeated until the last row of wells is prepared. The same volume of aliquots is removed from the last row. The 96-well plate also contains a row of wells that received only the 90% dioxane. In the final step of the preparation procedure, 165 μL of the DPPH solution is added as quickly as possible to all the control and analytical columns by using an 8-channel auto-pipette and an Eppendorf ® reagent reservoir. As soon as all reagents are added, the plate is placed into a plate-reading spectrophotometer (Spectra Max Plus, Molecular Devices, Sunnyvale, CA, USA), and absorbance measurements are carried out. The program for the spectrophotometer (SOFTmax software) consists of a timing sequence of 16 min and a reading of the entire plate at 515 nm. RSI is defined as the inverse of the concentration which produces 50% inhibition in DPPH absorbance at 515 nm. The results are then 'normalized' by dividing the sample RSI by the RSI value for the BHT control. The normalized RSI is represented by this acronym "NRSI". The present invention provides derivatives of native lignin recovered during or after pulping of lignocellulosic feedstocks. The pulp may be from any suitable lignocellulosic feedstock including hardwoods, softwoods, annual fibres, and combinations thereof.

Hardwood feedstocks include Acacia; Afzelia; Synsepalum duloificum; Albizia; Alder (e.g. Alnus glutinosa, Alnus rubra); Applewood; Arbutus; Ash (e.g. F. nigra, F. quadrangulata, F. excelsior, F. pennsylvanica lanceolata, F. latifolia, F. profunda, F. ameήcana); Aspen (e.g. P. grandidentata, P. tremula, P. tremuloides); Australian Red Cedar (Toona άliata); Ayna (Distemonanthus benthamianus); Balsa {Ochroma pjramidale); Basswood (e.g. T. ameήcana, T. heterophylla); Beech (e.g. F. sylvatica, F. grandifolia); Birch; (e.g. Betula populifolia, B. nigra, B. papyrifera, B. lenta, B. alleghaniensis I B. lutea, B. pendula, B. pubescens); Blackbean; Blackwood; Bocote; Boxelder; Boxwood; Brazilwood; Bubinga; Buckeye (e.g. Aesculus hippocastanum, Aesculus glabra, Aesculus flava I Aesculus octandrά); Butternut; Catalpa; Cherry (e.g. Prunus serotina, Prunus pennsylvanica, Prunus aήum); Crabwood; Chestnut; Coachwood; Cocobolo; Corkwood; Cottonwood (e.g. Populus balsamifera, Populus deltoides, Populus sargentii, Populus heterophylla); Cucumbertree; Dogwood (e.g. Cornus florida, Cornus nuttallii); Ebony (e.g. Diospyros kurtζii, Diospyros melanida, Diospyros crassiβora); Elm (e.g. Ulmus ameήcana, Ulmus procera, Ulmus thomasii, Ulmus rubra, Ulmus glabra); Eucalyptus; Greenheart; Grenadilla; Gum (e.g. Nyssa sylvatica, Eucaylptus globulus, Uquidambar styraάflua, Nyssa aquatica); Hickory (e.g. Carya alba, Carya glabra, Carya ovata, Carya laάniosά); Hornbeam; Hophornbeam; Ipέ; Iroko; Ironwood (e.g. Bangkirai, Carpinus caroliniana, Casuaήna equisetifolia, Choήcbangarpia subargentea, Copaifera spp., Eusideroxylon ywageri, Guajacum officinale, Guajacum sanctum, Hopea odorata, Ipe, Krugiodendron ferreum, Ijyonothamnus lyonii (L. βoήbundus), Mesua ferrea, O lea spp., Olneya tesota, Ostrya virginiana, Parrotia persica, Tabebuia serratifolid); Jacaranda; Jotoba; Lacewood; Laurel; Iimba; Lignum vitae; Locust (e.g. Robinia pseudacada, Gleditsia triacanthos); Mahogany; Maple (e.g. Acer saccharum, Acer nigrum, Acer negundo, Acer rubrum, Acer sacchaήnum, Acer pseudoplatanus); Meranti; Mpingo; Oak (e.g. Quercus macrocarpa, Quercus alba, Quercus stellata, Quercus bicolor, Quercus mrginiana, Quercus miώauxii, Quercus prinus, Quercus muhlenbergii, Quercus chrysolepis, Quercus j I rata, Quercus robur, Quercus petraea, Quercus rubra, Quercus velutina, Quercus laurifolia, Quercus falcata, Quercus nigra, Quercus phellos, Quercus texana); Obeche; Okoume; Oregon Myrtle; California Bay Laurel; Pear; Poplar (e.g. P. balsamifera, P. nigra, Hybrid Poplar (Populus X canadensis)); Ramin; Red cedar; Rosewood; Sal; Sandalwood; Sassafras; Satinwood; Silky Oak; Silver Wattle; Snakewood; Sourwood; Spanish cedar; American sycamore; Teak; Walnut (e.g. Juglans nigra, Juglans πgid); Willow (e.g. Salix nigra, Salix alba); Yellow poplar (Uriodendron tulipiferά); Bamboo; Palmwood; and combinations /hybrids thereof.

For example, hardwood feedstocks for the present invention may be selected from Acacia,

Aspen, Beech, Eucalyptus, Maple, Birch, Gum, Oak, Poplar, and combinations /hybrids thereof. The hardwood feedstocks for the present invention may be selected from Populus spp. (e.g. Populus tremuloides), Eucaylptus spp. (e.g. Eucaylptus globulus), Λcaάa spp. (e.g. Λcaάa dealbata), and combinations /hybrids thereof.

It has been found that derivatives of native lignin from hardwood feedstocks having an aliphatic hydroxyl content of about 2.35 mmol/g or less have a good level of antioxidant activity. For example, about 2.25 mmol/g or less, about 2 mmol/g or less, or about 1.75 mmol/g or less.

In the present invention, "aliphatic hydroxyl content" refers to the quantity of aliphatic hydroxyl groups in the lignin derivatives and is the arithmetic sum of the quantity of primary and secondary hydroxyl groups (OHaI = OHpr + OHsec). The aliphatic hydroxyl content can be measured by quantitative 13 C high resolution NMR spectroscopy of acetylated and non-acetylated lignin derivatives, using, for instance, 1,3,5-trioxane and tetramethyl silane (TMS) as internal reference. For the data analysis "BASEOPT" (DIGMOD set to baseopt) routine in the software package TopSpin 2.1.4 was used to predict the first FID data point back at the mid-point of 13 C r.f. pulse in the digitally filtered data was used. For the NMR spectra recording a Bruker AVANCE II digital NMR spectrometer running TopSpin 2.1 was used. The spectrometer used a Bruker 54 mm bore Ultrashield magnet operating at 14.1 Tesla (600.13 MHz for 1 H, 150.90 MHz for 13 C). The spectrometer was coupled with a Bruker QNP cryoprobe (5 mm NMR samples, 13 C direct observe on inner coil, 1 H outer coil) that had both coils cooled by helium gas to 2OK and all preamplifiers cooled to 77K for maximum sensitivity. Sample temperature was maintained at 300 K±O.l K using a Bruker BVT 3000 temperature unit and a Bruker BCU05 cooler with ca. 95% nitrogen gas flowing over the sample tube at a rate of 800 L/h.

