Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DUAL INHIBITORS OF ADIPOCYTE FATTY ACID BINDING PROTEIN AND KERATINOCYTE FATTY ACID BINDING PROTEIN
Document Type and Number:
WIPO Patent Application WO/2003/043624
Kind Code:
A1
Abstract:
Compounds that are dual aP2/k-FABP inhibitors are provided having the formula (I), wherein A, B, X, Y, R?1¿, R?2¿ and R?3¿ are as described herein. A method is also provided for treating diabetes and related diseases, especially Type II diabetes, employing dual aP2/k-FABP inhibitors alone or in combination with at least one other antidiabetic agent such as metformin, glyburide, troglitazone and/or insulin.

Inventors:
MAGNIN DAVID R (US)
SULSKY RICHARD B (US)
ROBL JEFFREY A (US)
CAULFIELD THOMAS J (FR)
PARKER REX A (US)
Application Number:
PCT/US2002/036580
Publication Date:
May 30, 2003
Filing Date:
November 15, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BRISTOL MYERS SQUIBB CO (US)
MAGNIN DAVID R (US)
SULSKY RICHARD B (US)
ROBL JEFFREY A (US)
CAULFIELD THOMAS J (FR)
PARKER REX A (US)
International Classes:
A61K31/155; A61K31/19; A61K31/195; A61K31/41; A61K31/427; A61K31/64; A61K38/28; A61K45/06; C07C45/41; C07C45/59; C07C45/71; C07C47/575; C07C51/487; C07C59/68; C07C65/24; C07C205/35; C07C205/59; C07C229/36; C07C233/47; C07C233/81; C07C233/87; C07C235/12; C07C251/48; C07C255/54; C07C311/21; C07C317/18; C07C323/56; C07B61/00; (IPC1-7): A61K31/19; A61K31/41; A61K31/195; C07C65/00; C07C59/64; C07C229/00; C07D257/00; C07D257/04
Domestic Patent References:
WO2000015229A12000-03-23
WO2000059506A12000-10-12
WO2000050574A12000-08-31
Foreign References:
US5595872A1997-01-21
US5739135A1998-04-14
US5712279A1998-01-27
US5760246A1998-06-02
US5827875A1998-10-27
US5885983A1999-03-23
US5962440A1999-10-05
Other References:
MCCHESNEY ET AL.: "Simple analogs of the toxin callicarpone", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 68, no. 9, 1979, pages 1116 - 1120, XP002961684
DATABASE CAPLUS [online] KALRA ET AL.: "Synthesis of apuleidin, a flavone from apuleia leiocarpa", XP002961685, accession no. STN Database accession no. 1975:443136
CARLSSON ET AL., HELVETICA CHIMICA ACTA, vol. 47, no. 5, 1964, pages 1340 - 1349, XP002961686
HELVETICA CHIMICA ACTA, vol. 47, no. 5, 1964, pages 1340 - 1349
CHIMICA THERAPEUTICA, vol. 3, 1973, pages 308 - 313
See also references of EP 1443919A4
Attorney, Agent or Firm:
Hermenau, Ronald (P.O. Box 4000 Princeton, NJ, US)
Download PDF:
Claims:
We claim:
1. A compound of the following formula I or pharmaceutically acceptable salts thereof, or prodrug esters thereof, or stereoisomers thereof, or solvates thereof wherein A is a bond; a ClC3 alkylene group optionally independently substituted on available atoms with one to six halo, hydroxy, alkoxy, hydroxyalkyl, SR4, alkyl, alkenyl, cyano, CONHR4, COOR4, oxo, NHOR4, =NOR4, or N (R8) COR4 ; or a C2C3 alkenylene group optionally independently substituted on available atoms with one to four halo, hydroxy, alkoxy, hydroxyalkyl, alkyl, alkenyl, cyano, CONHR4, COOR4, oxo, NHOR4, =NOR or N (R8)COR4; B is carboxyl or tetrazole; X and Y are independently O (CRSR6) q, (CR5R6)qO, (CR5R6) qN (R7)CO, N(r7) CO (CR) g, N(R7) CO (CR5R6) qO , N(R7) CO (CR5R6) qC (0) O N(R7)COCR5=CR6 , (CR5R6)qN(R7)SO2, N(R7)SO2(CR5R6)q, 0CO (CR5R6) q, O(CR5R6)qCO , (CRSR6) qOCO, or (CR5R6) qS (O) t; Ru ils aryl, heteroaryl, alkyl, cycloalkyl, aralkyl, heteroarylalkyl, cylcoalkenyl or heterocyclo any of which may be optionally substituted with zla Z2a and one or more Z3a, R2 is aryl, heteroaryl, alkyl, cycloalkyl, aralkyl, heteroarylalkyl, cylcoalkenyl or heterocyclo any of which may be optionally substituted with zlb, Z2b and one or more Z3 R3 is H, OH, alkyl, hydroxyalkyl, aryl, nitro, halo, amino, alkylamino, alkoxy, cyano, thioalkyl, carboxyl, COOR, NR'COR, or NR'COOR4 ; R4 is (1) H; or (2) alkyl, haloalkyl, aminoalkyl, alkoxyalkyl, hydroxyalkyl, aryl or heteroaryl any of which may be optionally substituted with Z1c, Z2c and one or more Z3c ; Rs and R6 are independently (1) H, OH, halo, cyano or oxo; or (2) alkoxy, alkyl, alkenyl, hydroxyalkyl, aryl, aralkyl, heteroaryl, heteroarylalkyl, alkylthio, aryloxy or heteroaryloxy any of which may be optionally subsituted with Z1d, Z2d and one more Z3d ; R7 is (1) H, OH, or cyano; or (2) alkoxy, alkyl, alkenyl, hydroxyalkyl, aryl, aralkyl, heteroaryl, heteroarylalkyl, alkylthio, aryloxy or heteroaryloxy any of which may be optionally subsituted with and one more Z3e ; R8 is (1) H, OH; or (2) alkyl, aryl, heteroaryl, alkoxy, aryloxy, or alkenyl any of which may be optionally subtituted with Zlf, and one or more t is 0,1 or 2; q is 0 to 5. and Z3a3f are optional substituents independently selected from (1) V, where V is (i) alkyl, (hydroxy) alkyl, (alkoxy) alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl) alkyl, cycloalkenyl, (cycloalkenyl) alkyl, aryl, (aryl) alkyl, heterocyclo, (heterocylco) alkyl, heteroaryl, or (heteroaryl) alkyl ; (ii) a group (i) which is itself substituted by one or more of the same or different groups (i); or (iii) a group (i) or (ii) which is independently substituted by one or more of the following groups (2) to (13) of the definition of (2) OH orOV, (3) SH orSV, (4) C (O) pH,C (O) pV, orOC (O) V, where p is 1 or 2, (5) SO3H, S(O)pV, orS (O) pN (v1) V, (6) halo, (7) cyano, (8) nitro, ) U1NV2V3, <BR> <BR> <BR> (10)UN (V)UNV V,<BR> <BR> <BR> <BR> <BR> <BR> <BR> (11)UlN (V4)U2V, (12)U N U1N(V4)U2H, (13) oxo; U1 and u2 are each independently (1) a single bond, (2)US (O) pU, (3) U3C(O)U4, (4) U3C(S)U4, (5) U3OU4, (6) U3SU4, (7) U3OC(O)U4, (8) U3C(O)OU4, <BR> <BR> <BR> (9)U3C (=NVla)U4, or<BR> <BR> <BR> <BR> <BR> (10)U3C (O)C (O)U4 ; V1, V1a, V2, V3 and V4 (1) are each independently hydrogen or a group provided in the definition of zla ; or (2) V2 and V3 may together be alkylene or alkenylene, completing a 3to 8membered saturated or unsaturated ring together with the atoms to which they are attached, which ring is unsubstituted or substituted with one or more groups listed in the definition of Zla ; or (3) V2 or V3, together with Vl, may be alkylene or alkenylene completing a 3to 8membered saturated or unsaturated ring together with the nitrogen atoms to which they are attached, which ring is unsubstituted or substituted with one or more groups listed in the definition of zla ; or (4) v2 and V# together with the nitrogen atom to which they are attached may combine to form a group N=CV5V6 where V5and v6 are each independently H or a group provided in the definition of V; and U3 and U4 are each independently (1) a single bond, (2) alkylene, (3) alkenylene, or (4) alkynylene; provided that said compound is other than a compound of formula X wherein R15 is H, hydroxy or alkoxy.
2. A compound of claim 1 wherein A is a bond, an optionally substituted C1C2 alkylene group, or an optionally substituted C2 alkenylene group; X and Y are independently O(CR5R6)q, (CR5R6)qO, N(R7) CO (CR5R6) q,N (R7) CO (CR5R6) qO N(R7) CO (CR5R6) qC (O) O, N (R7) COCR5=CR6, N(R7)SO2(CR5R6)q, or O(CR5R6)qCO where q is 0,1 or 2; Ru ils aryl, heteroaryl, cycloalkyl or alkyl, any of which may be optionally substituted with Fla, Z2a and one more <BR> <BR> <BR> z3a<BR> ; R2 is aryl, heteroaryl, cycloalkyl or alkyl, any of which may be optionally substituted with Z1b, Z and one more z3b R3 is H, OH, halo, alkyl, haloalkyl or hydroxyalkyl ; R5 and R6 are independently (1) H or OH; or (2) alkyl, aryl, aralkyl or heteroarylalkyl any of which may be optionally substituted with Z1d, Z2d and one or more Z3d ; and R7 is (1) H or OH; or (2) alkyl, aryl, aralkyl or heteroarylalkyl any of which may be optionally substituted with zle, z2e and one or more z3e.
3. A compound of claim 2 wherein a and Z3a are independently halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl; and zlb, z2b and Z3b are independently halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl.
4. A compound of claim 3 wherein B is carboxyl or an ester thereof.
5. A compound of claim 2 wherein A is a bond, or a C1C2 alkylene group optionally substituted with one OH, SH, NH2, or NHOR4, or optionally substituted with at least one COOR4, halogen N (R3) CoR4, hydroxyalkyl or oxo; X and Y are independently O(CR5R6)q, (CR5R6)qO, N(R7)CO(CR5R6)q or N(R7)SO2(CR5R6)q; where q is 0 or 1; R1 is aryl, heteroaryl or C3C6 cycloalkyl any of which may be optionally substituted with one or more Zia, Z2a and one or more Z3a ; R2 is aryl, heteroaryl or C3C6 cycloalkyl any of which may be optionally substituted with zlb, Z2b and one or more Z3b ; R3 is H, OH, halo, alkyl, or haloalkyl ; R5 and R6 are independently (1) H; or (2) alkyl, aralkyl, or heteroarylalkyl any of which may be optionally substituted with zld, z and one or more Z3d ; and R7 is (1) H; or (2) alkyl, aralkyl, or heteroarylalkyl any of which may be optionally substituted with zld, Z2d and one or more Z3d.
6. A compound of claim 5 wherein R1 is aryl or heteroaryl either of which may be optionally substituted with Fla, Z2a and one or more Z3a ; and R2 is aryl or heteroaryl either of which may be optionally substituted with zlb, and one or more 3ab.
7. A compound of claim 6 wherein flat zea and z3a are independently halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl; and and Z3b are independently halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl.
8. A compound of claim 7 wherein B is carboxyl or an ester thereof.
9. A compound of claim 7 wherein R5, R6 and R7 are independently H, alkyl, aralkyl, or heteroarylalkyl.
10. A compound of claim 9 wherein R5 and R6 are hydrogen; and R7 is hydrogen, alkyl, or aralkyl.
11. A compound of claim 6 wherein R1 is phenyl, napthyl, benzodioxolyl, benzodioxinyl, anthracenyl, pyridinyl, benzimidazolyl, quinoxalinyl, furanyl, thienyl, benzothiophenyl, or isothiozolyl any of which may be optionally substituted with zlat Z2a and one or more Z3a ; and R2 is phenyl, napthyl, benzodioxolyl, benzodioxinyl, anthracenyl, pyridinyl, benzimidazolyl, quinoxalinyl, furanyl, thienyl, benzothiophenyl, or isothiozolyl any of which may be optionally substituted with zlb, Z2b and one or more Z3b.
12. A compound of claim 11 wherein A is a hydroxysubstituted alkylene group; X and Y are ~O (CR5R6) q~ where q is 1, R1 is phenyl or pyridinyl either of which may be optionally substituted with one or more halogen, alkyl, alkoxy, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, cyano, nitro, arylsulfonylalkyl or alkylsulfonyl; R2 is phenyl optionally substituted with one or more halogen, alkyl, alkoxy, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, cyano, nitro, arylsulfonylalkyl or alkylsulfonyl; R3 is H, or halo; and Rs and R6 are hydrogen.
13. A compound of claim 12 wherein A is hydroxy substituted methylene.
14. A compound of claim 13 wherein the hydroxy substituted methylene group A has the (S) configuration.
15. A pharmaceutical composition comprising at least one compound of claim 1 and a pharmacuetically acceptable vehicle or carrier therefor.
16. The pharmaceutical composition of claim 15 further comprising at least one additional therapeutic agent selected from antidiabetic agents, antihyperglycemic agents, hypolipidemic agents, antiobesity agents, antihypertensive agents, antiplatelet agents, antiinfective agents, antiathersclerotic agents and antiinflammatory agents.
17. The pharmaceutical composition of claim 16 wherein the other therapeutic agent is at least one antidiabetic agent selected from biguanides, sulfonyl ureas, glucosidase inhibitors, PPAR modulators, insulin sensitizers, glucagonlike peptide1 (GLP1), insulin or biguanide/glyburide combination.
18. The pharmaceutical composition of claim 17 wherein the antidiabetic agent is metformin, glyburide, glimepiride, glipyride, glipizide, chlorpropamide, gliclazide, acarbose, miglitol, troglitazone, rosiglitizone, piaglitazone, insulin, and/or metformin/glyburide combinations.
19. A method for treating diabetes, insulin resistance, obesity, hyperglycemia, hyperinsulinemia, elevated fatty acids or glycerol, Syndrome X, atherosclerosis or inflammation which comprises administering an effective amount of at least one compound of formula I Or pharmaceutically acceptable salts thereof, or prodrug esters thereof, or stereoisomers thereof, or solvates thereof wherein A is a bond; a C1C3 alkylene group optionally independently substituted on available atoms with one to six halo, hydroxy, alkoxy, hydroxyalkyl, SR4, alkyl, alkenyl, cyano, CONHR4, COOR4, oxo, NHOR4, =NOR4, or N (R8) COR4 ; or a C2C3 alkenylene group optionally independently substituted on available atoms with one to four halo, hydroxy, alkoxy, hydroxyalkyl, SR4, alkyl, alkenyl, cyano, CONHR4, COOR4, oxo, NHOR4, =NOR4, or N (R) COR ; B is carboxyl or tetrazole; X and Y are independently O (CR5R6) q, (CR5R6) qOi (CR5R6)qN(R7)CO, N(R7) CO (CR5R6)q, N(R7) CO (CR5R6) qO , N(R7) CO (CR5R6) qC (O) O N(R7)COCR5=CR6 , (CR5R6) qN (R SO2, N(R7)SO2(CR5R6)q, OCO(CR5R6) q, O(CR5R6)qCO , (CR5R6) qOCO, or (CRR') qS (0) t; R1 is aryl, heteroaryl, alkyl, cycloalkyl, aralkyl, heteroarylalkyl, cylcoalkenyl or heterocyclo any of which may be optionally substituted with zla, Z2a and one or more Z3a; R2 is aryl, heteroaryl, alkyl, cycloalkyl, aralkyl, heteroarylalkyl, cylcoalkenyl or heterocyclo any of which may be optionally substituted with zlb, z2b and one or more Z3b; R3 is H, OH, alkyl, hydroxyalkyl, aryl, nitro, halo, amino, alkylamino, alkoxy, cyano, thioalkyl, carboxyl, COOR4, NR7COR4, or NR7COOR4 ; R4 is (1) H; or (2) alkyl, haloalkyl, aminoalkyl, alkoxyalkyl, hydroxyalkyl, aryl or heteroaryl any of which may be optionally substituted with Z1c, z2c and one or more Z R5 and R6 are independently (1) H, OH, halo, cyano or oxo; or (2) alkoxy, alkyl, alkenyl, hydroxyalkyl, aryl, aralkyl, heteroaryl, heteroarylalkyl, alkylthio, aryloxy or heteroaryloxy any of which may be optionally subsituted with zld, Z2d and one more Z3d; R7 is (1) H, OH, or cyano; or (2) alkoxy, alkyl, alkenyl, hydroxyalkyl, aryl, aralkyl, heteroaryl, heteroarylalkyl, alkylthio, aryloxy or heteroaryloxy any of which may be optionally subsituted with Zle, z2e and one more z3e ; R8 is (1) H, OH; or (2) alkyl, aryl, heteroaryl, alkoxy, aryloxy, or alkenyl any of which may be optionally subtituted with zlf, Z2f and one or more Z3f t is 0,1 or 2; q is 0 to 5. z, z and Z3a are optional substituents independently selected from (1) V, where V is (i) alkyl, (hydroxy) alkyl, (alkoxy) alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl) alkyl, cycloalkenyl, (cycloalkenyl) alkyl, aryl, (aryl) alkyl, heterocyclo, (heterocylco) alkyl, heteroaryl, or (heteroaryl) alkyl ; (ii) a group (i) which is itself substituted by one or more of the same or different groups (i); or (iii) a group (i) or (ii) which is independently substituted by one or more of the following groups (2) to (13) of the definition of Z (2) OH orOV, (3) SH orSV, (4) C(O)pH, C(O)pV, or OC(O)V, where p is 1 or 2, (5) SO3H, S(O)pV, or S(O)pN(V1)V, (6) halo, (7) cyano, (8) nitro, (9) U1NV2V3, (10)U'N (V')U'NVV, U1N(V4)U2V, U1N(V4)U2H, (13) oxo; U1 and u2 are each independently (1) a single bond, (3) U3C(O)U4, (4) U3C(S)U4, (5) U3OU4, (6) U3SU4, (7) UoC (o)U4 (8) U3C(O)OU4, (9)U3C (=NVla)U4, or (10) U3C(O)C(O)U4; , V2, V3 and V4 (1) are each independently hydrogen or a group provided in the definition of zla ; or (2) v2 and V3 may together be alkylene or alkenylene, completing a 3to 8membered saturated or unsaturated ring together with the atoms to which they are attached, which ring is unsubstituted or substituted with one or more groups listed in the definition of zla ; or (3) V2 or V3, together with Vl, may be alkylene or alkenylene completing a 3to 8membered saturated or unsaturated ring together with the nitrogen atoms to which they are attached, which ring is unsubstituted or substituted with one or more groups listed in the definition of zla ; or (4) V2 and V3 together with the nitrogen atom to which they are attached may combine to form a group N=CV5V6 where V5and v6 are each independently H or a group provided in the definition of V; and U3 and U4 are each independently (1) a single bond, (2) alkylene, (3) alkenylene, or (4) alkynylene.
20. A method for treating diabetes, insulin resistance, obesity, hyperglycemia, hyperinsulinemia, elevated fatty acids or glycerol, Syndrome X, atherosclerosis or inflammation which comprises administering an effective amount of at least one dual aP2/kFABP inhibitor.
21. The method of claim 20 wherein the dual aP2/kFABP inhibitor is a compound of the formula I Or pharmaceutically acceptable salts thereof, or prodrug esters thereof, or stereoisomers thereof, or solvates thereof wherein A is a bond; a C1C3 alkylene group optionally independently substituted on available atoms with one to six halo, hydroxy, alkoxy, hydroxyalkyl, SR4, alkyl, alkenyl, cyano, CONHR, COOR4, oxo, NHOR4, =NOR4, or N (R8) COR4 ; or a C2C3 alkenylene group optionally independently substituted on available atoms with one to four halo, hydroxy, alkoxy, hydroxyalkyl, SR4, alkyl, alkenyl, cyano, CONHR, COOR4, oxo, NHOR, =NOR4, or N (R) COR ; B is carboxyl or tetrazole; X and Y are independently O(CR5R6)q, (CR5R6) qO, (CR5R6)qN(R7)CO , N(R7) CO (CR5R6)q, N(R7)CO(CR5R6)qO , N(R7) CO (CR5R6) qC (0) O , N(R7)COCR5=CR6 , (CR5R6) qN (R7) SO2, N(R7)SO2(CR5R6)q, OCO(CR5R6)q, O (CR5R6) qCO~ (CRSR6) qOCO, or (CR5R6) qS (O) t; R1 is aryl, heteroaryl, alkyl, cycloalkyl, aralkyl, heteroarylalkyl, cylcoalkenyl or heterocyclo any of which may be optionally substituted with Zla, Z2a and one or more z3a ; R2 is aryl, heteroaryl, alkyl, cycloalkyl, aralkyl, heteroarylalkyl, cylcoalkenyl or heterocyclo any of which may be optionally substituted with Zlb, z2b and one or more z3b ; R3 is H, OH, alkyl, hydroxyalkyl, aryl, nitro, halo, amino, alkylamino, alkoxy, cyano, thioalkyl, carboxyl, COOR4, NR'COR4, or NR'COOR4 ; R4 is (1) H; or (2) alkyl, haloalkyl, aminoalkyl, alkoxyalkyl, hydroxyalkyl, aryl or heteroaryl any of which may be optionally substituted with Z1c, Z 2c and one or more z3c ; R5 and R6 are independently (1) H, OH, halo, cyano or oxo; or (2) alkoxy, alkyl, alkenyl, hydroxyalkyl, aryl, aralkyl, heteroaryl, heteroarylalkyl, alkylthio, aryloxy or heteroaryloxy any of which may be optionally subsituted with Bd, zea and one more Z3d; R7 is (1) H, OH, or cyano; or (2) alkoxy, alkyl, alkenyl, hydroxyalkyl, aryl, aralkyl, heteroaryl, heteroarylalkyl, alkylthio, aryloxy or heteroaryloxy any of which may be optionally subsituted with zle, z2e and one more Z3e ; R8 is (1) H, OH; or (2) alkyl, aryl, heteroaryl, alkoxy, aryloxy, or alkenyl any of which may be optionally subtituted with Zlf, z2f and one or more t is 0,1 or 2; q is 0 to 5. z, z and Z3a are optional substituents independently selected from (1) V, where V is (i) alkyl, (hydroxy) alkyl, (alkoxy) alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl) alkyl, cycloalkenyl, (cycloalkenyl) alkyl, aryl, (aryl) alkyl, heterocyclo, (heterocylco) alkyl, heteroaryl, or (heteroaryl) alkyl ; (ii) a group (i) which is itself substituted by one or more of the same or different groups (i); or (iii) a group (i) or (ii) which is independently substituted by one or more of the following groups (2) to (13) of the definition of Z (2) OH orOV, (3) SH orSV, (4) C (O) pH, C (O) V, or0C (O) V, where p is 1 or 2, (5)S03H,S (O) pV, orS (O) PN (Vl) V, (6) halo, (7) cyano., (8) nitro, (9) U1NV2V3, (10) U1N(V1)U2NV2V3, <BR> <BR> <BR> (11)U'N (V')U'V,<BR> <BR> <BR> <BR> <BR> <BR> (12)UlN (V4)U2H (13) oxo; U1 and U2 are each independently (1) a single bond, U3S(O)pU4, (3)U'C (0)U', (4) U3C(S)U4, (5) U3OU4, (6) U3SU4, (7) U3OC(O)U4, (8) U3C(O)OU4, (9)U3C (=NVla)U4, or (10) U3C(O)C(O)U4; , Vla V2 V3 and V4 (1) are each independently hydrogen or a group provided in the definition of zla ; or (2) v2 and V3 may together be alkylene or alkenylene, completing a 3to 8membered saturated or unsaturated ring together with the atoms to which they are attached, which ring is unsubstituted or substituted with one or more groups listed in the definition of zla ; or (3) V2 or V3, together with V1, may be alkylene or alkenylene completing a 3to 8membered saturated or unsaturated ring together with the nitrogen atoms to which they are attached, which ring is unsubstituted or substituted with one or more groups listed in the definition of zla ; or (4) V2and V3 together with the nitrogen atom to which they are attached may combine to form a group N=CV5V6 where V5 and V6 are each independently H or a group provided in the definition of V; and U3 and U4 are each independently (1) a single bond, (2) alkylene, (3) alkenylene, or (4) alkynylene.
Description:
DUAL INHIBITORS OF ADIPOCYTE FATTY ACID BINDING PROTEIN AND KERATINOCYTE FATTY ACID BINDING PROTEIN Field of the Invention The present invention relates to inhibitors of the adipocyte fatty acid binding protein (aP2), and to dual inhibitors of aP2 and keratinocyte fatty acid binding protein (k-FABP), especially aryl carboxylic acids and tetrazoles of Formula I. The present invention further relates to a method for treating diabetes, especially Type II diabetes, as well as hyperglycemia, hyperinsulinemia, obesity, Syndrome X, diabetic complications, atherosclerosis and related diseases, and other chronic inflammatory and autoimmune/inflammatory diseases, employing the compounds of the present invention alone or in combination with one or more types of therapuetic agents.

Background of the Invention Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that bind to fatty acids such as oleic acids which are important metabolic fuels and cellular regulators. Dysregulation of fatty acid metabolism in adipose tissue is a prominent feature of insulin resistance and the transition from obesity to non-insulin dependent diabetes mellitus (NIDDM or Type II diabetes). aP2 (adipocyte fatty binding protein), an abundant 14.6 KDa cytosolic protein in adipocytes, and one of a family of homologous intracellular fatty acid binding proteins (FABPs), is involved in the regulation of fatty acid trafficking in adipocytes and mediates fatty acid fluxes in adipose tissue. G. S. Hotamisligil et al, "Uncoupling of Obesity from Insulin Resistance Through a

Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein", Science, Vol. 274, Nov. 22,1996, pp.

1377-1379, report that aP2-deficient mice placed on a high fat diet for several weeks developed dietary obesity, but, unlike control-mice on a similar diet, did not develop insulin resistance or diabetes. Hotamisligil et al conclude"aP2 is central to the pathway that links obesity to insulin resistance" (Abstract, page 1377).

Also, it has been shown by Uysal et al in"Improved glocose and lipid metabolism in genetically obese mice lacking aP2"in Endocrinology, Vol. 141,2000, pp. 3388- 3396 that ob/ob mice deficient of aP2 had lower plasma glucose, improved peripheral insulin resistance, and beneficial effects on lipid metabolism.

Additionally, Makowski et. al. in"Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis"in Nature Medicine, Vol. 7,2001, pp. 699-705 showed that Apoe-/-mice with either total aP2 deficiency or aP2-/- macrophage deficiency showed reductions in the formation of atherosclerotic plague, as well as reduction of TNF- alpha and a variety of inflammatory cytokines, as compared to aP2 replete ApoE-/-mice.

Since it is known that both aP2 and k-FABP (mal-1), both intracellular fatty acid binding proteins, are expressed in both adipocyte and macrophage cells, concommitant inhibition of both FABPs should be expected to have greater effects in treating the diseases such as diabetes, obesity, atherosclerosis, inflammation, and those previuosly mentioned.

DIALOG ALERT DBDR928 dated January 2,1997, Pharmaprojects No. 5149 (Knight-Ridder Information) discloses that a major drug company"is using virtual screening techniques to identify potential new antidiabetic compounds."It is reported that"the

company is screening using aP2, a protein related to adipocyte fatty acid binding protein." PCT applications WO 00/15229 and WO 00/59506 disclose methods for treating diabetes employing an aP2 inhibitor.

Summary of the Invention In accordance with the present invention, aryl compounds are provided which are aP2 inhibitors and/or dual aP2/k-FABP inhibitors having the structure of formula I including pharmaceutically acceptable salts thereof, prodrug esters thereof, and all stereoisomers thereof wherein A is a bond, a C1-C3 alkylene group optionally independently substituted on available atoms with one to six halo, hydroxy, alkoxy, hydroxyalkyl, SR4, alkyl, alkenyl, cyano, CONHR4, COOR4, oxo, NHOR4, =NoR4, or N (R8) COR4 ; or a C2-C3 alkenylene group optionally independently substituted on available atoms with one to four halo, hydroxy, alkoxy, hydroxyalkyl, SR4, alkyl, alkenyl, cyano, CONHR, COOR4, oxo, NHOR4, =NOR4, or N (R COR ;

B is carboxyl or tetrazole; X and Y are independently -O (CR5R6) q- -(CR5R6)qO-, - (CR5R6) qN (R7) CO-, -N(R7) CO (CR5R6) q-, -N(R7) CO (CR5R6) qO- -N(R7) CO (CR5R6) qC(O)O-, -N(R7)CO-CR5=CR6-, - (CR5R6) qN (R7) S02-, -N(R7)SO2(CR5R6)q-, -O-CO-(CR5R6)q-, -O(CR5R6)qCO-, - (CR5R6) qO-CO-, or - (CR5R6)qS(O)t-; R1 is aryl, heteroaryl, alkyl, cycloalkyl, aralkyl, heteroarylalkyl, cylcoalkenyl or heterocyclo any of which may be optionally substituted with Z1a, Z 2a and one or more Z3a; R2 is aryl, heteroaryl, alkyl, cycloalkyl, aralkyl, heteroarylalkyl, cylcoalkenyl or heterocyclo any of which may be optionally substituted with Alb, z2b and one or more Z3 R3 is H, OH, alkyl, hydroxyalkyl, aryl, nitro, halo, amino, alkylamino, alkoxy, cyano, thioalkyl, carboxyl, COOR4, NR7COR4, or NR'COOR4 ; R4 is (1) H; or (2) alkyl, haloalkyl (especially di-or tri- haloalkyl), aminoalkyl, alkoxyalkyl, hydroxyalkyl, aryl or heteroaryl any of which may be optionally substituted with Z1c, Z2c and one or more z3c ; R5 and R6 are independently (1) H, OH, halo, cyano or oxo; or

(2) alkoxy, alkyl, alkenyl, hydroxyalkyl, aryl, aralkyl, heteroaryl, heteroarylalkyl, alkylthio, aryloxy or heteroaryloxy any of which may be optionally subsituted with zldt Z2d and one more z3d ; R7 is (1) H, OH, or cyano; or (2) alkoxy, alkyl, alkenyl, hydroxyalkyl, aryl, aralkyl, heteroaryl, heteroarylalkyl, alkylthio, aryloxy or heteroaryloxy any of which may be optionally subsituted with Z, e, Z2e and one more Z3e ; R8 is (1) H, OH; or (2) alkyl, aryl, heteroaryl, alkoxy, aryloxy, or alkenyl any of which may be optionally subtituted with Zlf, z2f and one or more Z3f ; t is 0,1 or 2; q is 0 to 5.

Z1a-1f, z2a-2f and Z3a are optional substituents independently selected from (1) V, where V is (i) alkyl, (hydroxy) alkyl, (alkoxy) alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl) alkyl, cycloalkenyl, (cycloalkenyl) alkyl, aryl, (aryl) alkyl, heterocyclo, (heterocylco) alkyl, heteroaryl, or (heteroaryl) alkyl ; (ii) a group (i) which is itself substituted by one or more of the same or different groups (i); or (iii) a group (i) or (ii) which is independently substituted by one or more (preferably 1 to 3) of the following groups (2) to (13) of the definition of Z1a,

(2) -OH or-OV, (3) -SH or-SV, (4) -C (O) pH,-C (O) pV, or-O-C (O) V, where p is 1 or 2, (5) -SO3H, -S(O)V, or S (O) PN (vu) V, (6) halo, (7) cyano, (8) nitro, (9) U1-NV2V3, (10) -U1-N(V10-U2-NV2V3, - (V4)-U2-v -U1-N(V4)-U2-H, (13) oxo; uI and u2 are each independently (1) a single bond, (2) -U3-S(O)p-U4-, (3) -U3-C(O)-U4-, (4) -U3-C(S)-U4-, (5) -U3-O-U4-, (6) -U3-S-U4-, (7) -U3-O-C(O)-U4-, (8) -U3-C(O)-O-U4-, (9) -U3-C(=NV1a)-U4-, or (10) -U3-C(O0-C(O)-U4-; V3 and V4 (1) are each independently hydrogen or a group provided in the definition of zla ; or (2) V2 and V3 may together be alkylene or alkenylene, completing a 3-to 8-membered saturated or unsaturated ring together with the atoms to which they are attached, which ring is unsubstituted or substituted with one or more groups listed in the definition of zla ; or (3) V2 or V3, together with Vl, may be alkylene or alkenylene completing a 3-to 8-membered saturated or unsaturated ring together with the nitrogen atoms to which they are attached, which

ring is unsubstituted or substituted with one or more groups listed in the definition of Zia ; or (4) V2and V3 together with the nitrogen atom to which they are attached may combine to form a group -N=CV5V6 where V and V6 are each independently H or a group provided in the definition of V; and U3 and U4 are each independently (1) a single bond, (2) alkylene, (3) alkenylene, or (4) alkynylene.

