Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE AT A TORQUE METER
Document Type and Number:
WIPO Patent Application WO/2008/088265
Kind Code:
A1
Abstract:
The present invention relates to a device for a torque meter for determining of for example viscosity, shearing force or concentration of liquids or suspensions, and comprising two elastically connected concentric axles, one external hollow axle (6) through which an inner meter axle (5) extends, on which latter an element (4) responsive to the measurement medium (3) is located. According to the invention the axles (6, 5) are propelled by an electrical motor (9, 10), said motors are at least on average continuously propelled at equal rotational speed at the same time the phase between the two is being controlled irrespective of the applied speed and torque, wherein the torque is possible to measure through the degree of load at the motor (10) propelling the inner axle (5), which is transformable to a suitable out signal.

Inventors:
ANDERSSON NICLAS (SE)
KULLANDER JOAKIM (SE)
LUNDBERG PETER (SE)
Application Number:
PCT/SE2007/051036
Publication Date:
July 24, 2008
Filing Date:
December 19, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BTG PULP & PAPER SENSORS AB (SE)
ANDERSSON NICLAS (SE)
KULLANDER JOAKIM (SE)
LUNDBERG PETER (SE)
International Classes:
G01L3/00; G01N11/14; G01N15/06; G01N33/34; H02P5/52
Domestic Patent References:
WO2005057153A12005-06-23
WO2005057059A12005-06-23
WO2005026697A12005-03-24
Foreign References:
US4375047A1983-02-22
Other References:
See also references of EP 2108113A4
Attorney, Agent or Firm:
BERGENSTRÃ…HLE & LINDVALL AB (S- Stockholm, SE)
Download PDF:
Claims:

Claims

1. A device for a torque meter for determining properties such as viscosity, shearing force or concentration in liquids or suspensions, and comprising two elastically connected concentric axles in the form of one external hollow axle (6) through which an inner meter axle (5). extends, on which latter an element (4) responsive to the measured medium (3) is located, characterized in that the axles (6, 5) are individually propelled by an electrical motor (9, 10) each, said motors (9, 10) are at least on average continuously propelled at equal rotational speed at the same time as the phase between the two are controlled irrespective of applied speed and torque, wherein the torque is possible to measure through the degree of load of the motor (10) propelling the inner axle (5), which is transformable to a suitable out signal.

2. The device according to claim 1, characterized in that the degree of load for measuring torque is the power consumption of the present motor (10).

3. The device according to claim 1, characterized in that the motor (10), which propels the inner axle (5), is controllable to maintain a desired constant rotational speed and the motor (9), which propels the outer axle (6), is controllable to maintain a desired constant phase.

4. The device according to claim 1, characterized in that the motor (9) which propels the outer axle (6), is controllable to maintain a desired constant rotational speed and the motor (10), which propels the inner axle (5), is controllable to obtain a desired controlled phase.

5. The device according to claim 1, 3 or 4, characterized in that the desired phase corresponds to the position where no torque is transferable between the elastically connected axles (5, 6).

Description:

Device at a torque meter

The present invention relates to a device for, or more specifically a principle for torque meters or gauges, for measurement of for example pulp concentration, viscosity, dryness and rheological characteristics, which operates in accordance with the principle of force balance.

Revolving meters for concentration, shearing force, viscosity, dryness, rheological characteristics etc. have been in use for a long time in the process industry. The meters are engineered after well established principles that in some cases date back to the 1960's. The fundamental principle is that a probe is rotated in a medium and the resistance torque that arise at the probe or sensor, as it is frequently called, is measured and transformed into a suitable out signal.

The most frequently occurring design is the principle with a dual axle system which measures the angular difference between two concentric axles, wherein the outer hollow axle is propelled with a constant rotational speed and the inner meter axle is elastically connected to the hollow axle. The elastic connection also serves as sealing against the process medium. The probe is fixedly attached to the part of the meter axle situated in the medium. The dual axle principle eliminates problems with additional torque, in the form of friction from the sealing and the bearing of the meter axle, which could affect the metering result, since this friction might vary. Said method is in control engineering usually referred to as the principle of motion balance. Disadvantages that occur with such a system are that temperature, pressure, and ageing of the material negatively affects the characteristics of the system, since the elastic sealing between the hollow axle and the meter axle is allowed to operate outside of its zero position. Another characteristic that is negatively affected is the linearity of the system.