The lignin derivatives herein may, for example, have an aliphatic hydroxyl content of 0.001 mmol/g or greater; 0.1 mmol/g or greater; 0.2 mmol/g or greater; 0.4 mmol/g or greater; 0.5 mmol/g or greater. Quantification of ethoxyl groups was performed similarly to aliphatic hydroxyls quantification by high resolution 13 C NMR spectroscopy. Identification of ethoxyl groups was confirmed by 2D NMR HSQC spectroscopy. 2D NMR spectra were recorded by a Bruker 700 MHz UltraShield Plus standard bore magnet spectrometer equipped with a sensitive cryogenically cooled 5mm TCI gradient probe with inverse geometry. The acquisition parameters were as follow: standard Bruker pulse program hsqcetgp, temperature of 298 K, a 90° pulse, 1.1 sec pulse delay (dl), and acquisition time of 60 msec.

Derivatives of native lignin according to the present invention, coming from hardwood feedstocks tend to have a NRSI of 30 or greater, 40 or greater, 50 or greater, 60 or greater, 70 or greater, 80 or greater, 90 or greater, 100 or greater, 110 or greater, 120 or greater.

Softwood feedstocks include Araucaria (e.g. A. cunninghamii, A. angustifolia, A. araucana); softwood Cedar (e.g. Juniperus virginiana, Thuja plicata, Thuja ocάdentalis, Chamaecyparis thyoides Callitropsis nootkatensis); Cypress (e.g. Chamaecyparis, Cupressus Taxodium, Cupressus aritζonica, Taxodium distichum, Chamaecyparis obtusa, Chamaecyparis lawsoniana, Cupressus sempervireri); Rocky Mountain Douglas fir; European Yew; Fir (e.g. Abies balsamea, Abies alba, Abies procera, Abies amabilis); Hemlock (e.g. Tsuga canadensis, Tsuga mertensiana, Tsuga heterophylld); Kauri; Kaya; Larch (e.g. Larix decidua, Larix kaempferi, Larix lariάna, Larix ocάdentalis); Pine (e.g. Pinus nigra, Pinus banksiana, Pinus contorta, Pinus radiata, Pinus ponderosa, Pinus resinosa, Pinus sylvestris, Pinus strobus, Pinus monticola, Pinus lambertiana, Pinus taeda, Pinus palustris, Pinus rigida, Pinus echinata); Redwood; Rimu; Spruce (e.g. Picea abies, Picea mariana, Picea rubens, Picea sitchensis, Picea glauca); Sugi; and combinations/hybrids thereof.

For example, softwood feedstocks which may be used herein include cedar; fir; pine; spruce; and combinations thereof. The softwood feedstocks for the present invention may be selected from loblolly pine {Pinus taeda), radiata pine, jack pine, spruce (e.g., white, interior, black), Douglas fir, Pinus silvestris, Picea abies, and combinations /hybrids thereof. The softwood feedstocks for the present invention may be selected from pine (e.g. Pinus radiata, Pinus taeda); spruce; and combinations/hybrids thereof. It has been found that derivatives of native lignin from softwood feedstocks having an aliphatic hydroxyl content of about 2.35 mmol/g or less have a good level of antioxidant activity. For example, about 2.25 mmol/g or less, about 2 mmol/g or less, or about 1.75 mmol/g or less.

Derivatives of native lignin according to the present invention, coming from softwood feedstocks tend to have a NRSI 15 or greater, 25 or greater, 30 or greater, 35 or greater, 40 or greater, 45 or greater, 50 or greater, 55 or greater, 60 or greater.

Annual fibre feedstocks include biomass derived from annual plants, plants which complete their growth in one growing season and therefore must be planted yearly. Examples of annual fibres include: flax, cereal straw (wheat, barley, oats), sugarcane bagasse, rice straw, corn stover, corn cobs, hemp, fruit pulp, alfa grass, switchgrass, and combinations /hybrids thereof. Industrial residues like corn cobs, fruit peals, seeds, etc. may also be considered annual fibres since they are commonly derived from annual fibre biomass such as edible crops and fruits. For example, the annual fibre feedstock may be selected from wheat straw, corn stover, corn cobs, sugar cane bagasse, and combinations /hybrids thereof.

Derivatives of native lignin according to the present invention, coming from annual fibre feedstocks tend to have a NRSI of 15 or greater, 20 or greater, 25 or greater, 30 or greater, 35 or greater, 40 or greater, 45 or greater, 50 or greater.

In an embodiment of the present invention, derivatives of native lignin from annual fibre feedstocks have an aliphatic hydroxyl content of about 3.75 mmol/g or less; 3.5 mmol/g or less; 3.25 mmol/g or less; 3 mmol/g or less; 2.75 mmol/g or less; 2.5 mmol/g or less; 2.35 mmol/g or less; 2.25 mmol/g or less.

The derivatives of native lignin will vary with the type of process used to separate native lignins from cellulose and other biomass constituents. Preparations very similar to native lignin can be obtained by (1) solvent extraction of finely ground wood (milled-wood lignin, MWL) or by (2) acidic dioxane extraction (acidolysis) of wood. Derivatives of native lignin can be also isolated from biomass pre-treated using (3) steam explosion, (4) dilute acid hydrolysis, (5) ammonia fibre expansion, (6) autohydrolysis methods. Derivatives of native lignin can be recovered after pulping of lignocellulosics including industrially operated (3) kraft and (4) soda pulping (and their modificarions) and (5) sulphite pulping. In addition, a number of various pulping methods have been developed but not industrially introduced. Among them four major "organosolv" pulping methods tend to produce highly-purified lignin mixtures. The first organosolv method uses ethanol/solvent pulping (aka the Alcell® process); the second organosolv method uses alkaline sulphite anthraquinone methanol pulping (aka the "ASAM" process); the third organosolv process uses methanol pulping followed by methanol, NaOH, and anthraquinone pulping (aka the "Organocell" process); the fourth organosolv process uses acetic acid/hydrochloric acid or formic acid pulping (aka the "Acetosolv" process).

It should be noted that kraft pulping, sulphite pulping, and ASAM organosolv pulping will generate derivatives of native lignin containing significant amounts of organically-bound sulphur which may make them unsuitable for certain uses. Acid hydrolysis, soda pulping, steam explosion,

Alcell® pulping, Organocell pulping, and Acetosolv pulping will generate derivatives of native lignin that are sulphur- free or contain low amounts of inorganic sulphur.