In addition, in accordance with the present invention, a method is provided for treating diabetes, especially Type II diabetes, and related diseases such as insulin resistance, hyperglycemia, hyperinsulinemia, elevated blood levels of fatty acids or glycerol, obesity, hypertriglyceridemia, atherosclerosis, inflammation, diabetic retinopathy, diabetic neuropathy and diabetic nephropathy wherein a therapeutically effective amount of a compound of formula I is administered to a human patient in need of treatment.

In addition, in accordance with the present invention, a method is provided for treating diabetes and related diseases as defined above and hereinafter, wherein a therapeutically effective amount of a combination of a compound of formula I and another type antidiabetic agent is administered to a human patient in need of treatment.

In the above method of the invention, the compound of structure I will be employed in a weight ratio to another antidiabetic agent (depending upon its mode of operation) within the range from about 0.01 : 1 to about 100: 1, preferably from about 0.5 : 1 to about 10: 1.

Preferred compounds of formula I include compounds where A is a bond, an optionally substituted Cl-C2 alkylene group, or an optionally substituted C2 alkenylene group; B is carboxyl or tetrazole ; X and Y are independently -O(CR5R6)q-, -(CR5R6)qO-, -N(R7) CO (CR5R6)q-, -N(R7) CO (CR5R6) q0-, -N(R7)CO(CR5R6)qC(O)O-, -N(R7)CO-CR5=R6-, -N(R7)SO2(CR5R6)q-, or -O(CR5R6)qCO- where q is 0,1 or 2; R1 is aryl, heteroaryl (including N-oxides thereof), cycloalkyl or alkyl, any of which may be optionally substituted with Zia, Z2a and one more Z3a (especially where zla, Z2a and Z3a are independently halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl); R2 is aryl, heteroaryl (including N-oxides thereof), cycloalkyl or alkyl, any of which may be optionally substituted with Zlb, z2b and one more Z3b (especially where Zlb, Z2b and Z3b are independently halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl); R3 is H, OH, halo, alkyl, haloalkyl or hydroxyalkyl ; R5 and R6 are independently (1) H or OH; or (2) alkyl, aryl, aralkyl or heteroarylalkyl any of which may be optionally substituted with Zld, Z2d and one or more Z3d ; and R7 is (1) H or OH; or

(2) alkyl, aryl, aralkyl or heteroarylalkyl any of which may be optionally substituted with zleS Z2e and one or more z3e More preferred compounds of formula I include compounds where A is a bond, or a C1-C2 alkylene group optionally substituted with one OH, SH, NH2, or =NHOR4, or optionally substituted with at least one COOR4, halogen or oxo; B is carboxyl or prodrug ester thereof; X and Y are independently-O (CRSRg) q-,- (CR5R6) q0-, -N(R7)CO(CR5R6)q-, or -N(R7)SO2(CR5R6)q- where q is 0 or 1, and R1 is aryl (preferably phenyl, napthyl, benzodioxolyl, benzodioxinyl, or anthracenyl), heteroaryl (including N-oxides thereof) (preferably, (pyridinyl, benzimidazolyl, quinoxalinyl, furanyl, thienyl, benzothiophenyl, or isothiozolyl) or, C3-C6 cycloalkyl any of which may be optionally substituted with one or more Z3*a, Z2a and one or more Z3a (especially where Zia, Z2a and Z3a are selected from halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl); R2 is aryl (preferably phenyl, napthyl, benzodioxolyl, benzodioxinyl, or anthracenyl), heteroaryl (including N-oxides thereof) (preferably, (pyridinyl, benzimidazolyl, quinoxalinyl, furanyl, thienyl, benzothiophenyl, or isothiozolyl) or, C3-C6 cycloalkyl any of which may be optionally substituted with one or more Zlb, Z2b and one or more Z3b (especially where Z z2b and Z3b are selected from halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy,

aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl); R3 is H, OH, halo, alkyl, or haloalkyl ; R5 and R6 are independently (1) H; or (2) alkyl, aralkyl, or heteroarylalkyl any of which may be optionally substituted with zlds Z and one or more Z3d ; and R7 is (1) H; or (2) alkyl, aralkyl, or heteroarylalkyl any of which may be optionally substituted with Zld, Z2d and one or more Z3d.

Most preferred compounds of formula I include compounds where A is a hydroxy-substituted C1 alkylene group (preferably the (S) isomer); B is carboxyl; X and Y are -O(CR5R6)q-, where q is 1, and R1 is phenyl or pyridinyl either of which may be optionally substituted with Z1a, Z2a and one or more (especially where zlaB Z2a and Z3a are selected from halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl); R2 is phenyl optionally substituted with zlb, z2b and one or more Z3b (especially where Zlb, Z2b and Z3b are selected from one or more halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryloxy, aralkoxy, aryl, arylcarbonyl, carboxyl, cyano, nitro, oxo, arylsulfonylalkyl or alkylsulfonyl);

R3 is H, or halo; and R5 and R6 are H; Detailed Description of the Invention Compounds of the invention of general structure I may be synthesized as illustrated generically in the schemes set forth below, and as further illustrated by the examples set forth herein.

Scheme1 OOEt K2CO3/EtOH OOEt OOH OH R2 x OR2 NaOHfrHF-H20 OR2 ou OH Pd catalyst oR2 oR2 1 la 1 2

Benzoate 1 is converted to bis ether 2 by reaction with an appropriate halide. Saponification provides compound Ia.

Scheme 2 O OH acetone, trifluoroacetic ° ° IC2C03/DMF OH anhydride, trifluoroacetic acid SO R2 x ou OH OH Pd catalyst 3 4 3 4 O 0g OqzOEt + OOEt \ CoR2 6 oR2 Pd catalyst ¢oR2 5 e 7 (.. OH LiOH/THF-H20- MeOH OR lb

Alternatively, catechol 3 can be monoprotected to provide phenol ether 4 and reacted with an appropriate halide to provide 5. Transesterification of 5 with sodium ethoxide gives phenol 6 which is reacted with an appropriate halide, resulting in ester 7. Saponification as before provided Ib.

Scheme 3 CHO S NaH/DMF < OMe EtOH-THF styrène resin yH Bu4N I, \ot CHO resin O CHO OH 8 9 CO2H OH COzH poly-OMe triphosgene styrene-Ph3PCH2Cz No2 NaHC03, Bu4N'"I- resin O CHZOH 10 OMe R'X, K2CO3, BU4N+I- styrene t\/=< NO2 DMF resin 11 OH 0 Na2S204, K2CO3, OMe pyy_ OMe/\ Bu4N+17 styrene ( resin O 12 0 12 OMe R2COCI styrene NHz pyridine, DMAP/TFA-dichloroethane OR1 CH., Cl, O bu 13 0 NHCOR2 HO ORS HO-R 0 ic

Additional compounds within formula I can be generated via solid phase synthesis. For example, Merrifield resin can be reacted with phenol 8, the resulting aldehyde 9 reduced to alcohol 10 and reacted with 2-hydroxy-3-nitrobenzoic acid to provide phenol 11.

Reaction with the appropriate alkyl halide resulted in ether 12. Reduction of the nitro group provided aniline 13. Acylation or sulfonylation (Scheme 4) followed by removal from the resin resulted in amide Ic or sulfonamide Id.

Scheme 4

orme styrene/\ NH2 resit t 0 13 O R2SO2CI NHS02R2 pyridine, DMAP/TFA-dichloroethane CH2CI2 HO OR' bd Scheme 5 run OH Scheme CHO CHO CO3/EtOH Jones Reagent or TEMPO I OR OR2 14 Pd catalyst 15 la Compound Ia was also obtained by reaction of catechol 14 to give bis ether 15 followed by oxidation.

Scheme 6 In addition, aldehyde 15 can be converted to cyanohydrin 16 by standard methods and the cyanohydrin converted to ester 17. Saponification resulted in mandelic acid Ie.

Scheme 7

The enantiomers of compound Ie can be readily separated by the use of a chiral auxillary. Thus, alcohol 17 was esterified with (S)-t-butyloxycarbonyl proline and the resulting diastereomers 18a and 18b were isolated by normal phase chromatography. Subsequent saponification provided (R) -Ie and (S)-Ie in high enantiomeric purity.

Scheme 8

Phenylacetic acids If could be prepared from aldehyde 15. By known methods alcohol 19 led to bromide 20 and to nitrile 21. Alcoholic acidolysis provided ester 22 and saponification gave If.

Scheme 9 Alternatively, If could be prepared from aldehyde 15 by condensation with either methyl sulfinyl methyl sulfoxide or ethyl sulfinyl ethyl sulfide and an appropriate base to give vinyl thioacetal 23.

Methanolic acidolysis provided ester 24 and saponification led to If.

Scheme10 Treatment of If with two equivalents of lithium diisopropyl amide followed by carbon dioxide provides malonate Ig.

Scheme 11

Treatment of the dianion of If followed by DMPU (N, N-dimethyl propylene urea) and gaseous formaldehyde provides P-hydroxyacid Ih.

Scheme 12 Aldehyde 15 could also be used to prepare cinnamate 25, which upon hydrolysis provideds unsaturated acid Ii.

Scheme 13 The corresponding saturated acid Ij can be prepared from bromide 20 by alkylation with diethyl malonate, followed by saponification and pyrolysis.

Scheme 14

Treatment of the mandelate 17 with oxidizing agents (for example, Jones reagent or AcNHTEMPO) provided ketoester 28 ; saponification led to ketoacid Ik- Reaction of 28 with hydroxylamine or methoxylamine hydrochloride followed by saponification provided oximes Il as separable geometric isomers.

Scheme 15

Alcohol 17 on treatment with one equivalent of DAST provides fluoride 30 and saponification yields a- fluorophenylacetic acid Im. Analogously, ketoester 28 on reaction with excess DAST provides difluoride 31 and then In.

Scheme 16 Benzoic acid la can be used to prepare a-methyl mandelic acid Io by preparation of amide 32 and subsequent addition of methyl magnesium chloride to provide acetophenone 33. Cyanohydrin 34 derived from 33 was then hydrolyzed to prepare ester 35 and saponification led to Io.

Amino acid Ip and acylated derivatives Iq can be prepared from aldehyde 15 or hydroxyester 17 as described in Schemes 17,18 and 19. A modified Strecker procedure provides amino ester 37, hydrolysis of which provides Ip. Alternatively, 37 could be prepared from azide 39 and subsequent Staudinger reaction. Acylation of 37 using a variety of methods gave acetomido ester 38, saponification then providing Iq.

Scheme 17 CHO-CI+H3N CO2Et H2N CO2H ORZ 1. TMSCN, NH3/CH30H 2 2 2. HCI/CH30H R NaOH/H20 OR 3. souci 15 37 in 15 37 Scheme 18 SOCI2, benzotriazole/CH2CI2 or N3 CO2Et HO C02Et SOCI2, DMF/CH2CI2 CI COZEt 2 or OR2 OR Ph3P/CCI4 C aoR2 (R) 2/ORz I/17 RZ 38 gg (R) 3P=N COZEt HZN COZH P (R) 3/THF 2 NaOH/THF-H20 OR OR ORZ I I ORZ zip H-X toluene X-NH3+ C02Et OR2 OR 37 Scheme 19 R4C02H, EDAC, HOAt/THF -CI+H3N R4CONH C02Et R4CONH CO2H 'CI+HgN COZEt °r 2 2 NaOH/H20 OR ORZ R4COCI, Et3N/THF OR or I z/OR2 OR R4CO2H, iBuOCOCI, Et3N/THF Scheme 20

Benzoic acid Ir can be prepared from 2,3- dimethylbenzoate. Double radical bromination of 42 leads predominantly to 43. Displacement of the bromides with an appropriate alcohol anion gives 44 and saponification provides Ir. Scheme 21 1. CICOCOCI, Me Me O OH DMF/CH2CI2 Me 0 NOMe 0 NOME 2 2. MeONHMeHCI R OH, Et3NrrHF NaH/DMF OR2 / 3. Bromination Br- 45 46 47 OR2 HO CO2H fHf T DiBAlfrHF-toluene CHO as Scheme 6 OR2 OR2 2 48 oR2 Is oR2

Mandelic acid Is can be prepared from 2,3- dimethylbenzoic acid 45. The acid is converted into dibromo amide 46. Displacement with an appropriate oxide gives 47, reduction of which provides aldehyde 48.

Cyanohydrin formation and hydrolyses, analogous to Scheme 1, provides Is.

Scheme 22 \ C02Et DiBAI/CH2CI2-toluene HzH diisopropyltartrate o (v Ti (iPrO) q, tBuOOH/CHZCIZ OR 2 OR'OR' z 25 oR2 49 0 OAc OH Ti (iPrO) 4, Ac20 OH CHCI3 I \ OH 1. Na104/Si02 ORZ pRi 2. Jones oxidation 50 OR 2 51 OH ONC OAc COZH C02H C02H CO. H CO. H LiOH/HpO-MeOH Y OR'--------- !,, OR 52 OR (R) or (S)-le 52 An alternative chiral synthesis of (R) or (S)-le can be shown as follows: cinnamate 25 is reduced to allylic alcohol 49. Sharpless epoxidation with chiral diisopropyltartrate provides epoxide 50 with high enantiomeric excess, which, upon ring-opening with titanium (IV) acetoxytriisopropoxide gives diol 51.

Oxidative cleavage of the diol leads to O- (acetyl) mandelate 52 and saponification provides (R) or (S)-le.

Scheme 23 N=N HN N 1' A A A'-CN R'3Sn-N3 A xylène ORi oR2 16 oR2 It Preparation of tetrazole It proceeds from cyanohydrin 16, by treatment with a trialkyltinazide at reflux in xylene.

A dual aP2/k-FABP inhibitor (or dual k-FABP/aP2 inhibitor) is defined herein as any compound which has a Kivalue in both an aP2 and K-FABP assay of less than 500 nM (preferably less than 100 nM and more preferably less than'50 nM) and wherein the Ki of the compound in the k- FABP assay differs no more than 100 times the Ki of the compound in the aP2 assay (more preferably the Kiof the compound in the k-FABP assay differs no more than 10 times the Ki of the compound in the aP2 assay). Dual aP2/k-FABP inhibitors will preferably contain less than 60 carbon atoms, more preferably less than 45 carbon atoms, and will contain less than 20 heteroatoms, more preferably less than 12 heteroatoms.

Unless otherwise indicated, the term"lower alkyl","alkyl"or"alk"as employed herein alone or as part of another group includes both straight and branched chain hydrocarbons, containing 1 to 20 carbons, preferably 1 to 10 carbons, more preferably 1 to 8 carbons, in the normal chain, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2, 4-trimethyl-pentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like as well as such groups including 1 to 4 substituents such as halo, for example F, Br, Cl or I or CF3, alkoxy, haloalkoxy, (alkoxy) alkoxy, alkoxyalkyl, (hydroxy) alkoxyalkyl, (alkoxy) alkoxyalkyl, aryl, aryloxy, (aryl) aryl or diaryl, (aryl) alkoxyaryl, diaryl, arylalkyl, (aryl) alkoxy, (aryl) alkoxyalkyl, (aryloxy) aralkyl, alkenyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyloxy, amino, substituted amino, alkylamino, hydroxy, hydroxyalkyl, hydroxycarbonyl, alkylcarbonyl, alkoxycarbonyl, arylcarbonyl, acyl, heterocylo, (heterocyclo) alkyl, heteroaryl, heteroaryloxy,

heteroarylalkyl, heteroarylalkoxy, aryloxyalkyl, aryloxyaryl, (amino) carbonyl, (substituted amino) carbonyl, alkanoylamino, arylcarbonylamino, nitro, cyano, thiol, haloalkyl, trihaloalkyl and/or alkylthio (where the alkyl radical is optionally substituted), arylthio (where the aryl radical is optionally substituted), sulfonylaryl, arylsulfonylalkyl, alkylsulfonyl, COOP4, COR4 or SR4. Where particular substituted alkyl groups are identified herein they are named by adding the term"alkyl"at the end of the name of the substituent radical (e. g., aralkyl, heteroaralkyl etc.).

The term"cycloalkyl"as used herein by itself or as part of another group refers to saturated and partially unsaturated (containing 1 or 2 double bonds) cyclic hydrocarbon groups containing 1 to 3 rings, including monocyclicalkyl, bicyclicalkyl and tricyclicalkyl, containing a total of 3 to 20 carbons forming the rings, preferably 3 to 7 carbons, forming the ring. The rings of multi-ring cycloalkyls may be either fused, bridged and/or joined through one or more spiro union to 1 or 2 aromatic, cycloalkyl or heterocyclo rings. Exemplary cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclododecyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclohexadienyl, cycloheptadienyl, \ I I N f Y and the like any of which groups may be

optionally substituted with 1 to 4 substituents such as halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, hydroxy, aryl, aryloxy, arylalkoxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol, alkylthio, arylsulfonylalkyl, alkylsulfonyl, COOR4, COR, and/or SR4.

The term"cycloalkylene"as employed herein refers to a"cycloalkyl"group which includes free bonds and thus is a linking group such as and the like, and may optionally be substituted as defined above for"cycloalkyl".

The term"alkanoyl"as used herein alone or as part of another group refers to alkyl linked to a carbonyl group.

Unless otherwise indicated, the term"lower alkenyl"or"alkenyl"as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons, and more preferably 1 to 8 carbons in the normal chain, which include one to six double bonds in the normal chain, such as vinyl, 2-propenyl, 3-butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 3-octenyl, 3-nonenyl, 4-decenyl, 3-undecenyl, 4-dodecenyl, 4,8, 12-tetradecatrienyl, and the like, and which may be optionally substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl,

amino, hydroxy, heteroaryl, heterocyclo, alkanoylamino, alkylamido, arylcarbonyl-amino, nitro, cyano, thiol, alkylthio and/or any of the alkyl substituent groups.

Unless otherwise indicated, the term"lower alkynyl"or"alkynyl"as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons and more preferably 2 to 8 carbons in the normal chain, which include one triple bond in the normal chain, such as 2-propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3- pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 3-octynyl, 3-nonynyl, 4-decynyl, 3-undecynyl, 4-dodecynyl and the like, and which may be optionally substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, amino, heteroaryl, heterocyclo, hydroxy, alkanoylamino, alkylamido, arylcarbonylamino, nitro, cyano, thiol, and/or alkylthio, and/or any of the alkyl substituents.

The terms"arylalkenyl"and"arylalkynyl"as used alone or as part of another group refer to alkenyl and alkynyl groups as described above having an aryl substituent.

Where alkyl groups as defined above have single bonds for attachment to two other groups from the same or different, they are termed"alkylene"groups and may optionally be substituted as defined above for"alkyl".

Where alkenyl groups as defined above and alkynyl groups as defined above, respectively, have single bonds for attachment to two other groups, they are termed "alkenylene groups"and"alkynylene groups", respectively, and may optionally be substituted as defined above for"alkenyl"and"alkynyl".

Suitable alkylene, alkenylene or alkynylene groups (CH2) x or (CH2) y (where, y is 1 to 8, preferably 1 to 5,

and x is 1 to 5, preferably 1 to 3, which includes alkylene, alkenylene or alkynylene groups) as defined herein, may optionally include 1,2, or 3 substituents which include alkyl, alkenyl, halogen, cyano, hydroxy, alkoxy, amino, thioalkyl, keto, C3-C6 cycloalkyl, alkylcarbonylamino or alkylcarbonyloxy.

Examples of (CHO or (CH2) y, alkylene, alkenylene and alkynylene include

The term"halogen"or"halo"as used herein alone or as part of another group refers to chlorine, bromine, fluorine, and iodine as well as CF3, with chlorine, bromine or fluorine being preferred.

Unless otherwise indicated, the terms"aryl"or "ar"as employed herein alone or as part of another group refers to monocyclic and bicyclic aromatic groups containing 6 to 10 carbons in the ring portion (such as phenyl or naphthyl including 1-naphthyl and 2-naphthyl) and may optionally include one to three additional rings fused to a carbocyclic ring or a heterocyclic ring (such as aryl, cycloalkyl, heteroaryl or heterocyclo rings for example

and may be optionally substituted through available carbon atoms with 1,2, or 3 groups selected from hydrogen, halo, haloalkyl, alkyl, substituted alkyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkyl, (cycloalkyl) alkyl, heterocyclo, heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, (aryl) alkyl, aryloxy, (aryloxy) alkyl, (aryl) alkoxy, arylthio, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylheteroaryl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino, thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkoxyarylthio, alkylcarbonyl, arylcarbonyl, aminocarbonyl, (substituted amino) carbonyl, (alkyl) aminocarbonyl, (substituted alkyl) aminocarbonyl, (aryl) aminocarbonyl, (substituted aryl) aminocarbonyl, alkoxycarbonyl, (amino) alkoxycarbonyl, (substituted amino) alkoxycarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfinyl, arylsulfinylalkyl, arylsulfonylamino or arylsulfonylaminocarbonyl, sulfonylaryl, (alkyl) sulfonylaryl, sulfonylarylalkyl, (alkyl) sulfonylaralalkyl, arylsulfonylalkyl, alkylsulfonyl, COOR, COR and/or SR4.

Unless otherwise indicated, the term"lower alkoxy","alkoxy","aryloxy"or"aralkoxy"as employed herein alone or as part of another group includes any of the above alkyl, aralkyl or aryl groups linked to an oxygen atom.

Unless otherwise indicated, the term"substituted amino"as employed herein alone or as part of another group refers to amino substituted with one or two substituents, which may be the same or different, such as alkyl (optionally substituted), aryl (optionally substituted), arylalkyl (optionally substituted), arylalkyl (optionally substituted), heteroaryl (optionally substituted), heteroarylalkyl (optionally substituted), heterocyclo (optionally substituted), (heterocyclo) alkyl (optionally substituted), cycloalkyl (optionally substituted), cycloalkylalkyl (optionally substituted), haloalkyl (optionally substituted), hydroxyalkyl (optionally substituted), alkoxyalkyl (optionally substituted) or thioalkyl (optionally substituted). In addition, the amino substituents may be taken together with the nitrogen atom to which they are attached to form 1-pyrrolidinyl, 1-piperidinyl, 1-azepinyl, 4-morpholinyl, 4-thiamorpholinyl, 1-piperazinyl, 4-alkyl-l-piperazinyl, 4-arylalkyl-1-piperazinyl, 4-diarylalkyl-1-piperazinyl, 1-pyrrolidinyl, 1-piperidinyl, or 1-azepinyl, optionally substituted with alkyl, substituted alkyl, alkoxy, alkylthio, halo, trifluoromethyl, hydroxy, aryl or substituted aryl.

Unless otherwise indicated, the term"lower alkylthio", alkylthio","arylthio"or"aralkylthio"as employed herein alone or as part of another group includes any of the above alkyl, aralkyl or aryl groups linked to a sulfur atom.

Unless otherwise indicated, the term"lower alkylamino", "alkylamino", "arylamino", or "arylalkylamino"as employed herein alone or as part of another group includes any of the above alkyl, aryl or arylalkyl groups linked to a nitrogen atom.

Unless otherwise indicated, the term"acyl"as employed herein by itself or part of another group, as defined herein, refers to an organic radical linked to a carbonyl group (i. e., examples of acyl groups include any of the R1 groups attached to a carbonyl, such as alkanoyl, alkenoyl, aroyl, aralkanoyl, heteroaroyl, cycloalkanoyl, heterocycloalkanoyl and the like. Such groups may also be identified by adding the term "carbonyl"at the end of the name of the organic radical R bonded to the acyl group (e. g. , alkylaminocarbonyl, alkoxycarbonyl, etc).

Unless otherwise indicated, the term"heterocycle" or"heterocyclo"as used herein alone or as part of another group refers to a 5-, 6-or 7-membered saturated or partially unsaturated ring which includes 1 or more hetero atoms such as nitrogen, oxygen and/or sulfur, linked through a carbon atom or a heteroatom, where possible, optionally via the linker (CH2) X, such as

and the like. The above groups may include 1 to 4 substituents such as alkyl, substituted alkyl, halo, alkoxy, haloalkoxy, aryloxy, cyano, nitro, oxo, aryl, substituted aryl, aralkyl, substituted aralkyl, arylsulfonylalkyl, alkylsulfonyl, CooR4, CoR4, and/or SR4.

In addition, any of the heterocyclo rings can be fused to a cycloalkyl, aryl, heteroaryl or heterocyclo ring. In addition, any of the heterocyclo rings can be joined by spiro union to cycloalkyl rings or other heterocyclo rings.

Unless otherwise indicated, the term"heteroaryl" as used herein alone or as part of another group refers to monocyclic and bicyclic aromatic rings containing from 5 to 10 atoms, which includes 1,2, 3 or 4 hetero atoms such as nitrogen, oxygen or sulfur, and such rings fused to an aryl, cycloalkyl, heteroaryl or heterocyclo ring (e. g. benzothiophenyl, indolyl), where the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatoms may optionally be quaternized. The heteroaryl group may optionally include 1 to 4 substituents such as halo, haloalkyl, alkyl, substituted alkyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkyl, cycloalkyl-alkyl, heterocyclo, heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, arylalkoxy, arylthio, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylheteroaryl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino wherein the amino includes 1 or 2 substituents (which are alkyl, aryl or any of the other aryl compounds mentioned in the definitions), thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkoxyarylthio,

alkylcarbonyl, arylcarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aminocarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfinyl, arylsulfinylalkyl, arylsulfonylamino or arylsulfonylaminocarbonyl, sulfonylaryl, sulfonylarylalkyl, arylsulfonylalkyl, alkylsulfonyl, COOR, COR4 and/or SR4. Examples of heteroaryl groups include the following:

and the like.

The term"heterocycloalkyl"as used herein alone or as part of another group refers to heterocyclo groups as defined above linked to a (CH2) x chain.

The term"heteroarylalkyl"or"heteroarylalkenyl" as used herein alone or as part of another group refers to a heteroaryl group as defined above linked to a - (CH2) x- chain, alkylene or alkenylene as defined above.

The term"polyhaloalkyl"as used herein refers to an"alkyl"group as defined above which includes from 2

to 9, preferably from 2 to 5, halo substituents, such as F or C1, preferably F, such as CF3CH2, CF3 or CF3CF2CH2.

The term"polyhaloalkyloxy"as used herein refers to an"alkoxy"or"alkyloxy"group as defined above which includes from 2 to 9, preferably from 2 to 5, halo substituents, such as F or C1, preferably F, such as CF3CH20, CF30 or CF3CF2CH20.

The compounds of formula I form salts which are also within the scope of this invention. Reference to a compound of the formula I herein is understood to include reference to salts thereof, unless otherwise indicated.

The term"salt (s) ", as employed herein, denotes acidic and/or basic salts formed with inorganic and/or organic acids and bases. In addition, when a compound of formula I contains a both a basic moiety and an acidic moiety, zwitterions ("inner salts") may be formed and are included within the term"salt (s)" as used herein.

Pharmaceutically acceptable (i. e. , non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful, e. g. , in isolation or purification steps which may be employed during preparation. Salts of the compounds of the formula I may be formed, for example, by reacting a compound I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.

The compounds of formula I which contain a basic moiety may form salts with a variety of organic and inorganic acids. Exemplary acid addition salts include acetates (such as those formed with acetic acid or trihaloacetic acid, for example, trifluoroacetic acid), adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates,

ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides (formed with hydrochloric acid), hydrobromides (formed with hydrogen bromide), hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates (formed with maleic acid), methanesulfonates (formed with methanesulfonic acid), 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pectinates, persulfates, 3-phenylpropionates, phosphates, picrates, pivalates, propionates, salicylates, succinates, sulfates (such as those formed with sulfuric acid), sulfonates (such as those mentioned herein), tartrates, thiocyanates, toluenesulfonates such as tosylates, undecanoates, and the like.

The compounds of formula I which contain an acidic moiety may form salts with a variety of organic and inorganic bases. Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as benzathines, dicyclohexylamines, hydrabamines (formed with N, N- bis (dehydroabietyl) ethylenediamine), N-methyl-D-glucamines, N-methyl-D-glucamides, t-butyl amines, and salts with amino acids such as arginine, lysine and the like.

Basic nitrogen-containing groups may be quaternized with agents such as lower alkyl halides (e. g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e. g. dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e. g. decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (e. g. benzyl and phenethyl bromides), and others.

Prodrugs and solvates of the compounds of the invention are also contemplated herein. The term "prodrug", as employed herein, denotes a compound which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield a compound of the formula I, or a salt and/or solvate thereof. Solvates of the compounds of formula I are preferably hydrates.

To the extent that compounds of the formula I, and salts thereof, may exist in their tautomeric form, all such tautomeric forms are contemplated herein as part of the present invention.

All stereoisomers of the present compounds, such as those which may exist due to asymmetric carbons on the various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons) and diastereomeric forms, are contemplated within the scope of this invention. Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations. When diastereomeric or enantiomeric products are prepared, they can be separated by conventional methods for example, chromatographic or fractional crystallization.

Thus, where desired, the compounds of the present invention may be used in combination with one or more hypolipidemic agents or lipid-lowering agents, or lipid agents, or lipid modulating agents, and/or one or more other types of therapeutic agents including antidiabetic agents, anti-obesity agents, antihypertensive agents, platelet aggregation inhibitors, anti-Alzheimer's agents, anti-dementia agents, and/or other cardiovascular agents

(including anti-anginal agents, anti-arrhythmic agents, anti-atherosclerosis agents, anti-inflammatory agents, anti-platelet agents, anti-heart failure agents), which may be administered orally in the same dosage form or in a separate oral dosage form, or by injection.

The hypolipidemic agent or lipid-lowering agent or other lipid agent or lipid modulating agent which may be optionally employed in combination with the compounds of the present invention may include 1,2, 3 or more MTP inhibitors, HMG CoA reductase inhibitors, squalene synthetase inhibitors, PPAR a agonists, PPAR dual a/y agonists, PPAR 8 agonists, fibric acid derivatives, ACAT inhibitors, lipoxygenase inhibitors, cholesterol absorption inhibitors, ileal Na+/bile acid cotransporter inhibitors, upregulators of LDL receptor activity, cholesteryl ester transfer protein inhibitors, bile acid sequestrants, and/or nicotinic acid and derivatives thereof.

MTP inhibitors employed herein include MTP inhibitors disclosed in U. S. Patent No. 5,595, 872, U. S.

Patent No. 5,739, 135, U. S. Patent No. 5,712, 279, U. S.

Patent No. 5,760, 246, U. S. Patent No. 5,827, 875, U. S.

Patent No. 5, 885, 983 and U. S. Patent No. 5,962, 440.

Preferred are each of the preferred MTP inhibitors disclosed in each of the above patents and applications.

All of the above U. S. Patents and applications are incorporated herein by reference.

Most preferred MTP inhibitors to be employed in accordance with the present invention include preferred MTP inhibitors as set out in U. S. Patent Nos. 5,739, 135 and 5,712, 279, and U. S. Patent No. 5,760, 246.

The most preferred MTP inhibitor is 9- [4- [4- [ [2- (2,2, 2-Trifluoroethoxy) benzoyl] amino]-l-piperidinyl] butyl]-N- (2, 2,2-trifluoroethyl)-9H-fluorene-9-carboxamide

The hypolipidemic agent may be an HMG CoA reductase inhibitor which includes, but is not limited to, mevastatin and related compounds as disclosed in U. S.

Patent No. 3,983, 140, lovastatin (mevinolin) and related compounds as disclosed in U. S. Patent No. 4,231, 938, pravastatin and related compounds such as disclosed in U. S. Patent No. 4,346, 227, simvastatin and related compounds as disclosed in U. S. Patent Nos. 4,448, 784 and 4,450, 171. Other HMG CoA reductase inhibitors which may be employed herein include, but are not limited to, fluvastatin, disclosed in U. S. Patent No. 5,354, 772, cerivastatin disclosed in U. S. Patent Nos. 5,006, 530 and 5,177, 080, atorvastatin disclosed in U. S. Patent Nos.

4,681, 893,5, 273,995, 5,385, 929 and 5,686, 104, pitavastatin (Nissan/Sankyo's nisvastatin (NK-104) or itavastatin), disclosed in U. S. Patent No. 5,011, 930, Shionogi-Astra/Zeneca rosuvastatin (visastatin (ZD-4522)) disclosed in U. S. Patent No. 5,260, 440, and related statin compounds disclosed in U. S. Patent No. 5,753, 675, pyrazole analogs of mevalonolactone derivatives as disclosed in U. S. Patent No. 4,613, 610, indene analogs of mevalonolactone derivatives as disclosed in PCT application WO 86/03488, 6- [2- (substituted-pyrrol-1-yl)- alkyl) pyran-2-ones and derivatives thereof as disclosed in U. S. Patent No. 4,647, 576, Searle's SC-45355 (a 3- substituted pentanedioic acid derivative)

dichloroacetate, imidazole analogs of mevalonolactone as disclosed in PCT application WO 86/07054,3-carboxy-2- hydroxy-propane-phosphonic acid derivatives as disclosed in French Patent No. 2,596, 393,2, 3-disubstituted pyrrole, furan and thiophene derivatives as disclosed in European Patent Application No. 0221025, naphthyl analogs of mevalonolactone as disclosed in U. S. Patent No.

