Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DIETARY PASTE COMPOSITIONS FOR RUMINANTS AND METHODS OF MAKING AND USING THE SAME
Document Type and Number:
WIPO Patent Application WO/2015/016823
Kind Code:
A1
Abstract:
Dietary paste compositions for ruminants are disclosed, as well as methods for their preparation and use. The dietary paste compositions may include least one saturated fatty acid compound and at least one carrier component. The methods of preparation may include contacting the at least one saturated fatty acid compound with the at least one carrier component to form the dietary paste composition.

Inventors:
ARONEN ILMO PELLERVO (FI)
HOLMA MERJA BIRGITTA (FI)
WAN FENG (US)
BUNTEL CHRISTOPHER JOHN (SG)
Application Number:
PCT/US2013/052634
Publication Date:
February 05, 2015
Filing Date:
July 30, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BENEMILK OY (FI)
International Classes:
A23L1/30
Foreign References:
US20110172269A12011-07-14
US20110052751A12011-03-03
US4826694A1989-05-02
US20090297665A12009-12-03
US5874102A1999-02-23
US20130196022A12013-08-01
Attorney, Agent or Firm:
HELMSEN, Joseph T. (Suite 5000500 Grant Stree, Pittsburgh Pennsylvania, US)
Download PDF:
Claims:
CLAIMS

What Is Claimed Is:

1. A dietary paste composition comprising at least one saturated fatty acid compound and at least one carrier component.

2. The dietary paste composition of claim 1, further comprising at least one trans fatty acid compound at a concentration of 5% by weight or less of the composition.

3. The dietary paste composition of claim 1, further comprising at least one trans fatty acid compound at a concentration of 0.5% by weight or less of the composition.

4. The dietary paste composition of claim 1, wherein the composition substantially does not comprise a trans fatty acid compound.

5. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is a palmitic acid compound.

6. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is palmitic acid, a palmitate salt, a palmitate ester, a palmitate amide, a palmitate anhydride, or a combination thereof.

7. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is a stearic acid compound.

8. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is stearic acid, a stearate salt, a stearate ester, a stearate amide, a stearate anhydride, or a combination thereof.

9. The dietary paste composition of claim 1, comprising a first saturated fatty acid compound and a second saturated fatty acid compound, wherein: the first saturated fatty acid compound is a palmitic acid compound; and the second saturated fatty acid compound is a stearic acid compound.

10. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is present in the composition at a concentration of at least about 10% by weight.

11. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is present in the composition at a concentration of at least about 50% by weight.

12. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is present in the composition at a concentration of at least about 90% by weight.

13. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is a palmitic acid compound present in the composition at a concentration of at least about 10% by weight.

14. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is a stearic acid compound present in the composition at a concentration of at about 30% by weight or less.

15. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is palmitic acid present in the composition at a concentration of at least about 30% by weight, and wherein the composition is substantially free of a trans-fatty acid.

16. The dietary paste composition of claim 1, comprising a first saturated fatty acid compound and a second saturated fatty acid compound, wherein: the first saturated fatty acid compound is a palmitic acid compound present in the composition at a concentration of at least about 10% by weight; and the second saturated fatty acid compound is a stearic acid compound present in the composition at a concentration of at about 30% by weight or less.

17. The dietary paste composition of claim 1, comprising a first saturated fatty acid compound and a second saturated fatty acid compound, wherein: the first saturated fatty acid compound is a palmitic acid compound;

the second saturated fatty acid compound is a stearic acid compound; and the palmitic acid compound and the stearic acid compound have a molar ratio of at least about 2:1.

18. The dietary paste composition of claim 1, comprising a first saturated fatty acid compound and a second saturated fatty acid compound, wherein: the first saturated fatty acid compound is a palmitic acid compound;

the second saturated fatty acid compound is a stearic acid compound; and the palmitic acid compound and the stearic acid compound have a molar ratio of at least about 5:1.

19. The dietary paste composition of claim 1, comprising a first saturated fatty acid compound and a second saturated fatty acid compound, wherein: the first saturated fatty acid compound is a palmitic acid compound;

the second saturated fatty acid compound is a stearic acid compound; and the palmitic acid compound and the stearic acid compound have a molar ratio of at least about 10:1.

20. The dietary paste composition of claim 1 , wherein the carrier component is a solid carrier or a semi-solid carrier.

21. The dietary paste composition of claim 1, wherein the carrier component comprises a starch, a polysaccharide, a glycolipid, a glycoprotein, a protein, agar, chitosan, carrageenan, collagen, a plasticizer, a wax, or a combination thereof.

22. The dietary paste composition of claim 1, further comprising at least one bulking agent.

23. The dietary paste composition of claim 22, wherein the bulking agent is silicate, kaolin, diatomaceous earth, clay, or a combination thereof.

24. The dietary paste composition of claim 1, further comprising at least one filling agent.

25. The dietary paste composition of claim 24, wherein the filling agent is fiber, corn gluten feed, sunflower hulls, distillers grains, guar hulls, wheat middlings, rice hulls, rice bran, sugar beet pulp, oilseed meals, cottonseed meal, soybean meal, sunflower meal, linseed meal, peanut meal, rapeseed meal, canola meal, dried blood meal, animal by-product meal, fish by-product, fish meal, dried fish solubles, feather meal, poultry by-products, meat meal, bone meal, dried whey, soy protein concentrate, soy flour, yeast, wheat, oats, grain sorghums, corn feed meal, rice, rye, corn, barley, aspirated grain fractions, brewers dried grains, corn flour, feeding oat meal, sorghum grain flour, wheat mill run, wheat red dog, hominy feed, wheat flour, wheat bran, wheat germ meal, oat groats, rye middlings, cotyledon fiber, ground grains, wheat grain, corn grain, milo grain, algae, algae meal, microalgae, or a combination thereof.

26. The dietary paste composition of claim 1, further comprising at least one emulsifying agent.

27. The dietary paste composition of claim 26, wherein the emulsifying agent is non-ionic.

28. The dietary paste composition of claim 26, wherein the emulsifying agent is cationic, anionic, or nonionic.

29. The dietary paste composition of claim 26, wherein the emulsifying agent is sorbitan esters, polyoxyethylene derivatives of sorbitan esters, glyceryl esters, methylcellulose, carboxymethylcellulose, acacia, tragacanth, agar, pectin, carrageenan, lecithin, gelatin, or a combination thereof.

30. The dietary paste composition of claim 26, wherein the emulsifying agent is present in the composition at a concentration of at least about 0.2% by weight.

31. The dietary paste composition of claim 26, wherein the emulsifying agent is present in the composition at a concentration of about 1.5% by weight or less.

32. The dietary paste composition of claim 26, wherein the emulsifying agent is present in the composition at a concentration of about 0.2% by weight to about 1.5% by weight.

33. The dietary paste composition of claim 26, wherein the emulsifying agent has a hydrophobic-lipophilic balance of at least about 5.

34. The dietary paste composition of claim 26, wherein the emulsifying agent has a hydrophobic-lipophilic balance of about 14 or less.

35. The dietary paste composition of claim 26, wherein the emulsifying agent has a hydrophobic-lipophilic balance of about 5 to about 14.

36. The dietary paste composition of claim 26, wherein the emulsifying agent has a hydrophobic-lipophilic balance of about 7.