Organosolv processes, particularly the Alcell® process, tend to be less aggressive and can be used to separate highly purified lignin derivatives and other useful materials from biomass without excessively altering or damaging the native lignin building blocks. Such processes can therefore be used to maximize the value from all the components making up the biomass.

Organosolv extraction processes however typically involve extraction at higher temperatures and pressures with a flammable solvent compared to other industrial processes and thus are generally considered to be more complex and expensive.

A description of the Alcell® process can be found in US Patent 4,764,596 (herein incorporated by reference). The process generally comprises pulping or pre-treating a fibrous biomass feedstock with primarily an ethanol/water solvent solution under conditions that include: (a) 60% ethanol/40% water, (b) temperature of about 180° C to about 210° C, (c) pressure of about 20 atm to about 35 atm, and (d) a processing time of 5-120 minutes. Derivatives of native lignin are fractionated from the native lignins into the pulping liquor which also receives solubilised hemicelluloses, other carbohydrates and other extractives such as resins, organic acids, phenols, and tannins. Organosolv pulping liquors comprising the fractionated derivatives of native lignin and other extractives from the fibrous biomass feedstocks, are often called "black liquors". The organic acid and extractives released by organosolv pulping significantly acidify the black liquors to pH levels of about 5 and lower. After separation from the cellulosic pulps produced during the pulping process, the derivatives of native lignin are recovered from the black liquors by depressurization followed by flashing with cold water which will cause the fractionated derivatives of native lignin to precipitate thereby enabling their recovery by standard solids/liquids separation processes. Various disclosures exemplified by US Patent No. 7,465,791 and PCT Patent Application Publication No. WO 2007/129921, describe modifications to the Alcell organosolv process for the purposes of increasing the yields of fractionated derivatives of native lignin recovered from fibrous biomass feedstocks during biorefining. Modifications to the Alcell organosolv process conditions included adjusting: (a) ethanol concentration in the pulping liquor to a value selected from a range of 35% - 85% (w/w) ethanol, (b) temperature to a value selected from a range of 100° C to 350° C, (c) pressure to a value selected from a range of 5 atm to 35 atm, and (d) processing time to a duration from a range of 20 minutes to about 2 hours or longer, (e) liquor-to-wood ratio of 3:1 to 15:1 or higher, (f) pH of the cooking liquor from a range of 1 to 6.5 or higher if a basic catalyst is used.

The present invention provides a process for producing derivatives of native lignin, said process comprising:

(a) pulping a fibrous biomass feedstock with an organic solvent/water solution,

(b) separating the cellulosic pulps or pre-treated substrates from the pulping liquor or pre- treatment solution,

(c) recovering derivatives of native lignin.

The organic solvent may be selected from short chain primary and secondary alcohols, such as such as methanol, ethanol, propanol, and combinations thereof. For example, the solvent may be ethanol. The liquor solution may comprise about 20%, by weight, or greater, about 30% or greater, about 50% or greater, about 60% or greater, about 70% or greater, of ethanol.

Step (a) of the process may be carried out at a temperature of from about 100°C and greater, or about 120°C and greater, or about 140°C and greater, or about 160°C and greater, or about 170°C and greater, or about 18O 0 C and greater. The process may be carried out at a temperature of from about 300°C and less, or about 280°C and less, or about 260°C and less, or about 240°C and less, or about 22O 0 C and less, or about 210 0 C and less, or about 205 0 C and less, or about 200°C and less.

Step (a) of the process may be carried out at a pressure of about 5 atm and greater, or about 10 atm and greater, or about 15 atm and greater, or about 20 atm and greater, or about 25 atm and greater, or about 30 atm and greater. The process may be carried out at a pressure of about 150 atm and less, or about 125 atm and less, or about 115 atm and less, or about 100 atm and less, or about 90 atm and less, or about 80 atm and less.

The fibrous biomass may be treated with the solvent solution of step (a) for about 1 minute or more, about 5 minutes or more, about 10 minutes or more, about 15 minutes or more, about 30 minutes or more. The fibrous biomass may be treated with the solvent solution of step (a) at its operating temperature for about 360 minutes or less, about 300 minutes or less, about 240 minutes or less, about 180 minutes or less, about 120 minutes or less.

The pH of the pulp liquor may, for example, be from about 1 to about 6, or from about 1.5 to about 5.5.

The weight ratio of liquor to biomass may be any suitable ratio. For example, from about 5:1 to about 15:1, from about 5.5:1 to about 10:1; from about 6:1 to about 8:1.

The volume of extraction solution is from about 5 to about 10 times the volume of the biomass feedstock. For example, the volume of extraction solution may be from about 6 to about 8 times that of the biomass

The present invention provides a process for producing a lignin derivative having an aliphatic hydroxyl content of about 2.35 mmol/g or less, about 2.25 mmol/g or less, about 2 mmol/g or less, or about 1.75 mmol/g or less. Said process comprises:

a) pulping or pre-treating a fibrous biomass feedstock in a vessel with an organic solvent/ water solution to form a liquor, wherein: i. the solution comprises about 30% or greater, by weight, of organic solvent; and

ii. the pH of the liquor is from about 1 to about 6;

b) heating the liquor to about 100°C or greater;

c) raising the pressure in the vessel to about 5 atm or greater;

d) maintaining the elevated temperature and pressure for 1 minute or longer;

e) separating the cellulosic pulps from the pulp liquor

f) recovering derivatives of native lignin.

The present invention provides a process for producing a hardwood lignin derivative having an aliphatic hydroxyl content of about 2.35 mmol/g or less, about 2.25 mmol/g or less, about 2 mmol/g or less, or about 1.75 mmol/g or less, said process comprises:

a) pulping or pre-treating a fibrous biomass feedstock in a vessel with an organic solvent/ water solvent solution to form a liquor, wherein:

i. the solution comprises about 30% or greater, by weight, of organic solvent; and

ii. the pH of the liquor is from about 1 to about 6;

b) heating the liquor to about 100°C or greater;

c) raising the pressure in the vessel to about 5 atm or greater;

d) maintaining the elevated temperature and pressure for 1 minute or longer;

e) separating the cellulosic pulps from the pulp liquor

f) recovering derivatives of native lignin. The present invention provides a process for producing a softwood lignin derivative having an aliphatic hydroxyl content of about 2.35 mmol/g or less, about 2.25 mmol/g or less, about 2 rnmol/g or less, or about 1.75 mmol/g or less, said process comprises:

a) pulping or pre-treating a fibrous biomass feedstock in a vessel with an organic solvent/water solvent solution to form a liquor, wherein:

i. the solution comprises about 30% or greater, by weight, of organic solvent; and

ii. the pH of the liquor is from about 1 to about 6;

b) heating the liquor to about 100 0 C or greater;

c) raising the pressure in the vessel to about 5 atm or greater;

d) maintaining the elevated temperature and pressure for 1 minute or longer;

e) separating the cellulosic pulps from the pulp liquor

f) recovering derivatives of native lignin.