4,686, 237, octahydronaphthalenes such as disclosed in U. S. Patent No. 4,499, 289, keto analogs of mevinolin (lovastatin) as disclosed in European Patent Application No. 0,142, 146 A2, and quinoline and pyridine derivatives disclosed in U. S. Patent No. 5,506, 219 and 5,691, 322.

In addition, phosphinic acid compounds useful in inhibiting HMG CoA reductase suitable for use herein are disclosed in GB 2205837.

The squalene synthetase inhibitors suitable for use herein include, but are not limited to, a-phosphono- sulfonates disclosed in U. S. Patent No. 5,712, 396, those disclosed by Biller et al, J. Med. Chem. , 1988, Vol. 31, No. 10, pp 1869-1871, including isoprenoid (phosphinyl- methyl) phosphonates as well as other known squalene synthetase inhibitors, for example, as disclosed in U. S.

Patent No. 4,871, 721 and 4,924, 024 and in Biller, S. A., Neuenschwander, K. , Ponpipom, M. M. , and Poulter, C. D., Current Pharmaceutical Design, 2,1-40 (1996).

In addition, other squalene synthetase inhibitors suitable for use herein include the terpenoid pyrophosphates disclosed by P. Ortiz de Montellano et al, J. Med. Chem. , 1977,20, 243-249, the farnesyl diphosphate analog A and presqualene pyrophosphate (PSQ- PP) analogs as disclosed by Corey and Volante, J. Am.

Chem. Soc. , 1976,98, 1291-1293, phosphinylphosphonates reported by McClard, R. W. et al, J. A. C. S. , 1987,109, 5544 and cyclopropanes reported by Capson, T. L. , PhD dissertation, June, 1987, Dept. Med. Chem. U of Utah,

Abstract, Table of Contents, pp 16,17, 40-43, 48-51, Summary.

Other hypolipidemic agents suitable for use herein include, but are not limited to, fibric acid derivatives, such as fenofibrate, gemfibrozil, clofibrate, bezafibrate, ciprofibrate, clinofibrate and the like, probucol, and related compounds as disclosed in U. S.

Patent No. 3,674, 836, probucol and gemfibrozil being preferred, bile acid sequestrants such as cholestyramine, colestipol and DEAE-Sephadex and cholestagel (Sankyo/Geltex), as well as lipostabil (Rhone-Poulenc), Eisai E-5050 (an N-substituted ethanolamine derivative), imanixil (HOE-402), tetrahydrolipstatin (THL), istigmastanylphos-phorylcholine (SPC, Roche), aminocyclodextrin (Tanabe Seiyoku), Ajinomoto AJ-814 (azulene derivative), melinamide (Sumitomo), Sandoz 58- 035, American Cyanamid CL-277,082 and CL-283,546 (disubstituted urea derivatives), nicotinic acid (niacin), acipimox, acifran, neomycin, p-aminosalicylic acid, aspirin, poly (diallylmethylamine) derivatives such as disclosed in U. S. Patent No. 4,759, 923, quaternary amine poly (diallyldimethylammonium chloride) and ionenes such as disclosed in U. S. Patent No. 4,027, 009, and other known serum cholesterol lowering agents.

The other hypolipidemic agent may be an ACAT inhibitor (which also has anti-atherosclerosis activity) such as disclosed in, Drugs of the Future 24,9-15 (1999), (Avasimibe) ; "The ACAT inhibitor, Cl-1011 is effective in the prevention and regression of aortic fatty streak area in hamsters", Nicolosi et al, Atherosclerosis (Shannon, Irel). (1998), 137 (1), 77-85; "The pharmacological profile of FCE 27677: a novel ACAT inhibitor with potent hypolipidemic activity mediated by selective suppression of the hepatic secretion of ApoB100-containing lipoprotein", Ghiselli, Giancarlo,

Cardiovasc. Drug Rev. (1998), 16 (1), 16-30;"RP 73163: a bioavailable alkylsulfinyl-diphenylimidazole ACAT inhibitor", Smith, C. , et al, Bioorg. Med. Chem. Lett.

(1996), 6 (1), 47-50;"ACAT inhibitors: physiologic mechanisms for hypolipidemic and anti-atherosclerotic activities in experimental animals", Krause et al, Editor (s): Ruffolo, Robert R. , Jr.; Hollinger, Mannfred A. , Inflammation: Mediators Pathways (1995), 173-98, Publisher: CRC, Boca Raton, Fla. ;"ACAT inhibitors: potential anti-atherosclerotic agents", Sliskovic et al, Curr. Med. Chem. (1994), 1 (3), 204-25;"Inhibitors of acyl-CoA: cholesterol O-acyl transferase (ACAT) as hypocholesterolemic agents. 6. The first water-soluble ACAT inhibitor with lipid-regulating activity. Inhibitors of acyl-CoA: cholesterol acyltransferase (ACAT). 7.

Development of a series of substituted N-phenyl-N'-[(l- phenylcyclopentyl) methyl] ureas with enhanced hypocholesterolemic activity", Stout et al, Chemtracts: Org. Chem. (1995), 8 (6), 359-62, or TS-962 (Taisho Pharmaceutical Co. Ltd), as well as F-1394, CS-505, F-12511, HL-004, K-10085 and YIC-C8-434.

The hypolipidemic agent may be an upregulator of LDL receptor activity such as MD-700 (Taisho Pharmaceutical Co. Ltd) and LY295427 (Eli Lilly).

The hypolipidemic agent may be a cholesterol absorption inhibitor preferably Schering-Plough's SCH48461 (ezetimibe) as well as those disclosed in Atherosclerosis 115,45-63 (1995) and J. Med. Chem. 41, 973 (1998).

The other lipid agent or lipid-modulating agent may be a cholesteryl transfer protein inhibitor (CETP) such as Pfizer's CP-529,414 as well as those disclosed in WO/0038722 and in EP 818448 (Bayer) and EP 992496, and Pharmacia's SC-744 and SC-795, as well as CETi-1 and JTT-705.

The hypolipidemic agent may be an ileal Na+/bile acid cotransporter inhibitor such as disclosed in Drugs of the Future, 24,425-430 (1999).

The ATP citrate lyase inhibitor which may be employed in the combination of the invention may include, for example, those disclosed in U. S. Patent No.

5,447, 954.

The other lipid agent also includes a phytoestrogen compound such as disclosed in WO 00/30665 including isolated soy bean protein, soy protein concentrate or soy flour as well as an isoflavone such as genistein, daidzein, glycitein or equol, or phytosterols, phytostanol or tocotrienol as disclosed in WO 2000/015201; a beta-lactam cholesterol absorption inhibitor such as disclosed in EP 675714; an HDL upregulator such as an LXR agonist, a PPAR a-agonist and/or an FXR agonist; an LDL catabolism promoter such as disclosed in EP 1022272; a sodium-proton exchange inhibitor such as disclosed in DE 19622222; an LDL-receptor inducer or a steroidal glycoside such as disclosed in U. S. Patent No. 5,698, 527 and GB 2304106; an anti-oxidant such as beta-carotene, ascorbic acid, a-tocopherol or retinol as disclosed in WO 94/15592 as well as Vitamin C and an antihomocysteine agent such as folic acid, a folate, Vitamin B6, Vitamin B12 and Vitamin E; isoniazid as disclosed in WO 97/35576; a cholesterol absorption inhibitor, an HMG-CoA synthase inhibitor, or a lanosterol demethylase inhibitor as disclosed in WO 97/48701;

a PPAR 8 agonist for treating dyslipidemia; or a sterol regulating element binding protein-I (SREBP-1) as disclosed in WO 2000/050574, for example, a sphingolipid, such as ceramide, or neutral sphingomyelenase (N-SMase) or fragment thereof.

Preferred hypolipidemic agents are pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin, pitavastatin and rosuvastatin, as well as niacin and/or cholestagel.

The above-mentioned U. S. patents are incorporated herein by reference. The amounts and dosages employed will be as indicated in the Physician's Desk Reference and/or in the patents set out above or as otherwise known in the art.

The compounds of the present invention will be employed in a weight ratio to the hypolipidemic agent (were present), within the range from about 500: 1 to about 1: 500, preferably from about 100: 1 to about 1: 100.

The dose administered must be carefully adjusted according to age, weight and condition of the patient, as well as the route of administration, dosage form and regimen and the desired result.

The dosages and formulations for the hypolipidemic agent or other lipid agent or lipid modulating agent will be as disclosed in the various patents and applications discussed above.

The dosages and formulations for the other hypolipidemic agent or other lipid agent or lipid modulating agent to be employed, where applicable, will be as set out in the latest edition of the Physicians' Desk Reference.

For oral administration, a satisfactory result may be obtained employing the MTP inhibitor in an amount within the range of from about 0.01 mg to about 500 mg

and preferably from about 0.1 mg to about 100 mg, one to four times daily.

A preferred oral dosage form, such as tablets or capsules, will contain the MTP inhibitor in an amount of from about 1 to about 500 mg, preferably from about 2 to about 400 mg, and more preferably from about 5 to about 250 mg, one to four times daily.

For oral administration, a satisfactory result may be obtained employing an HMG CoA reductase inhibitor, for example, pravastatin, lovastatin, simvastatin, atorvastatin, or fluvastatin in dosages employed as indicated in the Physician's Desk Reference, such as in an amount within the range of from about 1 to 2000 mg, and preferably from about 4 to about 200 mg.

The squalene synthetase inhibitor may be employed in dosages in an amount within the range of from about 10 mg to about 2000 mg and preferably from about 25 mg to about 200 mg.

A preferred oral dosage form, such as tablets or capsules, will contain the HMG CoA reductase inhibitor in an amount from about 0.1 to about 100 mg, preferably from about 0.5 to about 80 mg, and more preferably from about 1 to about 40 mg.

A preferred oral dosage form, such as tablets or capsules will contain the squalene synthetase inhibitor in an amount of from about 10 to about 500 mg, preferably from about 25 to about 200 mg.

The anti-atherosclerotic agent includes a lipoxygenase inhibitor including a 15-lipoxygenase (15- LO) inhibitor such as benzimidazole derivatives as disclosed in WO 97/12615,15-LO inhibitors as disclosed in WO 97/12613, isothiazolones as disclosed in WO 96/38144, and 15-LO inhibitors as disclosed by Sendobry et al"Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-

lipoxygenase inhibitor lacking significant antioxidant properties, "Brit. J. Pharmacology (1997) 120,1199-1206, and Cornicelli et al, "15-Lipoxygenase and its Inhibition: A Novel Therapeutic Target for Vascular Disease", Current Pharmaceutical Design, 1999,5, 11-20.

The compounds of the present invention and the hypolipidemic agent may be employed together in the same oral dosage form or in separate oral dosage forms taken at the same time.

The compositions described above may be administered in the dosage forms as described above in single or divided doses of one to four times daily. It may be advisable to start a patient on a low dose combination and work up gradually to a high dose combination.

The antidiabetic agent which may be optionally employed in combination with the compounds of the present invention may be 1,2, 3 or more antidiabetic agents or antihyperglycemic agents including insulin secretagogues or insulin sensitizers, which may include biguanides, sulfonyl ureas, glucosidase inhibitors, aldose reductase inhibitors, PPAR y agonists such as thiazolidinediones, PPAR a agonists (such as fibric acid derivatives), PPAR 8 antagonists or agonists, PPAR a/y dual agonists, dipeptidyl peptidase IV (DP4) inhibitors, SGLT2 inhibitors, glycogen phosphorylase inhibitors, and/or meglitinides, as well as insulin, and/or glucagon-like peptide-1 (GLP-1), and/or a PTP-1B inhibitor (protein tyrosine phosphatase-lB inhibitor).

The antidiabetic agent may be an oral antihyperglycemic agent preferably a biguanide such as metformin or phenformin or salts thereof, preferably metformin HC1.

Where the antidiabetic agent is a biguanide, the compounds of the present invention will be employed in a weight ratio to biguanide within the range from about 0.001 : 1 to about 10: 1, preferably from about 0.01 : 1 to about 5: 1.

The antidiabetic agent may also preferably be a sulfonyl urea such as glyburide (also known as glibenclamide), glimepiride (disclosed in U. S. Patent No.

4,379, 785), glipizide, gliclazide or chlorpropamide, other known sulfonylureas or other antihyperglycemic agents which act on the ATP-dependent channel of the beta-cells, with glyburide and glipizide being preferred, which may be administered in the same or in separate oral dosage forms.

The compounds of the present invention will be employed in a weight ratio to the sulfonyl urea in the range from about 0.01 : 1 to about 100: 1, preferably from about 0.02 : 1 to about 5: 1.

The oral antidiabetic agent may also be a glucosidase inhibitor such as acarbose (disclosed in U. S.

Patent No. 4,904, 769) or miglitol (disclosed in U. S.

Patent No. 4,639, 436), which may be administered in the same or in a separate oral dosage forms.

The compounds of the present invention will be employed in a weight ratio to the glucosidase inhibitor within the range from about 0.01 : 1 to about 100: 1, preferably from about 0.05 : 1 to about 10: 1.

The compounds of the present invention may be employed in combination with a PPAR y agonist such as a thiazolidinedione oral anti-diabetic agent or other insulin sensitizers (which has an insulin sensitivity effect in NIDDM patients) such as troglitazone (disclosed in U. S. Patent No. 4,572, 912), rosiglitazone (SKB), pioglitazone (Takeda), Mitsubishi's MCC-555 (disclosed in U. S. Patent No. 5,594, 016), Glaxo-Welcome's GL-262570,

englitazone (CP-68722, Pfizer) or darglitazone (CP-86325, Pfizer, isaglitazone (MIT/J&J), JTT-501 (JPNT/P&U), L- 895645 (Merck), R-119702 (Sankyo/WL), NN-2344 (Dr.

Reddy/NN), or YM-440 (Yamanouchi), preferably rosiglitazone and pioglitazone.

The compounds of the present invention will be employed in a weight ratio to the thiazolidinedione in an amount within the range from about 0.01 : 1 to about 100: 1, preferably from about 0.05 : 1 to about 10: 1.

The sulfonyl urea and PPAR Y agonists in amounts of less than about 150 mg oral antidiabetic agent may be incorporated in a single tablet with the compounds of the present invention.

The compounds of the present invention may also be employed in combination with a antihyperglycemic agent such as insulin or with glucagon-like peptide-1 (GLP-1) or mimetic such as GLP-1 (1-36) amide, GLP-1 (7-36) amide, GLP-1 (7-37) (as disclosed in U. S. Patent No. 5,614, 492 to Habener, the disclosure of which is incorporated herein by reference), as well as AC2993 (Amylen) and LY-315902 (Lilly), which may be administered via injection, intranasal, inhalation or by transdermal or buccal devices.

Where present, metformin, the sulfonyl ureas, such as glyburide, glimepiride, glipyride, glipizide, chlorpropamide and gliclazide and the glucosidase inhibitors acarbose or miglitol or insulin (injectable, pulmonary, buccal, or oral) may be employed in formulations as described above and in amounts and dosing as indicated in the Physician's Desk Reference (PDR).

Where present, metformin or salt thereof may be employed in amounts within the range from about 500 to about 2000 mg per day which may be administered in single or divided doses one to four times daily.

Where present, the PPAR anti-diabetic agent may be employed in amounts within the range from about 0.01 to about 2000 mg/day which may be administered in single or divided doses one to four times per day.

Where present insulin and other anti-diabetic agents as set out above may be employed in formulations, amounts and dosing as indicated by the Physician's Desk Reference.

Where present GLP-1 peptides or mimetics may be administered in oral buccal formulations, by nasal administration or parenterally as described in U. S.

Patent Nos. 5,346, 701 (TheraTech), 5,614, 492 and 5,631, 224 which are incorporated herein by reference.

The antidiabetic agent or other lipid agent may also be a PPAR modulator such as a PPAR alpha/gamma dual agonist such as AR-H039242 (Astra/Zeneca), GW-409544 (Glaxo-Wellcome), KRP297 (Kyorin Merck) as well as those disclosed by Murakami et al, "A Novel Insulin Sensitizer Acts As a Coligand for Peroxisome Proliferation- Activated Receptor Alpha (PPAR alpha) and PPAR gamma.

Effect on PPAR alpha Activation on Abnormal Lipid Metabolism in Liver of Zucker Fatty Rats", Diabetes 47, 1841-1847 (1998), and in U. S. Patent No. 6,414, 002, the disclosure of which is incorporated herein by reference, employing dosages as set out therein, which compounds designated as preferred are preferred for use herein.

The antidiabetic agent may be an SGLT2 inhibitor such as disclosed in U. S. Patent No. 6,414, 126, employing dosages as set out therein. Preferred are the compounds designated as preferred in the above application.

The antidiabetic agent may be a DP4 inhibitor such as disclosed in U. S. Patent No. 6,395, 767, W099/38501, W099/46272, W099/67279, W099/67278, W099/61431, NVP- DPP728A (1- [ [ [2- [ (5-cyanopyridin-2- yl) amino] ethyl] amino] acetyl]-2-cyano-(S)-pyrrolidine)

(Novartis) (preferred) as disclosed by Hughes et al, Biochemistry, 38 (36), 11597-11603,1999, TSL-225 (tryptophyl-1, 2,3, 4-tetrahydro-isoquinoline-3-carboxylic acid (disclosed by Yamada et al, Bioorg. & Med. Chem.

Lett. 8 (1998) 1537-1540,2-cyanopyrrolidides and 4- cyanopyrrolidides as disclosed by Ashworth et al, Bioorg.

& Med. Chem. Lett. , Vol. 6, No. 22, pp 1163-1166 and 2745-2748 (1996) employing dosages as set out in the above references.

The meglitinide which may optionally be employed in combination with the compounds of the present invention may be repaglinide, nateglinide (Novartis) or KAD1229 (PF/Kissei), with repaglinide being preferred.

The antidiabetic compound may be a melanocortin receptor agonist such as a spiropiperidine as disclosed in WO 99/64002.

The compounds of the present invention will be employed in a weight ratio to the meglitinide, PPAR modulator such as a PPAR gamma agonist, PPAR a agonist, PPAR 8 agonits or antagonist, PPAR alpha/gamma dual agonist, DP4 inhibitor or SGLT2 inhibitor or other antidiabetic agent within the range from about 0.01 : 1 to about 100: 1, preferably from about 0.05 : 1 to about 10: 1.

The other type of therapeutic agent which may be optionally employed with the compounds of the present invention may be 1,2, 3 or more of an anti-obesity agent including a beta 3 adrenergic agonist, a lipase inhibitor, a serotonin (and dopamine) reuptake inhibitor, an aP2 inhibitor, a thyroid receptor beta drug, a PTP-1B inhibitor, an anorectic agent, a PPAR modulator including PPAR Y antagonists, PPAR a agonists, PPAR 8 antagonists, a CCKA agonist, a leptin inhibitor such as a leptin receptor activator, a neuropeptide Y antagonist, a melanocortin-4-receptor (MC4R) agonist, or a fatty acid

oxidation upregulator or inducer such as Famoxin (Genset).

The beta 3 adrenergic agonist which may be optionally employed in combination with the compounds of the present invention may be AJ9677 (Takeda/Dainippon), L750355 (Merck), or CP331648 (Pfizer) or other known beta 3 agonists as disclosed in U. S. Patent Nos. 5,541, 204, 5,770, 615,5, 491,134, 5,776, 983 and 5,488, 064, with AJ9677, L750,355 and CP331648 being preferred.

The neuropeptide Y antagonists which may be optionally employed in combination with the compounds of the present invention include those described in WO 01/13917, in U. S. Patent No. 6,218, 408 and in WO 01/14376.

The lipase inhibitor which may be optionally employed in combination with compounds of the present invention may be orlistat or ATL-962 (Alizyme), with orlistat being preferred.

The serotonin (and dopoamine) reuptake inhibitor which may be optionally employed in combination with compounds of the present invention may be sibutramine, topiramate (Johnson & Johnson) or axokine (Regeneron), with sibutramine and topiramate being preferred.

The thyroid receptor beta compound which may be optionally employed in combination with compounds of the present invention may be a thyroid receptor ligand as disclosed in W097/21993, W099/00353, GB98/284425, and WO 01/60784.

The anorectic, agent which may be optionally employed in combination with compounds of the present invention may be dexamphetamine, phentermine, phenylpropanolamine or mazindol, with dexamphetamine being preferred.

The CCKA agonists which may be employed herein include Glaxo-SmithKline's GI-181,771 and Sanofi's SR146,131.

The PTP-1B inhibitor which may be an anti-oesity and/or an antidiabetic agent include those disclosed in WO 99/585,521, WO 99/58518, WO 99/58522 and WO 99/61435.

The anti-obesity agent employed may also be Pfizer's P57 or CP-644,673.

The various anti-obesity agents described above may be employed in the same dosage form with the compounds of the present invention or in different dosage forms, in dosages and regimens as generally known in the art or in the PDR.

The antihypertensive agents which may be employed in combination with the compounds of the invention include ACE inhibitors, angiotensin II receptor antagonists, NEP inhibitors such as candoxatril, NEP/ACE inhibitors, as well as calcium channel blockers (such as verapamil and amlodipine besylate), T-channel calcium antagonists (such as mibefradil), P-adrenergic blockers, diuretics, a-adrenergic blockers (such as doxazosin mesylate and terazosin HCl), dual ET/AT receptor antagonists, heart failure drugs such as digoxin, and other types of antihypertensive agents.

The angiotensin converting enzyme inhibitor which may be employed herein includes those containing a mercapto (-S-) moiety such as substituted proline derivatives, such as any of those disclosed in U. S. Pat.

No. 4,046, 889 to Ondetti et al mentioned above, with captopril, that is, l-[(2S)-3-mercapto-2- methylpropionyl]-L-proline, being preferred, and mercaptoacyl derivatives of substituted prolines such as any of those disclosed in U. S. Pat. No. 4,316, 906 with zofenopril being preferred.

Other examples of mercapto containing ACE inhibitors that may be employed herein include rentiapril (fentiapril, Santen) disclosed in Clin. Exp. Pharmacol.

Physiol. 10: 131 (1983); as well as pivopril and YS980.

Other examples of angiotensin converting enzyme inhibitors which may be employed herein include any of those disclosed in U. S. Pat. No. 4,374, 829 mentioned above, with N- (l-ethoxycarbonyl-3-phenylpropyl)-L-alanyl- L-proline, that is, enalapril, being preferred, any of the phosphonate substituted amino or imino acids or salts disclosed in U. S. Pat. No. 4,452, 790 with (S)-l- [6-amino- <BR> <BR> <BR> <BR> <BR> 2-[[hydroxy-(4-phenylbutyl) phosphinyl] oxy]-1-oXohexyl]-L- proline or (ceronapril) being preferred, phosphinylalkanoyl prolines disclosed in U. S. Pat. No.

4, 168, 267 mentioned above with fosinopril being preferred, any of the phosphinylalkanoyl substituted prolines disclosed in U. S. Pat. No. 4,337, 201, and the phosphonamidates disclosed in U. S. Pat. No. 4,432, 971 discussed above.

Other examples of ACE inhibitors that may be employed herein include Beecham's BRL 36,378 as disclosed in European Patent Application Nos. 80822 and 60668; Chugai's MC-838 disclosed in C. A. 102: 72588v and Jap. J.

Pharmacol. 40: 373 (1986); Ciba-Geigy's CGS 14824 (3- ( [1- ethoxycarbonyl-3-phenyl- (lS)-propyl] amino) -2,3, 4,5- tetrahydro-2-oxo-l- (3S)-benzazepine-1 acetic acid HCl) disclosed in U. K. Patent No. 2103614 and CGS 16,617 (3 (S)-[[(lS)-5-amino-1-carboxypentyl] amino]-2, 3,4, 5- tetrahydro-2-oxo-lH-1-benzazepine-l-ethanoic acid) disclosed in U. S. Pat. No. 4,473, 575; cetapril (alacepril, Dainippon) disclosed in Eur. Therap. Res.

39: 671 (1986) ; 40: 543 (1986); ramipril (Hoechsst) disclosed in Euro. Patent No. 79-022 and Curr. Ther. Res.

40: 74 (1986); Ru 44570 (Hoechst) disclosed in Arzneimittelforschung 34: 1254 (1985), cilazapril

(Hoffman-LaRoche) disclosed in J. Cardiovasc. Pharmacol.

9: 39 (1987); R 31-2201 (Hoffman-LaRoche) disclosed in FEBS Lett. 165: 201 (1984); lisinopril (Merck), indalapril (delapril) disclosed in U. S. Pat. No. 4,385, 051; indolapril (Schering) disclosed in J. Cardiovasc.

Pharmacol. 5: 643,655 (1983), spirapril (Schering) disclosed in Acta. Pharmacol. Toxicol. 59 (Supp. 5): 173 (1986); perindopril (Servier) disclosed in Eur. J. clin.

Pharmacol. 31: 519 (1987); quinapril (Warner-Lambert) disclosed in U. S. Pat. No. 4,344, 949 and CI925 (Warner- Lambert) ( [3S- [2 [R (*) R (*)]] 3R (*) 1-2- [2- [El- (ethoxy- carbonyl)-3-phenylpropyl] amino]-1-oxopropyl]-1, 2,3, 4- tetrahydro-6,7-dimethoxy-3-isoquinolinecarboxylic acid HC1) disclosed in Pharmacologist 26: 243,266 (1984), WY- 44221 (Wyeth) disclosed in J. Med. Chem. 26: 394 (1983).

Preferred ACE inhibitors are captopril, fosinopril, enalapril, lisinopril, quinapril, benazepril, fentiapril, ramipril and moexipril.

NEP/ACE inhibitors may also be employed herein in that they possess neutral endopeptidase (NEP) inhibitory activity and angiotensin converting enzyme (ACE) inhibitory activity. Examples of NEP/ACE inhibitors suitable for use herein include those disclosed in U. S.

Pat. No. s. 5,362, 727,5, 366,973, 5,225, 401,4, 722, 810, 5,223, 516,4, 749,688, U. S. Patent. No. 5,552, 397, U. S.

Pat. No. 5,504, 080, U. S. Patent No. 5,612, 359, U. S. Pat.

No. 5,525, 723, European Patent Application 0599,444, 0481,522, 0599,444, 0595,610, European Patent Application 0534363A2,534, 396 and 534,492, and European Patent Application 0629627A2.

Preferred are those NEP/ACE inhibitors and dosages thereof which are designated as preferred in the above patents/applications which U. S. patents are incorporated herein by reference; most preferred are omapatrilat, gemopatrilat ([S [(R*, R*)]-hexahydro-6-[(2-mercapto-1-oxo-

3-phenylpropyl) amino-2, 2-dimethyl-7-oxo-lH-azepine-l- acetic acid) and CGS 30440.

The angiotensin II receptor antagonist (also referred to herein as angiotensin II antagonist or AII antagonist) suitable for use herein includes, but is not limited to, irbesartan, losartan, valsartan, candesartan, tasosartan or eprosartan, with irbesartan, losartan or valsartan being preferred.

A preferred oral dosage form, such as tablets or capsules, will contain the ACE inhibitor or AII antagonist in an amount within the range from abut 0.1 to about 500 mg, preferably from about 5 to about 200 mg and more preferably from about 10 to about 150 mg.

For parenteral administration, the ACE inhibitor, angiotensin II antagonist or NEP/ACE inhibitor will be employed in an amount within the range from about 0.005 mg/kg to about 10 mg/kg and preferably from about 0.01 mg/kg to about 1 mg/kg.

Where a drug is to be administered intravenously, it will be formulated in conventional vehicles, such as distilled water, saline, Ringer's solution or other conventional carriers.

It will be appreciated that preferred dosages of ACE inhibitor and AII antagonist will be as set out in the latest edition of the Physician's Desk Reference (PDR).

Dual ET/AT receptor antagonists suitable for use herein include those disclosed in WO 01/44239.

Other examples of preferred antihypertensive agents suitable for use herein include omapatrilat, gemopatrilat, amlodipine besylate, prazosin HCl, verapamil, nifedipine, diltiazem, felodipine, nisoldipine, isradipine, nicardipine, beta blockers such as nadolol, atenolol, sotalol, terazosin, doxazosin, carvedilol, and propranolol, and clonidine HCl.

Diuretics which may be employed in combination with compounds of the present invention include hydrochlorothiazide, torasemide, furosemide, spironolactone, and indapamide.

Antiplatelet agents which may be employed in combination with compounds of the present invention include aspirin, clopidogrel, ticlopidine, dipyridamole, abciximab, tirofiban, eptifibatide, anagrelide, and ifetroban, with clopidogrel and aspirin being preferred.

The antihypertensive agents, diuretics and antiplatelet drugs may be employed in amounts as indicated in the PDR. Ifetroban may be employed in amounts as set out in U. S. Patent No. 5,100, 889.

Anti-Alzheimer's agents or anti-dementia agents suitable for use herein include tacrine HC1 and donepezil, as well as y-secretase inhibitors, ß-secretase inhibitors and/or antihypertensive agents. Dosages employed will be as set out in the PDR. a cyclooxygenase (COX) -2 inhibitor, such as celecoxib, rofecoxib or paracoxib or a glycoprotein IIa/IIIb receptor antagonist such as disclosed in WO 99/45913 and tirofiban or abciximab; a 5-HT reuptake inhibitor such as disclosed in WO 99/44609; anti-anginal agents such as vasodilators, for example, isosorbide dinitrate, or nitroglycerin; anti-atherosclerosis agents such as ACAT inhibitors and lipoxygenase inhibitors as described herein and phospholipase A-2 inhibitors such as S-3013 and SB- 435,495 (which are also anti-inflammatory agents); or an immunosuppressant (for use in transplantations) such as cyclosporine, mycophenolate mofetil, azathioprine and the like.

It will be appreciated that unless otherwise specified the dosage regiment for therapeutic agents used

in combination with the compounds of the invention will be as specified in the PDR.

In carrying our the method of the invention, a pharmaceutical composition will be employed containing the compounds of structure I, with or without another therapeutic agent, in association with a pharmaceutical vehicle or diluent. The pharmaceutical composition can be formulated employing conventional solid or liquid vehicles or diluents and pharmaceutical additives of a type appropriate to the mode of desired administration.

The compounds can be administered to mammalian species including humans, monkeys, dogs, etc. by an oral route, for example, in the form of tablets, capsules, granules or powders, or they can be administered by a parenteral route in the form of injectable preparations. The dose for adults is preferably between 20 and 2,000 mg per day, which can be administered in a single dose or in the form of individual doses from 1-4 times per day.

A typical capsule for oral administration contains compounds of structure I (250 mg), lactose (75 mg) and magnesium stearate (15 mg). The mixture is passed through a 60 mesh sieve and packed into a No. 1 gelatin capsule.

A typical injectable preparation is produced by aseptically placing 250 mg of compounds of structure I into a vial, aseptically freeze-drying and sealing. For use, the contents of the vial are mixed with 2 mL of physiological saline, to produce an injectable preparation.

The aP2/mal-1 inhibitor activity of the compounds of the invention may be determined using methods well known to those of skill in the art.

The following Examples illustrate embodiments of the present invention, and are not intended to limit the

scope of the claims. Abbreviations employed herein are defined below. Compounds of the Examples are identified by the example and step in which they are prepared (for example,"1A"denotes the title compounds of step A of Example 1), or by the example only where the compound is the title compound of the example (for example"4" denotes the title comound of Example 4).

9-BBN = 9-borabicyclo [3.3. 1] nonane Calc = calculated DiBAl = diisobutylaluminum hydride DMAP = Dimethylaminopyridine DMF = dimethylformamide DMSO = dimethylsulfoxide Et = ethyl Fnd = found h = hours LC/MS = liquid chromatography/mass spectrometry LDA = lithium diisopropylamide Me = methyl Ms = mesyl = methanesulfonyl OAc = acetate Ph = phenyl TFA = trifluoroacetic acid THF = tetrahydrofuran TMS = trimethylsilyl Example 1 2, 3-Bis [(2-chlorophenyl) methoxy]-a-hydroxybenzeneacetic acid

To a stirred slurry of 2,3-dihydroxybenzaldehyde (6.91 g, 50.0 mmol) and potassium carbonate (17.2 g, 125 mmol) in EtOH (60 mL) at room temperature under argon was added 2-chlorobenzyl chloride (15 mL, 120 mmol). The reaction mixture was heated to reflux for 16 h, then cooled and poured into water (150 mL). The resulting solids were collected, washed with water, air-dried and recrystallized from methanol to give the title compound as white needles (16.28 g, 71% yield), mp 98-100 °C.

LC/MS gave the correct molecular ion [ (M+H)' 3871 for the desired compound.

B.

