Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE FOR TRANSFERRING AND DOSING BIOMEDICAL FLUIDS BETWEEN HOSPITAL CONTAINERS
Document Type and Number:
WIPO Patent Application WO/2012/063111
Kind Code:
A1
Abstract:
The device (1) for transferring and dosing biomedical fluids between hospital containers comprises a syringe body (2) for the containment of a biomedical fluid (F1 F2, F3, F4) and a piston (3) sealed fitted in a sliding way in the syringe body (2), the syringe body (2) comprising a first extremity (2a), having joining means (4) to at least a first container (R1, R2, R3, R4) from which taking the biomedical fluid (F1, F2, F3, F4) and to at least a second container (P1, P2, P3, P4) in which dispensing the biomedical fluid (F1,F2, F3, F4), and a second extremity (2b) opposite the first extremity (2a), wherein the device (1) comprises: a handle (9) for the manual grip by a user and having a coupling seat (10) for the fastening to the second extremity (2b) of the syringe body (2); motorised means (12) mounted in the handle (9) for the operation of a thrust rod (13) suitable for pushing the piston (3); first temporary fastening means (16, 17) placed between the coupling seat (10) and the second extremity (2b) of the syringe body (2); second temporary fastening means (18, 19) placed between the piston (3) and the thrust rod (13); and - control means (20, 21) mounted on the handle (9), associated with the motorised means (12) and suitable for the volumetric dosing both of the quantity of biomedical fluid (F1, F2, F3, F4) to take from the first container (R1, R2, R3, R4) and of the quantity of biomedical fluid (F1, F2, F3, F4) to dispense in the second container (P1, P2, P3, P4).

Inventors:
MAFFEI GUISEPPE (IT)
Application Number:
PCT/IB2011/002622
Publication Date:
May 18, 2012
Filing Date:
November 07, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MAFFEI GUISEPPE (IT)
International Classes:
A61J1/20; A61M5/20; A61J1/22; B65B3/00
Foreign References:
US5911252A1999-06-15
EP0577354A11994-01-05
EP1236644A12002-09-04
Attorney, Agent or Firm:
BRUNACCI, Marco (Via Scaglia Est 19-31, Modena, IT)
Download PDF:
Claims:
CLAIMS

1) Device (1) for transferring and dosing biomedical fluids between hospital containers, comprising at least a syringe body (2) for the containment of a biomedical fluid (F1 ? F2, F3, F4) and at least a piston (3) sealed fitted in a sliding way in said syringe body (2), said syringe body (2) comprising a first extremity (2a), having joining means (4) to at least a first container (Rl s R2, R3, R ) from which taking the biomedical fluid (Fi, F2, F3, F4) and to at least a second container (Pb P2, P3, P4) in which dispensing said biomedical fluid (F1 ? F2, F3, F4), and a second extremity (2b) opposite said first extremity (2a), characterised by the fact that it comprises:

a handle (9) for the manual grip by a user and having a coupling seat (10) for the fastening to said second extremity (2b) of the syringe body (2);

motorised means (12) mounted in said handle (9) for the operation of a thrust rod ( 13) suitable for pushing said piston (3);

- first temporary fastening means (16, 17) placed between said coupling seat (10) and said second extremity (2b) of the syringe body (2);

second temporary fastening means (18, 19) placed between said piston (3) and said thrust rod (13); and

control means (20, 21) mounted on said handle (9), associated with said motorised means (12) and suitable for the volumetric dosing both of the quantity of said biomedical fluid (F F2, F3, F4) to take from said first container (R1 ? R2, R3, R4) and of the quantity of said biomedical fluid (FI s F2, F3, F4) to dispense in said second container (Pj, P2, P3, P4).

2) Device (1) according to the claim 1, characterised by the fact that said control means (20, 21) comprise at least a processing and control unit (20) of said motorised means (12).

3) Device (1) according to one or more of the preceding claims, characterised by the fact that said processing and control unit (20) is of the programmable type to set out said quantities of biomedical fluid (Fi, F2, F3, F4) to take and/or to dispense.

4) Device (1) according to one or more of the preceding claims, characterised by the fact that said control means (20, 21) comprise at least a control interface (21) of said motorised means (12).