The present invention provides a process for producing an annual fibre lignin derivative having an aliphatic hydroxyl content of about 3.75 mmol/g or less; 3.5 mmol/g or less; 3.25 mmol/g or less; 3 mmol/g or less; 2.75 mmol/g or less; 2.5 mmol/g or less; 2.35 mmol/g or less; 2.25 mmol/g or less, said process comprises:

a) pulping or pre-treating a fibrous biomass feedstock in a vessel with an organic solvent/water solvent solution to form a liquor, wherein:

i. the solution comprises about 30% or greater, by weight, of organic solvent; and

ii. the pH of the liquor is from about 1 to about 6;

b) heating the liquor to about 100°C or greater; c) raising the pressure in the vessel to about 5 atm or greater;

d) maintaining the elevated temperature and pressure for 1 minute or longer;

e) separating the cellulosic pulps from the pulp liquor

f) recovering derivatives of native lignin.

The derivatives of native lignin herein may be incorporated into polymer compositions.

The compositions herein may comprise a lignin derivative according to the present invention and a polymer-forming component. As used herein, the term 'polymer-forming component' means a component that is capable of being polymerized into a polymer as well as a polymer that has already been formed. For example, in certain embodiments the polymer-forming component may comprise monomer units which are capable of being polymerized. In certain embodiments the polymer component may comprise oligomer units that are capable of being polymerized. In certain embodiments the polymer component may comprise a polymer that is already substantially polymerized.

Polymers forming components for use herein may result in thermoplastic or thermoset polymers such as epoxy resins, urea- formaldehyde resins, phenol- formaldehyde resins, polyimides, isocyanate resins, and the like. For example, polyalkenes such as polyethylene or polypropylene.

Typically, the lignin derivative will comprise from about 0.1%, by weight, or greater, about 0.5% or greater, about 1% or greater, of the composition. Typically, the lignin derivative will comprise from about 80%, by weight, or less, about 60% or less, about 40% or less, about 20% or less, about 10% or less, of the composition.

The compositions comprise lignin derivative and polymer-forming component but may comprise a variety of other optional ingredients such as adhesion promoters; biocides (antibacterials, fungicides, and moldicides), anti-fogging agents; anti-static agents; bonding, blowing and foaming agents; dispersants; fillers and extenders; fire and flame retardants and smoke suppressants; impact modifiers; initiators; lubricants; micas; pigments, colorants and dyes; plasticizers; processing aids; release agents; silanes, titanates and zirconates; slip and anti-blocking agents; stabilizers; stearates; ultraviolet light absorbers; foaming agents; defoamers; hardeners; odorants; deodorants; antifouling agents; viscosity regulators; waxes; and combinations thereof

The present invention provides the use of the present derivatives of native lignin as an antioxidant. For example, the present use may be as an antioxidant additive for use with thermoplastic polymers such as polyethylene, polypropylene, polyamides, styrene-butadiene, natural rubber, and combinations thereof. Other examples include: antioxidant additives for use in the animal health and feed industry, human food and health.

The present invention provides methods of producing derivatives of native lignin having an aliphatic hydroxyl content of about 2.35 mmol/g or less, about 2.25 mmol/g or less, about 2 mmol/g or less, or about 1.75 mmol/g or less.

The present invention provides methods of producing hardwood derivatives of native lignin having an aliphatic hydroxyl content of about 2.35 mmol/g or less result, about 2.25 mmol/g or less, about 2 mmol/g or less, or about 1.75 mmol/g or less.

The present invention provides methods of producing softwood derivatives of native lignin having an aliphatic hydroxyl content of about 2.35 mmol/g or less, about 2.25 mmol/g or less, about 2 mmol/g or less, or about 1.75 mmol/g or less.

The present invention provides methods of producing annual fibre derivatives of native lignin having an aliphatic hydroxyl content of about 3.75 mmol/g or less; 3.5 mmol/g or less; 3.25 mmol/g or less; 3 mmol/g or less; 2.75 mmol/g or less; 2.5 mmol/g or less; 2.35 mmol/g or less; 2.25 mmol/g or less.

The present invention provides methods of producing derivatives of native lignin having a NRSI of 15 or greater, 20 or greater, 25 or greater, 30 or greater, 35 or greater, 40 or greater, 50 or greater, 60 or greater, 70 or greater.

The present invention provides methods of producing hardwood derivatives of native lignin having a NRSI of 15 or greater, 20 or greater, 25 or greater, 30 or greater, 35 or greater, 40 or greater, 50 or greater, 60 or greater, 70 or greater. The present invention provides methods of producing softwood derivatives of native lignin having a NRSI of 15 or greater, 20 or greater, 25 or greater, 30 or greater, 35 or greater, 40 or greater.

The present invention provides methods of producing annual fibre derivatives of native lignin having a NRSI of 15 or greater, 20 or greater, 25 or greater, 30 or greater, 35 or greater.

The present invention provides lignin derivatives comprising alkoxy groups. For example, the present lignin derivatives may have an alkoxy content of 2 mmol/g or less; about 1.4 mmol/g or less; about 1.2 mmol/g or less; about 1 mmol/g or less; about 0.8 mmol/g or less; about 0.7 mmol/g or less; about 0.6 mmol/g or less; about 0.5 mmol/g or less; about 0.4 mmol/g or less; about 0.3 mmol/g or less. The present lignin derivatives may have an alkoxy content of 0.001 mmol/g or greater, about 0.01 mmol/g of greater, about 0.05 mmol/g or greater, about 0.1 mmol/g or greater.

The present invention provides lignin derivatives comprising ethoxyl groups. For example, the present lignin derivatives may have an ethoxyl content of 2 mmol/g or less; about 1.4 mmol/g or less; about 1.2 mmol/g or less; about 1 mmol/g or less; about 0.8 mmol/g or less; about 0.7 mmol/g or less; about 0.6 mmol/g or less; about 0.5 mmol/g or less; about 0.4 mmol/g or less; about 0.3 mmol/g or less. The present lignin derivatives may have an ethoxyl content of 0.001 mmol/g or greater, about 0.01 mmol/g of greater, about 0.05 mmol/g or greater, about 0.1 mmol/g or greater.

The present lignin derivatives may have any suitable phenolic hydroxyl content such as from about 2 mmol/g to about 8 mmol/g. For example, the phenolic hydroxyl content may be from about 2.5 mmol/g to about 7 mmol/g; about 3 mmol/g to about 6 mmol/g.