37. The dietary paste composition of claim 26, wherein the emulsifying agent is lecithin, polyoxyethylene stearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan, polyoxyethylene, sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, ammonium phosphatides, salts of fatty acids, glycerides of fatty acids, acetic acid esters of glycerides of fatty acids, lactic acid esters of glycerides of fatty acids, citric acid esters of fatty acids, acetyl tartaric acid esters of fatty acids, sucrose esters of fatty acids, sucroglycerides, polyglycerol esters of fatty acid, polyglycerol polyricinoleate, propane- 1,2-diol esters of fatty acids, oxidized soya bean oil glycerides, castor oil glycerides, sodium stearoyl-2-lactylate, calcium stearoyl-2-lactylate, sorbitan monostearate, sorbitan tristearate, sorbitan monolaurate, sorbitan monooleate, sorbitan monopalmitate, or combinations thereof.

38. The dietary paste composition of claim 1, further comprising at least one nutritive component.

39. The dietary paste composition of claim 38, wherein the nutritive component is a protein, an amino acid, a vitamin, a mineral, an antioxidant, a lipid, a glycolipid, a polysaccharide, a carbohydrate, a glucogenic precursor, or combinations thereof.

40. The dietary paste composition of claim 38, wherein the nutritive component is alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, carnitine, or combinations thereof.

41. The dietary paste composition of claim 38, wherein the nutritive component is vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, vitamin Bl, vitamin B2, pantothenic acid, niacin, biotin, choline, or combinations thereof.

42. The dietary paste composition of claim 38, wherein the nutritive component is calcium, sodium, magnesium, phosphorus, potassium, minerals, chelated minerals, selenium yeast, zinc, selenium, copper, iodine, iron, cobalt, manganese, molybdenum, or combinations thereof.

43. The dietary paste composition of claim 38, wherein the nutritive component is glycerol, propylene glycol, molasses, propionate, glycerin, propanediol, calcium propionate, or combinations thereof.

44. The dietary paste composition of claim 38, wherein the nutritive component is calcium acetate, calcium carbonate, calcium chloride, calcium gluconate, calcium hydroxide, calcium iodate, calcium iodobehenate, calcium oxide, calcium sulfate anhydrous, calcium sulfate dihydrate, cobalt acetate, cobalt carbonate, cobalt chloride, cobalt oxide, cobalt sulfate, dicalcium phosphate, magnesium acetate, magnesium carbonate, magnesium oxide, magnesium sulfate, manganese carbonate, manganese chloride, manganese citrate, manganese gluconate, manganese orthophosphate, manganese oxide, manganese phosphate dibasic, manganese sulfate, monocalcium phosphate, monosodium phosphate, potassium acetate, potassium bicarbonate, potassium carbonate, potassium chloride, potassium iodate, potassium iodide, potassium sulfate, sodium acetate, sodium chloride, sodium bicarbonate, disodium phosphate, iron ammonium citrate, iron carbonate, iron chloride, iron gluconate, iron oxide, iron phosphate, iron pyrophosphate, iron sulfate, reduced iron, sodium iodate, sodium iodide, sodium tripolyphosphate, sodium sulfate, tricalcium phosphate, zinc acetate, zinc carbonate, zinc chloride, zinc oxide, zinc sulfate, or combinations thereof.

45. The dietary paste composition of claim 1, wherein the saturated fatty acid compound is encapsulated by an encapsulating component.

46. The dietary paste composition of claim 45, wherein the encapsulating component comprises a protein, a polypeptide, a lipid, an emulsifier, a surfactant, a carbohydrate, a polysaccharide, a polyvinyl, a plastic, a biodegradable polymer, xanthan gum, guar gum, starch, gum arabic, tragacanth gum, dextran, chitosan, polyvinylpyrrolidone, polyacrylamide, poly(styrene/acrylonitrile), poly(styrene/2-vinylpyridine), poly(ethylene oxide), poly(vinyl acetate), hydroxypropylcellulose, ethylcellulose, cellulose acetate, carboxymethylcellulose, zein, alginate, gelatin, shellac, or combinations thereof.

47. The dietary paste composition of claim 1, having a viscosity of about 25,000 centipoise to about 100 million centipoise at 22 degrees Celsius.

48. The dietary paste composition of claim 1, dispersible in at least one organic solvent in water, or both.

49. A method of increasing fat content in milk, the method comprising providing a dietary paste composition to a ruminant for ingestion, wherein the dietary paste composition comprises at least one saturated fatty acid compound and at least one carrier component.

50. The method of claim 49, further comprising obtaining milk from the ruminant.

51. The method of claim 49, wherein the providing is performed at an amount of at least 10 grams of dietary paste composition per kilogram of milk produced.

52. The method of claim 49, wherein the providing is performed at an amount of at least 10 grams of dietary paste composition per kilogram of milk produced per day.

53. The method of claim 49, wherein milk produced by the ruminant provided the dietary paste composition has a higher level of fat as compared to milk produced by a similar ruminant not provided the dietary paste composition.

54. A method of preparing a dietary paste composition, the method comprising contacting at least one saturated fatty acid compound with at least one carrier component to form the dietary paste composition.

55. The method of claim 54, further comprising heating the fatty acid compound before the contacting step.

56. The method of claim 54, further comprising heating the fatty acid compound to at least its melting point before the contacting step.

57. The method of claim 54, further comprising heating the dietary paste composition.

58. The method of claim 54, further comprising heating the dietary paste composition to at least the melting point of the fatty acid compound.

59. A method of preparing a dietary paste composition, the method comprising: dispersing at least one saturated fatty acid compound in water to form a colloid; and

combining the colloid and at least one carrier component to form the dietary paste composition.

60. The method of claim 59, wherein the colloid is an emulsion, suspension, or a combination thereof.

Description:
DIETARY PASTE COMPOSITIONS FOR RUMINANTS AND METHODS OF MAKING AND USING THE SAME

BACKGROUND

[0001] Increasing production and fat content of milk obtained from lactating ruminants has been a major goal for dairy farmers. Additional milk production per ruminant is beneficial because it results in a higher yield, thereby increasing profits. Increased milk fat is desirable because it has a higher economic value and can be used in highly desirable food products, such as cheese, yogurt, and the like.

[0002] A common approach to increasing either or both production and milk fat contents includes adjusting feed, nutrients, elements, vitamins, supplements, and/or the like provided to the ruminant. One such specific method includes feeding the ruminant a total mixed ration (TMR), which is a mix of grain and silage with some protein meals, such as, for example, soya bean meal and canola meal. Additional materials and trace elements, vitamins, extra nutrients, and the like may also be added to the TMR.

[0003] However, the current methods and feeds used to increase milk fat content tend to lower milk production, lower protein content, and/or have other detrimental effects on the ruminant. Furthermore, the methods and feeds oftentimes result in other undesired effects, such as increased trans fatty acid levels on the fatty acid profile of the milk fat.

SUMMARY

[0004] In an embodiment, a dietary paste composition may include at least one saturated fatty acid compound and at least one carrier component.

[0005] In an embodiment, a method of increasing fat content in milk may include providing a dietary paste composition to a ruminant for ingestion. The dietary paste composition may include at least one saturated fatty acid compound and at least one carrier component. [0006] In an embodiment, a method of preparing a dietary paste composition may include contacting at least one saturated fatty acid compound with at least one carrier component to form the dietary paste composition.