5) Device (1) according to one or more of the preceding claims, characterised by the fact that it comprises display means (23), mounted on said handle (9) and suitable for showing the operating parameters of said processing and control unit (20).

6) Device (1) according to one or more of the preceding claims, characterised by the fact that said handle (9) comprises identification means (24) for identifying at least one between said syringe body (2) and said piston (3).

7) Device (1) according to one or more of the preceding claims, characterised by the fact that said identification means (24) are associated with said processing and control unit (20) and suitable for preventing the operation of said motorised means (12) in case that at least one between said syringe body (2) and said piston (3) is not identified.

8) Device (1) according to one or more of the preceding claims, characterised by the fact that said identification means (24) comprise at least one between a reader chosen from the list comprising: bar code readers, optical readers and electromagnetic readers.

9) Device (1) according to one or more of the preceding claims, characterised by the fact that said handle (9) comprises recognition means for recognizing the correct coupling of at least one between said first temporary fastening means (16, 17) and said second temporary fastening means (18, 19).

10) Device (1) according to one or more of the preceding claims, characterised by the fact that said recognition means are associated with said processing and control unit (20) and suitable for preventing the operation of said motorised means (12) in case of incorrect coupling of at least one between said first temporary fastening means (16, 17) and said second temporary fastening means (18, 19).

11) Device (1) according to one or more of the preceding claims, characterised by the fact that at least one between said first temporary fastening means (16, 17) and said second temporary fastening means (18, 19) is of the bayonet type.

12) Device (1) according to one or more of the preceding claims, characterised by the fact that it comprises at least a power supply battery (14) of said motorised means (12) mounted in said handle (9).

13) Device (1) according to one or more of the preceding claims, characterised by the fact that said first extremity (2a) ends up with an extremity cap (5) supporting said joining means (4).

14) Device (1) according to one or more of the preceding claims, characterised by the fact that said joining means (4) are of the Luer and/or Luer-Lock type. 15) Device (1) according to one or more of the preceding claims, characterised by the fact that said second extremity (2b) comprises at least a cross separation wall (6) having a hole (7) for the transit of said thrust rod (13).

16) Device (1) according to one or more of the preceding claims, characterised by the fact that said thrust rod (13) exits from said handle (9) in correspondence to said coupling seat (10).

17) Device (1) according to one or more of the preceding claims, characterised by the fact that said handle (9) has an ergonomic shape with at least a portion in anti-slip material (1 1).

Description:
DEVICE FOR TRANSFERRING AND DOSING BIOMEDICAL FLUIDS BETWEEN HOSPITAL CONTAINERS

Technical Field

The present invention relates to a device for transferring and dosing biomedical fluids between hospital containers.

Background Art

With particular reference to the oncology sector, but not only, it is known that to carry out numerous types of therapeutic treatments, the patients are connected to a parenteral infusion line placed in communication with a series of bags containing the drugs to be administered.

Each bag is connected to the infusion line independently from the others by means of a series of valves and the dispensing of the drugs to the patient is done in succession, placing between the administration of one drug and the next an intermediate stage of cleaning of the infusion line by means of a lavage of a saline solution, so as to avoid any type of contamination between drugs.

In other words, these types of therapeutic treatments consist in the following sequence of operations: administering of the first drug, cleaning of the infusion line, administering of the second drug, new cleaning of the infusion line, administering of the third drug, and so on.

The drugs continue to be administered until the relevant bags containing the necessary doses prescribed by the doctor for the correct therapeutic treatment are completely empty.

The filling of the bags with the above doses occurs during a delicate preliminary stage during which a hospital operator, with care and attention, doses the necessary quantities inside the bags.

To perform this operation, the hospital technician usually has at disposal a series of bottles containing the drugs, from which he/she takes the required quantities and transfers these into the bags by means of a plurality of syringes (one for each drug, to avoid, in this case as well, any possible contamination between the fluids).

For this purpose, each syringe is made up of a syringe body made of transparent material, on which is shown a graduated measuring scale and inside which is fitted, sealed, a sliding piston, which is manually operated by the operator by means of a thrust rod.