The present lignin derivatives may have any suitable number average molecular weight (Mn). For example, the Mn may be from about 200 g/mol to about 3000 g/mol; about 350 g/mol to about 2000 g/mol; about 500 g/mol to about 1500 g/mol. The present lignin derivatives may have any suitable weight average molecular weight (Mw). For example, the Mw may be from about 500 g/mol to about 5000 g/mol; about 750 g/mol to about 4000 g/mol; about 900 g/mol to about 3500 g/mol.

The present lignin derivatives may have any suitable polydispersity (D). For example, the D may be from about 1 to about 5; from about 1.2 to about 4; from about 1.3 to about 3.5; from about 1.4 to about 3.

The present lignin derivatives are preferably hydrophobic. Hydrophobicity may be assessed using contact angle measurements.

It has been suggested that lignins or lignin derivatives may be used in nutritional supplements (e.g. Baurhoo et. a/., Purified Lignin: Nutritional and Health Impacts on Farm Animals - A Review, Animal Feed Science and Technology 144 (2008) 175-184). The present derivatives of native lignin may be used in nutritional supplements, nutraceuticals, functional foods, and the like. The stable and consistent antioxidant activity may be advantageous when formulating such compositions.

The present derivatives of native lignin may be used for other purposes such as, for example, laminates, stains, pigments, inks, adhesives, coatings, rubbers, elastomers, plastics, films, paints, carbon fibre composites, panel boards, print-circuit boards, lubricants, surfactants, oils, animal feed, food and beverages, and the like.

EXAMPLES

EXAMPLE 1

Recovery of lignin derivatives from hardwood feedstocks

Hardwood feedstock chips were prepared from: (1) aspen (P. tremuloides) grown in British

Columbia, Canada; (2) acacia (A. dealbatd) grown in Chile; and (3) eucalyptus (E. nitens) grown in

Chile. Five samples of the aspen chips were individually pulped using an acid-catalyzed ethanol organosolv pulping process wherein a different set of pulping conditions was used for each sample (Table 1). Process conditions for pulping four samples of the acacia chips are shown in Table 2. Process conditions for pulping four samples of the eucalyptus chips are shown in Table 3.

Table 1: Pulping conditions for aspen wood chip samples at 6:1 liquor-to- wood ratio.

Acid

Sample Time Temperature Ethanol pH % on PL %*

# min °C % wt. wood

1 2.03 1.60 104 197 68 61.4

2 1.96 2.50 42 176 51 68.7

3 2.29 0.50 115 201 73 60.1

4 2.34 0.70 44 174 68 51.3

5 2.10 1.10 21 166 46 38.5

* PL - precipitated lignin yield expressed as a percent of native lignin in wood

Table 2: Pulping conditions for acacia wood chip samples at 6:1 liquor-to-wood ratio.

Acid

Sample Time Temperature Ethanol PL pH % on

# min °C % wt. % wood

1 2.01 1.61 104 197 68 67.9

2 2.00 1.51 67 194 58 66.2

3 1.96 1.40 33 181 44 51.1

4 2.35 0.60 50 205 45 51.2

Table 3: Pulping conditions for eucalyptus wood chip samples at 6:1 liquor-to-wood ratio.

Acid

Sample Time Temperature Ethanol PL pH % on

# min °C % wt. % wood

1 1.88 1.61 104 197 68 81.7

2 2.10 0.90 83 189 64 69.4

3 1.77 2.41 30 170 59 61.6

4 2.30 0.61 87 183 54 65.6 For each wood chips sample, the ethanol pulping solvent was prepared to the specified concentration by first, partially diluting the ethanol with water after which, a suitable amount of sulphuric acid was added to achieve the target final acidity. Finally, the ethanol solution was further diluted with water to achieve the target ethanol concentration.

The original lignin content of each fibrous biomass subsample was determined using the methods described in National Renewable Energy Laboratory (NREL) Technical Report entitled "Determination of Structural Carbohydrates and Lignin in Biomass" - Laboratory Analytical Procedure (TP-510-42618 (25 April 2008)). Then, after adding the fibrous biomass sample to a pressure vessel (2L or 7 L Parr reactor (Parr Instrument Company, Moline, IL, USA)) (100-700 g odw chips), the pH-adjusted ethanol-based pulping solvent was added to the vessel at a 6:1 liquorwood ratio & the pH recorded. The vessel was then pressurized and brought up to the target temperature listed in Tables 1-3 (aspen, acacia, eucalyptus, respectively). The biomass sample was then "cooked" for the specified period of time, after which, the pulping process was stopped. After pulping, the contents of the pressure vessel were transferred to a hydraulic 20 ton manual shop press (Airco, China). The liquor was separated from the solids by first squeezing the pulped materials in the press to express the liquor. The expressed liquor was then filtered through a coarse silk screen to separate expressed chip residues from liquor stream. Next, fine particles were separated out from the liquor stream by filtration through fine filter paper (Whatman N° 1). The recovered fine particles represent lignin derivatives that were extracted and self-precipitated out from the liquor during cooling of the pulped biomass. The particulate lignin is herein referred to as self-precipitated lignin derivatives (Le., "SPL"). The solubiϋzed lignin derivatives still remaining in the filtered liquor were precipitated from by dilution with cold water. The lignin derivatives precipitated by dilution with cold water are referred to as precipitated lignin or "PL". After determination of the dry weights of SPL and PL lignin derivatives, the relative yield of each lignin derivative was determined in reference to total native lignin (sum of the acid-insoluble lignin and acid-soluble lignin) value determined for the original biomass sample before pulping. The yield of PL lignin derivatives for each sample is shown in Tables 1-3 on a weight % basis relative to their original lignin (acid-insoluble lignin plus acid-soluble lignin values). Characterization of the aliphatic hydroxyl content of lignin derivatives recovered from three hardwood species.

Functionalized lignin derivatives recovered from hardwood biomass samples as described above, were analyzed to determine the content of primary hydroxyl groups mmol/g sample (OH- pr mmol/g) and content of secondary hydroxyl groups mmol/g sample (OH-sec mmol/g). These values were then used to calculate mmol aliphatic hydroxyl groups/g sample (OH-al mmol/g).

The hydroxyl contents were determined by quantitative 13 C NMR spectroscopy on a

Bruker 600 MHz spectrometer equipped with a cryoprobe at 300 K using ca 30% solutions of sample in OMSO-d 6 . Chemical shifts were referenced to TMS (0.0 ppm). To ensure more accurate baseline, especially in the carbonyl region (215-185 ppm), the spectra were recorded in the interval

240-(-4O) ppm. The following conditions were provided for the quantitative 13 C-NMR:

1. Inverse gate detection;

2. a 90 ° pulse;

3. Complete relaxation of all nuclei was achieved by addition of chromium (III) acetylacetonate (0.01 M) and using a 1.2 s acquisition time and 1.7 s relaxation delay acquisition parameters.