To a stirred solution of part A compound (5.01 g, 12.9 mmol) in CH2C12 (50 mL) at room temperature under argon was added trimethylsilylcyanide (1.725 mL, 12.9 mmol) and triethylamine (200 µL, 1.4 mmol). The resulting yellow solution was stirred for 3 h and then evaporated. The residuum was then dissolved in EtOH (25 mL) and trimethylsilyl chloride (25 mL) was added. The colorless solution was heated to 50 °C for 48 h. The solution was cooled, evaporated and the residuum was stirred rapidly for 1 h with CH2C12 (50 mL), EtOH (25 mL) and saturated sodium bicarbonate solution (50 mL). The mixture was partially evaporated to remove the ethanol and the remainder partitioned with CH2C12. The organic extract was dried (MgS04) and evaporated. Purification by flash chromatography (5 x 25 cm column, 1: 49 Et2O/CH2Cl2) provided the title compound as a colorless oil which slowly solidified (4.97 g, 84% yield), mp 47-49 °C. LC/MS gave the correct molecular ion [(M+H) + = 461] for the desired compound.

C.

A solution of part B compound (1.40 g, 3.03 mmol) in THF (10 mL) was stirred at room temperature under argon, as 1 M NaOH solution (5 mL, 5.0 mmol) was added. After 24 h, the reaction mixture was diluted with water (20 mL) and extracted twice with Et2O. The aqueous phase was acidified with 1 M hydrochloric acid (5.5 mL, 5.5 mmol), extracted twice with CH2C12, the extracts dried

(MgS04) and evaporated. A portion of the resulting gummy solid (1.10 g) was dissolved in Et2O (20 mL) and extracted once with 0.1 M sodium hydroxide solution (23 mL, 2.3 mmol). The aqueous layer was purged with nitrogen gas for 15 min and then lyophilized to give the title compound as a white powder, 988 mg, 87% yield.

LC/MS gave the correct molecular ion [ (M+H)' 4331 for the desired compound as its free acid.

Example 2 a (R)-2, 3-Bis [(2-chlorophenyl) methoxy]-a- hydroxybenzeneacetic acid

To a stirred slurry of Example 1, Part B compound (1.334 g, 2.89 mmol), N-t-butyloxycarbonyl- (S)-proline (646 mg, 3.00 mmol), triethylamine (210 RL, 1.5 mmol) and DMAP (122 mg, 1.0 mmol) in CH2C12 (10 mL) at room temperature under argon was added N-Ethyl N', N'-

diisoproylaminoethyl carbodiimide (573 mg, 3.0 mmol).

After 16 h, the reaction mixture was diluted with CH2Cl2 amd washed once with 5% potassium hydrogren sulfate solution. The organic phase was dried (Na2SO4) and evaporated. Purification by flash chromatography (5x25 cm column, 1.5 L 1: 24 Et2O/CH2C12, then 1: 16 Et2O/CH2C12) gave two fractions. The first product to elute was the title compound as a colorless oil. LC/MS gave the correct molecular ion [ (M+H) + 659] for the desired compound.

B.

To a stirred solution of part A compound (2.18 g, 3.30 mmol) in dioxane (10 mL) at room temperature under argon was added KOH solution (10.0 mL, 1 M, 10.0 mmol). The resulting solution was heated to 70 °C for 4 h and then cooled to room temperature. After acidifying with 5% potassium hydrogen sulfate solution, the reaction mixture was extracted twice with CH2Cl2. The extracts were combined, washed once with brine, dried (MgS04) and evaporated. The oily residue was dissolved in 4 N HCl/dioxane (10 mL), stirred under argon for 2 h and then evaporated and re-evaporated twice from hexanes. The residual oil was dissolved in ether (10 mL) and washed twice with water (10 mL) and then extracted with 0.1 M NaOH (30.0 mL, 3.00 mmol). The aqueous layer was frozen and lyophilized to provide the title compound as a white powder, 1.30 g (100% yield). LC/MS gave the correct molecular ion [(M+H) + = 433] for the desired compound.

Chiral purity was determined by chromatography of the

methyl ester (prepared from a 3 mg sample of the title compound using trimethylsilyl-diazomethane in Et20/CH30H) on a normal-phase OD column (hexane/isopropanol as the elutent). Optical purity was determined to be 96. 7%.

Example 3 a (S) -2,3-Bis [(2-chlorophenyl) methoxy]-a- hydroxybenzeneacetic acid To a stirred slurry of Example 1, Part B compound (1.334 g, 2. 89 mmol), N-t-butyloxycarbonyl- (S)-proline (646 mg, 3.00 mmol), triethylamine (210 RL, 1.5 mmol) and DMAP (122 mg, 1.0 mmol) in CH2C12 (10 mL) at room temperature under argon was added N-Ethyl N', N'- diisoproylaminoethyl carbodiimide (573 mg, 3.0 mmol).

After 16 h, the reaction mixture was diluted with CH2Cl2 amd washed once with 5% potassium hydrogren sulfate

solution. The organic phase was dried (Na2SO4) and evaporated. Purification by flash chromatography (5x25 cm column, 1.5 L 1: 24 Et2O/CH2C12, then 1: 16 Et2O/CH2C12) gave two fractions. The first product to elute was Example 2 Part C compound. The second was the title compound as a colorless oil. LC/MS gave the correct molecular ion [ (M+H) + = 6591 for the desired compound.

B.

To a stirred solution of part A compound (2.56 g, 3.90 mmol) in dioxane (10 mL) at room temperature under argon was added KOH solution (10.0 mL, 1 M, 10.0 mmol). The resulting solution was heated to 70 °C for 4 h and then cooled to room temperature. After acidifying with 5% potassium hydrogen sulfate solution, the reaction mixture was extracted twice with CH2Cl2. The extracts were combined, washed once with brine, dried (MgSO4) and evaporated. The oily residue was dissolved in 4 N HCl/dioxane (10 mL), stirred under argon for 2 h and then evaporated and re-evaporated twice from hexanes. The residual oil was dissolved in ether (10 mL) and washed twice with water (10 mL) and then extracted with 0.1 M NaOH (33.0 mL, 3.30 mmol). The aqueous layer was frozen and lyophilized to provide the title compound as a white powder, 1.50 g (100% yield). LC/MS gave the correct molecular ion [ (M+H) + = 4331 for the desired compound.

Chiral purity was determined by chromatography of the methyl ester (prepared from a 3 mg sample of the title compound using trimethylsilyl-diazomethane in Et20/CH30H)

on a normal-phase OD column (hexane/isopropanol as the elutent). Optical purity was determined to be 96.5%.

Example 4 2- (E)-3- [2, 3-Bis [(2-chlorophenyl) methoxy] phenyl]-2- propenoic acid To a stirred solution of triethyl phosphonoacetate (561 mg, 2.50 mmol) in THF (5.0 mL) at room temperature under argon was added sodium hydride (60% mineral-oil dispersion, 96 mg, 2.4 mmol). The reaction mixture was warmed to 50 °C for 1 h and then cooled to room temperature. Example 1 Part A compound (775 mg, 2.00 mmol) was added in one portion. The resulting mixture was stirred for 30 min, quenched with saturated sodium bicarbonate solution and extracted with CH2Cl2. The organic extract was dried (MgS04) and evaporated.

Recrystallization from CH2Cl2/hexanes gave title compound as a white solid (715 mg, 78% yield), mp 95-97 °C. LC/MS gave the correct molecular ion [(M+H) + = 457] for the desired compound.

B.

To a. stirred solution of part A compound (700 mg, 1.53 mmol) in THF (3 mL) at room temperature under argon was added NaOH solution (3.0 mL, 1 M, 3.0 mmol). The resulting solution was heated to 50 °C for 14 h and then cooled to room temperature. After acidifying with 1 M HCl, the resulting solids were collected, washed with water and air-dried to provide the title compound as a white solid, 648 mg (99% yield), mp 187-189 °C. LC/MS gave the correct molecular ion [(M+H) + = 430] for the desired compound.

Example 5 2, 3-Bis[(2-chlorophenyl)methoxy]benzeneacetic acid

To a stirring slurry Example 1 Part A compound (1.00 g, 2.58 mmol) in EtOH (10 mL) at room temperature was added powdered sodium borohydride (100 mg, 2.6 mmol) over 1 min. The resulting mixture was stirred for 16 h, quenched with saturated sodium bicarbonate solution (20 mL) and stirred 20 min. The resulting solids were collected, washed with water and air-dried to give the title compound as a white solid (930 mg, 93% yield), mp 102-104 °C. LC/MS gave the correct molecular ion [(M+H) + = 389] for the desired compound.

B.

To a stirred solution of part A compound (930 mg, 2.4 mmol) in CH2Cl2 (10 mL) at 0 °C under argon was added phosphorous tribromide solution (5.0 mL, 1 M in CH2Cl2, 5.0 mmol) over 1 min. The resulting solution was warmed to room temperature. After 3 h, the reaction was quenched with saturated sodium bicarbonate solution (20 mL) and then treated with solid sodium bicarbonate to bring to pH 7. The mixture was extracted twice with EtOAc, dried (MgS04) and evaporated to provide the title compound as a white amorphous solid, 1.05 g (97% yield).

LC/MS gave the correct molecular ion E (M+H)' 4511 for the desired compound.

To a stirred solution of part B compound (875 mg, 1.94 mmol) in DMSO (8 mL) at room temperature under argon was added potassium cyanide (1.30 g, 20 mmol). The resulting solution was warmed to 65 °C. After 3 h, the reaction was quenched with water and the resulting gummy solid was collected, washing with water. The solid was dissolved in CH2Cl2, washed with water, dried (MgS04) and evaporated. Purification by flash chromatography provided the title compound as a light yellow amorphous solid, 343 mg (44% yield). LC/MS gave the correct molecular ion [ (M+H) + 3981 for the desired compound.

D.

To a stirred solution of part C compound (340 mg, 0.85 mmol) in EtOH (4 mL) at room temperature under argon was added chlorotrimethylsilane (4 mL). The resulting solution was warmed to 50 °C. After 34 h, the reaction was cooled to room temperature and evaporated. The residue was stirred vigorously with saturated sodium bicarbonate solution (10 mL) for 30 min and then extracted three times with CH2Cl2. The extracts were combined, dried (MgS04) and evaporated. Purification by flash chromatography provided the title compound as a colorless oil, 223 mg (59% yield). LC/MS gave the correct molecular ion [(M+H)+ = 445] for the desired compound.

E.

To a stirred solution of part D compound (220 mg, 0.49 mmol) in THF (1 mL) at room temperature under argon was added sodium hydroxide solution (1.5 mL, 1.0 M, 1.5 mmol). The resulting solution was heated to 50 °C for 15 h. The reaction mixture was cooled, diluted with water (3 mL) and extracted once with Et20. The aqueous phase was acidified with 1 N HCl to pH 2 and extracted twice with CH2Cl2. The CH2Cl2 extracts were combined, dried (MgSO4) and concentrated to-2 mL. Hexanes were added, the flask scratched and the resulting white solid was collected and air-dried to give the title compound as a white solid, 198 mg, 94% yield, mp 105-107 °C. LC/MS gave the correct molecular ion [(M+H) + = 417] for the desired compound.

Example 6 2,3-Bis [(2-chlorophenyl) methoxy] benzeneacetic acid Alternative synthesis

To a stirred solution of Example 1 Part A compound (1.94 g, 5.00 mmol) and methylthiomethyl methylsulfoxide (0.58 mL, 5.6 mmol) in THF (5 mL) at room temperature under argon was added Triton-B (0.5 mL, 40% in MeOH).

The resulting solution was heated to gentle reflux for 16 h and then evaporated and re-evaporated twice from hexanes. The residue was purified by flash chromatography to give the thioketene S-oxide as a colorless oil, 2.06 g (83% yield).

This oil was dissolved in MeOH (100 mL) and HC1 gas was bubbled into the solution as the temperature rose to 66 °C before subsiding to room temperature. After 30 min more, the reaction was evaporated and re-evaporated from CH2Cl2. Purification by flash chromatography gave the title compound as a white solid, 1.66 g, 93% yield. LC/MS gave the correct molecular ion [ (M+H) + 4311 for the desired compound.

B.

By the method of Example 5 Part E, Part A compound (1.00 g, 2.32 mmol) was hydrolyzed to give the title compound as a white solid, 964 mg, 100% yield, mp 105-107 °C.

Example 7 [[2, 3-Bis [ (2- chlorophenyl) methoxy] phenyl] methyl] propanedioic acid To a stirred solution of Example 5 Part A compound (1.00 g, 2.57 mmol) and triphenylphosphine (674 mg, 2.57 mmol) in THF (2.5 mL) at room temperature under argon was added carbon tetrachloride (15 mL) and the reaction heated to 50 °C. After 24 h, the reaction evaporated and purified by flash chromatography to provide the title

compound as a white solid, 517 mg (49% yield), mp 96-98 °C. LC/MS gave the correct molecular ion [ (M+H) = 407] for the desired compound.

B.

To a stirred slurry of sodium hydride (60% mineral oil dispersion, 75 mg, 1.88 mmol) in THF (5 mL) at room temperature under argon was added a solution of diethyl malonate (300 ßL, 2.0 mmol) in THF (5 mL). After 30 min, a solution of Part A compound (500 mg, 1.23 mmol) in THF (2 mL) was added in one portion. After 14 h, the reaction mixture was quenched with 5% potassium hydrogen sulfate solution and extracted twice with EtOAc. The organic extracts were combined, dried (MgS04) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 524 mg (80% yield). LC/MS gave the correct molecular ion [ (M+H) + 5311 for the desired compound.

C.

A stirred mixture of part B compound (520 mg, 0.99 mmol) in potassium hydroxide solution (246 mg, 4.4 mmol in 4 mL of water) was heated to reflux under argon for 24 h.

The reaction mixture was cooled, diluted with water (3 mL) and extracted once with Et2O. The aqueous phase was brought to pH 2 with 3 N HC1 and the resulting solids filtered, washed with water and air-dried to give the title compound as a white solid, 365 mg (77% yield), mp 148-150 °C (dec). LC/MS gave the correct molecular ion [(M+H) + = 475] for the desired compound.

Example 8 2, 3-Bis [(2-chlorophenyl) methoxy] benzenepropanoic acid Example 7 Part C compound (256 mg, 0.54 mmol) was heated to 155 °C at a pressure of 1 Torr for 3 h. The reaction mixture was cooled and recrystallized directly from hexanes/toluene to provide the title compound as a white solid (225 mg, 97% yield), mp 131-132 °C. LC/MS gave the correct molecular ion [(M+H) + = 431] for the desired compound.

Example 9 2,3-Bis [(2-chlorophenoxy) methyl] benzoic acid

To a stirred solution of methyl 2, 3-dimethylbenzoate (1.75 g, 10.7 mmol) in carbon tetrachloride (35 mL) under argon was added freshly recrystallized N-bromosuccinimide (3.90 g, 21.9 mmol) and AIBN (50 mg). The reaction mixture was heated to reflux under argon for 4 h and then cooled and filtered. Evaporation gave a yellow oil, 3.53 g, predominantly methyl 2,3-bis (bromomethyl) benzoate.

To a stirred solution of 2-chlorophenol (2.83 g, 22.0 mmol) in DMF (20 mL) at room temperature under argon was added sodium hydride (60% mineral oil dispersion, 880 mg, 22 mmol) over 5 min. The resulting clear solution was stirred 30 min and a solution in DMF (5 mL) of the dibromide prepared above was added. After 14 h, the reaction mixture was quenched with water and extracted three times with Et20. The extracts were combined and washed twice with water, once with brine, dried (MgS04) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a white solid, 2.03 g (46% yield), mp 107-109 °C. LC/MS gave the correct molecular ion [(M+H) + = 417] for the desired compound.

To a solution of Part A compound (270 mg, 0.647 mmol) in EtOH (2 mL) at room temperature under argon was added sodium hydroxide solution (2.0 mL, 1 M, 2.0 mmol).

The mixture was heated to 50 °C for 1 h. The reaction mixture was cooled, diluted with water (3 mL) and extracted once with Et20. The aqueous phase was brought to pH 2 with 1 N HCl and the resulting solids filtered, washed with water and air-dried to give the title compound as a white solid, 238 mg (91% yield), mp 172-174 °C. LC/MS gave the correct molecular ion [ (M+H) = 403] for the desired compound.

Example 10 3-[(2-Chlorophenoxy) methyl]-2-[(2- chlorophenyl) methoxy] benzoic acid

To a stirred solution of 2-bromophenol (3.42 g, 19.8 mmol) in DMF (10 mL) under argon was added propargyl bromide (80% in toluene, 4.12 g, 27.7 mmol) and potassium carbonate (3.80 g, 27.5 mmol). The reaction mixture was stirred for 90 min, then diluted with water and extracted twice with Et20. The extracts were combined, washed once with water, three times with 1 M NaOH (25 mL portions) and once with brine, dried (MgS04) and evaporated.

Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 3.93 g (94% yield). LC/MS gave the correct molecular ion [(M+H) + = 211] for the desired compound.

B.

A stirred slurry of Part A compound (3.00 g, 14.2 mmol) and cesium fluoride (3.02 g, 20 mmol) in N, N- diethylaniline (24 mL) under argon was heated to 210 °C for 4 h. The reaction mixture was then cooled, diluted with hexanes and washed three times with 1 M HCl (100 mL portions). The organic phase was dried (MgSO4) and evaporated. Purification by flash chromatography (hexanes as the elutant) provided the title compound as a colorless oil, 1.94 g (67% yield). LC/MS gave the correct molecular ion [(M+H) + = 211] for the desired compound.

C.

A stirred solution of Part B compound ('1. 94 g, 9.19 mmol) in CH2Cl2 (100 mL) protected from atmospheric moisture by a calcium chloride drying tube was cooled to - 78 °C and a 3% 03/02 gas mixture is bubbled through the solution until a blue color persists (-35 min). The solution was purged with nitrogen gas and then dimethylsulfide (5 mL) was added and the reaction allowed to warm to room temperature. After 4 h, the solution was evaporated and the residue redissolved in MeOH (8 mL) to which was added water (8 mL) and potassium carbonate (1.1 g, 80 mmol). The mixture was heated to 55 °C under argon for 1 h and then cooled, neutralized with 1 M potassium hydrogen sulfate to pH 7 and extracted twice with CH2C12.

The organic extracts were combined, dried (MgS04) and evaporated. Purification by flash chromatography provided the title compound as a light yellow crystalline solid, 1.47 g (80% yield). LC/MS gave the correct molecular ion [(M+H) + = 201] for the desired compound.

D.

To a solution of Part C compound (638 mg, 3.17 mmol) in DMF (10 mL) at room temperature under argon was added sodium hydride (60% mineral oil dispersion, 140 mg, 3.5 mmol). After 20 min, 2-chloro-benzyl chloride (0.50 mL, 4.0 mmol) and tetrabutylammonium iodide (200 mg, 0.5 mmol) was added and the reaction was heated to 60 °C.

After 14 h the reaction mixture was cooled, diluted with Et20 and washed once with 5% potassium hydrogen sulfate solution, twice with water, once with brine, dried (MgSO4) and evaporated. Purification by flash chromatography provided the title compound as a white

solid, 734 mg (71% yield), mp 96-98 °C. LC/MS gave the correct molecular ion [ (M+H) = 325] for the desired compound.

E.

To a solution of Part D compound (672 mg, 2.06 mmol) in CH2Cl2 (10 mL) at room temperature under argon was added diisobutylaluminum hydride solution (1 M in toluene, 2.3 mL, 2.3 mmol). After 1 h, the reaction mixture was quenched with 1 M potassium sodium tartrate solution (4 mL) and stirred for 1 h. The reaction mixture was extracted twice with EtOAc. The organic extracts were combined, dried (MgSO4) and evaporated to provide the title compound as a white solid, 675 mg (100% yield).

LC/MS gave the correct molecular ion [ (M+H) = 327] for the desired compound.

To a solution of Part E compound (407 mg, 1.24 mmol) in CH2Cl2 (5 mL) at 0 °C under argon was added phosphorous tribromide solution (1 M in CH2Cl2, 2.5 mL, 2.5 mmol). After 15 min, the reaction mixture was warmed to room temperature for 1 h and then diluted with CH2C12, washed once with water, once with saturated sodium bicarbonate solution and once with brine. The organic

extract was dried (MgSO4) and evaporated. The product was unstable and therefore used immediately by dissolving in DMF (1 mL) and adding to a solution prepared from 2- chlorophenol (0.2 mL, 1.3 mmol) and sodium hydride (60% mineral oil dispersion, 50 mg, 1.25 mmol) in DMF (3 mL) at room temperature under argon. The reaction mixture was stirred for 16 h. The reaction was quenched with water and extracted three times with hexanes. The hexanes extracts were combined, washed once with water, dried (MgSO4) and evaporated. Purification by flash chromatrography on silica gel provided the title compound as a colorless oil, 115 mg (21% yield). LC/MS gave the correct molecular ion [ (M+H) + 4371 for the desired compound.

G.

To a solution of Part F compound (110 mg, 0.25 mmol) in methanol (1.5 mL) and DMF (2 mL) was added Pd (OAc) 2 (12 mg, 0.05 mmol), dppf (21 mg, 0.05 mmol) and triethylamine (70 FL, 0.5 mmol). The stirred solution was purged twice with carbon monoxide gas and then heated under a CO-filled balloon at 80 °C. After 18 h, the reaction mixture was cooled, diluted with water and brought to pH3 with 10% aqueous potassium hydgrogen sulfate. The mixture was extracted twice with ether and the organic extract dried (MgS04). Flash chromatography on silica gel gave the title compound as a colorless oil, 51 mg (49% yield). LC/MS gave the correct molecular ion [ (M+H) + = 4171 for the desired compound.

H.

To a solution of Part G compound (50 mg, 0.12 mmol) in THF (1 mL) at room temperature under argon was added sodium hyroxide solution (1 mL, 1 M, 1 mmol).

After 14 h, the solution was acidified (1 M HCl) and partially evaporated. The resulting solids were filtered, washed with water and air-dried to give the title compound as a white solid, 45 mg, 93% yield, mp 172-174 °C. LC/MS gave the correct molecular ion [(M+H) + = 403] for the desired compound.

Example 11 (alternate synthesis of example 10) 3-[(2-Chlorophenoxy) methyl]-2-[(2- chlorophenyl) methoxy] benzoic acid

To a solution of Example 10 Part F compound (208 mg, 0.474 mmol) in THF (4 mL) at-78 °C under argon was added n-butyllithium solution (200 ßL, 2.5 M in hexane, 0.5 mmol) over 10 min. After 3 h, dry carbon dioxide gas was bubbled into the reaction mixture as the reaction was allowed to warm to room temperature. After 1 h at room temperature, the reaction mixture was quenched with 1 M NaOH (1 mL, 1 mmol) and extracted twice with hexanes.

The aqueous phase was brought to pH 2 with 1 N HC1 and the resulting solids filtered, washed with water and air- dried to give the title compound as a white solid, 16.5 mg (9% yield), mp 172-174 °C. LC/MS gave the correct molecular ion [ (M+H) = 403] for the desired compound.

Example 12 a-Amino-2, 3-bis [(2-chlorophenyl) methoxy] benzeneacetic acid

To a stirred solution of Example 1 Part B compound (1.009 g, 2.19 mmol) in CH2C12 (20 mL) under argon at room temperature was added a solution prepared from benzotriazole (570 mg, 4.8 mmol) and thionyl chloride (570 mg, 4.8 mmol) in CH2C12 (5 mL) over 2 min. The reaction mixture was stirred for 90 min, then diluted with water and extracted twice with CH2C12. The extracts were combined, washed once with water, once with 0.5 M NaOH (25 mL) and once with brine, dried (MgS04) and evaporated. The residuum was immediately dissolved in DMF (8 mL), treated with sodium azide (570 mg, 8.8 mmol) and stirred at room temperature under argon for 1 h. The reaction mixture was quenched with water and extracted twice with Et20. The extracts were combined, washed twice with water, once with brine dried (MgSO4) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 657 mg (62% yield). LC/MS gave the correct molecular ion [ (M+H) = 486] for the desired compound.

B.

A stirred solution of Part A compound (652 mg, 1.34 mmol) under argon at room temperature in THF (4 mL) was treated with triphenylphosphine (352 mg, 1.34 mmol).

After 15 h, the reaction mixture was evaporated and re- evaporated twice from hexanes to give the title compound as a colorless oil, 965 mg (100% yield). LC/MS gave the correct molecular ion [ (M+H) = 720] for the desired compound.

C.

To a stirred solution of Part B compound (880 mg, 1.22 mmol) in THF (8 mL) at room temperature under argon was added sodium hydroxide solution (2.5 mL, 1 M, 2.5 mmol). After 14 h, the solution was diluted with water and extracted once with CH2C12. The aqueous phase was cooled and the resulting precipitate was filtered. The filtrate was lyophilized and the residue was purified by reverse phase preparative HPLC (YMC S5 ODS 20 x 250 mm column, MeOH/water-TFA elutant) to give the title compound as its trifluoroacetic acid salt, 450 mg (82% yield). LC/MS gave the correct molecular ion [(M+H) + = 432] for the desired compound as its free base.

Example 13 a-(Acetylamino)-2, 3-bis [ (2- chlorophenyl) methoxy] benzeneacetic acid

A stirred slurry of Example 1 Part A compound (4.00 g, 10.33 mmol) in MeOH (10 mL) saturated with ammonia gas under argon at 40-45 °C was treated with additional ammonia gas for 1 h. The slurry was cooled to 5 °C and trimethylsilylcyanide (2.1 mL, 15.7 mmol) was added over 10 min. The temperature was then raised to 45 °C as a yellow solution formed. After 7 h, the reaction mixture was evaporated, re-dissolved in EtOH (60 mL) and hydrogen chloride gas was used to saturate the solution. After 14 h, the reaction mixture was treated with thionyl chloride (0.8 mL) and warmed to 55 °C for 2 h. The solution was cooled to room temperature, evaporated and the resulting solids triturated in Et2O to give the title compound as an orange solid, usable without further purification.

B.

To a stirred solution of Part A compound (197 mg, 0.4 mmol) under argon at room temperature in THF (2 mL) was added triethylamine (0.2 mL, 1.6 mmol), DMAP (2 mg, 0.02 mmol) and acetic anhydride (60 LL, 0.6 mmol). After 15 h, the reaction mixture was diluted with EtOAc, washed once with 10% citric acid, dried (MgS04) and evaporated.

Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 167 mg (83% yield). LC/MS gave the correct molecular ion [(M+H) + = 502] for the desired compound.

C.

To a stirred solution of Part B compound (167 mg, 0.33 mmol) in THF (1 mL) at room temperature under argon was added sodium hydroxide solution (0.5 mL, 1 M, 0.5 mmol). After 14 h, the solution was diluted with water and extracted once with Et20. The aqueous phase was cooled, acidified to pH 2 with 1 N HC1 and the resulting precipitate was filtered, washed with water and air-dried to give the title compound as a white amorphous solid,

104 mg (55% yield). LC/MS gave the correct molecular ion [(M+H)+ = 474] for the desired compound.

Example 14 2,3-Bis [(2-chlorophenyl) methoxy]-a-[(2-methyl-1- oxopropyl) amino] benzeneacetic acid

A.

To a stirred solution of Example 13 Part A compound (197 mg, 0.4 mmol) under argon at 0-5 °C in THF (1. 5 mL) was added triethylamine (0.2 mL, 1.6 mmol), DMAP (2 mg, 0.02 mmol) and isobutyryl chloride (65 FL, 0.6 mmol). The reaction mixture was allowed to warm to room temperature and after 15 h, it was diluted with EtOAc, washed once with 10% citric acid, dried (MgSO4) and evaporated.

Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 156 mg (74% yield). LC/MS gave the correct molecular ion [(M+H) + = 530] for the desired compound.

C.

To a stirred solution of Part B compound (155 mg, 0.29 mmol) in THF (1 mL) at room temperature under argon was added sodium hydroxide solution (0.5 mL, 1 M, 0.5 mmol). After 24 h, the solution was diluted with water and extracted once with Et20. The aqueous phase was cooled, acidified to pH 2 with 1 N HC1 and the resulting precipitate was filtered, washed with water and air-dried to give the title compound as a white amorphous solid, 156 mg (100% yield). LC/MS gave the correct molecular ion [ (M+H) +-502] for the desired compound.

Example 15 a- (Benzoylamino)-2, 3-bis [ (2- chlorophenyl) methoxy] benzeneacetic acid

To a stirred solution of Example 13 Part A compound (197 mg, 0.4 mmol) under argon at 0-5 °C in THF (1. 5 mL) was added triethylamine (0.2 mL, 1.6 mmol), DMAP (2 mg, 0.02 mmol) and benzoyl chloride (70 RL, 0.6 mmol). The reaction mixture was allowed to warm to room temperature and after 15 h, it was diluted with EtOAc, washed once with 10% citric acid, dried (MgSO4) and evaporated.

Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 161 mg (71% yield). LC/MS gave the correct molecular ion [(M+H)+ = 564] for the desired compound.

C.

To a stirred solution of Part B compound (160 mg, 0.28 mmol) in THF (1 mL) at room temperature under argon was added sodium hydroxide solution (0.5 mL, 1 M, 0.5 mmol). After 24 h, the solution was diluted with water and extracted once with Et20. The aqueous phase was cooled, acidified to pH 2 with 1 N HCl and the resulting precipitate was filtered, washed with water and air-dried to give the title compound as a tan amorphous solid, 142 mg (95% yield). LC/MS gave the correct molecular ion [ (M+H) = 536] for the desired compound.

Example 16 2,3-Bis [(2-chlorophenyl) methoxy]-a- [ (difluoroacetyl) amino] benzeneacetic acid

To a stirred solution of Example 13 Part A compound (222 mg, 0.45 mmol) under argon at room temperature in CH2C12 (2.5 mL) was added triethylamine (85 RL, 0.6 mmol), HOAt (69 mg, 0.5 mmol) and difluoroacetic acid (48 mg, 0.5 mmol) was added EDAC (96 mg, 0.5 mmol). After 16 h, the reaction mixture was diluted with EtOAc, washed once with 10% citric acid, dried (MgS04) and evaporated.

Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 156 mg (64% yield). LC/MS gave the correct molecular ion [(M+H) + = 538] for the desired compound.

C.

To a stirred solution of Part B compound (153 mg, 0.28 mmol) in THF (1.5 mL) at room temperature under argon was added a solution of lithium hydroxide monohydrate (13 mg, 0.32 mmol) in water (1 mL). After 24 h, the solution was diluted with water and extracted once with Et20. The aqueous phase was cooled, acidified to pH 2 with 1 N HC1 and the resulting precipitate was

filtered, washed with water and air-dried to give the title compound as an off-white amorphous solid, 144 mg (100% yield). LC/MS gave the correct molecular ion [ (M+H) = 510] for the desired compound.

Example 17 a-[(Aminoacetyl) amino] -2,3-bis [ (2- chlorophenyl) methoxy] benzeneacetic acid hydrochloride

To a stirred solution of N-t-butyloxycarbonyl glycine under argon at-5 °C in THF (2 mL) was added triethylamine (60 gL, 0.5 mmol) and then isobutyl chloroformate (67 µL, 0.52 mL). The resulting slurry was stirred 20 min and a solution of Example 13 Part A compound (222 mg, 0.45 mmol) and triethylamine (70 RL, 0.6

mmol) in THF (1 mL) was added over 1 min. The reaction was allowed to warm to room temperature and stirred.

After 1 h, the reaction mixture was diluted with EtOAc, washed once with 10% citric acid, dried (MgS04) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 102 mg (37% yield). LC/MS gave the correct molecular ion [(M+H) + = 617] for the desired compound.

C.

To a stirred solution of Part B compound (102 mg, 0.17 mmol) in THF (1 mL) at room temperature under argon was added sodium hydroxide solution (0.3 mL, 1 M, 0.3 mmol). After 20 h, the reaction mixture was acidified to pH 2 with 1 N HC1 and extracted with CH2C12. The extract was dried (MgS04), evaporated and then stirred with 4 N HCl/dioxane (1 mL) for 4 h. The solution was evaporated, the residue triturated with Et20 and collected to provide the title compound as an off-white amorphous solid, 90 mg (100% yield). LC/MS gave the correct molecular ion' [ (M+H) + 4891 for the desired compound.

Example 18 2,3-Bis [(2-chlorophenyl) methoxy]-a- [ (methoxyacetyl) amino] benzeneacetic acid

To a stirred solution of Example 13 Part A compound (222 mg, 0.45 mmol) under argon at room temperature in CH2Cl2 (1.5 mL) was added triethylamine (85 RL, 0.6 mmol), HOAt (69 mg, 0.5 mmol) and methoxyacetic acid (46 mg, 0.5 mmol) was added EDAC (96 mg, 0.5 mmol). After 16 h, the reaction mixture was diluted with EtOAc, washed once with 10% citric acid, dried (MgS04) and evaporated.

Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 153 mg (74% yield). LC/MS gave the correct molecular ion [(M+H) + = 518] for the desired compound.

C.

To a stirred solution of Part B compound (153 mg, 0.29 mmol) in THF (2 mL) at room temperature under argon was added a solution of lithium hydroxide monohydrate (13 mg, 0.32 mmol) in water (1 mL). After 24 h, the solution was diluted with water and extracted once with Et20.

The aqueous phase was cooled, acidified to pH 2 with 1 N HC1 and the resulting precipitate was filtered, washed with water and air-dried to give the title compound as an off-white amorphous solid, 120 mg (82% yield). LC/MS gave the correct molecular ion [ (M+H) = 504] for the desired compound.