[0007] In an embodiment, a method of preparing a dietary paste composition may include dispersing at least one saturated fatty acid compound in water to form a colloid and combining the colloid and at least one carrier component to form the dietary paste composition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 depicts a flow diagram of a method of preparing a dietary composition for ruminants according to an embodiment.

[0009] FIG. 2 depicts a flow diagram of an alternative method of preparing a dietary composition for ruminants according to an embodiment.

DETAILED DESCRIPTION

[0010] This disclosure is not limited to the particular systems, devices and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.

[0011] As used in this document, the singular forms "a," "an," and "the" include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this disclosure is to be construed as an admission that the embodiments described in this disclosure are not entitled to antedate such disclosure by virtue of prior invention. As used in this document, the term "comprising" means "including, but not limited to." [0012] The following terms shall have, for the purposes of this application, the respective meanings set forth below.

[0013] A "ruminant" is a class of mammal with a multiple chamber stomach that gives the animal an ability to digest cellulose -based food by softening it within the first chamber (rumen) of the stomach and regurgitating the semi-digested mass. The regurgitate, known as cud, is then chewed again by the ruminant. Specific examples of ruminants include, but are not limited to, cattle, bison, buffaloes, yaks, camels, llamas, giraffes, deer, pronghorns, antelopes, sheep, and goats. The milk produced by ruminants is widely used in a variety of dairy-based products. Dairy cows are of considerable commercial significance for the production of milk and processed dairy products such as, for example, yogurt, cheese, whey, and ice cream.

[0014] "Silage" refers to a feed that includes chopped green forage, such as, for example, grass, legumes, and field corn. The silage is placed in a structure or a container that is designed to exclude air. The silage is then fermented in the structure or container, thereby retarding spoilage. Silage can have a water content of about 60% to about 80% by weight.

[0015] A "paste" is a viscous substance that behaves as a solid until a sufficiently large load or stress is applied, at which point it flows like a fluid. Pastes may include a suspension of granular material in a background fluid. The individual grains are dispersed together like sand on a beach, forming a disordered, glassy or amorphous structure, and giving pastes their solid-like character. Unlike pastes, liquids have very low viscosities, and solids have extremely high viscosities (in some cases, essentially infinite)..

[0016] The present disclosure relates generally to dietary compositions such as supplements and the like that can be fed to ruminants for purposes of affecting milk production in the ruminant. Particularly, the dietary compositions described herein may be fed to a ruminant to increase the amount of milk produced by the ruminant and/or to increase the fat content of the milk produced by the ruminant, as described in greater detail herein. Specific compositions described herein may be in a dietary paste form.

[0017] When a ruminant consumes feed, the fat in the feed is modified by the rumen to provide a milk fat profile that is different from the profile of fat in the feed. All fats which are not completely inert in the rumen may decrease rumen digestibility of the feed material. Milk composition and fat quality can be influenced by the ruminant's diet. For example, oil feeding can have negative effects on both rumen function and milk formation. As a result of the oil feeding, the milk protein concentration is lowered, the fat concentration is decreased, and the proportion of trans fatty acids is increased. These have been connected especially to an increase in the harmful low-density lipoprotein (LDL) cholesterol and to a decrease in the beneficial high-density lipoprotein (HDL) cholesterol in human blood when the milk is consumed. In addition, the properties of the milk fat during industrial milk processing are weakened. A high level of polyunsaturated fatty acids in milk can also cause taste defects and preservation problems. A typical fatty acid composition of milk fat may contain more than 70% saturated fatty acids and total amount of trans fatty acids may vary in the range of 3%-10%. When vegetable oil is added into the feed, the proportion of trans fatty acids may rise to more than 10%.

[0018] One solution to diminishing the detrimental effect of oil and fat is to prevent triglyceride fat hydrolysis. Fat hydrolysis can be decreased, for example, by protecting fats with formaldehyde treated casein. Another alternative is to make insoluble fatty acid calcium salts whereby hydrogenation in rumen can be avoided. However, fatty acid salts have a pungent taste, which can limit their usability in feeds and can result in decreased feed intake. The salts may also impact the pelletizing process of the feed.

[0019] Accordingly, the dietary composition described herein allows for the transfer of palmitic acid from the feed via the digestive tract into the blood circulation of a ruminant. This improves the energy efficiency of milk production of the ruminant. When the utilization of energy becomes more efficient, the milk production increases and the concentrations of protein and fat in the milk rise. Especially, the dietary composition enhances fat synthesis in the mammary gland by bringing milk fat components to the cell and therefore the energy consuming synthesis in the mammary gland is not necessary. Thus, glucose can more efficiently be used for lactose production whereupon milk production increases. The milk protein content rises since there is no need to produce glucose from amino acids. Thus, the ruminant therefore does not lose weight at the beginning of the lactation period.

[0020] In the various embodiments described herein, the dietary paste compositions may include at least one saturated fatty acid compound and at least one carrier component. The saturated fatty acid compound may be primarily one or more palmitic acid compounds, as described in greater detail herein. The saturated fatty acid compound may be about 10% to about 90% by weight of the dietary paste composition. In some embodiments, the dietary paste compositions described herein may be used as a booster or a supplement for ruminant feed.

[0021] FIG. 1 depicts a flow diagram of a method of preparing a dietary composition for consumption by a ruminant. In various embodiments, the dietary composition may be formulated in a manner so that when consumed by the ruminant, the dietary composition maximizes particular qualities in the milk produced by the ruminant, as well as an amount of milk produced by the ruminant, as described in greater detail herein. In particular embodiments, the dietary composition may be substantially a dietary paste composition. Thus, the terms "dietary composition" and "dietary paste composition" will be used interchangeably herein. [0022] In various embodiments, the components described herein with respect to FIG. 1 may generally be combined in any order and/or any combination, and are not limited by the order described herein. In some embodiments, a dietary composition may be prepared by heating 105 a saturated fatty acid, contacting 110 the saturated fatty acid with a carrier, and adding 115 one or more additional ingredients. In some embodiments, the saturated fatty acid may be heated 105 to a temperature that is equivalent to at least its melting point, as described in greater detail herein. Heating 105 the saturated fatty acid and adding 115 additional ingredients may be completed as optional processes. In addition, processes 105, 110, 115 may be performed in different orders, or both may be performed simultaneously. Furthermore, heating 105 may include heating the saturated fatty acid, the carrier, the one or more additional ingredients, or combinations thereof.

[0023] In various embodiments, the saturated fatty acid compound may generally include one or more free fatty acids and/or glycolipids. Free fatty acids may generally be unconjugated fatty acids, whereas glycolipids may be fatty acids conjugated with a carbohydrate. In some embodiments, the saturated fatty acid compound may be present in the dietary composition in an amount of about 10% by weight to about 98% by weight of the dietary composition. In particular embodiments, the saturated fatty acid compound may be present in the dietary composition in an amount of about 10% by weight, about 15% by weight, about 20% by weight, about 25% by weight, about 30% by weight, about 35% by weight, about 40% by weight, about 45% by weight, about 50% by weight, about 55% by weight, about 60% by weight, about 65% by weight, about 70% by weight, about 75% by weight, about 80% by weight, about 85% by weight, about 90% by weight, about 95% by weight, about 98% by weight, or any value or range between any two of these values.