The entire operation of taking, dosing and transferring drugs from the bottles to the bags, therefore, is performed in a completely manual way and without any automation, suctioning each drug inside the syringe body until the preset quantity is achieved indicated on the graduated scale and, then, dispensing the contents of the syringe inside the corresponding bag.

As will be easily appreciated by a person expert in the sector, this sequence of operations involves a series of drawbacks, including the fact that, for the correct transfer and dosing of the drugs, the strength, capacity and experience of the operator are all important in performing such operation.

In this respect, it must be pointed out that the considerable frequency with which these operations are performed often causes pain and/or lesions to the hands of the operator, who has to manually force on the thrust rod to draw the drugs up inside the syringes and, subsequently, to dispense them.

At the same time, the fact cannot be ignored that the correct dosing of the drugs inside the syringes depends only on the care and skill of the operator and that, in the case of wrong dosage, the risk exists of compromising the successful outcome of the therapy prescribed by the doctor during the patient administering stage.

In this respect, it must be underscored that the repetitiveness and monotony of the dosing operation cannot but increase the risk of lack of attention on the part of the operator while performing his/her duties and, consequently, the probability of an imprecise and incorrect dosage.

Description of the Invention

4)The main aim of this invention is to provide a device for transferring and dosing biomedical fluids between hospital containers which is portable and versatile, allows dosing biomedical fluids in a practical, easy, functional and precise way, allows reducing the efforts on the part of the operator and the consequent accidents/lesions, and allows reducing the risk of human error without changing the normal use procedure and/or the work schedules.

}Another object of this invention is to provide a device for transferring and dosing biomedical fluids between hospital containers that allows overcoming the mentioned drawbacks of the state of the art in the ambit of a simple, rational, easy and effective to use as well as low cost solution.

The above objects are achieved by the present device for transferring and dosing biomedical fluids between hospital containers, comprising at least a syringe body for the containment of a biomedical fluid and at least a piston sealed fitted in a sliding way in said syringe body, said syringe body comprising a first extremity, having joining means to at least a first container from which taking the biomedical fluid and to at least a second container in which dispensing said biomedical fluid, and a second extremity opposite said first extremity, characterised by the fact that it comprises:

a handle for the manual grip by a user and having a coupling seat for the fastening to said second extremity of the syringe body;

motorised means mounted in said handle for the operation of a thrust rod suitable for pushing said piston;

first temporary fastening means placed between said coupling seat and said second extremity of the syringe body;

second temporary fastening means placed between said piston and said thrust rod; and

- control means mounted on said handle, associated with said motorised means and suitable for the volumetric dosing both of the quantity of said biomedical fluid to take from said first container and of the quantity of said biomedical fluid to dispense in said second container.

Brief Description of the Drawings

Other characteristics and advantages of the present invention will become more evident from the description of a preferred, but not sole, embodiment of a device for transferring and dosing biomedical fluids between hospital containers, illustrated purely as an example but not limited to the annexed drawings in which:

figure 1 is a front, schematic and partial view that illustrates an infusion line using the devices according to the invention to transfer and dose biomedical fluids; figure 2 is an exploded, schematic and partial view of a device according to the invention;

figure 3 is a side view of the device of figure 2.

Embodiments of the Invention

With particular reference to such figures, a device for transferring and dosing biomedical fluids between hospital containers is globally indicated by 1.

In this respect, it must be underscored that in this treatise the term "biomedical fluid" means any liquid used in the medical/hospital field and intended to be administered to a patient by means of bags or other containers and which requires being precisely pre-dosed.

In the particular embodiment shown in figure 1 , the biomedical fluids consist of a series of drugs F l 5 F 2 , F 3 , F 4 , e.g., for oncology therapy use, contained in an equal number of first containers Ri, R 2 , R 3 , R4 such as bottles or the like.

From the bottles R l5 R 2 , R 3 , R4 the biomedical fluids F 1 } F 2 , F 3 , F 4 must be taken and dispensed into an equal number of second containers P 1 ? P 2 , P 3 , P 4 , of the type of bags or the like, to be connected to an infusion line L having a bag S of saline solution C and having specific cutout valve means V.

To transfer and dose the biomedical fluids F 1 ? F 2 , F 3 , F 4 the use is contemplated of a plurality of devices 1, one for each drug Fj, F 2 , F 3 , F 4 .