Example 19 [2,3-Bis [(2-chlorophenyl) methoxy] phenyl] propanedioic acid To a stirred solution of diisopropylamine (160 AL, 1.14 mmol) under argon at-5 °C in THF (3 mL) was added n-

butyllithium solution (0.43 mL, 2.5 M in hexanes, 1.08 mmol). After 15 min, a solution of Example 5 Part E compound (209 mg, 0.5 mmol) in THF (1 mL) was added over 2 min. After 40 min, dry C02 gas was bubbled through the solution for 20 min. The reaction mixture was diluted with EtOAc, washed once with 10% citric acid, dried (MgS04) and evaporated. Purification by reverse phase preparative HPLC (YMC S5 ODS 20 x 250 mm column, acetonitrile/water-0. 1% TFA gradient) provided the title compound as a light yellow oil, 164 mg (71% yield). LC/MS gave the correct molecular ion [ (M+H) = 461] for the desired compound.

Example 20 [ [2, 3-Bis [(2-chlorophenyl) methoxy] phenyl] methyl]-a- (hydroxymethyl) benzeneacetic acid To a stirred solution of diisopropylamine (160 RL, 1.14 mmol) under argon at-5 °C in THF (3 mL) was added n- butyllithium solution (0.43 mL, 2.5 M in hexanes, 1.08 mmol). After 15 min, the reaction mixture was cooled to - 78 °C and a solution of Example 5 Part E compound (209 mg, 0.5 mmol) in THF (1 mL) was then added over 2 min.

After an additional 15 min, DMPU was added (2 mL) and the solution warmed to 0 °C. Formaldehyde gas (by the

pyrolysis of paraformaldehyde [300 mg, 10 mmol] at 190°C) was introduced to the reaction mixture by a gas inlet tube. The reaction mixture was stirred for 1 h, diluted with EtOAc, washed once with 5% potassium hydrogen sulfate, dried (MgS04) and evaporated. Purification by flash chromatography on silica gel (1: 39: 360 HOAc/MeOH/CH2Cl2 as elutent) provided the title compound as a white solid, 136 mg (61% yield). LC/MS gave the correct molecular ion [ (M+H) + 4471 for the desired compound.

Example 21 3- [l- (2-Chlorophenyl) ethoxyl-2- [ (2-chlorophenyl) methoxyl- a-hydroxybenzeneacetic acid To a stirred solution of diisopropylamine (170 RL, 1.21 mmol) under argon at-5 °C in THF (3 mL) was added n- butyllithium solution (483 gL, 2.5 M in hexanes, 1.21 mmol). After 15 min, the reaction mixture was cooled to -78 °C and a solution of Example 1 Part B compound (248 mg, 0.537 mmol) in THF (1 mL) was then added over 2 min.

After an additional 15 min, DMPU was added (2 mL) and then methyl iodide (42 RL, 0.68 mmol). The reaction mixture was stirred for 2 h and then warmed to-40 °C.

After 14 h, the reaction was quenched with sodium

hydroxide solution (1 M), warmed to room temperature and stirred for 1 h. The reaction mixture was acidified with 5% potassium hydrogen sulfate, extracted with CH2C12, dried (MgS04) and evaporated. Purification by reverse phase preparative HPLC (YMC S5 ODS 20 x 250 mm column, acetonitrile/water-0. 1% TFA gradient) provided the title compound, a colorless oil, as a 1: 1 mixture of diastereomers, 75 mg (31% yield). LC/MS gave the correct molecular ion [ (M+H) + 4471 for the desired compound.

Example 22 2,3-Bis [(2-Chlorophenoxy) methyl]-a-hydroxybenzeneacetic acid

To a stirred solution of 2,3-dimethylbenzoic acid (1.50 g, 10 mmol) in CH2Cl2 (10 mL) under argon at room temperature was added oxalyl chloride solution (8.0 mL, 2 M in CH2C12, 16 mmol) and then DMF (0.2 mL). After 2 h, the solution was evaporated and re-evaporated twice from

CH2Cl2 and then dissolved in CH2Cl2 (10 mL). This solution was added, over 30 min, to a stirred slurry of N-methoxy-N-methylammonium chloride (1.10 g, 11 mmol), DMAP (5 mg, 0.04 mmol) and triethylamine (3.0 mL, 21.4 mmol) in CH2C12 (15 mL) at 10 °C. After the addition was complete, the reaction was allowed to warm to room temperature and stirred for 16 h. The reaction mixture was then diluted with CH2C12, washed once with 10% citric acid, once with water and once with brine. The organic extract was dried (MgSO4) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 1.38 g (71% yield). LC/MS gave the correct molecular ion [(M+H) + = 194] for the desired compound.

B.

To a stirred solution of part A compound (1.32 g, 6.83 mmol) in carbon tetrachloride (20 mL) under argon was added freshly recrystallized N-bromosuccinimide (3.10 g, 13.7 mmol) and AIBN (50 mg). The reaction mixture was heated to reflux under argon for 3 h and then cooled and filtered. Purification by flash chromatography on silica gel provided predominantly N-methoxy-N-methyl 2,3- bis (bromomethyl) benzamid as a colorless oil, 1.08 g (45% yield).

To a stirred solution of 2-chlorophenol (1.06 mL, 10.2 mmol) in DMF (10 mL) at room temperature under argon was added sodium hydride (60% mineral oil dispersion, 385 mg, 9.6 mmol) over 5 min. The resulting clear solution

was stirred 30 min and a solution in DMF (5 mL) of the dibromide prepared above was added and the reaction mixture heated to 65°C. After 1 h, the reaction mixture was quenched with water and extracted three times with Et20. The extracts were combined and washed twice with water, once with brine, dried (MgS04) and evaporated.

Purification by flash chromatography on silica gel provided the title compound as a light yellow oil, 1.11 g (83% yield). LC/MS gave the correct molecular ion [(M+H) + = 446] for the desired compound.

C.

To a solution of Part B compound (2.56 g, 5.75 mmol) in THF (30 mL) at-78 °C under argon was added diisobutylaluminum hydride solution (7.6 mL, 1.5 M in toluene, 11.4 mmol) over 10 min. The reaction was stirred for 1 h and then warmed to room temperature and stirred for 2 h. The reaction mixture was then quenched with water (2 mL) and then stirred with potassium sodium tartrate solution (20 mL, 1 M) for 1 h. The mixture was extracted twice with EtOAc, the organic phases combined, dried (MgS04) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a white solid, 1.58 g (71% yield), mp 101-103 °C.

LC/MS gave the correct molecular ion [ (M+H) + 3871 for the desired compound.

D.

By the method of Example 1 Part B, Part C compound (532 mg, 1.37 mmol) was converted to the title compound as an amorphous white solid, 425 mg (67% yield). LC/MS gave the correct molecular ion [ (M+H) = 461] for the desired compound.

E.

By the method of Example 1 Part C, Part D compound (413 mg, 0.90 mmol) was converted to the title compound as a white powder, 410 mg (100% yield). LC/MS gave the correct molecular ion [(M+H)+ = 433] for the desired compound as the protonated acid.

Example 23 2, 3-Bis [(2-chlorophenyl) methoxy]-a-mercaptobenzeneacetic acid

To a stirred solution of Example 1 Part B compound (462 mg, 1.00 mmol) in CH2Cl2 (5 mL) under argon at room temperature was added thionyl chloride (80 RL, 1.1 mmol) and then DMF (80 gL, 1.0 mmol) over 2 min. The reaction mixture was stirred for 1 h, then quenched with saturated sodium bicarbonate solution and extracted twice with CH2Cl2. The extracts were combined, dried (MgSO4) and evaporated. The residuum was immediately dissolved in EtOH (5 mL) and added to a solution prepared from thiolacetic acid (0.35 mL, 4.9 mmol) and potassium t- butoxide (539 mg, 4. 8 mmol) in EtOH (5 mL). After 16 h, the reaction mixture was quenched with water and extracted three times with EtOAc. The organic extracts were combined, dried (MgSO4) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 330 mg (64% yield). LC/MS gave the correct molecular ion [ (M+H) + 5191 for the desired compound.

To a stirred solution of part A compound (330 mg, 0.64 mmol) in nitrogen-purged THF (5 mL) at room temperature was added sodium hydroxide solution (3.0 mL, 1 M, 3.0 mmol). After 24 h, the reaction was quenched with 10% citric acid and extracted twice with EtOAc. The extracts were combined, dried (MgS04) and evaporated to provide predominantly the title compound as a colorless oil, 255 mg (89% yield). LC/MS gave the correct molecular ion [ (M+H)' = 8941 for the desired compound.

To a solution of Part B compound (52 mg, 0.058 mmol) in THF (2 mL) and water (2 mL) at room temperature under argon was added tributylphosphine (50 L, 0.2 mmol). The reaction was stirred for 5 min and then purified directly by reverse phase preparative HPLC (YMC S5 ODS 20 x 250 mm column, acetonitrile/water-TFA elutant) to give the title compound as a colorless oil, 32 mg, 62% yield. LC/MS gave the correct molecular ion [(M+H) + = 449] for the desired compound.

Example 24 2,3-Bis [(2-chlorophenyl)methoxy]-α-fluorobenzeneacetic acid

To a stirred solution of Example 1 Part B compound (461 mg, 1.00 mmol) in CH2Cl2 (10 mL) under argon at 0 °C was added a solution of diethylaminosulfur trifluoride [DAST] (265 WL, 2.0 mmol) in CH2Cl2 (5 mL ? over 20 min. The reaction mixture was stirred for an additional 45 min, then quenched with saturated sodium bicarbonate solution and extracted twice with CH2Cl2. The extracts were combined, dried (MgSO4) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a light yellow oil, 218 mg (47% yield). LC/MS gave the correct molecular ion [(M+H)+ = 463] for the desired compound.

B.

To a stirred solution of part A compound (218 mg, 0. 47 mmol) in MeOH (2 mL) and THF (2 mL) at room temperature under argon was added sodium hydroxide solution (2.0 mL, 1 M, 2.0 mmol). After 14 h, the reaction was diluted with water and extracted once with ether. The aqueous phase was brought to pH 2 with 5% potassium hydrogen sulfate solution. The resulting solids were collected, washed with water and air-dried to give the title compound as a white solid, 202 mg (98% yield), mp 92-94 °C. LC/MS gave the correct molecular ion [ (M+H) + 4351 for the desired compound.

Example 25 3-[(2-Chlorophenyl) methoxy]-2-hydroxybenzoic acid ethyl ester

To a stirred solution of trifluoroacetic acid (200 mL) and trifluoroacetic anhydride (100 mL) at-4 °C was added 2, 3-dihydroxybenzoic acid (20.0 g, 130 mmol) over 5 min. To this slurry was added acetone (34 mL, 460 mmol) over the course of 1 h. After an additional 3 h, the reaction was allowed to warm to room temperature in situ and stirred 4 h. The resulting solution was evaporated and the resulting residue poured into ice water (300 mL).

Solid sodium bicarbonate was added portionwise until the solution reached-pH 9. The gummy residue was extracted into EtOAc (300 mL) and the aqueous phase was extracted twice with EtOAc. The extracts were combined, washed once with brine, dried (Na2SO4) and evaporated.

Purification by flash chromatography on silica gel provided the title compound 9.87 g (39% yield). LC/MS gave the correct molecular ion [(M+H) + = 197] for the desired compound.

B.

To a stirred solution of part A compound (3.0 g, 15.4 mmol) in DMF (26 mL) at room temperature under argon was added 2-chlorobenzyl chloride (2.3 mL, 18.2 mmol), potassium carbonate (3.2g, 23 mmol) and tetrabutylammonium iodide (57 mg, 0.15 mmol). The

mixture was heated to 50 °C and stirred for 2 h. After cooling to room temperature, the reaction was filtered through Celtes and poured into Et20 (250 mL). The solution was washed three times with water and once with brine. After drying (Na2SO4) and evaporation, the title compound was isolated and used in part C without further purification (5.47 g, >100% yield).

C.

To a stirred solution of part B compound (5.47 g, -15. 4 mmol) in THF (100 mL) at room temperature under argon was added a 25% solution of sodium ethoxide in ethanol (4.5 mL, 16 mmol) and the mixture was stirred at room temperature for 1 h. The mixture was then diluted with water (400 mL) and ethyl acetate (400 mL). The suspension was treated with 50 mL of 1 N hydrochloric acid and the organic fraction was washed with brine, dried (MgS04) and evaporated to an oil (4.65 g, 85% yield.

Example 26 2, 3-Bis [(2-chlorophenyl) methoxy]-a-oxobenzeneacetic acid

To a stirred solution of Example 1 Part B compound (400 mg, 0.867 mmol) in DMSO (1 mL) at 90 °C was added acetic anhydride (0.1 mL, 1 mmol) over 1 h. After an additional 3 h, the reaction mixture was cooled, diluted with water and extracted three times with ether. The organic extracts were combined, washed with brine, dried (Na2SO4) and evaporated. Purification by flash chromatography on silica gel provided the title compound, 382 mg (96% yield). LC/MS gave the correct molecular ion [(M+Na) + = 481] for the desired compound.

B.

To a stirred solution of Part A compound (67 mg, 0.15 mmol) in THF (0.3 mL) at room temperature under argon was added sodium hydroxide solution (0.3 mL, 1 M, 0.3 mmol). After 18 h, the reaction mixture was diluted with water and extracted three times with ether. The aqueous layer was cooled to 5 °C, acidified to pH 3 with 1 M hydrochloric acid and extracted three times with ether. The acidicified organic extracts were combined, dried (Na2SO4) and evaporated to provide the title compound as a white solid, 55 mg (86% yield), mp 116-118 °C. LC/MS gave the correct molecular ion [(M+H)+ = 431] for the desired compound.

Example 27 2,3-Bis [(2-chlorophenyl) methoxy]-a,- difluorobenzeneacetic acid

To a stirred solution of Example 26 Part A compound (256 mg, 0.557 mmol) in CH2C12 (100 gel) under argon at room temperature was added DAST (160 RL, 1.2 mmol). The reaction mixture was stirred for 22 h, the reaction mixture was quenched with water and extracted three times with CH2C12. The organic extracts were combined, dried (MgS04) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a white solid, 197 mg (74% yield), mp 55-57 °C. LC/MS gave the correct molecular ion [ (M+H) + 4811 for the desired compound.

B.

To a stirred solution of part A compound (195 mg, 0.41 mmol) in THF (2 mL) at room temperature under argon was added sodium hydroxide solution (0. 6 mL, 1 M, 0.6 mmol). After 15 h, the reaction was diluted with water and extracted once with ether. The aqueous phase was brought to pH 2 with 5% potassium hydrogen sulfate solution. The resulting solids were collected, washed

with water and air-dried to give the title compound as a white solid, 168 mg (92% yield), mp 113-115 °C. LC/MS gave the correct molecular ion [ (M+H) + = 4531 for the desired compound.