[0024] In some embodiments, the saturated fatty acid compound may have a melting point equal to or greater than about 40°C. In some embodiments, the saturated fatty acid compound may have a melting point equal to or less than about 80°C. In some embodiments, the saturated fatty acid compound may have a melting point of about 40°C to about 80°C. In particular embodiments, the saturated fatty acid compound may have a melting point of about 40°C, about 45°C, about 50°C, about 55°C, about 60°C, about 65°C, about 70°C, about 75°C, about 80°C, or any value or range between any two of these values. The melting point may generally be selected so that it is a temperature that ensures that the fatty acid is inert in the rumen environment.

[0025] In various embodiments, the at least one saturated fatty acid compound may include a plurality of saturated fatty acids. For example, the saturated fatty acid compound may include 2, 3, 4, 5, 6, or more different saturated fatty acids. The saturated fatty acid is not limited by this disclosure, and may include any number of saturated fatty acids now known or later discovered, including all derivatives thereof. For example, derivatives of a saturated fatty acid may include salts, esters, amides, carbonates, carbamates, imides, anhydrides, alcohols, and/or the like. In some embodiments, the saturated fatty acid may be present in dietary composition in an amount that results in a ruminant consuming the dietary composition to produce a desired quality and quantity of milk, as described in greater detail herein.

[0026] As used herein, the term "salt" of the fatty acid may be any acid addition salt, including, but not limited to, halogenic acid salts such as, for example, hydrobromic, hydrochloric, hydrofluoric, and hydroiodic acid salt; an inorganic acid salt such as, for example, nitric, perchloric, sulfuric, and phosphoric acid salt; an organic acid salt such as, for example, sulfonic acid salts (methanesulfonic, trifluoromethane sulfonic, ethanesulfonic, benzenesulfonic, or p-toluenesulfonic), acetic, malic, fumaric, succinic, citric, benzoic, gluconic, lactic, mandelic, mucic, pamoic, pantothenic, oxalic, and maleic acid salts; and an amino acid salt such as aspartic or glutamic acid salt. The acid addition salt may be a mono- or di-acid addition salt, such as a di-hydrohalogenic, di-sulfuric, di-phosphoric, or di-organic acid salt. In all cases, the acid addition salt is used as an achiral reagent which is not selected on the basis of any expected or known preference for interaction with or precipitation of a specific optical isomer of the products of this disclosure.

[0027] The term "fatty acid ester" as used herein means an ester of a fatty acid. For example, the fatty acid ester may be in a form of RCOOR'. R may be any saturated or unsaturated alkyl group including, without limitation, CIO, C12, C14, C16, C18, C20, and C24. R' may be any group having from about 1 to about 1000 carbon atoms and with or without hetero atoms. In some embodiments, R' may have from about 1 to about 20, from about 3 to about 10, and from about 5 to about 15 carbon atoms. The hetero atoms may include, without limitation, N, O, S, P, Se, halogen, Si, and B. For example, R' may be a Ci_ 6 alkyl, such as methyl, ethyl or t-butyl; a Ci_ 6 alkoxyCi_ 6 alkyl; a heterocyclyl, such as tetrahydrofuranyl; a C 6 -ioaryloxyCi_ 6 alkyl, such as benzyloxymethyl (BOM); a silyl, such as trimethylsilyl, t-butyldimethylsilyl and t-butyldiphenylsilyl; a cinnamyl; an allyl; a Ci_ 6 alkyl which is mono-, di- or trisubstituted by halogen, silyl, cyano or Ci- 6 aryl, wherein the aryl ring is unsubstituted or substituted by one, two or three, residues selected from the group consisting of Ci -7 alkyl, Ci^alkoxy, halogen, nitro, cyano and CF 3 ; or a Ci^alkyl substituted by 9-fluorenyl.

[0028] As used herein, a "fatty acid amide" may generally include amides of fatty acids where the fatty acid is bonded to an amide group. For example, the fatty acid amide may have a formula of RCONR'R". R may be any saturated or unsaturated alkyl group including, without limitation, CIO, C12, C14, C16, C18, C20, and C24. R' and R" may be any group having from about 1 to about 1000 carbon atoms and with or without hetero atoms. In some embodiments, R' may have from about 1 to about 20, from about 3 to about 10, and from about 5 to about 15 carbon atoms. The hetero atoms may include, without limitation, N, O, S, P, Se, halogen, Si, and B. For example, R' and R" each may be an alkyl, an alkenyl, an alkynyl, an aryl, an aralkyl, a cycloalkyl, a halogenated alkyl, or a heterocycloalkyl group.

[0029] A "fatty acid anhydride" may generally refer to a compound which results from the condensation of a fatty acid with a carboxylic acid. Illustrative examples of carboxylic acids that may be used to form a fatty acid anhydride include acetic acid, propionic acid, benzoic acid, and the like.

[0030] An "alcohol" of a fatty acid refers to a fatty acid having straight or branched, saturated, radical groups with 3-30 carbon atoms and one or more hydroxy groups. The alkyl portion of the alcohol component can be propyl, butyl, pentyl, hexyl, iso-propyl, iso-butyl, sec -butyl, tert-butyl, or the like. One of skill in the art may appreciate that other alcohol groups may also useful in the present disclosure.

[0031] In some embodiments, the saturated fatty acid may include a palmitic acid compound. The palmitic acid compound is not limited by this disclosure, and may include one or more of a conjugated palmitic acid, unconjugated palmitic acid, free palmitic acid, palmitic acid derivatives, and/or the like. Palmitic acid, also known as hexadecanoic acid, has a molecular formula of CH 3 (CH 2 )i 4 C0 2 H. Specific examples of palmitic acid derivatives may include palmitic acid esters (palmitate esters), palmitic acid amides, palmitic acid salts (palmitate salts), palmitic acid carbonates, palmitic acid carbamates, palmitic acid imides, palmitic acid anhydrides (palmitate anhydrides), and/or the like. The palmitic acid compound may be present in the saturated fatty acid compound in an amount of about 10% by weight of the saturated fatty acid compound to about 100% by weight of the saturated fatty acid, including about 10% by weight, about 25% by weight, about 30% by weight, about 50% by weight, about 60% by weight, about 65% by weight, about 70% by weight, about 75% by weight, about 80% by weight, about 85% by weight, about 90% by weight, about 95% by weight, about 98% by weight, about 99% by weight, about 100% by weight, or any value or range between any two of these values. In some embodiments, the saturated fatty acid compound may consist essentially of the palmitic acid compound. In other embodiments, the saturated fatty acid compound may be entirely composed of the palmitic acid compound.

[0032] In some embodiments, the saturated fatty acid may include a stearic acid compound. The stearic acid compound is not limited by this disclosure, and may include conjugated stearic acid, unconjugated stearic acid, free stearic acid, stearic acid derivatives, and/or the like. Stearic acid, also known as octadecanoic acid, has a chemical formula of CH 3 (CH 2 )i 6 C0 2 H. Specific examples of stearic acid derivatives may include stearic acid esters (stearate esters), stearic acid amides (stearate amides), stearic acid salts (stearate salts), stearic acid carbonates, stearic acid carbamates, stearic acid imides, stearic acid anhydrides (stearate anhydride), and/or the like. Because stearic acid in large amounts may hinder milk production capacity of the mammary gland, the amount of stearic acid may be present in the saturated fatty acid compound in an amount of about 30% or less by weight of the saturated fatty acid compound. In particular embodiments, the stearic acid compound may include about 30% by weight of the saturated fatty acid compound, about 25% by weight of the saturated fatty acid compound, about 20% by weight of the saturated fatty acid compound, about 15% by weight of the saturated fatty acid compound, about 10% by weight of the saturated fatty acid compound, about 5% by weight of the saturated fatty acid compound, or any value or range between any two of these values.