Each device 1 comprises a syringe body 2 for containing the biomedical fluid

Fj, F 2 , F 3 , F and a piston 3 seal fitted sliding in the syringe body 2.

The syringe body 2 is composed of, e.g., a cylinder-shaped tubular element made of transparent, coloured or matt plastic material (polyurethane, polycarbonate, polyethylene, etc.).

The dimensions of the syringe body 2 can usefully vary according to the required containing capacity (e.g.: 10 ml, 20 ml, 30 ml, 50 ml, 60 ml).

The syringe body 2 has a first extremity 2a, having joining means 4 for joining to the first containers Rj, R 2 , R 3 , R4 and to the second containers P l s P 2 , P 3 , P 4 , and a second extremity 2b opposite the first extremity 2a.

More in detail, the first extremity 2a terminates with an extremity cap 5 supporting the joining means 4, which, preferably, are of the Luer and Luer-

Lock type. The second extremity 2b, on the other hand, is shaped to define a cross separation wall 6, having a central hole 7.

The whole, made up of a syringe body 2, piston 3 and extremity cap 5 in point of fact makes up an interchangeable cartridge 8, which can be distributed on the market already assembled, i.e., with the piston 3 already fitted in the syringe body 2 through the first extremity 2a and with the first extremity 2a closed again by means of the extremity cap 5.

Each device 1 also comprises a handle 9 for the manual grip by a user and has a coupling seat 10 for fastening to the second extremity 2b of the syringe body 2. The handle 9 has an ergonomic shape, with at least a portion in anti-slip material 11 to increase the fastness and the grip of the user's hand.

Inside the handle 9 are fitted motorised means 12 to drive a thrust rod 13 suitable for pushing the piston 3.

The motorised means 12, e.g., are made up of a linear actuator connected to the thrust rod 13 and suitable for achieving the straight to-and-from movement of the thrust rod 13.

The motorised means 12 are associated with a power supply battery 14 mounted in the handle 9; the power supply battery 14 is preferably of the rechargeable type and is associated with two terminals 15 for connecting to a recharging station, but alternatively, it cannot be ruled out that this is made up of one or more disposable type batteries.

The cartridge 8 is intended to be fitted on the handle 9 with the cross separation wall 6 facing the coupling seat 10, in correspondence to which the thrust rod 13 protrudes from the handle 9 and is intended to cross the transit hole 7 to operate the piston 3.

Between the coupling seat 10 and the second extremity 2b of the syringe body 2 are placed first temporary fastening means 16, 17, for the slot-in fitting of the cartridge 8 on the handle 9.

Similarly, between the piston 3 and the thrust rod 13 are placed second temporary fastening means 18, 19 to allow the connection and dragging of the piston 3 by the thrust rod 13.

The first temporary fastening means 16, 17 and the second temporary fastening means 18, 19, e.g., are of the bayonet type, but it cannot be ruled out that alternatively they be slotted in or consist of a connection by friction or the like. On the handle 9, furthermore, are fitted control means 20, 21 associated with the motorised means 12 and suitable for controlling their operation to obtain the volumetric dosage, including the micro-volumetric type dosage, both of the quantity of biomedical fluid F 1? F 2 , F 3 , F 4 to be taken from the first containers R], R 2 , R 3 , R4, and of the quantity of biomedical fluid F \ , F 2 , F 3 , F 4 to be dispensed into the second containers Pi, P 2 , P 3 , P 4 .

The control means 20, 21 comprise a processing and control unit 20 and a control interface 21, of the type of a keypad or the like, for controlling the motorised means 12 and designed to start/stop/set the processing and control unit 20 according to the user's requirements.

For this purpose, the processing and control unit 20 can usefully be of the programmable type to set the quantities of biomedical fluid Fj, F 2 , F 3 , F 4 to be taken and/or dispensed.

In this case, once set, the processing and control unit 20 is able to operate the thrust rod 13 independently for a section of stroke corresponding to the quantity of biomedical fluid F 1? F 2 , F 3 , F 4 to be taken and/or to be dispensed.