Examples 28-336 Salable reaction vessels were each charged with potassium carbonate (32 mg, 0.23 mmol), tetrabutylammonium iodide (-1 mg) and DMF (244 pL). A solution of Example 25 Part C compound (489 RL, 0.2 M in DMF, 0.0978 mmol) and of R-X (0.147 mmol, 0.2 M in THF) was added and the reaction vessels were agitated and heated to 60 °C. After 14 h, the reactions were cooled to room temperature and EtOH (2 mL) was added to each reaction, followed by a solution of sodium hydroxide in ethanol (733 gel, 0.3 M, 0.2 mmol). The reactions were heated again at 60 °C for 5 h and cooled to room temperature. The contents of each reaction vessel were diluted with MeOH (-2 mL) and purified by reverse phase preparative HPLC (YMC S5 ODS 20 x 100 mm column, MeOH/water-TFA elutant) to give the title compound. Mass spectrometric and HPLC data were collected for all compounds. Following the above procedure, the following compounds of the invention were prepared: Ex. CAS Name Elemental formula Mass ion type Spec. inferred m/z 28 2-[(2-Bromophenyl)methoxy]-3- C21 H16 Br Cl O4 466 [M+NH4] [(2-chlorophenyl) methoxy] benzoic acid 29 3-[(2-Chlorophenyl)methoxy]-2- C22 H19 Cl O4 400 [M+NH4] [(2-methylphenyl)methoxy] benzoic acid 30 3-[(2-Chlorophenyl)methoxy]-2- C22 H19 Cl O4 400 [M+NH4] [ (3-methylphenyl) methoxy] benzoic acid 31 2-[(4-Bromophenyl) methoxy]-3-C21 H16 Br Cl 04 466 [M+NH4] [(2-chlorophenyl) methoxy] benzoic acid 32 3-[(2-Chlorophenyl)methoxy]-2- C25 H25 Cl 04 442 [M+NH4] [ [4- (1, 1-dimethylethyl) phenyl] methoxy] benzoic acid 33 3-[(2-Chlorophenyl)methoxy]-2- C22 H19 Cl O4 400 [M+NH4] [ (4-methylphenyl) methoxy] benzoic acid 34 3-[(2-Chlorophenyl) methoxy]-2-C21 H16 Cl F 04 404 [M+NH4] [(2-fluorophenyl) methoxy] benzoic acid 35 3- [ (2-Chlorophenyl) methoxy]-2- C21 H15 CI F2 04 422 [M+NH4] [(2,6-difluorophenyl) methoxy] benzoic acid 36 3-[(2-Chlorophenyl) methoxy]-2-C21 H16 Cl F 04 404 [M+NH4] [ (3-fluorophenyl) methoxy] benzoic acid 37 3-[(2-Chlorophenyl) methoxy]-2-C21 H16 Ci F 04 404 [M+NH4] [(4-fluorophenyl) methoxy] benzoic acid 38 3-[(2-Chlorophenyl) methoxy]-2-C22 H16 Cl F3 04 454 [M+NH4] [ [3- (trifluoromethyl) phenyl] methoxy] benzoic acid 39 3-[(2-Chlorophenyl) methoxy]-2-C22 H16 Cl F3 04 454 [M+NH4] [ [4- (trifluoromethyl) phenyl] methoxy] benzoic acid 40 3-[(2-Chlorophenyl) methoxy]-2-C21 H15 Cl3 04 454 [M+NH4] [(2,6-dichlorophenyl) methoxy] benzoic acid 41 2-[(3-Chlorophenyl)methoxy]-3- C21 H16 Cl2 O4 420 [M+NH4] [(2-chlorophenyl) methoxy] benzoic acid 42 3-[(2-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4) [(2,4-dichlorophenyl) methoxy] benzoic acid 43 2-[(2-Chloro-6-fluorophenyl) C21 H15 Cl2 F 04 438 [M+NH4] methoxy]-3-[(2-chlorophenyl) methoxy] benzoic acid 44 3-[(2-Chlorophenyl)methoxyl]-2- C24 H23 CI 04 428 [M+NH4] [ (2, 4, 6-trimethylphenyl) methoxy] benzoic acid 45 3-[(2-Chlorophenyl)methoxy]-2- C23 H21 Cl 04 414 [M+NH4] [(2,5-dimethylphenyl) methoxy] benzoic acid 46 3-[(2-Chlorophenyl) methoxy]-2-C21 H15 Cl3 04 454 [M+NH4] [ (3, 4-dichlorophenyl) methoxy] benzoic acid 47 3-[(2-Chlorophenyl)methoxy]-2- C22 H19 Cl O5 416 [M+NH4] [ (3-methoxyphenyl) methoxy] benzoic acid 48 3-[(2-Chlorophenyl) methoxy]-2-C22 H19 Cl 05 416 [M+NH4] [ (4-methoxyphenyl) methoxy] benzoic acid 49 3- [ (2-Chlorophenyl) methoxy]-2- C28 H23 Cl 05 492 [M+NH4] [ [4- (phenylmethoxy) phenyl] methoxy] benzoic acid 50 2-([1,1'-Biphenyl]-4-ylmethoxy)-3- C27 H21 Cl O4 462 [M+NH4] [(2-chlorophenyl) methoxy] benzoic acid 51 3-[(2-Chlorophenyl)methoxy]-2- C22 H16 Cl N O4 411 [M+NH4] [(2-cyanophenyl) methoxy] benzoic acid 52 3-[(2-Chlorophenyl)methoxy]-2- C22 H16 Cl N O4 411 [M+NH4] [ (3-cyanophenyl) methoxy] benzoic acid 53 3-[(2-Chlorophenyl)methoxy]-2- C22 H16 Cl N O4 411 [M+NH4] [ (4-cyanophenyl) methoxy] benzoic acid 54 3-[(2-Chlorophenyl) methoxy]-2-C25 H19 Cl 04 436 [M+NH4] (1-naphthalenylmethoxy) benzoic acid 55 3-[(2-Chlorophenyl)methoxy]-2- C26 H21 Cl 04 450 [M+NH4] [(2-methyl-1-naphthalenyl) methoxy] benzoic acid 56 3-[(2-Chlorophenyl)methoxy]-2- C25 H19 Cl O4 436 [M+NH4) (2-naphthalenylmethoxy) benzoic acid 57 2-[[3, 4-Bis (phenylmethoxy) C35 H29 Cl 06 598 [M+NH4] phenyl] methoxy]-3- [ (2- chlorophenyl) methoxy] benzoic acid 58 2-[(6-Chloro-1, 3-benzodioxol-5-C22 H16 Cl2 06 464 [M+NH4] yl)methoxy]-3-[(2-chlorophenyl) methoxy] benzoic acid 59 3-[(2-Chlorophenyl) methoxy]-2-C22 H18 Cl N 06 445 [M+NH4] [(2-methyl-3-nitrophenyl) methoxy] benzoic acid 60 3-[(2-Chlorophenyl)methoxy]-2- C21 H16 Cl N O6 431 [M+NH4] [(2-nitrophenyl) methoxy] benzoic acid 61 3- [ (2-Chlorophenyl) methoxy]-2- C21 H15 C12 N 06 446 [M-H] [ (4-chloro-2-nitrophenyl) methoxy] benzoic acid 62 3-[(2-Chlorophenyl)methoxy]-2- C21 H16 Cl N O6 431 [M+NH4] [ (3-nitrophenyl) methoxy] benzoic acid 63 3-[(2-Chlorophenyl)methoxy]-2- C22 H18 Cl N O7 461 [M+NH4] [(2-methoxy-5-nitrophenyl) methoxy] benzoic acid 64 3-[(2-Chlorophenyl)methoxy]-2- C22 H18 Cl N O6 445 [M+NH4] [ (5-methyl-2-nitrophenyl) methoxy] benzoic acid 65 3-[(2-Chlorophenyl)methoxy]-2- C21 H16 Cl N O6 412 [M-H] [ (4-nitrophenyl) methoxy] benzoic acid 66 3-[(2-Chlorophenyl)methoxy]-2- C28 H23 Cl 06 S 540 [M+NH4] [[2-[(phenylsulfonyl) methyl] phenyl] methoxy] benzoic acid 67 3-[(2-Chlorophenyl)methoxy]-2- C21 H15 Cl F2 O4 403 [M-H] [ (3, 4-difluorophenyl) methoxy] benzoic acid 68 3-[(2-Chlorophenyl) methoxy]-2-C21 H15 Cl F2 04 422 [M+NH4] [(2,5-difluorophenyl) methoxy] benzoic acid 69 2-[[3, 5-Bis (trifluoromethyl) C23 H15 Cl F6 04 522 [M+NH4] phenyl] methoxy]-3-[(2- chlorophenyl) methoxy] benzoic acid 70 3-[(2-Chlorophenyl) methoxy]-2-C21 H15 Cl F2 04 422 [M+NH4] [ (3, 5-difluorophenyl) methoxy] benzoic acid 71 3-[(2-Chlorophenyl) methoxy]-2-C21 H15 Cl F2 04 422 [M+NH4] [(2,4-difluorophenyl) methoxy] benzoic acid 72 3-[(2-Chlorophenyl) methoxy]-2-C23 H21 Cl 04 414 [M+NH4] [ (3, 5-dimethylphenyl) methoxy] benzoic acid 73 3-[(2-Chlorophenyl)methoxy]-2- C25 H25 Cl 04 442 [M+NH4] [ (2, 3,5, 6-tetramethylphenyl) methoxy] benzoic acid 74 3-[(2-Chlorophenyl)methoxy]-2- C23 H21 Cl 04 395 [M-H] [(2,4-dimethylphenyl) methoxy] benzoic acid 75 3-[(2-Chlorophenyl)methoxy]-2- C24 H23 Cl 04 409 [M-H] [ [4- (l-methylethyl) phenyl] methoxy] benzoic acid 76 3-[(2-Chlorophenyl)methoxy]-2- C21 H16 Cl I O4 512 [M+NH4] [ (3-iodophenyl) methoxy] benzoic acid 77 2-[(4-Carboxyphenyl)methoxy]-3- C22 H17 Cl O6 411 [M-H] [(2-chlorophenyl) methoxy] benzoic acid 78 3-[(2-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 435 [M-H] [(2, 3-dichlorophenyl) methoxy] benzoic acid 79 3-[(2-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4) [(2,5-dichlorophenyl) methoxy] benzoic acid 80 3-[(2-Chlorophenyl)methoxy]-2- C23 H21 Cl 04 395 [M-H] [ (4-ethylphenyl) methoxy] benzoic acid 81 2-[(4-Chlorophenyl)methoxy]-3- C21 H16 Cl2 O4 420 [M+NH4] [(2-chlorophenyl) methoxy] benzoic acid 82 2-[(3-Bromophenyl) methoxy]-3-C21 H1 6 Br Cl 04 466 [M+NH4] [(2-chlorophenyl) methoxy] benzoic acid 83 3-[(2-Chlorophenyl)methoxy]-2- C27 H21 Cl 05 478 [M+NH4] [ (3-phenoxyphenyl) methoxy] benzoic acid 84 3-[(2-Chlorophenyl) methoxy]-2-C22 H18 Cl F 04 418 [M+NH4] [(2-fluoro-3-methylphenyl) methoxy] benzoic acid 85 3-[(2-Chlorophenyl)methoxy]-2- C21 H15 Cl F2 O4 422 [M+NH4] [(2,3-difluorophenyl) methoxy] benzoic acid 86 2- [ (3-Chloro-2- C21 H15 CI2 F 04 438 [M+NH4] fluorophenyl) methoxy]-3-[(2- chlorophenyl) methoxy] benzoic acid 87 3-[(2-Chlorophenyl)methoxy]-2- C29 H19 Cl O6 516 [M+NH4) [ (9, 10-dihydro-9, 10-dioxo-2- anthracenyl) methoxy] benzoic acid 88 3-[(2-Chlorophenyl)methoxy]-2- C22 H18 Cl N O6 445 [M+NH4] [ (4-methyl-3-nitrophenyl) methoxy] benzoic acid 89 2- [ (3-Benzoylphenyl) methoxy]-3- C28 H21 Cl 05 490 [M+NH4] [(2-chlorophenyl) methoxy] benzoic acid 90 3-[(2-Chlorophenyl)methoxy]-2- C21 H15 Br2 Cl 04 544 [M+NH4] [ (3, 5-dibromophenyl) methoxy] benzoic acid 91 3-[(2-Chlorophenyl)methoxy]-2- C22 H19 Cl O5 416 [M+NH4] [(2-methoxyphenyl) methoxy] benzoic acid 92 3- [(2-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [ (3, 5-dichlorophenyl) methoxy] benzoic acid 93 3-[(2-Chlorophenyl)methoxy]-2- C22 H15 Cl F4 O4 472 [M+NH4] [ [2-fluoro-5- (trifluoromethyl) phenyl] methoxy] benzoic acid 94 3-[(2-Chlorophenyl) methoxy]-2-C22 H15 Cl F4 04 472 [M+NH4] [ [3-fluoro-5- (trifluoromethyl) phenyl] methoxy] benzoic acid 95 3-[(2-Chlorophenyl)methoxy]-2- C22 H15 Cl F4 O4 472 [M+NH4] [ [4-fluoro-2- (trifluoromethyl) phenyl] methoxy] benzoic acid 96 3-[(2-Chlorophenyl)methoxy]-2- C22 H15 Cl F4 O4 472 [M+NH4] [ [4-fluoro-3- (trifluoromethyl) phenyl] methoxy] benzoic acid 97 3-[(2-Chlorophenyl) methoxy]-2-C21 H14 Cl F3 04 440 [M+NH4] [ (2, 3, 6-trifluorophenyl) methoxy] benzoic acid 98 3-[(2-Chlorophenyl)methoxy]-2- C21 H14 Cl F3 O4 440 [M+NH4] [ (2, 4, 5-trifluorophenyl) methoxy] benzoic acid 99 3-[(2-Chlorophenyl)methoxy]-2- C21 H14 Cl F3 O4 440 [M+NH4] [ (2, 4, 6-trifluorophenyl) methoxy] benzoic acid 100 3-[(2-Chlorophenyl)methoxy]-2- C22 H16 Cl F3 O5 470 [M+NH4] [ [4- (trifluoromethoxy) phenyl] methoxy] benzoic acid 101 3-[(2-Chlorophenyl) methoxy]-2-C22 H16 Cl F3 05 470 [M+NH4] [ [3- (trifluoromethoxy) phenyl] methoxy] benzoic acid 102 3-[(2-Chlorophenyl)methoxy]-2- C23 H21 Cl 06 446 [M+NH4] [ (3, 5-dimethoxyphenyl) methoxy] benzoic acid 103 2- ( [1, 1'-Biphenyl]-2-ylmethoxy)-3- C27 H21 Cl 04 462 [M+NH4] [(2-chlorophenyl) methoxy] benzoic acid 104 3-[(2-Chlorophenyl)methoxy]-2- C22 H19 Cl O6 S 464 [M+NH4] [ [4- (methylsulfonyl) phenyl] methoxy] benzoic acid 105 3-[(2-Chlorophenyl)methoxy]-2- C23 H20 Cl N 08 491 [M+NH4] [ (4, 5-dimethoxy-2- nitrophenyl) methoxy] benzoic acid 106 3-[(2-Chlorophenyl)methoxy]-2- C21 H16 Cl O4 512 [M+NH4] [ (4-iodophenyl) methoxy] benzoic acid 107 2-[(2-Bromophenyl)methoxy]-3- C21 H15 Br Cl2 O4 499 [M+NH4] [(2, 4-dichlorophenyl) methoxy] benzoic acid 108 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H18 Cl2 04 453 [M+NH4] 2-[(2-methylphenyl) methoxy] benzoic acid 109 3-[(2,4-Dichlorophenyl)methoxy]- C22 H18 Cl2 O4 434 [M+NH4] 2- [ (3-methylphenyl) methoxy] benzoic acid 110 2-[(4-Bromophenyl) methoxy]-3-C21 H15 Br Cl2 04 498 [M+NH4] [(2, 4-dichlorophenyl) methoxy] benzoic acid 111 3-[(2,4-Dichlorophenyl)methoxy]- C25 H24 C12 04 476 [M+NH4] 2-[[4-(1,1-dimethylethyl) phenyl] methoxy] benzoic acid 112 3-[(2,4-Dichlorophenyl)methoxy]- C22 H18 Cl2 O4 434 [M+NH4] 2- [ (4-methylphenyl) methoxy] benzoic acid 113 3-[(2,4-Dichlorophenyl)methoxy]- C21 H15 Cl2 F O4 438 [M+NH4] 2-[(2-fluorophenyl) methoxy] benzoic acid 114 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H14 Cl2 F2 04 456 [M+NH4] 2-[(2, 6-difluorophenyl) methoxy] benzoic acid 115 3-[(2, 4-Dichiorophenyl) methoxy]-C21 H15 Cl2 F 04 438 [M+NH4] 2- [ (3-fluorophenyl) methoxy] benzoic acid 116 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H15 Cl2 F 04 438 [M+NH4] 2- [ (4-fluorophenyl) methoxy] benzoic acid 117 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H15 Cl2 F3 04 488 [M+NH4] 2-[[3-(trifluoromethyl) phenyl] methoxy] benzoic acid 118 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H15 Cl2 F3 04 488 [M+NH4] 2-[[4-(trifluoromethyl) phenyl] methoxy] benzoic acid 119 2-[(2, 6-Dichlorophenyl) methoxy]-C21 H14 Cl4 04 488 [M+NH4] 3-[(2, 4-dichlorophenyl) methoxy] benzoic acid 120 2- [ (3-Chlorophenyl) methoxy]-3- C21 H15 C13 04 454 [M+NH4] [(2,4-dichlorophenyl) methoxy] benzoic acid 121 2-[(2-Chlorophenyl) methoxy]-3-C21 H15 Cl3 04 454 [M+NH4] [(2,4-dichlorophenyl) methoxy] benzoic acid 122 2-[(2-Chloro-6- C21 H14 Cl3 F 04 472 [M+NH4] fluorophenyl) methoxy]-3- [ (2, 4- dichlorophenyl) methoxy] benzoic acid 123 3-[(2,4-Dichlorophenyl)methoxy]- C23 H20 Cl2 04 448 [M+NH4] 2-[(2,5-dimethylphenyl) methoxy] benzoic acid 124 2-[(3,4-Dichlorophenyl)methoxy]- C21 H14 Cl4 O4 488 [M+NH4] 3-[(2,4-dichlorophenyl) methoxy] benzoic acid 125 2-([1,1'-Bi[phenyl]-4-ylmethoxy)-3- C27 H20 Cl2 O4 496 [M+NH4] [(2,4-dichlorophenyl) methoxy] benzoic acid 126 2- [ (2-Cyanophenyl) methoxy]-3- C22 H15 C12 N 04 445 [M+NH4] [(2,4-dichlorophenyl) methoxy] benzoic acid 127 3-[(2,4-Dichlorophenyl)methoxy]- C25 H18 Cl2 O4 470 [M+NH4] 2-(1-naphthalenylmethoxy) benzoic acid 128 3-[(2,4-Dichlorophenyl)methoxy]- C26 H20 Cl2 04 484 [M+NH4] 2-[(2-methyl-1-naphthalenyl) methoxy] benzoic acid 129 3-[(2, 4-Dichlorophenyl) methoxy]-C25 H18 Cl2 04 470 [M+NH4] 2-(2-naphthalenylmethoxy) benzoic acid 130 2-[(6-Chloro-1, 3-benzodioxol-5-C22 H15 Cl3 06 498 [M+NH4] yl) methoxy]-3- [ (2, 4- dichlorophenyl) methoxy] benzoic acid 131 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H17 Cl2 N 06 479 [M+NH4] 2-[(2-methyl-3-nitrophenyl) methoxy] benzoic acid 132 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H15 Cl2 N 06 465 [M+NH4] 2- [ (3-nitrophenyl) methoxy] benzoic acid 133 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H17 Cl2 N 07 495 [M+NH4] 2-[(2-methoxy-5-nitrophenyl) methoxy] benzoic acid 134 3-[(2, 4-Dichlorophenyl) methoxy]-C28 H22 Cl2 06 S 574 [M+NH4] 2-[[2-[(phenylsulfonyl) methyl] phenyl] methoxy] benzoic acid 135 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H14 Cl2 F2 04 456 [M+NH4] 2-[(3,4-difluorophenyl) methoxy] benzoic acid 136 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H14 Cl2 F2 04 456 [M+NH4] 2-[(2,5-difluorophenyl) methoxy] benzoic acid 137 2-[[3,5-Bis(trifluoromethyl) C23 H14 Cl2 F6 O4 556 [M+NH4] phenyl]methoxy]-3-[(2, 4- dichlorophenyl) methoxy] benzoic acid 138 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H14 Cl2 F2 04 456 [M+NH4] 2- [ (3, 5-difluorophenyl) methoxy] benzoic acid 139 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H14 Cl2 F2 04 456 [M+NH4] 2-[(2,4-difluorophenyl) methoxy] benzoic acid 140 3-[(2,4-Dichlorophenyl)methoxy]- C23 H20 Cl2 04 448 [M+NH4] 2- [ (3, 5-dimethylphenyl) methoxy] benzoic acid 141 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H15 Cl2 F3 04 488 [M+NH4] 2-[[2-(trifluoromethyl) phenyl] methoxy] benzoic acid 142 3-[(2, 4-Dichlorophenyl) methoxy]-C23 H20 Cl2 O4 448 [M+NH4] 2-[(2,4-dimethylphenyl) methoxy] benzoic acid 143 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H15 Cl2 104 546 [M+NH4] 2- [ (3-iodophenyl) methoxy] benzoic acid 144 2-[(2, 3-Dichlorophenyl) methoxy]-C21 H14 Cl4 04 488 [M+NH4] 3-[(2,4-dichlorophenyl) methoxy] benzoic acid 145 2-[(2,5-Dichlorophenyl)methoxy]- C21 H14 Cl4 O4 488 [M+NH4] 3-[(2,4-dichlorophenyl) methoxy] benzoic acid 146 3-[(2,4-Dichlorophenyl)methoxy]- C23 H20 Cl2 O4 448 [M+NH4] 2- [ (4-ethylphenyl) methoxy] benzoic acid 147 2-[(4-Chlorophenyl)methoxy]-3- C21 H15 Cl3 O4 454 [M+NH4] [(2,4-dichlorophenyl) methoxy] benzoic acid 148 2-[(3-Bromophenyl) methoxy]-3-C21 H15 Br Cl2 04 498 [M+NH4] [(2, 4-dichlorophenyl) methoxy] benzoic acid 149 3-[(2,4-Dichlorophenyl)methoxy]- C27 H20 Cl2 O5 512 [M+NH4] 2- [ (3-phenoxyphenyl) methoxy] benzoic acid 150 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H17 Cl2 F 04 452 [M+NH4] 2-[(2-fluoro-3-methylphenyl) methoxy] benzoic acid 151 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H14 Cl2 F2 04 456 [M+NH4] 2-[(2,4-difluorophenyl) methoxy] benzoic acid 152 2-[(3-Chloro-2-fluorophenyl) C21 H14 Cl3 F O4 472 [M+NH4] methoxy]-3-[(2, 4-dichlorophenyl) methoxy] benzoic acid 153 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H17 Cl2 N 06 479 [M+NH4] 2- [ (4-methyl-3-nitrophenyl) methoxy] benzoic acid 154 2- [ (3-Benzoylphenyl) methoxy]-3- C28 H20 Cl2 05 524 [M+NH4] [(2,4-dichlorophenyl) methoxy] benzoic acid 155 2- [ (3, 5-Dibromophenyl) methoxy]- C21 H14 Br2 C12 04 576 [M+NH4] 3-[(2, 4-dichlorophenyl) methoxy] benzoic acid 156 2-[(6-Chloro-4H-1,3-benzodioxin- C23 H17 Cl3 O6 512 [M+NH4] 8-yl) methoxy]-3-[(2, 4-dichloro- phenyl) methoxy] benzoic acid 157 2-[(3,5-Dichlorophenyl)methoxy]- C21 H14 Cl4 O4 488 [M+NH4] 3-[(2,4-dichlorophenyl) methoxy] benzoic acid 158 3-[(2,4-Dichlorophenyl)methoxy]- C22 H14 Cl2 F4 O4 506 [M+NH4] 2-[[2-fluoro-5-(trifluoromethyl) phenyl] methoxy] benzoic acid 159 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H14 Cl2 F4 04 506 [M+NH4] 2-[[3-fluoro-5-(trifluoromethyl) phenyl] methoxy] benzoic acid 160 3- [ (2, 4-Dichlorophenyl) methoxy]- C22 H14 Cl2 F4 04 506 [M+NH4] 2-[[4-fluoro-2-(trifluoromethyl) phenyl] methoxy] benzoic acid 161 3-[(2,4-Dichlorophenyl)methoxy]- C22 H14 Cl2 F4 O4 506 [M+NH4] 2-[[4-fluoro-3-(trifluoeomethyl) phenyl] methoxy] benzoic acid 162 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H13 Cl2 F3 04 474 [M+NH4] 2- [ (2, 3, 6-trifluorophenyl) methoxy] benzoic acid 163 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H13 Cl2 F3 04 474 [M+NH4] 2- [ (2, 4, 5-trifluorophenyl) methoxy] benzoic acid 164 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H13 Cl2 F3 04 474 [M+NH4] 2- [ (2, 4, 6-trifluorophenyl) methoxy] benzoic acid 165 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H15 Cl2 F3 05 504 [M+NH4] 2-[[4-(trifluoromethoxy) phenyl] methoxy] benzoic acid 166 3-[(2,4-Dichlorophenyl)methoxy]- C22 H15 Cl2 F3 O5 504 [M+NH4] 2-[[3-(trifluoromethoxy) phenyl] methoxy] benzoic acid 167 3-[(2, 4-Dichlorophenyl) methoxy]-C23 H20 Cl2 06 480 [M+NH4] 2- [ (3, 5-dimethoxyphenyl) methoxy] benzoic acid 168 2-([1,1'-Biphenyl]-2-ylmethoxy)-3- C27 H20 Cl2 O4 496 [M+NH4] [(2,4-dichlorophenyl) methoxy] benzoic acid 169 3-[(2,4-Dichlorophenyl)methoxy]- C22 H18 Cl2 O6 S 498 [M+NH4] 2-[[4-(methylsulfonyl) phenyl] methoxy] benzoic acid 170 3-[(2, 4-Dichlorophenyl) methoxy]-C21 H15 Cl2 104 546 [M+NH4] 2- [ (4-iodophenyl) methoxy] benzoic acid 171 3-[(2, 4-Dichlorophenyl) methoxy]-C22 H18 Cl2 05 450 [M+NH4] 2- [ (3-methoxyphenyl) methoxy] benzoic acid 172 3-[(2-Bromophenyl)methoxy]-2- C22 H19 Br O4 444 [M+NH4] (1-phenylethoxy) benzoic acid 173 2, 3-Bis [(2-bromophenyl) C21 H16 Br2 04 508 [M+NH4] methoxy] benzoic acid 174 3-[(2-Bromophenyl)methoxy]-2- C22 H19 Br O4 444 [M+NH4] [(2-Methylphenyl) methoxy] benzoic acid 175 3- [(2-Bromophenyl)methoxy]-2- C22 H19 Br O4 444 [M+NH4] [ (3-methylphenyl) methoxy] benzoic acid 176 2-[(4-Bromophenyl)methoxy]-3- C21 H16 Br2 O4 508 [M+NH4] [(2-bromophenyl) methoxy] benzoic acid 177 3-[(2-Bromophenyl)methoxy]-2- C25 H25 Br 04 486 [M+NH4] [ [4- (1, 1-dimethylethyl) phenyl] methoxy] benzoic acid 178 3-[(2-Bromophenyl)methoxy]-2- C22 H19 Br O4 444 [M+NH4] [ (4-methylphenyl) methoxy] benzoic acid 179 3- [ (2-Bromophenyi) methoxy]-2-C21 H16BrF04448 [M+NH4] [(2-fluorophenyl) methoxy] benzoic acid 180 3-[(2-Bromophenyl) methoxy]-2-C21 H15 Br F2 04 466 [M+NH4] [(2, 6-difluorophenyl) methoxy] benzoic acid 181 3-[(2-Bromophenyl) methoxy]-2-C21 H16 Br F 04 448 [M+NH4] [ (4-fluorophenyl) methoxy] benzoic acid 182 3-[(2-Bromophenyl)methoxy]-2- C22 H16Br F3 O4 498 [M+NH4] [ [4- (trifluoromethyl) phenyl] methoxy] benzoic acid 183 3-[(2-Bromophenyl) methoxy]-2-C21 H15 Br Cl2 04 498 [M+NH4] [(2,6-dichlorophenyl) methoxy] benzoic acid 184 3-[(2-Bromophenyl)methoxy]-2- C21 H16 Br Cl O4 464 [M+NH4] [ (3-chlorophenyl) methoxy] benzoic acid 185 3-[(2-Bromophenyl)methoxy]-2- C21 H16 Br Cl 04 464 [M+NH4] [(2-chlorophenyl) methoxy] benzoic acid 186 3-[(2-Bromophenyl) methoxy]-2-C21 H15 Br Cl2 04 498 [M+NH4] [(2, 4-dichlorophenyl) methoxy] benzoic acid 187 3-[(2-Bromophenyl)methoxy]-2- C21 H15 Br Cl F O4 482 [M+NH4] [(2-chloro-6-fluorophenyl) methoxy] benzoic acid 188 3-[(2-Bromophenyl) methoxy]-2-C21 H16 Br I 04 556 [M+NH4] [(2-iodophenyl) methoxy] benzoic acid 189 3-[(2-Bromophenyl)methoxy]-2- C24 H23 Br 04 472 [M+NH4] [ (2, 4, 6-trimethylphenyl) methoxy] benzoic acid 190 3-[(2-Bromophenyl)methoxy]-2- C23 H21 Br O4 458 [M+NH4] [(2,5-dimethylphenyl) methoxy] benzoic acid 191 3-[(2-Bromophenyl)methoxy]-2- C21 H15 Br Cl2 O4 498 [M+NH4] [ (3, 4-dichlorophenyl) methoxy] benzoic acid 192 2-([1,1'-Biphenyl]-4-ylmethoxy)-3- C27 H21 Br O4 506 [M+NH4] [ (2-bromophenyl) methoxy] benzoic acid 193 3-[(2-Bromophenyl)methoxy]-2- C25 H19 Br O4 480 [M+NH4] (1-naphthalenylmethoxy) benzoic acid 194 3-[(2-Bromophenyl)methoxy]-2- C25 H19 Br O4 480 [M+NH4] (2-naphthalenylmethoxy) benzoic acid 195 2-[[3, 4-Bis (phenylmethoxy) C35 H29 Br 06 642 [M+NH4] phenyl] methoxy]-3- [ (2- bromophenyl) methoxy] benzoic acid 1 96 3-[(2-Bromophenyl) methoxy]-2-C22 H1 6 Br Cl 06 508 [M+NH4] [(6-chloro-1,3-benzodioxol-5- yl) methoxy] benzoic acid 197 3-[(2-Bromophenyl)methoxy]-2- C21 H16 Br N O6 475 [M+NH4] [ (3-nitrophenyl) methoxy] benzoic acid 198 3-[(2-Bromophenyl)methoxy]-2- C22 H18 Br N O7 505 [M+NH4] [(2-methoxy-5-nitrophenyl) methoxy]benzoic acid 199 3-[(2-Bromophenyl)methoxy]-2- C21 H15 Br F2 O4 466 [M+NH4] [ (3, 4-difluorophenyl) methoxy] benzoic acid 200 3-[(2-Bromophenyl) methoxy]-2-C21 H15 Br F2 04 466 [M+NH4] [(,5-difluorophenyl) methoxy] benzoic acid 201 2-[[3, 5-Bis (trifluoromethyl) C23 H15 Br F6 04 566 [M+NH4] phenyl] methoxy]-3-[(2- bromophenyl) methoxy] benzoic acid 202 3-{(2-Bromophenyl) methoxy]-2-C21 H15 Br F2 04 466 [M+NH4] [ (3, 5- difluorophenyl) methoxy] benzoic acid 203 3- [ (2-Bromophenyl) methoxy]-2- C23 H21 Br 04 446 [M+NH4] [ (3, 5- dimethylphenyl) methoxy] benzoic acid 204 3-[(2-Bromophenyl) methoxy]-2-C22 H16 Br F3 04 498 [M+NH4] [ [2- (trifluoromethyl) phenyl] methoxy] b enzoic acid 205 3-[(2-Bromophenyl) methoxy]-2-C21 H16 Br 104 556 [M+NH4] [ (3-iodophenyl) methoxy] benzoic acid 206 3-[(2-Bromophenyl)methoxy]-2- C21 H15 Br Cl2 O4 498 [M+NH4] [(2, 3-dichlorophenyl) methoxy] benzoic acid 207 3-[(2-Bromophenyl) methoxy]-2-C21 H15 Br Cl2 04 498 [M+NH4] [(2,5-dichlorophenyl) methoxy] benzoic acid 208 3-[(2-Bromophenyl)methoxy]-2- C23 H21 Br 04 458 [M+NH4] [ (4-ethylphenyl) methoxy] benzoic acid 209 3-[(2-Bromophenyl)methoxy]-2- C21 H16 Br Cl 04 464 [M+NH4] [ (4-chlorophenyl) methoxy] benzoic acid 210 2-[(3-Bromophenyl) methoxy]-3-C21 H16 Br2 04 508 [M+NH4] [(2-bromophenyl) methoxy] benzoic acid 211 3-[(2-Bromophenyl)methoxy]-2- C27 H21 Br 05 522 [M+NH4] [ (3-phenoxyphenyl) methoxy] benzoic acid 212 3-[(2-Bromophenyl)methoxy]-2- C22 H18 Br F O4 462 [M+NH4] [(2-fluoro-3-methylphenyl) methoxy] benzoic acid 213 3-[(2-Bromophenyl)methoxy]-2- C21 H15 Br F2 O4 466 [M+NH4] [(2, 3-difluorophenyl) methoxy] benzoic acid 214 3-[(2-Bromophenyl)methoxy]-2- C21 H15 Br Cl F O4 482 [M+NH4] [ (3-chloro-2-fluorophenyl) methoxy] benzoic acid 215 3-[(2-Bromophenyl)methoxy]-2- C22 H18 Br N O6 489 [M+NH4] [ (4-methyl-3-nitrophenyl) methoxy] benzoic acid 216 2- [ (3-Benzoylphenyl) methoxy]-3- C28 H21 Br 05 534 [M+NH4] [(2-bromophenyl) methoxy] benzoic acid 217 3-[(2-Bromophenyl) methoxy]-2-C21 H15 Br3 04 586 [M+NH4] [ (3, 5-dibromophenyl) methoxy] benzoic acid 218 3-[(2-Bromophenyl) methoxy]-2-C23 H18 Br Cl 06 522 [M+NH4] [(6-chloro-4H-1, 3-benzodioxin-8- yl) methoxy] benzoic acid 219 3-[(2-Bromophenyl)methoxy]-2- C22 H15 Br F4 O4 516 [M+NH4] [[2-fluoro-5-(trifluoromethyl) phenyl] methoxy] benzoic acid 220 3-[(2-Bromophenyl) methoxy]-2-C22 H15 Br F4 04 516 [M+NH4] [[3-fluoro-5-(trifluoromethyl) phenyl] methoxy] benzoic acid 221 3-[(2-Bromophenyl) methoxy]-2-C22 H15 Br F4 04 516 [M+NH4] [ [4-fluoro-2- (trifluoromethyl) phenyl] methoxy] benzoic acid 222 3-[(2-Bromophenyl)methoxy]-2- C22 H15 Br F4 O4 516 [M+NH4] [[4-fluoro-3-(trifluoromethyl) phenyl] methoxy] benzoic acid 223 3-[(2-Bromophenyl) methoxy]-2-C21 H14 Br F3 04 484 [M+NH4] [ (2, 3, 6-trifluorophenyl) methoxy] benzoic acid 224 3-[(2-Bromophenyl)methoxy]-2- C21 H14 Br F3 O4 484 [M+NH4] [ (2, 4, 5-trifluorophenyl) methoxy] benzoic acid 225 3-[(2-Bromophenyl) methoxy]-2-C21 H14 Br F3 04 484 [M+NH4] [ (2, 4, 6-trifluorophenyl) methoxy] benzoic acid 226 3-[(2-Bromophenyl) methoxy]-2-C22 H16 Br F3 05 514 [M+NH4] [[4-(trifluoromethoxy) phenyl] methoxy] benzoic acid 227 3-[(2-Bromophenyl)methoxy]-2- C22 H16 Br F3 O5 514 [M+NH4] [ [3- (trifluoromethoxy) phenyl] methoxy] benzoic acid 228 3-[(3-Bromophenyl)methoxy]-2- C23 H21 Br 06 490 [M+NH4] [(3,5-dimethoxyphenyl) methoxy] benzoic acid 229 2- ( [1, 1'-Biphenyl]-2-ylmethoxy)-3- C27 H21 Br 04 506 [M+NH4] [(2-bromophenyl) methoxy] benzoic acid 230 3-[(2-Bromophenyl)methoxy]-2- C22 H19 Br O6 S 508 [M+NH4] [ [4- (methylsulfonyl) phenyl] methoxy] benzoic acid 231 3-[(2-Bromophenyl)methoxy]-2- C21 H16 Br O4 556 [M+NH4] [ (4-iodophenyl) methoxy] benzoic acid 232 3-[(2-Bromophenyl)methoxy]-2- C22 H19 Br O5 460 [M+NH4] [ (3-methoxyphenyl) methoxy] benzoic acid 233 3-[(2-Bromophenyl)methoxy]-2- C22 H19 Br O5 396 [M+NH4] (2-methylpropoxy) benzoic acid 234 3-[(2-Bromophenyl)methoxy]-2- C16 H15 Br O5 368 [M+NH4] ethoxybenzoic acid 235 3-[(2-Bromophenyl)methoxy]-2- C18 H19 Br O4 396 [M+NH4] butoxybenzoic acid 236 3-[(2-Bromophenyl)methoxy]-2- C20 H23 Br 04 424 [M+NH4] (hexyloxy) benzoic acid 237 3-[(2-Bromophenyl)methoxy]-2- C22 H27 Br 04 452 [M+NH4] (octyloxy)benzoic acid 238 3-[(2-Bromophenyl)methoxy]-2- C21 H23 Br 04 436 [M+NH4] (cyclohexylmethoxy) benzoic acid 239 3-[(3-Chlorophenyl)methoxy]-2- C21 H17 Cl O4 386 [M+NH4] (phenylmethoxy) benzoic acid 240 2-[(2-Bromophenyl)methoxy]-3- C21 H16 Br Cl 04 464 [M+NH4] [ (3-chlorophenyl) methoxy] benzoic acid 241 3-[(3-Chlorophenyl)methoxy]-2- C22 H19 Cl O4 400 [M+NH4] [(2-methylphenyl) methoxy] benzoic acid 242 3- [ (3-Chlorophenyl) methoxy]-2- C22 H19 Cl O4 400 [M+NH4] [ (3-methylphenyl) methoxy] benzoic acid 243 2-[(4-Bromophenyl)methoxy]-3- C21 H16 Br Cl O4 464 [M+NH4] [ (3-chlorophenyl) methoxy] benzoic acid 244 3- [ (3-Chlorophenyl) methoxy]-2- C25 H25 Cl 04 442 [M+NH4] [ [4- (1, 1-dimethylethyl) phenyl] methoxy] benzoic acid 245 3- [ (3-Chlorophenyl) methoxy]-2- C22 H19 Cl O4 400 [M+NH4] [ (4-methylphenyl) methoxy] benzoic acid 246 3- [ (3-Chlorophenyl) methoxy]-2- C21 H16 Cl F 04 404 [M+NH4] [(2-fluorophenyl) methoxy] benzoic acid 247 3- [ (3-Chlorophenyl) methoxy]-2- C21 H15 Cl F2 04 422 [M+NH4] [(2,6-difluorophenyl) methoxy] benzoic acid 248 3-[(3-Chlorophenyl)methoxy]-2- C21 H16 Cl F O4 404 [M+NH4] [ (3-fluorophenyl) methoxy] benzoic acid 249 3-[(3-Chlorophenyl)methoxy]-2- C21 H16 Cl F O4 404 [M+NH4] [ (4-fluorophenyl) methoxy] benzoic acid 250 3-[(3-Chlorophenyl) methoxy]-2-C22 H1 6 Cl F3 04 454 [M+NH4] [ [3- (trifluoromethyl) phenyl] methoxy] benzoic acid 251 3- [ (3-Chlorophenyl) methoxy]-2- C22 H16 Cl F3 04 454 [M+NH4] [[4-(trifluoromethyl)phenyl] methoxy] benzoic acid 252 3-[(3-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [(2,6-dichlorophenyl) methoxy] benzoic acid 253 2-[(2-Chlorophenyl)methoxy]-3- C21 H16 Cl2 O4 420 [M+NH4] [ (3-chlorophenyl) methoxy] benzoic acid 254 3-[(3-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [(2,4-dichlorophenyl) methoxy] benzoic acid 255 2-[(2-Chloro-6- C21 H15 Cl2 F 04 438 [M+NH4] fluorophenyl) methoxy]-3- [ (3- chlorophenyl) methoxy] benzoic acid 256 3-[(3-Chlorophenyl)methoxy]-2- C21 H16 Cl O4 512 [M+NH4] [(2-iodophenyl) methoxy] benzoic acid 257 3-[(3-Chlorophenyl) methoxy]-2-C23 H21 Cl 04 414 [M+NH4] [(2,5-dimethylphenyl) methoxy] benzoic acid 258 3-[(3-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [ (3, 4-dichlorophenyl) methoxy] benzoic acid 259 3- [ (3-Chlorophenyl) methoxy]-2- C28 H23 Cl 05 492 [M+NH4] [ [4- (phenylmethoxy)- phenyl] methoxy] benzoic acid 260 2- ( [1, 1'-Biphenyl]-4-ylmethoxy)-3- C27 H21 Cl 04 462 [M+NH4] [ (3-chlorophenyl) methoxy] benzoic acid 261 3- [ (3-Chlorophenyl) methoxy]-2- C22 H16 Cl N 04 411 [M+NH4] [(2-cyanophenyl) methoxy] benzoic acid 262 3-[(3-Chlorophenyl)methoxy]-2- C25 H19 Cl O4 436 [M+NH4] (1-naphthalenylmethoxy) benzoic acid 263 3- [ (3-Chlorophenyl) methoxy]-2- C26 H21 Cl O4 450 [M+NH4] [(2-methyl-1-naphthalenyl) methoxy] benzoic acid 264 3-[(3-Chlorophenyl)methoxy]-2- C25 H19 Cl O4 436 [M+NH4] (2-naphthalenylmethoxy) benzoic acid 265 2-[(6-Chloro-1,3-benzodioxol-5- C22 H16 Cl2 O6 464 [M+NH4] yl) methoxy]-3- [ (3-chlorophenyl) methoxy] benzoic acid 266 3-[(3-Chlorophenyl)methoxy]-2- C22 H18 Cl N O6 444 [M+NH4] [(2-methyl-3-nitrophenyl) methoxy] benzoic acid 267 3-[(3-Chlorophenyl)methoxy]-2- C21 H16 Cl N O6 431 [M+NH4] [ (3-nitrophenyl) methoxy] benzoic acid 268 3-[(3-Chlorophenyl)methoxy]-2- C22 H18 Cl N O7 461 [M+NH4] [(2-methoxy-5-nitrophenyl) methoxy] benzoic acid 269 3- [ (3-Chlorophenyl) methoxy]-2- C28 H23 Cl 06 S 540 [M+NH4] [[2-[(phenylsulfonyl) methyl] phenyl] methoxy] benzoic acid 270 3-[(3-Chlorophenyl)methoxy]-2- C21 H15 Cl F2 O4 422 [M+NH4] [(2,5-difluorophenyl) methoxy] benzoic acid 271 3-[(3-Chlorophenyl)methoxy]-2- C21 H15 Cl F2 O4 422 [M+NH4] [ (3, 5-difluorophenyl) methoxy] benzoic acid 272 3- [ (3-Chlorophenyl) methoxy]-2- C23 H21 Cl 04 414 [M+NH4] [ (3, 5-dimethylphenyl) methoxy] benzoic acid 273 3- [ (3-Chlorophenyl) methoxy]-2- C22 H16 Cl F3 04 454 [M+NH4] [[2-(trifluoromethyl) phenyl] methoxy] benzoic acid 274 3- [ (3-Chlorophenyl) methoxy]-2- C21 H16 Cl 104 512 [M+NH4] [ (3-iodophenyl) methoxy] benzoic acid 275 3-[(3-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [(2,3-dichlorophenyl) methoxy] benzoic acid 276 3-[(3-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [(2,5-dichlorophenyl) methoxy] benzoic acid 277 2-[(4-Chlorophenyl)methoxy]-3- C21 H16 Cl2 O4 420 [M+NH4] [ (3-chlorophenyl) methoxy] benzoic acid 278 2-[(3-Bromophenyl) methoxy]-3-C21 H16 Br Cl 04 464 [M+NH4] [ (3-chlorophenyl) methoxy] benzoic acid 279 3- [ (3-Chlorophenyl) methoxy]-2- C27 H21 Cl 05 478 [M+NH4] [ (3-phenoxyphenyl) methoxy] benzoic acid 280 3- [ (3-Chlorophenyl) methoxy]-2- C22 H18 Cl F 04 418 [M+NH4] [(2-fluoro-3-methylphenyl) methoxy] benzoic acid 281 3-[(3-Chlorophenyl)methoxy]-2- C21 H15 Cl F2 O4 422 [M+NH4] [(2,3-difluorophenyl) methoxy] benzoic acid 282 2-[(3-Chloro-2- C21 H15 Cl2 F O4 438 [M+NH4] fluorophenyl) methoxy]-3- [ (3- chlorophenyl) methoxy] benzoic acid 283 3- [ (3-Chlorophenyl) methoxy]-2- C22 H18 Cl N 06 444 [M+NH4] [ (4-methyl-3-nitrophenyl) methoxy] benzoic acid 284 2- [ (3-Benzoylphenyl) methoxy]-3- C28 H21 Cl 05 490 [M+NH4] [ (3-chlorophenyl) methoxy] benzoic acid 285 3- [ (3-Chlorophenyl) methoxy]-2- C21 H15 Br2 Cl 04 542 [M+NH4] [ (3, 5-dibromophenyl) methoxy] benzoic acid 286 2-[(6-Chloro-4H-1,3-benzodioxin- C23 H18 Cl2 O6 478 [M+NH4] 8-yl) methoxy]-3- [ (3-chlorophenyl) methoxy] benzoic acid 287 3-[(3-Chlorophenyl)methoxy]-2- C22 H19 Cl O5 416 [M+NH4] [(2-methoxyphenyl) methoxy] benzoic acid 288 3- [ (3-Chlorophenyl) methoxy]-2- C22 H15 Cl F4 04 472 [M+NH4] [[2-fluoro-5-(trifluoromethyl) phenyl] methoxy] benzoic acid 289 3-[(3-Chlorophenyl)methoxy]-2- C22 H15 Cl F4 O4 472 [M+NH4] [ [3-fluoro-5- (trifluoromethyl) phenyl] methoxy] benzoic acid 290 3- [ (3-Chlorophenyl) methoxy]-2- C22 H15 Cl F4 04 472 [M+NH4] [ [4-fluoro-2- (trifluoromethyl) phenyl] methoxy] benzoic acid 291 3-[(3-Chlorophenyl)methoxy]-2- C22 H15 Cl F4 O4 472 [M+NH4] [ [4-fluoro-3- (trifluoromethyl) phenyl] methoxy] benzoic acid 292 3-[(3-Chlorophenyl)methoxy]-2- C21 H14 Cl F3 O4 440 [M+NH4] [ (2, 3, 6-trifluorophenyl) methoxy] benzoic acid 293 3-[(3-Chlorophenyl) methoxy]-2-C21 H14 Cl F3 04 440 [M+NH4] [ (2, 4, 5-trifluorophenyl) methoxy] benzoic acid 294 3-[(3-Chlorophenyl) methoxy]-2-C21 H14 Cl F3 04 440 [M+NH4] [ (2, 4, 6-trifluorophenyl) methoxy] benzoic acid 295 3- [ (3-Chlorophenyl) methoxy]-2- C22 H16 Cl F3 05 470 [M+NH4] [[4-(trifluoromethoxy) phenyl] methoxy] benzoic acid 296 3- [ (3-Chlorophenyl) methoxy]-2- C22 H16 Cl F3 05 470 [M+NH4] [[3-(trifluoromethoxy) phenyl] methoxy] benzoic acid 297 3- [ (3-Chlorophenyl) methoxy]-2- C23 H21 Cl 06 446 [M+NH4] [ (3, 5-dimethoxyphenyl) methoxy] benzoic acid 298 2-([1,1'-Biphenyl]-2-ylmethoxy)-3- C27 H21 Cl O4 462 [M+NH4] [ (3-chlorophenyl) methoxy] benzoic acid 299 3- [ (3-Chlorophenyl) methoxy]-2- C22 H19 Cl 06 S 464 [M+NH4] [[4-(methylsulfonyl) phenyl] methoxy] benzoic acid 300 3-[(3-Chlorophenyl)methoxy]-2- C22 H19 Cl O5 416 [M+NH4] [ (3-methoxyphenyl) methoxy] benzoic acid 301 3-[(3-Chlorophenyl)methoxy]-2- C18 H19 Cl O4 352 [M+NH4] (2-methylpropoxy) benzoic acid 302 2-Butoxy-3-[(3-chlorophenyl) C18 H19 Cl O4 352 [M+NH4] methoxy] benzoic acid 303 3- [ (3-Chlorophenyl) methoxy]-2- C20 H23 Cl 04 380 [M+NH4] (hexyloxy) benzoic acid 304 2-[(2-Bromophenyl)methoxy]-3- C21 H16 Br Cl O4 464 [M+NH4] [ (4-chlorophenyl) methoxy] benzoic acid 305 2-[(4-Bromophenyl) methoxy]-3-C21 H16 Br Cl 04 464 [M+NH4] [ (4-chlorophenyl) methoxy] benzoic acid 306 3- [ (4-Chlorophenyl) methoxy]-2- C25 H25 Cl 04 442 [M+NH4] [ [4- (1, 1-dimethylethyl) phenyl] methoxy] benzoic acid 307 3- [ (4-Chlorophenyl) methoxy]-2- C22 H19 Cl 04 400 [M+NH4] [ (4-methylphenyl) methoxy] benzoic acid 308 3-[(4-Chlorophenyl)methoxy]-2- C21 H16 Cl F O4 404 [M+NH4] [(2-fluorophenyl) methoxy] benzoic acid 309 3- [ (4-Chlorophenyl) methoxy]-2- C21 H15 Cl F2 04 422 [M+NH4] [(2,6-difluorophenyl) methoxy] benzoic acid 310 3- [ (4-Chlorophenyl) methoxy]-2- C21 H16 Cl F 04 404 [M+NH4] [ (3-fluorophenyl) methoxy] benzoic acid 311 3-[(4-Chlorophenyl)methoxy]-2- C21 H16 Cl F O4 404 [M+NH4] [ (4-fluorophenyl) methoxy] benzoic acid 312 3- [ (4-Chlorophenyl) methoxy]-2- C22 H16 Cl F3 04 454 [M+NH4] [[3-(trifluoromethoxy) phenyl] methoxy] benzoic acid 313 3- [ (4-Chlorophenyl) methoxy]-2- C22 H16 Cl F3 04 454 [M+NH4] [[4-(trifluoromethoxy) phenyl] methoxy] benzoic acid 314 3-[(4-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [(2, 6-dichlorophenyl) methoxy] benzoic acid 315 2-[(3-Chlorophenyl)methoxy]-3- C21 H16 Cl2 O4 420 [M+NH4] [ (4-chlorophenyl) methoxy] benzoic acid 316 2-[(2-Chloro-6- C21 H15 Cl2 F 04 438 [M+NH4] fluorophenyl) methoxy]-3- [ (4- chlorophenyl) methoxy] benzoic acid 317 3- [ (4-Chlorophenyl) methoxy]-2- C21 H16 Cl 104 512 [M+NH4] [(2-iodophenyl)methoxy]benzoic acid 318 3- [ (4-Chlorophenyl) methoxy]-2- C23 H21 Cl 04 514 [M+NH4] [(2,5-dimethylphenyl) methoxy] benzoic acid 319 3-[(4-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [ (3, 4-dichlorophenyl) methoxy] benzoic acid 320 2-([1,1'-Biphenyl)-4-ylmethoxy)-3- C27 H21 Cl O4 462 [M+NH4] [ (4-chlorophenyl) methoxy] benzoic acid 321 3- [ (4-Chlorophenyl) methoxy]-2- C25 H19 Cl O4 436 [M+NH4] (1-naphthalenylmethoxy) benzoic acid 322 3-[(2-Chlorophenyl)methoxy]-3- C21 H16 Cl2 O4 420 [M+NH4] [ (4-chlorophenyl) methoxy] benzoic acid 323 3- [ (4-Chlorophenyl) methoxy]-2- C25 H19 Cl 04 436 [M+NH4] (2-naphthalenylmethoxy)benzoic acid 324 3- [ (4-Chlorophenyl) methoxy]-2- C22 H18 Cl N 06 445 [M+NH4] [(2-methyl-3-nitrophenyl) methoxy] benzoic acid 325 3-[(3-Chlorophenyl)methoxy]-2- C21 H15 Cl F2 O4 422 [M+NH4] [(2,5-difluorophenyl) methoxy] benzoic acid 326 2-[[3, 5-Bis (trifluoromethyl) C23 H15 Cl F6 04 522 [M+NH4] phenyl] methoxy]-3- [ (4- chlorophenyl) methoxy] benzoic acid 327 3- [ (4-Chlorophenyl) methoxy]-2- C22 H16 Cl F3 04 454 [M+NH4] [[2-(trifluoromethyl) phenyl] methoxy] benzoic acid 328 3-[(4-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [(2,3-dichlorophenyl) methoxy] benzoic acid 329 3-[(4-Chlorophenyl)methoxy]-2- C21 H15 Cl3 O4 454 [M+NH4] [(2, 5-dichlorophenyl) methoxy] benzoic acid 330 2-[(6-Chloro-4H-1,3-benzodioxin- C23 H18 Cl2 O6 478 [M+NH4] 8-yl) methoxy]-3- [ (4-chlorophenyl) methoxy] benzoic acid 331 3-[(4-Chlorophenyl)methoxy]-2- C21 H14 Cl F3 O4 440 [M+NH4] [ (2, 3, 6-trifluorophenyl) methoxy] benzoic acid 332 3- [ (4-Chlorophenyl) methoxy]-2- C22 H16 Cl F3 05 470 [M+NH4] [[3-(trifluoromethoxy) phenyl] methoxy] benzoic acid 333 3- [ (4-Chlorophenyl) methoxy]-2- C23 H21 Cl 06 446 [M+NH4] [ (3, 5-dimethoxyphenyl) methoxy] benzoic acid 334 2-Butoxy-3- [ (4- C18 H19 CI 04 352 [M+NH4] chlorophenyl) methoxy] benzoic acid 335 3- [ (4-Chlorophenyl) methoxy]-2- C20 H23 Cl 04 380 [M+NH4] (hexyloxy) benzoic acid 336 3- [ (4-Chlorophenyl) methoxy]-2- C21 H23 Cl 04 392 [M+NH4] (cyclohexylmethoxy) benzoic acid