[0033] In various embodiments, a molar ratio of the palmitic acid compound to the stearic acid compound may be present in the saturated fatty acid compound. Illustrative molar ratios of the palmitic acid compound to the stearic acid compound in the saturated fatty acid compound may include about 2: 1, about 5: 1, about 10: 1, or any value or range between any two of these values. [0034] In some embodiments, the dietary composition may include an unsaturated fatty acid as an additional ingredient, as described herein. The term "unsaturated fatty acid" as used herein refers to any mono- and polyunsaturated fat, and includes trans fatty acids. The unsaturated fatty acids must contain at least one alkene linkage and may contain two or more alkene groups in any position in the hydrocarbon chain, and the unsaturation may or may not be present as a conjugated system of double bonds. The unsaturated fatty acid is not limited by this disclosure, and may include any number of unsaturated fatty acids now known or later discovered, including all derivatives thereof. For example, derivatives of an unsaturated fatty acid may include salts, esters, amides, anhydrides, alcohols, and/or the like, as previously described herein. In various embodiments, a minimal amount of unsaturated fatty acid in the saturated fatty acid compound to affect a desired quality of milk produced by the ruminant consuming the dietary composition may be used, as described in greater detail herein. Thus, in some embodiments, the dietary composition may substantially not include an unsaturated fatty acid. As used herein with respect to unsaturated fatty acids, the term "substantially free" is understood to mean substantially no amount of unsaturated fatty acids or about 5% or less by weight of unsaturated fatty acids, including trace amounts of unsaturated fatty acids. Accordingly, the unsaturated fatty acid may be present in the dietary composition in an amount of about 5% or less by weight of the saturated fatty acid compound, including about 5% by weight, about 4% by weight, about 3% by weight, about 2% by weight, about 1% by weight, about 0.5% by weight, about 0% by weight, or any value or range between any two of these values.

[0035] In various embodiments, at least a portion of the saturated fatty acid compound may be contained. In some embodiments, the saturated fatty acid compound may be pre-contained prior to contacting 110 the saturated fatty acid compound to the feed ingredient. In other embodiments, the saturated fatty acid compound may be contained as a result of the various processes 105, 110, 115 described herein. In some embodiments, the saturated fatty acid compound may generally be contained by at least one supermolecular structure. Supermolecular structures may include vesicular structures such as microemulsions, liposomes (vesicles), micelles, and reverse micelles. The liposomes (vesicles) may contain an aqueous volume that is entirely enclosed by a membrane composed of lipid molecules, such as phospholipids. In some embodiments, the liposomes may have a bilayer membrane. In some embodiments, the liposomes may include at least one surfactant. Examples of surfactants may include polyoxyethylene ethers and esters of fatty acids. The surfactant may have an hydrophilic-lipophilic balance (HLB) value of about 2 to about 12, including about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, or any range or value between any two of these values. Micelles and reverse micelles are microscopic vesicles that contain amphipathic constituents but do not contain an aqueous volume that is entirely enclosed by a membrane. In micelles, the hydrophilic part of the amphipathic compound is on the outside (on the surface of the vesicle). In reverse micelles, the hydrophobic part of the amphipathic compound is on the outside. The reverse micelles may thus contain a polar core that can solubilize both water and macromolecules within the inverse micelle. As the volume of the core aqueous pool increases, the aqueous environment begins to match the physical and chemical characteristics of bulk water. The resulting inverse micelle may be referred to as a microemulsion of water in oil.

[0036] In some embodiments, at least a portion of the saturated fatty acid component may be contained in a core of a micelle or a vesicle. The core may include any number of particles therein in addition to the fatty acid. The core composition may be made of a core material that includes at least one of the protein material, the cellulosic material, the amino acid, and the amino acid derivative, as described in greater detail herein. [0037] In various embodiments, at least a portion of the saturated fatty acid compound may be encapsulated. In some embodiments, the saturated fatty acid compound may be pre-encapsulated prior to contacting 110 the saturated fatty acid compound to the feed ingredient. In other embodiments, the saturated fatty acid compound may be encapsulated as a result of the various processes 105, 110 described herein. In some embodiments, the saturated fatty acid compound may generally be encapsulated by an encapsulating component. The encapsulating component may include a capsule shell, which is made up of at least one polysaccharide. Illustrative examples of capsule shells as described herein may include capsule shells including agar, gelatin, starch casein, chitosan, soya bean protein, safflower protein, alginates, gellan gum, carrageenan, xanthan gum, phthalated gelatin, succinated gelatin, cellulosephthalate-acetate, polyvinylacetate, hydroxypropyl methylcellulose, polyvinylacetate-phthalate, polymerisates of acrylic esters, polymerisates of methacrylic esters, and/or mixtures thereof. The encapsulating component may include a protein, a polypeptide, a lipid, an emulsifier, a surfactant, a carbohydrate, a polysaccharide, a polyvinyl, a plastic, a biodegradable polymer, xanthan gum, guar gum, starch, gum arabic, tragacanth gum, dextran, chitosan, polyvinylpyrrolidone, polyacrylamide, poly(styrene/acrylonitrile), poly(styrene/2-vinylpyridine), poly(ethylene oxide), poly(vinyl acetate), hydroxypropylcellulose, ethylcellulose, cellulose acetate, carboxymethylcellulose, zein, alginate, gelatin, shellac, and/or a combination thereof.

[0038] In various embodiments, the carrier component may include any solid or semi-solid carrier. The carrier component may include a starch, a polysaccharide, a glycolipid, a glycoprotein, a protein, agar, chitosan, carrageenan, collagen, a plasticizer, a wax, and the like, or a combination thereof. In some embodiments, the carrier may include a binding agent, which may be used to provide adhesive properties for the dietary composition and/or to facilitate increased tablet or pellet quality. Examples of binding agents include polysaccharides, proteins, and the like, or a combination thereof. In some embodiments, the carrier may include a bulking agent, which may be used to increase the bulk of the dietary composition without affecting the taste of the dietary composition. Examples of bulking agents may include silicate, kaolin, diatomaceous earth, clay, and/or the like. In some embodiments, the carrier may include one or more filling agents, which may generally be used to increase bulk, weight, viscosity, opacity, strength, and/or the like of the dietary composition. Examples of filling agents may include fiber, corn gluten feed, sunflower hulls, distillers grains, guar hulls, wheat middlings, rice hulls, rice bran, sugar beet pulp, oilseed meals, cottonseed meal, soybean meal, sunflower meal, linseed meal, peanut meal, rapeseed meal, canola meal, dried blood meal, animal by-product meal, fish by-product, fish meal, dried fish solubles, feather meal, poultry by-products, meat meal, bone meal, dried whey, soy protein concentrate, soy flour, yeast, wheat, oats, grain sorghums, corn feed meal, rice, rye, corn, barley, aspirated grain fractions, brewers dried grains, corn flour, feeding oat meal, sorghum grain flour, wheat mill run, wheat red dog, hominy feed, wheat flour, wheat bran, wheat germ meal, oat groats, rye middlings, cotyledon fiber, ground grains, wheat grain, corn grain, milo grain, algae, algae meal, microalgae, and the like, or a combination thereof. In some embodiments, the carrier may be ground to ensure homogenization of the dietary composition. Grinding is not limited by this disclosure, and may include the use of any commercial grinder or the like to achieve a ground carrier.