The NMR spectra were Fourier-transformed, phased, calibrated using TMS signals as a reference (0 ppm), and the baseline was corrected by using a polynomial function. The correction of baseline was done using the following interval references to be adjusted to zero: (220-215 ppm)- (185-182 ppm)-(97-92 ppm)-(5-(-20) ppm). No other regions were forced to 0. The signals in the quantitative 13 C NMR spectra were assigned on the basis of 2D HSQC spectra (Figure 1) and a known database. The spectra were integrated then using the area of the internal standard (IS), trioxane, as the reference. Each spectrum was processed (as described) at least twice to ensure good reproducibility of the quantification. Some carboxyl and ester groups resonate in the resonance region of hydroxyl groups (171.5-166.5 ppm) in the spectra of acetylated lignins. The amounts of carboxyl and ester groups resonated in the interval of 171.5-166.5 ppm were determined from the spectra of non-acetylated lignins. The corrected content of hydroxyl groups was obtained then by deduction of the amounts of the carboxyl and ester groups from the corresponding resonances of hydroxy! groups (Table 4). The calculation of the quantity of the specific moieties was done as follows:

For non-acetylated lignins: X (mmol/g lignin) = I x *m IS /(30m Llg *I IS )*1000

For acetylated lignins: X (mmol/g lignin) = I x *m IS / (3Om L1 ^I 15 - 42*I OHtotal * m IS )*1000

Where X was the amount of the specific moiety; I x I IS and I OHtota i were the resonance values of the specific moiety (Table 4), the internal standard and total OH groups, correspondingly; m Llg and m IS are the masses of the lignin and internal standard.

Figure 1 shows the HSQC spectrum of non-acetylated hardwood lignin derivatives (arrows indicate the signals corresponding to the ethoxyl groups).

The recorded 13 C NMR spectroscopic data are processed and graphically illustrated as shown in Fig. 2 and 3.

Table 4:

Symbol Iχ in Calculation Equation Analytical Method

ff x quantitative 13 C NMR spectra of acetylated

OH-pr Quantitative 13 C High Resolution NMR of lignins minus resonance at 171.5-169.7 mmol/g lignin using 1,3,5-trioxane as internal reference ppm in the quantitative 13 C NMR spectra of non-acetylated lignins

Resonance at 169.7-169.2 ppm in the quantitative 13 C NMR spectra of acetylated

OH-sec Quantitative 13 C High Resolution NMR of lignins minus resonance at 169.7-169.2 mmol/g lignin using 1,3,5-trioxane as internal reference ppm in the quantitative 13 C NMR spectra of non-acetylated lignins

Resonance at 171.5-165.0 ppm in the OH- quantitative 13 C NMR spectra of acetylated

Quantitative 13 C High Resolution NMR of total lignins minus resonance at 171.5-166.5 lignin using 1,3,5-trioxane as internal reference mmol/g ppm in the quantitative 13 C NMR spectra of non-acetylated lignins OH' f . OH-al = OH-pr + OH-sec mmol/g

Resonance at 16.0-14.5 ppm in the „ . . . . . . XTΛ ;m c

^ N „ . . ,, . , T . m rr . , . Quantitative n C High Resolution NMR of

OEt quantitative 13 C NMR spectra (both in v • ■ Λ i c ■ ■ i c

, , , , , , 1 1 - ■ lignin using 1,3,5-trioxane as internal reference mmol/g acetylated and non-acetylated lignins, ° , . , . , m T i o nr s , , , s combined with 2D HSQC calculated as average)

The aliphatic hydroxyl contents of the PL lignin derivatives from each of the five samples of aspen chips are shown in Table 5. The contents ranged from 0.58 mmol/g in sample 1 to 2.21 mmol/g in sample 5.

Table 5: Aliphatic hydroxyl content and normalized radical scavenging index of PL lignins recovered from aspen wood chips.

„ „ OH-pr OH-sec OH al NRSI Run # r . . . mmol/g mmol/g mmol/g

1 0.58 0.00 0.58 94.13

2 0.87 0.11 0.98 89.64

3 1.00 0.38 1.38 67.67

4 1.24 0.54 1.78 56.62

5 1.44 0.78 2.21 61.98

The aliphatic hydroxyl contents of the PL lignin derivatives from each of the four samples of acacia chips are shown in Table 6. The contents ranged from 0.76 mmol/g in sample 1 to 2.31 mmol/g in sample 4.

Table 6: Aliphatic hydroxyl content and normalized radical scavenging index of PL lignins recovered from acacia wood chips.

D „ OH-pr OH-sec OH al NRSI Run # r ~ mmol/g mmol/g mmol/g

1 0.76 0.00 0.76 121.76

2 1.08 0.38 1.46 94.91

3 1.32 0.75 2.07 75.57 4 1.48 0.83 2.31 80.44

The aliphatic hydroxyl contents of the PL lignin derivatives from each of the four samples of eucalyptus chips are shown in Table 7. The contents ranged from 0.76 mmol/g in sample 1 to 2.31 mmol/g in sample 4.

Table 7: Aliphatic hydroxyl content and normalized radical scavenging index of PL lignins recovered from E.nitens wood chips.

„ „ OH-pr OH-sec OH al NRSI Run # \ , . . . . mmol/g mmol/g mmol/g

1 0.57 0.13 0.70 109.65

2 0.76 0.69 1.46 91.16

3 1.11 0.72 1.83 77.43

4 1.20 1.07 2.27 75.58

Characterization of the NRSI of lignin derivatives recovered from three hardwood species.