Example 337 2, 3-Bis [(2-chlorophenyl) methoxy]-a-methoxybenzeneacetic acid

To a stirred solution of Example 1 Part B compound (112 mg, 0.243 mmol) in DME (1 mL) under argon at room temperature was added sodium hydride (60% mineral oil dispersion, 9.7 mg, 0. 24 mmol). After 30 min, methyl

iodide (15 RL, 0.24 mmol) was added, the reaction mixture was stirred for 18 h and then diluted with saturated ammonium chloride solution. The mixture was extracted three times with Et20. The organic extracts were combined, washed once with water, once with brine, dried (MgSO4) and evaporated. Purification by flash chromatography on silica gel provided the title compound as a colorless oil, 67 mg (58% yield). LC/MS gave the correct molecular ion [ (M+H) + 4751 for the desired compound.

B.

To a stirred solution of part A compound (65 mg, 0.14 mmol) in THF (1 mL) at room temperature under argon was added sodium hydroxide solution (1.0 mL, 1 M, 1.0 mmol). After 15 h, the reaction was diluted with water and extracted once with ether. The aqueous phase was brought to pH 2 with 1 M hydrochloric acid and extracted three times with Et2O. The acidified organic extracts were combined, washed with water, brine, dried (Na2SO4) and evaporated to give the title compound as a colorless oil, 49 mg (80% yield). LC/MS gave the correct molecular ion [ (M+H)' 4471 for the desired compound.

Example 338 (E) -2,3-Bis [(2-Chlorophenyl) methoxy]-a- (hydroxyimino) benzeneacetic acid and (Z) -2,3-Bis [ (2- Chlorophenyl) methoxy]-a-(hydroxyimino) benzeneacetic acid

To a stirred solution of Example 26 Part B compound (105 mg, 0.23 mmol) in EtOH (1 mL) under argon at room temperature was added sodium acetate (20.6 mg, 0.25 mmol) and hydroxylamine hydrochloride (17.3 mg, 0.25 mmol). The reaction mixture was heated to reflux for 3 h, cooled, diluted with EtOH and filtered. The filtrate was evaporated and water (5 mL) was added to give a gummy solid. The solid was dissolved in Et2O, washed with water, brine, dried (Na2SO4) and evaporated title compound as a 5: 4 mixture of geometric isomers, colorless oil, 100 mg (93% yield). LC/MS gave the correct molecular ion [(M+H) + = 474] for the desired compound.

B.

To a stirred solution of part A compound (100 mg, 0.22 mmol) in THF (1 mL) at room temperature under argon was added sodium hydroxide solution (1.0 mL, 1 M, 1.0 mmol). After 15 h, the reaction was diluted with water and extracted once with ether. The aqueous phase was brought to pH 2 with 1 M hydrochloric acid and extracted three times with Et2O. The acidified organic extracts were combined, washed with water, brine, dried (Na2SO4) and evaporated. Purification by reverse phase HPLC (YMC S5 ODS 20 x 250 mm column, acetonitrile/water-0. 1% TFA gradient) gave the title compounds as separate white amorphous solids, both geometric isomers of the oxime.

LC/MS gave the correct molecular ion [ (M+H) = 446] for each of the desired compounds.

Example 339 (E) -2,3-Bis [(2-chlorophenyl) methoxy]-a- (methoxyimino) benzeneacetic acid and (Z)-2, 3-Bis [ (2- chlorophenyl) methoxyl- (x- (methoxyimino) benzeneacetic acid

To a stirred solution of Example 26 Part B compound (105 mg, 0.23 mmol) in EtOH (1 mL) under argon at room temperature was added sodium acetate (20.6 mg, 0.25 mmol) and methoxylamine hydrochloride (20.8 mg, 0.25 mmol). The reaction mixture was heated to reflux for 17 h, and additional portions of sodium acetate and methoxylamine hydrochloride were added and the reaction refluxed for an additional 5 h. The mixture was cooled, diluted with EtOH and filtered. The filtrate was evaporated and water (5 mL) was added to give a gummy solid. The solid was dissolved in Et2O, washed with water, brine, dried (Na2SO4) and evaporated. Purification by flash chromatography on silica gel provided the title compounds: Isomer A (first eluting) as colorless oil, 49 mg (44% yield) and Isomer B as a colorless oil, 34 mg, 34%. LC/MS gave the correct molecular ion [ (M+H) + 4781 for each of the desired compounds.

Example 340 (E or Z) -2, 3-Bis [(2-chlorophenyl) methoxy]-a- (methoxyimino) benzeneacetic acid To a stirred solution of Example 339 (Isomer A) compound (49 mg, 0.1 mmol) in THF (1 mL) at room temperature under argon was added sodium hydroxide solution (1.0 mL, 1 M, 1.0 mmol). The reaction was heated to 50 °C. After 16 h, the reaction was diluted with water and extracted once with ether. The aqueous

phase was brought to pH 2 with 1 M hydrochloric acid and extracted three times with Et2O. The acidified organic extracts were combined, washed with water, brine, dried (Na2SO4) and evaporated to provide the title compound as a white solid, 37 mg, (80% yield), mp 140-141 °C. LC/MS gave the correct molecular ion [ (M+H) +-460] for the desired compound.

Example 341 (E or Z) -2, 3-Bis [(2-chlorophenyl) methoxy]-a- (methoxyimino) benzeneacetic acid To a stirred solution of Example 339 (Isomer B) compound (37 mg, 0.075 mmol) in THF (1 mL) at room temperature under argon was added sodium hydroxide solution (1.0 mL, 1 M, 1.0 mmol). The reaction was heated to 50 °C. After 16 h, the reaction was diluted with water and extracted once with ether. The aqueous phase was brought to pH 2 with 1 M hydrochloric acid and extracted three times with Et20. The acidified organic extracts were combined, washed with water, brine, dried (Na2SO4) and evaporated to provide the title compound as a white solid, 32 mg, (91% yield), mp 97-99 °C. LC/MS gave the correct molecular ion [ (M+H) = 460] for the desired compound.

Example 342 3-[(2-Chlorophenyl) methoxy]-2-(cyclohexylmethOxy)-a- hydroxybenzeneacetic acid

To a stirred slurry of sodium hydride (60% mineral oil dispersion, 3.68 g, 92 mmol) in DMSO (40 mL) at room temperature under argon was added a solution of 2,3- dihydroxybenzaldehyde (5.53 g, 40.0 mmol) in DMSO (20 mL).

After 1 h, a solution of 2-chlorobenzylchloride (5.05 mL, 40.0 mmol) in DMSO (10 mL) was added, the reaction mixture was stirred for 60 h and then diluted with water.

The mixture was extracted three times with Et2O. The organic extracts were combined, washed once with water, once with brine, dried (Na2SO4) and evaporated.

Purification by flash chromatography on silica gel provided the title compound, 5.6 g (53% yield). LC/MS gave the correct molecular ion [ (M+H) + 263] for the desired compound.

B.

To a stirred solution of part A compound (1.31 g, 5.00 mmol) in EtOH (15 mL) at room temperature under argon was added potassium carbonate (1.04 g, 7.5 mmol) and then cyclohexylmethyl bromide (0.98 mL, 7.0 mmol). After 16 h at reflux, the reaction was diluted with water, extracted with CH2C12, dried (Na2SO4) and evaporated.

Purification by flash chromatography gave the title compound as a colorless oil, 400 mg (22% yield). LC/MS gave the correct molecular ion [ (M+H) + 3591 for the desired compound.

C.

By the method of Example 1, Part B compound (340 mg, 0.95 mmol) was converted to the title compound as a white amorphous solid, 170 mg, 47% yield. LC/MS gave the correct molecular ion [ (M+H) = 405] for the desired compound.

Example 343 3-[(2-Chlorophenyl) methoxy]-a-hydroxy-2-[(2- methoxyphenyl) methoxy] benzeneacetic acid

By the method of Example 342 Part B, but using 2- methoxybenzyl chloride in place of cyclohexylmethyl bromide, the title compound was prepared. LC/MS gave the correct molecular ion [(M+H)+ = 383] for the desired compound.

B.

By the method of Example 1, Part A compound (110 mg, 0.29 mmol) was converted to the title compound as a white amorphous solid. LC/MS gave the correct molecular ion [ (M+H) = 429] for the desired compound.

Example 344 3-[(2-Chlorophenyl) methoxy]-a-hydroxy-2-(4- pyridinylmethoxy) benzeneacetic acid

By the method of Example 342 Part B, but using the free base of 4-picolyl chloride in place of cyclohexylmethyl bromide, the title compound was prepared. LC/MS gave the correct molecular ion [(M+H) + 354] for the desired compound.

B.

By the method of Example 1, Part A compound (581 mg, 1.54 mmol) was converted to the title compound as a white solid, mp 181-183 °C. LC/MS gave the correct molecular ion [ (M+H) = 400] for the desired compound.

Example 345 2,3-Bis [ (3, 5-dichlorophenyl) methoxy] benzoic acid

A.

A solution of 2,3-dihydroxybenzoic acid (3.00 g, 19.46 mmol) and 96% sulfuric acid (3 mL, 55 mmol) in methanol (60 mL) at room temperature under argon was stirred for 1 h. The reaction mixture was heated to reflux for 16 h, then cooled, concentrated to half the volume and poured into water (150 mL) and ethyl acetate (150 mL). The organic fraction was washed with water, aqueous NaHCO3 solution, dried (MgSO4) and concentrated to give the title compound as a white solid (2.90 g,-89%). mp 77-78 °C. LC/MS gave the correct molecular ion [(M-H)- =167] for the desired compound.

B.

To a stirred solution of part A compound (0.17 g, 1. 00 mmol) in DMF (13 mL) at room temperature under argon was added K2CO3 (1.10 g, 8.00 mmol), tetrabutylammonium iodide (0.05 g, 0.14 mmol) and 3,5- dichlorobenzyl chloride (0.78 g, 4.00 mmol). The mixture was stirred at RT for 0.5 h and then at 60 °C for 1.5 h.

The mixture was cooled, filtered through a pad of Celite and poured into diethyl ether. The ether fraction was washed with brine, dried over MgS04 and concentrated. The title compound was then crystallized from 1: 9 THF/methanol to give the title compound as a white solid (0.25 g, 51%), mp 150-151 °C.

C.

A solution of part B compound (0.12 g, 0.25 mmol) in a THF: methanol (3 mL: 0.5 mL) solution was stirred at room temperature under argon, as 10 M NaOH solution (0.05 mL, 0.5 mmol) was added. After 4 h, the reaction mixture was concentrated and diluted with water (5 mL). The mixture was acidified to pH=l with 1N HC1 and the white solid collected (0.10 g, 85%). LC/MS gave the correct molecular ion [(M-H)-=471-] for the title compound. mp 219-220 °C.

Examples 346-352 The following compounds were prepared according to the methods outlined in Example A, utilizing 2,4- dichlorobenzyl chloride, 2-chlorobenzyl chloride, 3- chlorobenzyl chloride, 4-chlorobenzyl chloride, 3,5- bis (trifluoromethyl) benzyl chloride, 2, 5-dimethylbenzyl chloride, and 3,5-dimethylbenzyl chloride. R m. p. (°C) ión,) Name (-ions) Ex. 346 ci ci 168-169 M-H 2, 3-Bis [ (2, 4- dichlorophenyl) m 471-ethoxy] benzoic acid 347 ci 156-157 M-H 2, 3-Bis [ (2- chlorophenyl) met 401-hoxy] benzoic acid 348 126-127 M-H 2, 3-Bis [ (3- chlorophenyl) met ci 401-hoxy] benzoic acid 349 ci 174-175 M-H 2, 3-Bis [ (4- chlorophenyl) met 401-hoxy] benzoic acid 350 CF3 156-158 M-H 2, 3-Bis [ [3, 5- bis (trifluoromet 605-hyl) phenyl] metho CF3 xy] benzoic acid 351 114-116 M-H 2, 3-Bis [ (2, 5- dimethylphenyl) m 389-ethoxy] benzoic acid 352 117-118 M-H 2, 3-Bis [ (3, 5- dimethylphenyl) m 389-ethoxy] benzoic avid Example 353 2-[(2,4-Dichlorophenyl)methoxy]-3-(phenylmethoxy)benzoic acid

For preparation of part A compound, see example 25 part A.

B.

To a stirred solution of part A compound (0.19 g, 1.00 mmol) in DMF (5 mL) at room temperature under argon was added K2CO3 (0.27 g, 2.00 mmol) and benzyl bromide (0.14 mL, 1.20 mmol). The mixture was stirred at RT for 0.5 h and. then at 60 °C for 4 h. The mixture was cooled, filtered through a pad of celite and poured into diethyl ether. The ether fraction was washed with brine, dried over MgS04 and concentrated. The crude compound was triturated with hot hexane to give the title compound (0.20 g, 70%) as an off white solid. MS gave the correct molecular ion [(M+H) +=285+] for the desired compound.

C.

To a stirred solution of part B compound (0.14 g, 0.50 mmol) in THF (10 mL) at room temperature under argon was added a 25% solution of sodium methoxide in methanol (0.15 mL, 0.69 mmol) and the mixture was stirred at RT for 1 h. The mixture was diluted with water (50 mL) and ethyl acetate (50 mL). The suspension was treated with 2 mL of 1 N HC1 solution and the organic fraction was washed with HC1 solution, brine, dried over MgS04 and concentrated to an oil (0.13 g, 96%). MS gave the correct molecular ion [(M+H) +=259+] for the desired compound.

To a stirred solution of part C compound (0.05 g, 0. 20 mmol) in DMF (2 mL) at room temperature under argon was added K2C03 (0. 11 g, 0.80 mmol), tetrabutylammonium iodide (3 mg, catalyst) and 2,4-dichlorobenzyl chloride (0.06 mL, 0.40 mmol). The mixture was stirred at RT for 0.5 h and then at 60 °C for 4 h. The mixture was cooled, filtered through a pad of celite and poured into diethyl ether. The ether fraction was washed with brine, dried over MgSO4 and concentrated. The crude compound was crystallized from hot hexane to give the title compound (0.06 g, 72%) as a white solid. MS gave the correct molecular ion [(M+H) +=417+] for the desired compound.

E.

A solution of part D compound (0.05 g, 0.12 mmol) in a THF: methanol (1 mL: l mL) solution was stirred at room temperature under argon, as 10 M NaOH solution (0.1 mL, 1.00 mmol) was added. After 4 h, the reaction mixture was concentrated and diluted with water (5 mL). The mixture was acidified to pH=l with 1N HCl and the white solid collected (0.03 g, 60%). LC/MS gave the correct

molecular ion [ (M-H)- = 401-] for the title compound. mp 140-142 °C Example 354 3- [ (2, 4-Dichlorophenyl) methoxy]-2- (phenylmethoxy) benzoic acid To a stirred solution of Example 25 part A compound (0.19 g, 1.00 mmol) in DMF (5 mL) at room temperature under argon was added K2CO3 (0.28 g, 2.00 mmol), tetrabutylammonium iodide (17 mg, catalyst) and 2,4- dichlorobenzyl chloride (0.17 mL, 1.20 mmol). The mixture was stirred at RT for 0.5 h and then at 60 °C for 4 h. The mixture was cooled, filtered through a pad of celite and poured into diethyl ether. The ether fraction was washed with brine, dried over MgS04 and concentrated.

The crude compound was triturated with hexane to give the title compound (0.23 g, 65%) as a white solid. MS gave the correct molecular ion [(M+H) +=353+] for the desired compound.

To a stirred solution of part A compound (0.18 g, 0.50 mmol) in THF (10 mL) at room temperature under argon was added a 25% solution of sodium methoxide in methanol (0. 15 mL, 0.65 mmol) and the mixture was stirred at RT for 1 h. The mixture was diluted with water (50 mL) and ethyl acetate (50 mL). The suspension was treated with 2 mL of 1 N HCl solution and the organic fraction was washed with HCl solution, brine, dried over MgS04 and concentrated to an off white solid (0.15 g, 92%). MS gave the correct molecular ion [(M+H) +=327+] for the desired compound.

C.

To a stirred solution of part B compound (0.10 g, 0.30 mmol) in DMF (3 mL) at room temperature under argon was added K2CO3 (0.17 g, 1.20 mmol), and benzyl bromide (0.07 mL, 0.60 mmol). The mixture was stirred at RT for 0.5 h and then at 60 °C for 4 h. The mixture was cooled, filtered through a pad of celite and poured into diethyl ether. The ether fraction was washed with brine, dried over MgSO4 and concentrated. The crude compound was purified by flash column chromatography on silica gel with ethyl acetate: hexane 7: 93 to give the title compound (0.11 g, 93%) as a white solid. mp 166-168 °C.

D.

A solution of part C compound (0.03 g, 0.07 mmol) in a THF: methanol (1 mL: l mL) solution was stirred at room temperature under argon, as 10 M NaOH solution (0.06 mL, 0.60 mmol) was added. After 4 h, the reaction mixture was concentrated and diluted with water (5 mL). The mixture was acidified to pH=l with IN HCl and the white solid collected (0.02 g, 71%). LC/MS gave the correct molecular ion [(M-H)-= 401-] for the title compound. mp 151-153 °C Example 355 5-Bromo-2,3-bis [(2-chlorophenyl) methoxy] benzoic acid

A solution of 5-bromo-2-hydroxy-3- methoxybenzaldehyde (1.03 g, 4.33 mmol) and sulfamic acid (563 mg, 5.78 mmol) in THF: H2O (1 : 2,15. 9 mL) was treated dropwise with a solution of sodium hypochlorite (519 mg, 4.59 mmol) in water (2.6 mL) and the resulting orange solution stirred at room temperature for 3.0 h. The mixture was treated with 5 % KHS04 (6.6 mL), extracted with EtOAc (2 x 70 mL) and the organic phase was washed with brine (14 mL), dried (MgSO4) and concentrated to give a light brown solid. Trituration of the crude product with CH2Cl2 : hexane (1: 1,10 mL) and hexane (10 mL) gave the title compound as a light brown solid (753 mg, 70%), mp 195-198 °C. LC/MS gave the correct molecular ion [(M-H)-= 245] for the desired compound.

B.

A cooled (0 °C) solution of part A compound (753 mg, 3.05 mmol) in dry CH2C12 (9.0 mL) was treated with 1.0 M BBr3/CH2Cl2 (6.2 mL, 6.1 mmol), stirred at 0 °C for 3.0 h then allowed to come up to room temperature overnight (J.

Med. Chem. 1995,38, 4937-4943). The reaction mixture was quenched by the dropwise addition of water (19 mL), stirred for 30 min then extracted with EtOAc (3 x 100 mL). The extracts were washed with water (3 x 20 mL), brine (20 mL) and dried (MgSO4) to give the title compound as a light brown solid (626 mg, 88%), mp 211-213 °C. LC/MS gave the correct molecular ion [ (M-H)' = 231] for the desired compound.

C.

A mixture of thionyl chloride (0.35 mL, 4.8 mmol) and methanol (5.4 mL) was stirred at room temperature for 30 min then treated with part B compound (600 mg, 2.57 mmol). The reaction mixture was stirred at room temperature for 2.0 hr, refluxed for 7.0 hr, cooled and concentrated to a brown solid. Purification by column chromatography (2.5 x 25 cm column, 1: 4 EtOAc/hexane, then 1: 1 EtOAc) gave the title compound (500 mg, 78%).

D.

To a mixture of part C compound (205 mg, 0.83 mmol), potassium carbonate (900 g, 6.64 mmol) and Bu4NI (cat) in dry DMF (3.4 mL) was added 2-chlorobenzylchloride (0.42 mL, 3.32 mmol). The reaction mixture was heated at 60 °C for 4 hr and partitioned between water (25 mL) and Et2O (3 x 60 mL). The organic extracts were washed with water (3 x 25 mL) and brine (25 mL) and dried (MgSO4) to give a syrup. Purification by flash chromatography (2.5 x 25 cm column, 1: 9 EtOAc/hexane) gave the title compound as a white solid (392 mg, 95%), mp 100-101 °C.

E.

A solution of part D compound (387 mg, 0.78 mmol) in THF: CH30H (1: 1,3. 0 mL) was treated with 10.0 N sodium hydroxide (0.17 mL, 1.7 mmol) and stirred at room temperature for 18 h. The mixture was concentrated and the solids obtained were suspended in water (5.0 mL), acidified to pH 1 with 1.0 N hydrochloric acid (2.1 mL) and extracted with EtOAc (2 x 60 mL). The organic phase was washed with water (3 x 5.0 mL) and brine (5.0 mL), dried (MgSO4) and concentrated to give a white solid.

Trituration of the solid with CH2Cl2 (4.0 mL) and hexane (25 mL) gave the title compound as a white solid (346 mg, 92%), mp 186-187 °C. LC/MS gave the correct molecular ion [(M-H)-= 479] for the desired compound.

Example 356 5-Bromo-2, 3-bis (phenylmethoxy) benzoic acid Example 356 was prepared by the method of Example 355. The title compound was obtained as a white solid (128 mg, 94%), mp 151-153 °C. LC/MS

gave the correct molecular ion [(M+H)+ = 413] for the desired compound.

Examples 357-372 The following compounds were prepared according to the methods outlined in Example 345. m. p. Ex. R MS m (°CP ; Name 383 107-3- [ (2- 3 5 7-<> [M-H] 109 Chlorophenyl) met hoxy]-2- [ (3- methylphenyl) met hoxy] benzoic acid F 152-3- [ (2- 358 387 154 Chlorophenyl) met [M-H] hoxy]-2- [ (3- fluorophenyl) met hoxy] benzoic acid CF3 359 3- [ (2- Chlorophenyl) met 437 128-hoxy]-2- [ [3- [M-H] 129 (trifluoromethyl ) phenyl] methoxy] benzoic acid 360/4on 3- [(2- Chlorophenyl) met 473 107-hoxy]-2- [ [4- [M-H] 109 (phenylmethoxy) p henyl] methoxy] be nzoic acid 361 3- [ (2- 397 122-Chlorophenyl) met [M-H] 123 hoxy]-2- [ (3, 5- dimethylphenyl) m ethoxy] benzoic acid HsCO 362 3- [ (2- 399 110-Chlorophenyl) met [M-H] 112 hoxy]-2-[(2- methoxyphenyl) me thoxy] benzoic acid N- 363/< 3-[(2- 370 168-Chlorophenyl) met [M-H] 170 hoxy]-2- (2- pyridinylmethoxy ) benzoic acid ,/=\ 364 A\ 3- [ (2- 370 157-Chlorophenyl) met [M-H] 159 hoxy]-2- (4- pyridinylmethoxy ) benzoic acid N 365/< 3-[(2- 370 181-Chlorophenyl) met [M-H] 182 hoxy]-2- (3- pyridinylmethoxy ) benzoic acid C ! 366 N 404 3- [ (2- [M-H] 183-Chlorophenyl) met 184 hoxy]-2-[(2- chloro-3- pyridinyl) methox y] benzoic acid Ox 367 N= 386 3-[(2- [M-H] 189-Chlorophenyl) met 191 hoxy]-2- [ (l- oxido-2- pyridinyl) methox ] benzoic acid , O 368 N 386 3- [ (2- [M-H] 177-Chlorophenyl) met 179 hoxy]-2-[(1- oxido-3- pyridinyl) methox y] benzoic acid 369/\/'0 386 186-3- [ (2- [M-H] 188 Chlorophenyl) met hoxy]-2- [ (1- oxido-4- pyridinyl) methox y] benzoic acid Cl, 0 370 AN 420 145-3- [ (2- [M-H] 148 Chlorophenyl) met hoxy]-2-[(2- chloro-1-oxido- 3- pyridinyl) methox y] benzoic acid N 371 f> < 409 197-2- (1H- N [M-H] 201 Benzimidazol-2- ylmethoxy)-3- [ (2- chlorophenyl) met hoxy] benzoic acid, monohydrochlorid e N 372 f>'js IJ 423 3- [ (2- N [M-H] 179-Chlorophenyl) met 182 hoxy]-2- [ (1- methyl-lH- benzimidazol-2- yl) methoxy benzo ic acid

Example 373 6-Bromo-2,3-bis [(2-chlorophenyl)methoxy]benzoic acid

A cooled (0 °C) solution of 2,3-dimethoxybenzoic acid (1.0 g, 5.5 mmol) in 1.4 M NaOH (8. 63 mL, 12.1 mmol) was treated portionwise with N-bromosuccinimide (1.185 g, 6.59 mmol), brought to room temperature and stirred for 48.0 hr (Tet. Lett, 1993,34 (6), 931-934). The mixture was quenched with 5% NaHSO3 solution (30 mL), acidified with 12 N hydrochloric acid to pH 1 and extracted with Et2O (2 x 50 mL). The organic phase was washed with H20 (3 x 10 mL) and brine (10 mL), dried (MgS04) and concentrated to give the title compound as a syrup (1.43 g, 100%).

B.

A cooled (0 °C) solution of part A compound (1.43 g, 5.49 mmol) in dry dichloromethane (6.0 mL) was treated with 1.0 M BBr3/CH2Cl2 (11.0 mL, 11.0 mmol), stirred at 0 °C for 3.0 h then allowed to come up to room temperature overnight (J. Med. Chem. 1995,38, 4937-4943). The reaction mixture was quenched by the dropwise addition of water (35 mL) followed by 1.0 N hydrochloric acid (70 mL), stirred for 15 min then extracted with EtOAc (3 x 100 mL). The extracts were washed with water (2 x 50 mL), brine (25 mL) and dried (MgSO4) to give the title compound as a solid (1.163 g, 91%). LC/MS gave the correct molecular ion [(M-H)- = 231] for the desired compound.

C.

A mixture of thionyl chloride (0.60 mL, 8.2 mmol) and methanol (10.0 mL) was stirred at room temperature for 30 min then treated with part B compound (1.15 g, 4.94 mmol). The reaction mixture was stirred at room temperature for 1 h, refluxed for 7 h, cooled and concentrated to a brown solid. Purification by column chromatography (2.5 x 25 cm column, 1: 9 EtOAc/hexane, then 1: 4 EtOAc/hexane) gave the title compound (550 mg, 45%). LC/MS gave the correct molecular ion [ (M-H)- = 2451 for the desired compound.

D.

To a mixture of part C compound (200 mg, 0.83 mmol), potassium carbonate (900 mg, 6.64 mmol) and Bu4NI (cat) in dry DMF (3.4 mL) was added 2-chlorobenzyl chloride (0.42 mL, 3.32 mmol) (J. Med. Chem. 1997,40, 105-111). The reaction mixture was heated at 60 °C for 4 h and partitioned between water (25 mL) and Et2O (3 x 60 mL).

The organic extracts were washed with water (3 x 25 mL) and brine (25 mL) and dried (MgSO4) to give a syrup.

Purification by flash chromatography (2.5 x 25 cm column, 1: 9 EtOAc/hexane) gave the title compound as a clear thick syrup (421 mg, 100 %).

E.

A solution of part D compound (421 mg, 0.83 mmol) in 1: 1: 1 THF/CH30H/H20 (11 mL) was treated with 10.0 N sodium hydroxide (0.58 mL, 5.8 mmol) and stirred at room temperature for 24 h and then refluxed for 48 h. The mixture was concentrated and the solids obtained were suspended in water (6.0 mL), acidified to pH 1.0 with 1.0 N hydrochloric acid and extracted with EtOAc (2 x 65 mL).

The organic phase was washed with water (3 x 6.0 mL) and brine (6.0 mL), dried (MgSO4) and concentrated to give a white solid. Trituration of the solid with CH2C12 (5 mL) and hexane (25 mL) gave the title compound as a white solid (335 mg, 94%), mp 156-158 °C. LC/MS gave the correct molecular ion [(M-H)-= 479] for the desired compound.

Example 374 6-Bromo-2,3-bis (phenylmethoxy) benzoic acid

Example 374 was prepared using the method of Example 373. The title compound was obtained as a white solid (65 mg, 65%), mp 164-166 °C. LC/MS gave the correct molecular ion [ (M+H) + = 4151 for the desired compound.

Example 375 2- (Benzoylamino)-3- (phenylmethoxy) benzoic acid To a stirred mixture of methanol (55 mL) and thionyl chloride (3.19 mL, 43.7 mmol) was added 3- hydroxy-2-nitrobenzoic acid (5.0 g, 27.3 mmol).

The reaction mixture was stirred at room temperature for 2 h, refluxed for 7 h then evaporated. Purification by flash chromatography (2.5 x 10 cm column, 1: 3 EtOAc/hexane) gave the title compound as a light yellow solid (5.03 g, 93% yield), mp 114-116 °C. LC/MS gave the correct molecular ion [(M-H)-= 196] for the desired compound.