[0039] In various embodiments, the additional ingredient may include at least one emulsifying agent. The emulsifying agent is not limited by this disclosure, and may generally be any composition that is capable of emulsifying the dietary composition. In some embodiments, the emulsifying agent may be non-ionic, cationic, or anionic. Illustrative examples of emulsifiers may include lecithin, natural seed weed, natural seed gums, natural plant exudates, natural fruit extracts, animal skin and bone extracts, bio-synthetic gums, starches, fibers, sucrose esters, sorbitan esters, glyceryl esters, methylcellulose, carboxymethylcellulose, pectin, Tween, polyglycerol esters, sugar esters, castor oil, and ethoxylated castor oil. Examples of natural seed weed may include carrageenan, alginates, agar, agarose, fucellan, and xanthan gum or a combination thereof. Examples of natural seed gums may include guar gum, locust bean gum, tara gum, tamarind gum, and psillium gum. Examples of natural plant exudates are acacia, gum Arabic, tragacanth, karaya, and ghatti. Natural fruit extracts are, for example, low and high methoxyl pectins. Animal skin and bone extracts are, for example, gelatin A, gelatin B, and hydrolyzed gelatin. Gum Arabic is a natural food additive obtained from certain varieties of acacia. It is generally tasteless and odorless, and may be used in commercial food processing to thicken, emulsify, and/or stabilize foods. Guar gum is a gummy substance obtained from plants of the legume genera. Guar gum may also be used as a thickener and/or a stabilizer in commercial food processing. Xanthan gum is produced by fermentation of corn sugar, and may be used as a thickener, an emulsifier, and/or a stabilizer of foods. In particular embodiments, gum Arabic, guar gum, xanthan gum, and/or pectin may be used in combination as an emulsion stabilizer. Illustrative examples of bio-synthetic gums may include xanthan, gellan, curdian, and pullulan. Examples of starches may include natural starch, chemically modified starch, physically modified starch, and enzymatically modified starch. Castor oil may be effective as an emulsifier because of its ability to render oil soluble in water. Specific compounds that may be used as emulsifying agents may include lecithin, polyoxyethylene stearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan, polyoxyethylene, sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, ammonium phosphatides, salts of fatty acids, glycerides of fatty acids, acetic acid esters of glycerides of fatty acids, lactic acid esters of glycerides of fatty acids, citric acid esters of fatty acids, acetyl tartaric acid esters of fatty acids, sucrose esters of fatty acids, sucroglycerides, poly glycerol esters of fatty acid, poly glycerol polyricinoleate, propane- 1,2- diol esters of fatty acids, oxidized soya bean oil glycerides, castor oil glycerides, sodium stearoyl-2-lactylate, calcium stearoyl-2-lactylate, sorbitan monostearate, sorbitan tristearate, sorbitan monolaurate, sorbitan monooleate, sorbitan monopalmitate, and/or the like.

[0040] In various embodiments, the emulsifying agent may have a hydrophilic- lipophilic balance HLB of at least about 5, about 14 or less, or about 5 to about 14. In particular embodiments, the HLB of the emulsifier may be about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, or any value or range between any two of these values.

[0041] In various embodiments, the emulsifying agent may be present in the dietary composition in an amount of about 0.01% by weight to about 2.0% by weight of the dietary composition. In particular embodiments, the emulsifier may be present in the dietary composition in an amount of about 0.01% by weight, about 0.05% by weight, about 0.1% by weight, about 0.2% by weight, about 0.25% by weight, about 0.3% by weight, about 0.5% by weight, about 0.6% by weight, about 0.75% by weight, about 1.0% by weight, about 1.25% by weight, about 1.5% by weight, about 1.75% by weight, about 2.0% by weight, or any value or range between any two of these values.

[0042] In various embodiments, the additional ingredient may include at least one nutritive component. The nutritive component is not limited by this disclosure, and may generally be any item that may provide additional beneficial nutrients to the ruminant. Thus, the nutritive component may include, for example, a carbohydrate, a polysaccharide, a protein, an amino acid, an amino acid derivative, a vitamin, a trace element, a mineral, a lipid, a glycolipid, a glucogenic precursor, an antioxidant, and/or the like.

[0043] The carbohydrate is not limited by this disclosure and may include any carbohydrates, particularly those used in animal feed. In some embodiments, the carbohydrate may generally provide a source of energy for the feed ingredient. Illustrative examples of carbohydrates may include molasses, sugar beet pulp, sugarcane, wheat bran, oat hulls, grain hulls, soybean hulls, peanut hulls, wood, brewery byproducts, beverage industry byproducts, forages, roughages, silages, molasses, sugars, starches, cellulose, hemicellulose, wheat, corn, oats, sorghum, millet, barley, barley fiber, barley hulls, barley middlings, barley bran, malting barley screenings, malting parley and fines, malt rootlets, maize bran, maize middlings, maize cobs, maize screenings, maize fiber, millet, rice, rice bran, rice middlings, rye, triticale, brewers grain, coffee grinds, tea leaf fines, citrus fruit pulp, rind residues, algae, algae meal, microalgae, and/or the like.

[0044] In various embodiments, the glucogenic precursor may include at least one of glycerol, propylene glycol, molasses, propionate, glycerine, propane diol, calcium propionate, propionic acid, octanoic acid, steam-exploded sawdust, steam-exploded wood chips, steam-exploded wheat straw, algae, algae meal, microalgae, or combinations thereof. The glucogenic precursor may generally be included in the dietary composition to provide an energy source to the ruminant so as to prevent gluconeogenesis from occurring within the ruminant's body.

[0045] The antioxidant is not limited by this disclosure and may include any antioxidants or combination of antioxidants, particularly those used in animal feed and mineral lick compositions. Illustrative examples of antioxidants may include alpha-carotene, beta-carotene, ethoxyquin, butylated hydroxy anisole (BHA), butylated hydroxy toluene (BHT), cryptoxanthin, lutein, lycopene, zeaxanthin, vitamin A, vitamin C, vitamin E, selenium, alpha-lipoic acid, and/or the like.

[0046] In various embodiments, the vitamin may include any combination of vitamin A, vitamin B, vitamin C, vitamin D, vitamin E, vitamin K, and/or the like. Specific examples of vitamin B include thiamine (vitamin Bi), riboflavin (vitamin B 2 ), niacin (vitamin B3), pantothenic acid (vitamin B5), pyridoxine (vitamin B 6 ), biotin (vitamin B7), folic acid (vitamin B9), cobalamin (vitamin B12), and choline (vitamin B p ).

[0047] In some embodiments, the feed ingredient may include an amount of carnitine. The carnitine may be included in the feed ingredient to aid in the breakdown of fatty acids to generate metabolic energy in the ruminant. In some embodiments, the carnitine may be obtained from a premix composition.