The lignin derivatives samples produced above were assessed for their normalized radical scavenging index (NRSI). The potential antioxidant activity of each PL lignin derivative was determined by measuring its radical savaging capacity. The assay used 2,2-diphenyl-l-picrylhydrazyl (DPPH), a stabile free radical which absorbs light strongly at 515 nm to measure a compound's radical scavenging index (RSI). In its radical form, DPPH* absorbs strongly at 515 nm and has a deep purple colour. As DPPH gives up its free electron to radical scavengers, it loses its purple colour and its absorbance shifts to 520 nm. The greater the drop in DPPH absorbance at 515 nm after a test compound has been added to the DPPH solution, the higher the compound's free RSI and also, its antioxidant activity. In the present study, Vit. E and BHT were used as positive controls. PL lignin derivative subsamples (1.0 - 2.0 mg), Vit. E control samples (1.0 - 2.0 mg), and BHT control samples (6.0 - 8.0 mg) were prepared for testing by being placed into epitubes after which, each was diluted with 1.0 mL of 90% (v/v) aqueous dioxan, vortexed, transferred to new epitubes and then further diluted 50/50 with 90% aqueous dioxane to give stock concentrations of 0.5-1.0 mg/mL for samples and Vitamin E and 3.0-4.0 mg/mL for BHT. An indicating (purple) DPPH stable free radical solution is made by dissolving 3.78 mg DPPH in 100 mL 90% dioxane (95.9 μM). Samples and standards are serial diluted to fill columns of a quartz 96-well plate (8 dilutions). The assays were performed by placing aliquots of the sample stock solutions into two rows of wells in a 96-well plate. The first row served as the reference row while the second row received DPPH aliquots. 165 μL of 90% dioxane was added to each well and mixed. Aliquots of the mixed samples in each row were transferred to the adjacent row and further diluted with 165 μL of 90% dioxane in each well. The mixing, transferring and dilution were repeated until the last row of wells is prepared. The same volume of aliquots was removed from the last row. The 96-well plate also contained a row of wells that received only the 90% dioxane. In the final step of the preparation procedure, 165 μL of the DPPH solution was added to all the control and analytical columns by using an 8-channel auto-pipette and an Eppendorf ® reagent reservoir as quickly as possible. As soon as all reagents are added, the plate is placed into a plate-reading spectrophotometer (Molecular Devices, Sunnyvale, CA, USA, Spectra Max Plus), and absorbance measurements are commenced. The program for the spectrophotometer (SOFTmax software) consisted of a timing sequence of 16 min and a reading of the entire plate at 515 nm. RSI (radical scavenging index) is defined as the inverse of the concentration which that produced 50% inhibition in DPPH absorbance at 515 nm. The results were then 'normalized' (NRSI) by dividing the sample RSI by the RSI value for the BHT control.

The NRSI values for lignin derivatives recovered from aspen wood chips are shown in Table 5. The NRSI values for lignin derivatives recovered from acacia wood chips are shown in Table 6. The NRSI values for lignin derivatives recovered from eucalyptus wood chips are shown in Table 7.

EXAMPLE 2

Recovery of lignin derivatives from softwood feedstocks

Softwood feedstock chips were prepared from: (1) hybrid spruce trees grown in British

Columbia, (2) radiata pine grown in Chile, and (3) loblolly pine grown in south eastern USA. Three samples of the hybrid spruce wood chips were individually pulped using an acid-catalyzed ethanol pulping process wherein a different set of pulping conditions was used for each sample (Table 8). Process conditions for pulping three samples of the radiata pine chips are shown in Table 9. Process conditions for pulping three samples of the loblolly pine chips are shown in Table 10.

Table 8: Pulping conditions for hybrid spruce wood chip samples at 6:1 liquor-to-wood ratio.

Acid Time Temperature Ethanol PL

Run # pH

% min °C % %

1 2.02 1.20 58 191 46 44.84

2 2.08 1.40 43 189 61 67.77

3 2.09 1.60 50 183 77 72.10

Table 9: Pulping conditions for radiata pine wood chip samples at 6:1 liquor- to-wood ratio.

Acid Time Temperature Ethanol PL

Run # pH

% min °C % %

1 2.04 1.20 58 191 46 34.21

2 2.12 1.40 43 189 61 65.40

3 1.92 1.80 46 187 49 42.72

Table 10: Pulping conditions for loblolly pine wood chip samples at 6:1 liquor-to-wood ratio.

Acid Time Temperature Ethanol

Run # pH PL

% min °C % %

1 2.05 1.20 33 192 82 65.1

2 2.01 1.40 43 189 61 63.3

3 1.80 1.80 46 187 49 42.3

For each wood chips sample, the ethanol pulping solvent was prepared to the specified concentration by first, partially diluting the ethanol with water after which, a suitable amount of sulphuric acid was added to achieve the target final acidity. Finally, the ethanol solution was further diluted with water to achieve the target ethanol concentration.

The lignin content of each original fibrous biomass subsample was determined using the

NREL method (NREL/TP-510-42618 (April 2008)). Then, after adding the fibrous biomass sample to a pressure vessel (2L or 7 L Parr reactor (Parr Instrument Company, Moline, IL, USA) (100-700 g odw chips), the pH-adjusted ethanol-based pulping solvent was added to the vessel at a 6:1 liquorwood ratio & the pH recorded. The vessel was then pressurized and brought up to the target temperature listed in Tables 8-10 (spruce, radiata pine, loblolly pine, respectively). The biomass sample was then "cooked" for the specified period of time, after which, the pulping process was stopped. After pulping, the contents of pressure vessel were transferred to a hydraulic 20 ton manual shop press (Airco, China). The liquor was separated from the solids by first squeezing the pulped materials in the press to express the liquor. The expressed liquor was then filtered through a coarse silk screen to separate expressed chip residues from liquor stream. Next, fine particles were separated out from the liquor stream by filtration through fine filter paper (Whatman N° 1). The recovered fine particles represent lignin derivatives that were extracted and self-precipitated out from the liquor during cooling of the pulped biomass. The particulate lignin is herein referred to as self-precipitated lignin derivatives (i.e., "SPL"). The solubilized lignin derivatives still remaining in the filtered liquor were precipitated from by dilution with cold water. The lignin derivatives precipitated by dilution with cold water are referred to as precipitated lignin or "PL". After determination of the dry weights of SPL and PL lignin derivatives, the relative yield of each lignin derivative was determined in reference to the total lignin content (acid-insoluble plus the acid-soluble lignin) determined for the original biomass sample before pulping. The yield of PL lignin derivatives for each sample is shown in Tables 8-10 on a weight % basis relative to total lignin in the original biomass.

Characterization of the aliphatic hydroxyl content

Functionalized lignin derivatives recovered from hardwood biomass samples as described above, were analyzed using the procedures described in Example 1 to determine the weights of primary hydroxyl groups mmol/g sample (OH-pr mmol/g) and weights of secondary hydroxyl groups mmol /g sample (OH-sec mmol/g). These values were then used to calculate the total mmol aliphatic hydroxyl groups/g sample (OH-al mmol/g).

The aliphatic contents of the PL lignin derivatives from each of the three samples of hybrid spruce chips are shown in Table 11. The contents ranged from 1.72 mmol/g in sample 1 to 2.24 mmol/g in sample 3. The aliphatic contents of the PL lignin derivatives from each of the three samples of radiata pine chips are shown in Table 12. The contents ranged from 2.18 mmol/g in sample 1 to 2.26 mmol/g in sample 3. The aliphatic contents of the PL lignin derivatives from each of the three samples of loblolly pine chips are shown in Table 13. The contents ranged from 1.35 mmol/g in sample 1 to 1.87 mmol/g in sample 3.

Table 11: Aliphatic hydroxyl content and normalized radical scavenging index of PL lignins recovered from hybrid spruce wood chips.