However, if the axle arrangement is equipped with a feedback system, which restores the inner axle to its zero position regardless of the size of the arisen torque and measures the force required, the effect of said disturbing factors are to a large extent eliminated and the result will be a more linear and long term stable metering system. Such a feedback system is said to operate in accordance with the principle of balance of forces. Today, the most common way to apply feedback to a system for torque metering is through an electromagnetic feedback system, wherein the current required to retain the meter axle in its zero position is measured.

Even though feedback systems are not novel in the area of torque meters and even though they continuously have evolved since the 60' s there are some existing disadvantages that remain hard, not to say impossible to eliminate with currently available technology. The use of electromagnetic systems always result in some remanence, which in turn result in a measurement error. Considerable improvements has been made with regard to this the last

couple of years, but it is in the nature of the subject that obtaining zero remanence is impossible using available technology. Furthermore, said continuous development has not notably reduced the complexity and price of the meters and even if the total weight has been reduced it is desirable that the weight is further reduced. The linearity has been improved, but also here one is dependent of the magnetization curve of the iron in use, which results in some nonlinearity.

In today's process industry, with high demands on quality and equally high volumes of production, one is in many measurement positions completely dependent on meters with high accuracy. Unfortunately meters which do not comply with these demands are sometimes selected. The reasons for this can be many, for example high prices, high weights and large complexity of the meters with high accuracy. Hence there is a lot to gain if the meters can be further improved at the same time as the accuracy is increased, the weight is reduced and the prices is, if not lowered so at least kept on the same level.

One object of the present invention is to increase the accuracy and the linearity. Additional objects are to reduce the complexity and weight, and through that obtain a system that is more energy efficient, more compact and with increased user friendliness.

The present invention implies that the axles, in comparison to previous feedback systems where only the outer axle is propelled and the feedback system connected to the inner axle is dependant on the rotation of the outer axle, instead are propelled independently of each other with individual electrical motors each with the same rotational speed in a way so that the phase between them is controlled. The preferred phase is the phase which corresponds to the zero position between the axles i.e. the phase in which no torque is being transferred through the elastic sealing, however it is also possible to select a different phase which is constant or varying in a controlled manner and to filter the signal. By using a type of motor such as permanent magnet synchronous motor for propulsion of at least the inner axle, the meter axle, a direct measurement of the torque is obtained through the relation between current to the motor and the torque delivered from the motor. This type of motor can also be placed surrounding the hollow axle for propulsion of same, which eliminates the need of transmission with gear, which contributes to low weight. Furthermore motors of the type permanent magnet synchronous motor eliminates problems with remanence and improves the linearity at the same time as the rotational speed easily can be adapted to the present application and it gives the ability to control the rotational speed and/or the phase also through braking. It can also be reversed in case of an object, e.g. a piece of a plastic bag, gets stuck on the probe, to possibly get this object to fall off. The energy efficient and compact design also provides for high efficiency and lower costs of installation through the invention.

The present invention is described in greater detail below with assistance of a preferred embodiment under referral to the enclosed drawing.

In the drawing a schematic cross section through a torque meter 1 is shown, which is mounted on a process pipe 2 in which a measurement medium 3 flows passing a probe 4. Said probe 4 is fixedly attached to a meter axle 5 in a dual axle system, which apart from the meter axle 5 also comprises a hollow axle 6, which seals off the torque meter 1 from the measured medium 3 by means of a sealing 7. An elastic connection 8 between the hollow axle 6 and the meter axle 5 permits the two axles 5, 6 to have a relative angular displacement at a change in the torque that the medium 3 exert on the probe 4.

The two axles 5, 6 is propelled independently by individual electrical motors 9, 10. The motor 9 propels the outer axle, i.e. the hollow axle 6, and the motor 10 propels the inner axle, i.e. the meter axle 5. One of the motors 9 or 10 is controlled in order to keep a constant and for the application adapted rotational speed, while the other motor 9 or 10 is controlled so that the phase between the axles 5, 6 always remain the same, and corresponds to the zero position between the axles 5, 6, i.e. the position where no torque is transferred through the elastic sealing 8 between the axles 5, 6.

The phase between the two axles 5, 6 is detected by sensors 11 and 12. The shown example of an embodiment requires that at least the one of the electrical motors 10 is constructed in such a way that it shows a constant, or at least under present circumstances known, relationship between the torque and the degree of load applied on the meter axle 5 by the probe 4 or the power consumption of the motor 10. The degree of load or power consumption is transformed to a, for the purpose, suitable out signal.