Alternatively, the syringe body 2 can show a graduated scale 22, the stop of the piston 3 during the taking/dispensing stage of the biomedical fluid F l5 F 2 , F 3 , F 4 being entrusted to the care and skill of the user.

The handle 9 also has display means 23, of the type of an electronic display or the like, suitable for showing the operating parameters of the processing and control unit 20 and, more in general, all types of information useful for the user. On the handle 9 are also provided identification means 24 for identifying at least one between the syringe body 2 and the piston 3.

The identification means 24 are electronically associated with the processing and control unit 20 and suitable for preventing the operation of the motorised means 12 in case of the syringe body 2 and/or the piston 3 not being identified. This particular solution allows ensuring that the handle 9 is used correctly only with cartridges 8 of certified origin so as:

- to prevent the handle 9 being used with cartridges 8 made by third manufacturers;

- to guarantee to customers a high quality and functionality of the cartridges 8;

- to protect the market share of the legitimate manufacturer/vendor.

The identification means 24 are of the type of a reader chosen from the list comprising: bar code readers, optical readers, electromagnetic readers.

In the particular embodiment of the present invention shown in the illustrations, e.g., the identification means 24 are made up of a bar code reader designed to recognise a bar code 25 shown on the cross separation wall 6.

Alternative embodiments cannot however be ruled out wherein the identification means 24 are of different type and, e.g., consist of an RFID magnetic recognition system.

The handle 9 comprises means for recognising the correct coupling of the first temporary fastening means 16, 17 and of the second temporary fastening means 18, 19.

Such recognition means, not shown in detail in the illustrations, are associated with the processing and control unit 20 and suitable for preventing the operation of the motorised means 12 in case of incorrect coupling of the first temporary fastening means 16, 17 and of the second temporary fastening means 18, 19. The recognition means made in this way allow the device 1 to operate in conditions of utmost safety only in the case of both the syringe body 2 and the piston 3 being stably coupled, with slot-in coupling, to the coupling seat 10 and to the thrust rod 13 respectively, so as to prevent their accidental disassembly during use.

The present invention operates as follows.

Each handle 9 is prepared to be conveniently used with an indefinite number of cartridges 8 inasmuch, at the end of their normal life cycle, these can be separated from the handle 9, rejected and replaced by new ones.

At the start of the life cycle of each cartridge 8, this is coupled on the handle 9 being careful to correctly couple the syringe body 2 to the coupling seat 10. Once the first temporary fastening means 16, 17 have been coupled, the processing and control unit 20 automatically commands the forward movement of the thrust rod 13 until this is coupled with the piston 3. In this phase, the processing and control unit 20 proceeds to identify the cartridge 8 by means of the identification means 24 and performs recognition of the correct coupling of the first temporary fastening means 16, 17 and of the second temporary fastening means 18, 19 and, in the case of positive outcome, allows the subsequent operation of the motorised means 12.

At this point all the user has to do is connect the joining means 4 to the corresponding first container Rj, R 2 , R 3 , R4 and, by means of the control means 20, 21, perform the withdrawal of the required quantity of biomedical fluid F 1? F 2 , F 3 , F 4 and fill the syringe body 2.

Afterwards, by coupling the joining means 4 to the second corresponding container Pj, P 2 , P 3 , P 4 , the biomedical fluid F 1? F 2 , F 3 , F 4 can be dispensed and the device 1 is ready for the subsequent operations.

Using the same handle 9 and the same cartridge 8, all the transfers can be made of the biomedical fluid Fj, F 2 , F 3 , F 4 contemplated according to the normal life cycle of the syringe body 2 and of the piston 3.

After various uses and after some time from the first use, in fact, the cartridge 8 becomes worn and contaminated and has to be replaced with a new one in the same way as previously described and shown.

As it has been said, in the embodiment shown in the figure 1, the use is contemplated of a plurality of devices 1, or at least a plurality of handles 9, one for each drug F ls F 2 , F 3 , F 4 , but nothing prevents having just one handle 9 and a plurality of cartridges 8 to be used alternately with the handle 9 to transfer the drugs Fi, F 2 , F 3 , F 4 , being careful to use each cartridge 8 with one and only one drug F^ F^ F 3 , F 4 .