OH-pr OH-sec OH-al NRSI

Run # mmol/g mmol/g mmol/g

1 1.57 0.14 1.72 61.60

2 1.67 0.29 1.96 46.82

3 1.74 0.28 2.02 40.66

Table 12: Aliphatic hydroxyl content and normalized radical scavenging index of PL lignins recovered from radiata pine wood chips.

„ „ OH-pr OH-sec OH-al NRSI Run # F 1 . . mmol/g mmol/g mmol/g

1 1.74 0.44 2.18 64.24

2 1.79 0.43 2.22 35.28

3 1.90 0.35 2.26 37.44

Table 13: Aliphatic hydroxyl content and normalized radical scavenging index of PL lignins recovered from loblolly pine wood chips.

D , , OH-pr OH-sec OH-al NRSI Run # F. . . mmol/g mmol/g mmol/g

1 1.16 0.19 1.35 48.73

2 1.55 0.03 1.58 46.95

3 1.74 0.13 1.87 53.44

Characterization of the NRSI of lignin derivatives Each of the lignin derivatives samples produced above were assessed for their normalized radical scavenging index (NRSI) as described in Example 1. The NRSI values for lignin derivatives recovered from hybrid spruce wood chips are shown in Table 11. The NRSI values for lignin derivatives recovered from radiata pine wood chips are shown in Table 12. The NRSI values for lignin derivatives recovered from loblolly pine wood chips are shown in Table 13.

EXAMPLE 3

Recovery of lignin derivatives from annual fibre feedstocks.

Two sets of annual fibre feedstock materials were prepared from: (1) bagasse produced from sugarcane grown and processed in Brazil, and (2) corn cobs produced in Europe. Four samples of the sugarcane bagasse were individually pulped using an acid-catalyzed ethanol pulping process based wherein a different set of pulping conditions was used for each sample (Table 14).

Process conditions for pulping four samples of shredded corn cob material are shown in Table 15.

Table 14: Pulping conditions for sugarcane bagasse samples at 6:1 liquor-to-wood ratio.

_ τ τ Acid Time Temperature Ethanol PL

Run P H % min °C % %

1 2.19 2.50 61 178 66 49.76

2 2.01 3.00 23 170 66 39.56

3 2.44 1.00 50 192 43 37.36

4 2.19 2.00 54 164 58 44.95

Table 15: Pulping conditions for corn cob samples at 6:1 liquor-to-wood ratio.

T , τ τ Acid Time Temperature Ethanol PL

Run P H % min °C % %

1 2.18 2.20 100 190 67 56.58

2 2.10 2.10 67 189 51 52.01

3 2.04 2.90 32 187 69 45.27

4 2.17 1.20 99 183 54 50.71 For each biomass sample, the ethanol pulping solvent was prepared to the specified concentration by first, partially diluting the ethanol with water after which, a suitable amount of sulphuric acid was added to achieve the target final acidity. Finally, the ethanol solution was further diluted with water to achieve the target ethanol concentration.

The original lignin content of each fibrous biomass subsample was determined using the

NREL method (NREL/TP-510-42618 (April 2008)). Then, after adding the fibrous biomass sample to a pressure vessel (2L or 7L Parr reactor (Parr Instrument Company, Moline, IL, USA) (100-700 g odw chips), the pH-adjusted ethanol-based pulping solvent was added to the vessel at a 6:1 liquor:biomass ratio & the pH recorded. The vessel was then pressurized and brought up to the target temperature listed in Tables 14-15 (bagasse, corncobs, respectively). The biomass sample was then "cooked" for the specified period of time, after which, the pulping process was stopped. After pulping, the contents of pressure vessel were transferred to a hydraulic 20 ton manual shop press (Aicro, China). The liquor was separated from the solids by first squeezing the pulped materials in the press to express the liquor. The expressed liquor was then filtered through a coarse silk screen to separate expressed chip residues from liquor stream. Next, fine particles were separated out from the liquor stream by filtration through fine filter paper (Whatman N° 1). The recovered fine particles represent lignin derivatives that were extracted and self-precipitated out from the liquor during cooling of the pulped biomass. The particulate lignin is herein referred to as self-precipitated lignin derivatives (Le., "SPL"). The solubilized lignin derivatives still remaining in the filtered liquor were precipitated from by dilution with cold water. The lignin derivatives precipitated by dilution with cold water are referred to as precipitated lignin or "PL". After determination of the dry weights of SPL and PL lignin derivatives, the relative yield of each lignin derivative was determined in reference to the total lignin (sum of acid-insoluble lignin plus acid- soluble lignin) value determined for the original biomass sample before pulping. The yield of PL lignin derivatives for each sample is shown in Tables 14-15 on a weight % basis relative to their original total lignin values.

Characterization of the aliphatic hydroxyl content

Functionalized lignin derivatives recovered from annual fibre biomass samples as described above, were analyzed using the procedures described in Example 1 to determine the primary hydroxyl groups mmol/g per sample (OH-pr mmol/g) and the secondary hydroxyl groups mmol /g sample (OH-sec mmol/g). These values were then used to calculate total mmol aliphatic hydroxyl groups /g sample (OH-al mmol/g).

The aliphatic content of the PL lignin derivatives from each of the four samples of sugarcane bagasse biomass are shown in Table 16. The content ranged from 1.74 mmol/g in sample 1 to 2.34 mmol/g in sample 4. The aliphatic content of the PL lignin derivatives from each of the three samples of shredded corn cobs are shown in Table 17. The content ranged from 2.18 mmol/g in sample 1 to 2.26 mmol/g in sample 4.

Characterization of the NRSI of lignin derivatives

Each of the lignin derivatives samples produced above were assessed for their normalized radical scavenging index (NRSI) as described in Example 1. The NRSI values for lignin derivatives recovered from sugarcane bagasse biomass are shown in Table 16. The NRSI values for lignin derivatives recovered from corn cob biomass are shown in Table 17.

Table 16: Aliphatic hydroxyl content and normalized radical scavenging index of PL lignins recovered from sugarcane bagasse biomass.

OH-pr OH-sec OH-al NRSI Run , r , , , , , mmol/g mmol/g mmol/g

1 1.02 0.73 1.74 52.34

2 1.19 0.89 2.09 41.80

3 1.02 1.17 2.20 46.90

4 1.31 1.02 2.34 38.74

Table 17: Aliphatic hydroxyl content and radical scavenging index of PL lignins recovered from corn cobs biomass.

OH-pr OH-sec OH-al NRSI

Run mmol/g mmol/g mmol/g

1 0.95 0.63 1.58 45.15

2 0.64 1.22 1.86 45.99

3 0.74 1.42 2.16 38.37

4 1.24 1.11 2.35 48.99