[0048] In some embodiments, the amino acid may be an essential amino acid, including any combination of leucine, lysine, histidine, valine, arginine, threonine, isoleucine, phenylalanine, methionine, tryptophan, and/or any derivative thereof. In some embodiments, the amino acid may be a non-essential amino acid, including any combination of alanine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, tyrosine, and/or any derivative thereof. The amino acid and/or any derivative thereof may also include amino acids and derivatives of both non-essential and essential amino acids. The amino acid may generally be included in the dietary composition to provide a nutritional aid in various physiological processes in the ruminant, such as, for example, increasing muscle mass, providing energy, aiding in recovery, and/or the like. In some embodiments, the amino acid may be obtained from a premix composition.

[0049] In various embodiments, the mineral may be any mineral that is a generally recognized as safe (GRAS) mineral or a combination of such minerals. The mineral may further be obtained from any mineral source that provides a bioavailable mineral. In some embodiments, the mineral may be one or more of calcium, sodium, magnesium, potassium, phosphorous, zinc, selenium, manganese, iron, cobalt, copper, iodine, molybdenum, and/or the like. In some embodiments, the mineral may be selected from one or more of a sodium salt, a calcium salt, a magnesium salt, a cobalt salt, a manganese salt, a potassium salt, an iron salt, a zinc salt, copper sulfate, copper oxide, selenium yeast, a chelated mineral, and/or the like. Illustrative examples of sodium salts include monosodium phosphate, sodium acetate, sodium chloride, sodium bicarbonate, disodium phosphate, sodium iodate, sodium iodide, sodium tripolyphosphate, sodium sulfate, sodium selenite, and/or the like. Illustrative examples of calcium salts include calcium acetate, calcium carbonate, calcium chloride, calcium gluconate, calcium hydroxide, calcium iodate, calcium iodobehenate, calcium oxide, anhydrous calcium sulfate, calcium sulfate dehydrate, dicalcium phosphate, monocalcium phosphate, tricalcium phosphate, and/or the like. Illustrative magnesium salts include magnesium acetate, magnesium carbonate, magnesium oxide, magnesium sulfate, and/or the like. Illustrative cobalt salts include cobalt acetate, cobalt carbonate, cobalt chloride, cobalt oxide, cobalt sulfate, and/or the like. Illustrative examples of manganese salts include manganese carbonate, manganese chloride, manganese citrate, manganese gluconate, manganese orthophosphate, manganese oxide, manganese phosphate, manganese sulfate, and/or the like. Illustrative examples of potassium salts include potassium acetate, potassium bicarbonate, potassium carbonate, potassium chloride, potassium iodate, potassium iodide, potassium sulfate, and/or the like. Illustrative examples of iron salts include iron ammonium citrate, iron carbonate, iron chloride, iron gluconate, iron oxide, iron phosphate, iron pyrophosphate, iron sulfate, reduced iron, and/or the like. Illustrative examples of zinc salts include zinc acetate, zinc carbonate, zinc chloride, zinc oxide, zinc sulfate, and/or the like.

[0050] In some embodiments, the protein may be obtained from a protein source. Illustrative examples of protein sources may include one or more grains and/or oilseed meals. The grain is generally not limited by this disclosure and may be any edible grain, or combination of grains, that is used as a protein source. Illustrative examples of grains include cereal grains such as barley, wheat, spelt wheat, rye, oats, triticale, rice, corn, buck wheat, quinoa, amaranthus, sorghum, and the like. Oilseed meal is generally derived from residue that remains after reserved oil is removed from oilseeds. The oilseed meal may be rich in protein and variable in residual fats and oils. Illustrative examples of oilseed meal includes rapeseed meal, soybean meal, sunflower meal, cottonseed meal, camelina meal, mustard seed meal, crambe seed meal, safflower meal, rice meal, peanut meal, corn gluten meal, corn gluten feed, distillers dried grains, distillers dried grains with solubles, wheat gluten, and/or the like.

[0051] In some embodiments, the additional ingredient may include at least one cellulosic material. The cellulosic material may generally provide a source of fiber for the ruminant to lower cholesterol levels and promote proper digestive function. Illustrative examples of cellulosic materials include wheat bran, wheat middlings, wheat mill run, oat hulls, oat bran, soya hulls, grass meal, hay meal, alfalfa meal, alfalfa, straw, hay, algae, algae meal, microalgae and/or the like.

[0052] In various embodiments, the additional ingredient may include a micronutrient mixture. Micronutrient mixtures are not limited by this disclosure and may generally contain any micronutrient mixture now known or later developed. The micronutrient mixture may include various components, such as at least one vitamin and at least one mineral, as described in greater detail herein. In some embodiments, the micronutrient mixture may be obtained from a premix composition.

[0053] In various embodiments, the dietary composition may have a viscosity, particularly a viscosity that is generally recognized as suitable for dietary paste compositions. Accordingly, the dietary composition may have a viscosity of about 25,000 centipoise to about 100 million centipoise at about 22°C. For example, the dietary composition may have a viscosity at about 22°C of about 25,000 centipoise, about 50,000 centipoise, about 100,000 centipoise, about 500,000 centipoise, about 1 million centipoise, about 5 million centipoise, about 10 million centipoise, about 50 million centipoise, about 100 million centipoise, or any range or value between any two of these values.

[0054] In various embodiments, the dietary composition may be dispersible in an organic solvent and/or in water. Illustrative organic solvents may include glycols such as ethylene glycol, glycerol, diethylene glycol, dipropylene glycol, polyethylene glycol, and polypropylene glycol; alkoxylated alcohols such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, and butyl dioxytol (also known as diethylene glycol monobutyl ether with formula ηΒυΟΟ¾0¾00¾0¾ΟΗ); and phosphorus-containing compounds such as diethyl phosphate, dibutyl phosphate, tributyl phosphate, triethyl phosphate, dibutyl phosphite, and triethyl phosphite.

[0055] FIG. 2 depicts an alternate method of preparing the dietary composition according to an embodiment. The method may include dispersing 205 the saturated fatty acid compound in water to form a colloid and combining 210 the colloid and at least one carrier component to form the dietary paste composition. In some embodiments, additional ingredients may be added 215, as described in greater detail herein. In some embodiments, the colloid may be an emulsion, a suspension, or a combination thereof.

[0056] In various embodiments, water may be included in an amount that is separate from any amounts of water that may be inherently present in any of the other ingredients described herein. Water may generally be present in the dietary composition in an amount that is about 12% or less by weight, including about 0.5% by weight, about 1% by weight, about 2% by weight, about 3% by weight, about 5% by weight, about 8% by weight, about 10% by weight, about 12% by weight, or any value or range between any two of these values. [0057] In some embodiments, the dietary composition may be dried. Drying may generally be completed to remove any excess water or other undesired materials, as well as to provide a material that is suitable for use as a dietary paste composition.

[0058] In various embodiments, a method of increasing milk fat content in ruminants may include providing the dietary composition as described herein to the ruminant for ingestion. In some embodiments, milk may be obtained from the ruminant. In some embodiments, the dietary composition may be provided as a supplement or a booster. In particular embodiments, the dietary composition may be a dietary paste composition, as described in greater detail herein. In some embodiments, the composition may be admixed with feed to be provided to the ruminant. In some embodiments, the composition may be coated on the feed to be provided to the ruminant. In some embodiments, the dietary composition may be provided to the ruminant in an amount that the ruminant receives at least about 10 grams of fatty acid per kilogram of milk produced by the ruminant each day. The amount may be based on the previous day's milk production by the ruminant, an average day based on the previous week' s milk production by the ruminant, an average day based on the previous month's milk production by the ruminant, an average production of milk by the ruminant when not provided the dietary composition, and/or the like. In some embodiments, the ruminant may be provided with additional amounts of the dietary composition to make up for portions of the dietary composition that are not consumed by the ruminant such as amounts that are spilled by the ruminant when consuming the dietary composition and/or the like.

[0059] In some embodiments, providing the dietary composition to the ruminant for the ruminant to consume may result in an increase in production of milk and/or an increase in fat content of the milk produced. These increases may generally be relative to a similar ruminant that does not receive the dietary composition, an average of similar ruminants not receiving the dietary composition, an average of the milk production quantity and fat content of the same ruminant when not provided the dietary composition, and/or the like. In particular embodiments, the milk production may increase by an amount of about 1% to about 10%, including about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, or any value or range between any two of these values. In particular embodiments, the milk fat content may increase by an amount of about 10% to about 15%, including about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, or any value or range between any two of these values.

[0060] Various portions of the components described herein may be ground to a particular particle size. Grinding may be performed by various grinding devices known to those having ordinary skill in the art, such as a hammer mill, a roller mill, a disk mill, or the like. The various components described herein may be ground to various sizes, such as particle size (for instance, measured in millimeters), mesh sizes, surface areas, or the like. According to some embodiments, the components may be ground to an average particle size of about 0.05 mm to about 10 mm. More particularly, the various components may be ground to produce a granular material having an average particle size of about 0.05 mm, about 0.1 mm, about 0.2 mm, about 0.5 mm, about 1.0 mm, about 2.0 mm, about 3.0 mm, about 4.0 mm, about 5.0 mm, about 6.0 mm, about 7.0 mm, about 8.0 mm, about 9.0 mm, about 10.0 mm, or any value or range between any two of these values. In some embodiments, the various components may be ground so that about 20% to 50% of the each component and/or all components are retained by a mesh having openings with a size of about 10 mm and so that about 70% to about 90% of each component and/or all components are retained by a mesh having openings with a size of about 1 mm. In some embodiments, the various components may have a varying distribution of particle sizes based upon the ingredients. For example, in embodiments containing one or more wheat ingredients, the particle size may be distributed so that about 95% of the ground wheat ingredients are retained by a mesh having openings with a size of about 0.0625 mm and so that about 65% of the ground wheat ingredients are retained by a mesh having openings with a size of about 1.0 mm. In another example, such as embodiments containing one or more barley ingredients, the particle size may be distributed so that about 95% of the ground barley ingredients are retained by a mesh having openings with a size of about 0.0625 mm and so that about 60% of the ground barley ingredients are retained by a mesh having openings with a size of about 1.0 mm. The varying mesh sizes of each ingredient may be independent of mesh sizes for other ingredients.

[0061] Grinding may provide various benefits, such as improving certain characteristics of the mineral lick mixture and/or the mineral lick composition formed therefrom. For instance, even and fine particle size may improve the mixing of different ingredients. According to certain embodiments, grinding may be configured to decrease a particle size of certain components of the mineral lick composition, for example, to increase the surface area open for enzymes in the gastrointestinal tract, which may improve the digestibility of nutrients, and/or to increase the palatability of the feed.

EXAMPLES

Example 1 : Making a Dietary Paste Composition

[0062] A dietary paste composition to be used as a feed booster for ruminant feed is made using a process of contacting at least one saturated fatty acid with at least one carrier component. The saturated fatty acid compound is at least about 50% by weight of the dietary paste composition. The saturated fatty acid compound includes about 98% by weight of a palmitic acid compound and about 2% by weight of a stearic acid compound. The carrier component includes starch, agar, and dried blood meal. The dietary paste composition also includes about 10% by weight of water and about 10% by weight of a nutritive component to include additional nutrients not currently present and/or lacking in the ruminant's current feed. The nutritive component includes molasses, glycerol, propane diol, vitamin A, riboflavin, pantothenic acid, folic acid, vitamin D, vitamin E, carnitine, a lysine derivative, calcium, iron, selenium, oat hulls, hay meal, and straw.

Example 2: Feeding a Dairy Cow

[0063] A dairy cow that has a normal (untreated) average daily production of 25 kg milk is provided with the dietary paste composition described above with respect to Example 1 to increase the milk fat and the quantity of the milk produced.

[0064] The dairy cow is given about 275 grams of dietary paste composition as an additive to the cow's daily TMR feed. This amount is selected to ensure that the cow consumes at least about 245 grams of the dietary paste composition over the course of a day. This amount corresponds to about 10 grams of palmitic acid for every kilogram of milk that the cow will produce that day. As a result, the cow produces 10% more milk than the cow did previously, and the milk that the cow produces contains 15% more milk fat content than the milk that the cow produced previously.

Example 3: Providing to a Large Group of Cows

[0065] The dietary paste composition as described above with respect to Example 1 is provided to a large group of cows on a commercial dairy farm to confirm its effectiveness. 1000 dairy cows from the commercial dairy farm are selected at random to provide a wide variation in various characteristics, such as breed, weight, age of the cow, and the like. The 1000 cows are equally divided into two groups: a sample cow group and a control cow group. Each day, the sample cow group is given the dietary paste composition in addition to the cow's TMR feed. In contrast, the control cow group only receives the regular TMR feed daily. The 1000 cows are monitored for the amount of mineral lick composition consumed, changes in weight, an amount of milk the cow produces each day, and the composition of the milk produced by the cow each day. Monitoring continues for a period of 90 days. A comparison of the two groups of cows over this period of time shows a statistically significant improvement from the group that consumed the dietary paste composition over the control group that did not receive the dietary paste composition.

Example 4: Fatty Acid Composition

[0066] The following table describes a fatty acid composition that increases the volume of milk produced by a ruminant and the milk fat content of the milk produced by the ruminant.

[0067] In the above detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein. [0068] The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds, compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.

[0069] With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.

[0070] It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (for example, bodies of the appended claims) are generally intended as "open" terms (for example, the term "including" should be interpreted as "including but not limited to," the term "having" should be interpreted as "having at least," the term "includes" should be interpreted as "includes but is not limited to," et cetera). While various compositions, methods, and devices are described in terms of "comprising" various components or steps (interpreted as meaning "including, but not limited to"), the compositions, methods, and devices can also "consist essentially of or "consist of the various components and steps, and such terminology should be interpreted as defining essentially closed-member groups. It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an" (for example, "a" and/or "an" should be interpreted to mean "at least one" or "one or more"); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number (for example, the bare recitation of "two recitations," without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to "at least one of A, B, and C, et cetera" is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, " a system having at least one of A, B, and C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). In those instances where a convention analogous to "at least one of A, B, or C, et cetera" is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, " a system having at least one of A, B, or C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase "A or B" will be understood to include the possibilities of "A" or "B" or "A and B."

[0071] In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.

[0072] As will be understood by one skilled in the art, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, et cetera As a non- limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, et cetera As will also be understood by one skilled in the art all language such as "up to," "at least," and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.

[0073] Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.