A mixture of part A compound (1.0 g, 5.07 mmol) and potassium carbonate (700 mg, 5.07 mmol) in dry DMF (10 mL) was treated with benzyl bromide (992 mg, 5.8 mmol) and heated at 100 °C for 2 h. The mixture was concentrated and partitioned between EtOAc (3x 50 mL) and water (10 mL). The organic phase was washed with H20 (3 x 10 mL) and brine (10 mL), dried (MgSO4) and evaporated.

Purification by flash chromatography (2.5 x 25 cm column, 1: 4 EtOAc/hexane) provided the title compound as a white solid (1.32 g, 91% yield), mp 96-98 °C.

C.

A solution of part B compound (6.12 g, 21.3 mmol) in glacial HOAc (120 mL) was cooled to 0 °C, treated with zinc powder (13.71 g, 210 mmol), brought to room temperature and stirred for 2 h (J. Med. Chem. 1997,40, 105-111). The mixture was filtered, washing the powder with glacial HOAc (25 mL), and the reddish-brown solution concentrated and re-evaporated several times with toluene. The crude product was partitioned between water (40 mL) and CH2C12 (2 x 150 mL) followed by extraction with EtOAc (150 mL). The organic extracts were washed

with water (2 x 40 mL) and brine (40 mL), dried (MgSO4) and concentrated to a syrup. Purification by flash chromatography (2.5 x 10 cm column, 1: 9 EtOAc/hexane, then 1: 4 EtOAc/hexane) gave the desired compound as a white solid (3.36 g, 87%), mp 81-82 °C. LC/MS gave the correct molecular ion [(M+H) = 258] for the title compound.

D.

To a solution of part C compound (300 mg, 1.17 mmol) in dry CH2C12 (6.0 mL) was added dry pyridine (119 mg, 1.5 mmol) followed by a solution of benzoyl chloride (181 mg, 1.29 mmol) in dry CH2C12 (6.0 mL) (J. Med. Chem 1994,37, 4251-4257). The reaction mixture was stirred at room temperature for 19 h, diluted with CH2C12 (13 mL) and washed with 1.0 N hydrochloric acid (2.0 mL). The aqueous phase was back-extracted with CH2C12 (25 mL) and the organic fractions were washed with 5% sodium bicarbonate solution (2.0 mL), water (2 x 2.0 mL) and brine (2.0 mL), dried (MgS04) and concentrated to a white solid. Purification by flash chromatography (2.5 x 25 cm column, 1: 9 EtOAc/Hexane, then 1: 4 EtOAc/Hexane) gave the title compound as a white solid (357 mg, 85%), mp 126-128 °C.

E.

A solution of part D compound (100 mg, 0.28 mmol) in dry CH30H (5. 0 mL) was treated with 1. 0 N sodium hydroxide solution (0.8 mL) and stirred at room temperature for 5.0 h, then heated to reflux for 30 min.

The solution was concentrated and the crude product dissolved in water (2.0 mL), acidified to pH 1 with 1.0 N hydrochloric acid (0.9 mL) and extracted with EtOAc (3 x 10 mL). The organic extracts were washed with water (3 x 2 mL) and brine (2 mL), dried (MgS04) and concentrated to give the title compound as a white solid (96.9 mg, 100%), mp 167-168 °C. LC/MS gave the correct molecular ion [(M+H) + = 348] for the desired compound.

Examples 376-391 The following compounds were prepared according to the methods outlined in Example 375. m/z m. p. Ex. R1 R2 [M-H]- (°C) Name ,. CH3 376 sN>S v CH3 O 2-[[(4- X óò/398 153-155 Methylphenyl) sul fonyl] amino]-3- (phenylmethoxy) b enzoic acid 377, N 9/< 362 184-186 2- X O \ (Benzoylmethylam ino)-3- (phenylmethoxy) b enzoic acid H 1 378 N 382 161-163 2- [ (3- Chlorobenzoyl) am ino]-3- (phenylmethoxy) b enzoic acid cl, N 382 170-172 2- [ (4- 379 Chlorobenzoyl) am 0 inox-3- ino]-3- (phenylmethoxy) b enzoic acid 380 2- 438 161-163 [Benzoyl (phenylm ethyl) amino]-3- o (phenylmethoxy) b enzoic acid cl 414 208-210 2- [ (2, 4- 38 Dichlorobenzoyl) amino]-3- (phenylmethoxy) b enzoic acid ci H 2- [ (3, 5- N 414 202-204 Dichlorobenzoyl) 382 o amino]-3- (phenylmethoxy) b enzoic acid /N \ I CI/2 _ H jj rn 2- 383 414 145-147 (Benzoylamino)- 0'3- (2, 6- dichlorophenyl) m ethoxy] benzoic acid cri 414 187-189 2- 384/MCI (Benzoylamino)- 0'3- (2, 5- dichlorophenyl) m ethoxy] benzoic acid cri iN / 2 _ 385 e/< 382 180-182 (Benzoylamino)- 0 3- [ (2- chlorophenyl) met hoxy] benzoic acid 386'"C 382 90-92 (Benzoylamino)- 0 3- (3- chlorophenyl) met hoxy] benzoic acid ci, ci N 2- 387 Nyio/3a 414 182-184 (Benzoylamino)- 0 3- [ (2, 4- dichlorophenyl) m ethoxy] benzoic acid ci I 2- CI 382 142-144 (Benzoylamino)- 0 3- [ (4- chlorophenyl) met hoxy] benzoic acid Ci ci H 2- [ (2- 389 r N 1 416 225-227 Chlorobenzoyl) am o ino]-3-[(2- chlorophenyl) met hoxy] benzoic acid ci H Nk. ! I. ! J 3-H2- Y-0 388 196-198 Chlorophenyl) met ic v P Y hoxy]-2- [ (cyclohexylcarb onyl) amino] benzo ic acid i cl 391 N 9 451 171-174 3- [ (2- Chlorophenyl) met C ! hoxy]-2- [ [ (2- chlorophenyl) sul fonyl] amino] benz oic acid Example 392 3-[(2-Chlorobenzoyl)amino]-2-[(2- chlorophenyl) methoxy] benzoic acid

A mixture of thionyl chloride (1.15 mL, 15.8 mmol) and methanol (20.0 mL) was stirred at room temperature for 30 min then treated with 3-amino-2-hydroxybenzoic acid (1.5 g, 9.79 mmol). The reaction mixture was stirred at room temperature for 2 h, refluxed for 20 h, cooled and concentrated. The crude product was partitioned between EtOAc (100 mL) and 5% NaHCO3 solution (65 mL), back-extracting the aqueous phase with EtOAc (4 x 100 mL). The organic phase was washed with water (2 x 20 mL) and brine (20 mL), dried (MgSO4), filtered and concentrated to give a dark red solid (381 mg, 19%).

B.

To a solution of part A compound (381 mg, 1.9 mmol) and dry pyridine (0.18 mL) in dry CH2Cl2 (11.0 mL) was added 2-chlorobenzoylchloride (0.29 mL, 2.18 mmol) (J.

Med. Chem. 1994,37, 4251-4257). The reaction mixture

was stirred at room temperature for 24 h and then partitioned between 1.0 N hydrochloric acid (3.0 mL) and CH2C12 (2 x 25 mL). The organic phase was washed with water (2 x 3.0 mL) and brine (3 mL), dried (MgSO4) and concentrated to give a semi-solid. Purification by flash chromatography (2.5 x 25 cm column, 1: 9 EtOAc/hexane) gave the title compound as an off-white solid (569 mg, 99%). LC/MS gave the correct molecular ion [ (M+H) +-306] for the desired compound.

C.

A mixture of part B compound (100 mg, 0.33 mmol), potassium carbonate (92 mg, 0.66 mmol) and Bu4NI (-5 mg) in dry dimethyformamide (1.5 mL) was treated with 2- chlorobenzylchloride (0.05 mL, 0.43 mmol) and stirred at 60 °C for 3 h. The mixture was concentrated and the slurry partitioned between water (2.0 mL) and EtOAc (2 x 20 mL). The organic phase was washed with water (2 x 2.0 mL) and brine (2 mL), dried (MgSO4) and concentrated to give a syrup. Purification by flash chromatography (2.5 x 25 cm column, 1: 9 EtOAc/Hexane) gave the title compound as a clear syrup (125 mg, 88%).

D.

A solution of part C compound (125 mg, 0.29 mmol) in CH30H (4.7 mL) was treated with 1.0 N sodium hydroxide solution (0.8 mL, 0.8 mmol) and refluxed for 2 h. The mixture was concentrated and the solids were dissolved in water (2.0 mL), acidified with 1.0 N hydrochloric acid (0.89 mL) to pH 1 and partitioned between water (2 mL) and EtOAc (2 x 50 mL). The organic phase was washed with water (2 x 4.0 mL) and brine (4.0 mL), dried (MgSO4) and concentrated to give the title compound as a white solid (125 mg, 100%), mp 182-183 °C. LC/MS gave the correct molecular ion [ (M+H) + = 4181 for the desired compound.

Example 393 3-[(2-Chlorobenzoyl) amino]-2-[(4- methoxyphenyl) methoxy] benzoic acid Example 393 was prepared by the method of Example 392. The title compound was obtained as a white solid (47 mg, 88%), mp 115-117 °C. This compound was acid- labile and an LC/MS or HPLC could not be obtained.

Examples 394-571 The compounds of examples 394-571 were prepared as part of a solid-phase library run using the following procedure. poly-poly- styrene styrene resin resin 0 0 OMe tOMe N°2 0 N02 0 HO I \ O R2 I 0 poly-poly- styrene styrene resin resin z 0 0 OMe (I) n WOMe X NH2 ° R1 NH O R2 eo R2/° eo A. poly- styrene resin ome CHO

To a stirred suspension of sodium hydride (60% mineral oil dispersion, 10.5 g, 0.263 mol) in DMF (100 mL) at 4 °C was added a solution of 2-methoxy-4-hydroxy- benzaldehyde (40.0 g, 0.263 mol) in DMF (200 mL) over 2 h. The reaction mixture was warmed to room temperature and stirred for 1 h, whereupon tetrabutylammonium iodide (13.0 g, 35.2 mmol) and Merrifield polystyrene resin (100 g, 1.24 mmol chloride/g, 124 mmol) was added in two batches. The reaction mixture was heated to 61 °C for 19 h. The resulting solid was collected and washed with the following sequence: five times with 1: 1 DMF-water, five times with DMF, once with DMF-water, once with DMF, three times with THF, once with methanol and once with THF.

The solids were dried in vacuum at room temperature to constant weight to give the title compound (117.1 g) : Elemental analysis showed a residual chloride content of 0. 15% by weight. The calculated loading was 1.084 mmol/g.

B. poly- styrene resin I p OMe CH20H

To an agitated suspension (at 150 rpm) of Part A resin (53.3 g, 57.6 mmol) in THF (150 mL) and ethanol (150 mL) at room temperature was added solid sodium borohydride (11.48 g, 317 mmol). After 20 h, the resulting solid was collected and washed with the following sequence: four times with 1: 1 DMF-water, three times with DMF, four times with 1: 19 acetic acid/THF, twice with THF and four times with dichloromethane. The solids were dried in vacuum at room temperature to constant weight to give the title compound (52.35 g).

C. poly- styrene resin p NOZ o oMe HO

To a solution of triphenylphosphine (45.3 g, 173 mmol) in CH2Cl2 (200 mL) at 4 °C was added triphosgene

(46.6 g, 173 mmol) portionwise over 30 min. After an additional 10 min, the reaction mixture was warmed to room temperature and stirred for 30 min. The reaction mixture was evaporated re-evaporated once from CH2Cl2 and the resulting solid redissolved in CH2C12 (90 mL). This solution was added to an agitated suspension (at 150 rpm) of Part B resin (35.0 g, 37.9 mmol) in CH2C12 (150 mL).

After 3 h, the resulting solid was collected and washed twice with anhydrous DMF. The washed solid was suspended in DMF (200 mL) and 3-hydroxy-2-nitro-benzoic acid (17.0 g, 92.8 mmol), sodium bicarbonate (11.23 g, 139 mmol) and tetra-n-butylammonium iodide (1.4 g, 3.8 mmol) were added and the mixture agitated at 150 rpm. After 40 h, the solid was collected and washed five times with 1: 1 DMF/water followed by DMF, then four times with THF and four times with CH2Cl2. Drying in vacuum at room temperature to constant weight gave the title compound (38.83 g).

D. poly- styrene resin I N02 0 OMe R2' I o R2 t°eo A suspension of Part C resin (1.0 g, 0.91 mmol), finely ground potassium carbonate (1.26 g, 9.1 mmol), tetrabutylammonium iodide (100 mg, 0.9 mmol) and R2-X (4.6

mmol) in DMF (11.5 mL) at 68 °C was agitated at 300 rpm.

After 33 h, the solid was washed four times with 1: 1 DMF/water, then four times with DMF and four times with THF (15 mL portions). Drying in vacuum at room temperature to constant weight gave the title compounds.

The following R2-X were included: (l-bromoethyl) benzene, benzyl bromide, 2-bromobenzyl bromide, a-bromo-o-xylene, a-bromo-m-xylene, a-bromo-p-xylene, 4-bromobenzyl bromide, 4- (trifluoromethyl) benzyl bromide, 3- chlorobenzyl bromide, 2-chlorobenzyl chloride, 2,4- dichlorobenzyl chloride, 4-methoxybenzyl chloride, 4- benzyloxybenzyl chloride, 4-biphenylmethyl chloride, 2- chloroacetophenone, 2, 2', 4'-trichloroacetophenone, 1- iodobutane, bromomethylcyclo-hexane, 1- (chloromethyl) naphthalene, 2- (bromomethyl) naphthalene, 2,4'-dichloroacetophenone, 4-chlorobenzyl bromide, 3- phenoxybenzyl chloride and 3-methoxybenzyl bromide.

E. poly- styrene resin O R2/°seo p20JA A suspension of Part D resin in THF (10 mL) was agitated at 270 rpm and then water (4.4 mL) was added, followed by potassium carbonate (1.26 g, 9.1 mmol), tetrabutylammonium hydroxide solution (0.60 mL, 1.53 M, 0.9 mmol) and sodium hydrosulfite (3.12 g, 18.2 mmol).

After 76 h, the solid was washed six times with 1: 1 DMF/water, then four times with DMF, three times with THF and twice with CH2Cl2 (15 mL portions) gave the title compounds.

F.

A suspension of Part D resin (60 mg) in ClCH2CH2Cl (500 RL) was treated with a solution of DMAP in pyridine (0.5 mL, 0. 1 M, 0.05 mmol) and then a solution of Rl-X (O) n-Cl (0.5 mL, 1 M). The vessels were agitated at 580 rpm for 14 h. Each resin was washed twice with DMF, three times with 1: 1 DMF/water, three times with THF, twice with CH2C12 (1 mL portions) and then treated with 1% TFA in ClCH2CH2Cl for 40 min at 550 rpm. The solution was evaporated and the residues were dissolved in isopropanol (0.5 mL), filtered and evaporated to give the title compounds.

The following Rl-X (O) n-Cl were included: benzoyl chloride, 2-chlorobenzoyl chloride, o-anisoyl chloride, 3-chlorobenzoyl chloride, m-anisoyl chloride, heptanoyl chloride, cyclohexanecarbonyl chloride, 2-quinoxaloyl choride, benzenesulfonyl chloride, 2-chloronicotinyl chloride, 3-chorobenzenesulfonyl chloride and 6- chloronicotinyl chloride. Mass ion Ex. CAS Name Elemental formula Spec. type m/z inferred 3- [ [ (3- 394 Chlorophenyl) sulfonyl] a C21 H18 Cl N 05 S 432 (M+H) mino]-2- (1- phenylethoxy) benzoic acid 2- [ (2- 395 Chlorobenzoyl) amino]-3-C21 H16 Cl N 04 382 (M+H) (phenylmethoxy)benzoic acid 2- [ (2- 396 Methoxybenzoyl) amino]- C22 H19 N 05 379 (M+H) 3- (phenylmethoxy) benzoic acid 2- [ (1-Oxoheptyl) amino]- 397 3-C21 H25 N 04 356 (M+H) (phenylmethoxy) benzoic acid 2- 398 [(Cyclohexylcarbonyl) ami C21 H23 N 04 354 (M+H) no]-3- (phenylmethoxy) benzoic acid 3-(Phenylmethoxy)-2-[(2- 399 quinoxalinylcarbonyl) ami C23 H17 N3 04 400 (M+H) no] benzoic acid 3-(Phenylmethoxy)-2- 400 [(phenylsulfonyl) amino] b C20 H17 N 05 S 384 (M+H) enzoic acid 2-[[(6-Chloro-3- 401 pyridinyl) carbonyl] amino] C20 H15 Cl N2 04 383 (M+H) -3- (phenylmethoxy) benzoic acid 2-(Brenzoylamino)-3-[(2- 402 bromophenyl) methoxy] b C21 H16 Br N 04 426 (M+H) enzoic acid 3-[(2- 403 Bromophenyl) methoxy]- 21 H15 Br Cl N O4 460 (M+H) 2- [ (3- chlorobenzoyl) amino] ben zoic acid 3- [ (2- 404 Bromophenyl) methoxy]- C21 H22 Br N 04 432 (M+H) 2- [(cyclohexylcarbonyl) ami no] benzoic acid 3- [ (2- 405 Bromophenyl)methoxy]- C23 H16 Br N3 O4 478 (M+H) 2- [ (2- quinoxalinylcarbonyl) ami no benzoic acid 2-(Benzoylamino)-3-[(2- 406 methylphenyl) methoxy] b C22 H19 N 04 362 (M+H) enzoic acid 2-[(2- 407 Methoxybenzoyl) amino]- C23 H21 N 05 392 (M+H) 3- [ (2- methylphenyl) methoxy] b enzoic acid 2- [ (3- 408 Chlorobenzoyl) amino]-3- C22 H18 CI N 04 396 (M+H) [ (2- methylphenyl) methoxy] b enzoic acid 3- [ (2- 409 Methylphenyl) methoxy]- C22 H27 N 04 70 (M+H) 2- [ (1- oxoheptyl) amino] benzoic acid 2- 410 [(Cyclohexylcarbonyl) ami C22 H25 N 04 368 (M+H) no]-3- [ (2- methylphenyl) methoxy] b enzoic acid 3- [ (2- 411 Methylphenyl) methoxy]- C24 H19 N3 04 14 (M+H) 2- [ (2- quinoxalinylcarbonyl) ami no] benzoic acid 2-[[(6-Chloro-3- 412 pyridinyl) carbonyl] amino] C21 H17 Cl N2 O4 397 (M+H) - 3- [ (2- methylphenyl) methoxy] b enzoic acid 2- [ (2- 413 Chlorobenzoyl) amino]-3- C22 H18 CI N 04 396 (M+H) [ (3- methylphenyl) methoxy] b enzoic acid 2- [ (2- 414 Methoxybenzoyl) amino]- C23 H21 N 05 392 (M+H) 3- [ (3- methylphenyl) methoxy] b enzoic acid 2- [ (3- 415 Chlorobenzoyl) amino]-3- C22 H18 CI N 04 396 (M+H) [ (3- methylphenyl) methoxy] b enzoic acid 2- [ (3- 416 Methoxybenzoyl) amino]- C23 H21 N O5 392 (M+H) 3- [ (3- methylphenyl) methoxy] b enzoic acid 3- [ (3- 417 Methylphenyl) methoxy]- C22 H27 N 04 370 (M+H) 2- [ (1- oxoheptyl) amino] benzoic acid 2- 418 [(Cyclohexylcarbonyl) ami C22 H25 N 04 368 (M+H) no]-3- [ (3- methylphenyl)methoxy] b enzoic acid 3-[(3- 419 Methylphenyl)methoxy]- C24 H19 N3 O4 414 (M+H) 2- [ (2- quinoxalinylcarbonyl) ami no benzoic acid 3- [ (3- 420 Methylphenyl)methoxy]- C21 H19 N O5 S 398 (M+H) 2- [(phenylsulfonyl)amino]b enzoic acid 2-[[(2-Chloro-3- 421 pyridinyl) carbonyl] amino] C21 H17 Cl N2 04 398 (M+H) - 3- [ (3- methylphenyl) methoxy] b enzoic acid 2- [ [ (3- 422 Chlorophenyl) sulfonyl] a C21 H18 Cl N O5 S 432 (M+H) mino]-3- [ (3- methylphenyl)methoxy] b enzoic acid 2-[[(6-Chloro-3- 423 pyridinyl) carbonyl] amino] C21 H17 Cl N2 O4 397 (M+H) - 3- [ (3- methylphenyl) methoxy] b enzoic acid 2- (Benzoylamino)-3- [ (4- 424 bromophenyl) methoxy] b C21 H16 Br N 04 426 (M+H) enzoic acid 3- [ (4- 425 Bromophenyl)methoxy]- C21 H15 Br Cl N O4 460 (M+H) 2-[(2- chlorobjenzoyl)amino]ben zoic acid 3- [ (4- 426 Bromophenyl) methoxy]-C22 H18 Br N 05 456 (M+H) 2- [ (2- methoxybenzoyl) amino] b enzoic acid 3- [ (4- 427 Bromophenyl)methoxy]- C21 H15 Br Cl N O4 460 (M+H) 2- [ (3- chlorobenzoyl) amino] ben zoic acid 3- [ (4- 428 Bromophenyl) methoxy]- C22 H18 Br N 05 456 (M+H) 2- [ (3- methoxybenzoyl) amino] b enzoic acid 3-[(4- 429 Bromophenyl) methoxy]- C21 H24 Br N 04 434 (M+H) 2-[(1- oxoheptyl) amino] benzoic acid 3- [ (4- 430 Bromophenyl) methoxy]- C21 H22 Br N 04 432 (M+H) 2- [ (cyclohexylcarbonyl) ami no benzoic acid 3- [ (4- 431 Bromophenyl) methoxy]- C23 H16 Br N3 O4 478 (M+H) 2- [ (2- quinoxalinylcarbonyl) ami no benzoic acid 3- [ (4- 432 Bromophenyl) methoxy]- C20 H16 Br N O5 S 462 (M+H) 2- [(phenylsulfonyl) amino] b enzoic acid 3- [ (4- ( 433 Bromophenyl) methoxy]- C20 H14 Br CI N2 461 M+H) 2-[[(2-chloro-3- O4 pyridinyl) carbonyl] amino] benzoic acid 3- [ (4- 434 Bromophenyl) methoxy]- C20 H15 Br Cl N 05 496 (M+H) 2-[[(3- S chlorophenyl) sulfonyl] am ino] benzoic acid 3- [ (4- 435 Bromophenyl) methoxy]- C20 H14 Br Cl N2 461 (M+H) 2-[[(6-chloro-3- O4 pyridinyl) carbonyl] amino] benzoic acid 2- [ (2- 436 Methoxybenzoyl) amino]- C23 H21 N 05 392 (M+H) 3- [ (4- methylphenyl) methoxy] b enzoic acid 2- [ (3- 437 Chlorobenzoyl)amino]-3- C22 H18 Cl N O4 397 (M+H) [ (4- methylphenyl) methoxy] b enzoic acid 2- [ (3- 438 Methoxybenzoyl) amino]- C23 H21 N 05 392 (M+H) 3- [ (4- methylphenyl) methoxy] b enzoic acid 3- [ (4- 439 Methylphenyl) methoxy]- C22 H27 N 04 370 (M+H) 2- [ (1- oxoheptyl) amino] benzoic acid 2- 440 [(Cyclohexylcarbonyl) ami C22 H25 N 04 368 (M+H) no]-3- [ (4- methylphenyl) methoxy] b enzoic acid 3- [ (4- 441 Methylphenyl) methoxy]- C24 H19 N3 04 414 (M+H) 2- [ (2- quinoxalinylcarbonyl) ami no] benzoic acid 2-[[(2-Chloro-3- 442 pyridinyl) carbonyl] amino] C21 H17 Cl N2 04 397 (M+H) - 3- [ (4- methylphenyl) methoxy] b enzoic acid 2- [ [ (3- 443 Chlorophenyl) sulfonyl] a C21 H18 Cl N O5 S 432 (M+H) mino]-3- [ (4- methylphenyl)methoxy]b enzoic acid 2-[[(6-Chloro-3- 444 pyridinyl) carbonyl] amino] C21 H17 Cl N2 04 397 (M+H) - 3- [ (4- methylphenyl) methoxy] b enzoic acid 2-(Benzoylamino)-3-[[4- 445 (trifluoromethyl) phenyl] m C22 H16 F3 N O4 414 (M+H) ethoxy] benzoic acid 2-[(2- 446 Chlorobenzoyl) amino]-3- C22 H15 Cl F3 N 04 450 (M+H) [ [4- (trifluoromethyl) phenyl] m ethox benzoic acid 2- [ (2- 447 Methoxybenzoyl) amino]- C23 H18 F3 N 05 446 (M+H) 3- [ [4- (trifluoromethyl) phenyl] m ethoxy]benzoic acid 2-[(3- 448 Chlorobenzoyl)aino]-3- C22 H15 Cl F3 N O4 450 (M+H) [ [4- (trifluoromethyl) phenyl] m ethoxy] benzoic acid 2- [ (3- 449 Methoxybenzoyl) amino]- C23 H18 F3 N 05 446 (M+H) 3- [ [4- (trifluoromethyl) phenyl] m ethoxy]benzoic acid 2-[(1-Oxoheptyl)amino]- 450 3- [ [4- C22 H24 F3 N 04 424 (M+H) (trifluoromethyl) phenyl] m ethoxy] benzoic acid 2- 451 [(Cyclohexylcarbonyl) ami C22 H22 F3 N 04 422 (M+H) no]-3- [ [4- (trifluoromethyl) phenyl] m ethox benzoic acid 2- [ (2- 452 Quinoxalinylcarbonyl) ami C24 H16 F3 N3 O4 468 (M+H) no]-3- [ [4- (trifluoromethyl) phenyl] m ethox benzoic acid 2- 453 [(Phenylsulfonyl) amino]-C21 H16 F3 N 05 S 452 (M+H) 3- [ [4- (trifluoroemthyl)phenyl] m ethoxy] benzoic acid 2-[[(2-Chloro-3- 454 pyridinyl) carbonyl] amino] C21 H14 Cl F3 N2 451 (M+H) -3-[[4- O4 (trifluoromethyl) phenyl] m ethoxy]benzoic acid 2- [ [ (3- 455 Chlorophenyl) sulfonyl] a C21 H15 Cl F3 N O5 486 (M+H) mino]-3-[[4- S (trifluoromethyl) phenyl] m ethoxy] benzoic acid 2-[[(6-Chloro-3- 456 pyridinyl) carbonyl] amino] C21 H14 Cl F3 N2 451 (M+H) -3-[[4- O4 (trifluoroemthyl)phenyl] m ethoxy] benzoic acid 2- [ (2- 457 Chlorobenzoyl) amino]-3-C21 H15 Cl2 N 04 416 (M+H) [ (3- chlorophenyl) methoxy] be nzoic acid 3- [ (3- 458 Chlorophenyl) methoxy]-C22 H18 Cl N 05 412 (M+H) 2- [ (2- methoxybenzoyl) amino] b enzoic acid 2- [ (3- 459 Chlorobenzoyl) amino]-3-C21 H15 Cl2 N 04 416 (M+H) [ (3- chlorophenyl) methoxy] be nzoic acid 3- [ (3- 460 Chlorophenyl)methoxy]- C22 H18 Cl N O5 412 (M+H) 2- [ (3- methoxybenzoyl) amino] b enzoic acid 3- [ (3- 461 Chlorophenyl)methoxy]- C21 H24 Cl N 04 390 (M+H) 2-[(1- oxoheptyl) amino] benzoic acid 3- [ (3- 462 Chlorophenyl) methoxy]- C21 H22 Cl N 04 388 (M+H) 2- [(cyclohexylcarbonyl) ami no benzoic acid 3- [ (3- 463 Chlorophenyl) methoxy]- C20 H16 CI N 05 S 418 (M+H) 2- [(phenylsulfonyl) amino] b enzoic acid 3- [ (3- 464 Chlorophenyl) methoxy]-C20 H14 Cl2 N2 04 417 (M+H) 2-[[(2-chloro-3- pyridinyl) carbonyl] amino] benzoic acid 3- [ (3- 465 Chlorophenyl) methoxy]- C20 H15 Cl2 N O5 S 452 (M+H) 2- [ [ (3- chlorophenyl) sulfonyl] am ino] benzoic acid 3- [ (2- 466 Chlorophenyl) methoxy]- C22 H18 Cl N 05 412 (M+H) 2- [ (2- methoxybenzoyl) amino] b enzoic acid 2- [ (3- 467 Chlorobenzoyl) amino]-3-C21 H15 Cl2 N 04 416 (M+H) [ (2- chlorophenyl) methoxy] be nzoic acid 3- [ (2- 468 Chlorophenyl)methoxy]- C22 H18 Cl N O5 412 (M+H) 2-[(3- methoxybenzoyl)amino]b enzoic acid 3- [ (2- 469 Chlorophenyl) methoxy]- C21 H24 Cl N 04 390 (M+H) 2-[(1- oxoheptyl) amino] benzoic acid 3- [ (2- 470 Chlorophenyl)methoxy]- C21 H22 Cl N 04 388 (M+H) 2- [(cyclohexylcarbonyl) ami no] benzoic acid 3- [ (2- 471 Chlorophenyl) methoxy]- C23 H16 CI N3 04 434 (M+H) 2- [ (2- quinoxalinylcarbonyl) ami no] benzoic acid 3- [ (2- 472 Chlorophenyl) methoxy]-C20 H14 Cl2 N2 04 417 (M+H) 2-[[(2-chloro-3- pyridinyl) carbonyl] amino] benzoic acid 3-[(2- 473 Chlorophenyl)methoxy]- C20 H14 Cl2 N2 O4 417 (M+H) 2-[[(6-chloro-3- pyridinyl) carbonyl] amino] benzoic acid 2- [ (2- 474 Chloropbenzoyl)amino]-3- C21 H14 Cl3 N O4 450 (M+H) [(3, 4- dichlorophenyl) methoxy] benzoic acid 3- [ (2,4- 475 Dichlorophenyl) methoxy] C22 H17 Cl2 N 05 446 (M+H) -2-[(2- methoxybenzoyl) amino] b enzoic acid 2- [ (3- 476 Chlorobenzoyl)amino]--3 C21 H14 Cl3 N O4 450 (M+H) [(2,4- dichlorophenyl)methoxy benzoic acid 3- [ (2, 4- 477 Dichlorophenyl) methoxy] C22 H17 Cl2 N 05 446 (M+H) - 2- [ (3- methoxybenzoyl) amino] b enzoic acid 3- [ (2, 4- 478 Dichlorophenyl) methoxy] C21 H23 Cl2 N 04 424 (M+H) -2-[(1- oxoheptyl) amino] benzoic acid 3- [ (2,4- 479 Dichlorophenyl) methoxy] C21 H21 Cl2 N 04 423 (M+H) -2- [(cyclohexylcarbonyl) ami no benzoic acid 3- [ (2, 4- 480 Dichlorophenyl) methoxy] C20 H15 Cl2 N O5 S 452 (M+H) -2- [(phenylsulfonyl) amino] b enzoic acid 2-[[(2-Chloro-3- 481 pyridinyl) carbonyl] amino] C20 H13 Cl3 N2 04 452 (M+H) 3-[(2,4- dichlorophenyl) methoxy] benzoic acid 2- (Benzoylamino)-3- 482 ([1,1'-biphenyl]-4- C27 H21 N O4 424 (M+H) methoxy) benzoic acid 3-[(1,1'-Biphenyl]-4- 483 ylmethoxy)-2-[(2-C27 H20 Cl N 04 458 (M+H) chlorobenzoyl) amino] ben zoic acid 3- ( [1, 1'-Biphenyl]-4- 484 ylmethoxy)-2-[(2-C28 H23 N 05 454 (M+H) methoxybenzoyl) amino] b enzoic acid 3- ( [1, 1'-Biphenyl]-4- 485 ylmethoxy)-2- [ (3- C27 H20 Cl N 04 458 (M+H) chlorobenzoyl) amino] ben zoic acid 3-([1,1'-Biphenyl]-4- 486 ylmethoxy)-2- [ (3- C28 H23 N 05 454 (M+H) methoxybenzoyl) amino] b enzoic acid 3- ( [1, 1'-Biphenyl]-4- 487 ylmethoxy)-2- [ (1- C27 H29 N 04 432 (M+H) oxoheptyl) amino] benzoic acid 3- ( [1, 1'-Biphenyl]-4- 488 ylmethoxy)-2-C27 H27 N 04 430 (M+H) [(cyclohexylcarbonyl) ami no] benzoic acid 3- ( [1, 1'-Biphenyl]-4- 489 ylmethoxy)-2-[(2- C29 H21 N3 04 476 (M+H) quinoxalinylcarbonyl) ami no] benzoic acid 3- ( [1, 1'-Biphenyl]-4- 490 ylmethoxy)-2-[[(2-chloro-C26 H19 Cl N2 04 459 (M+H) 3- pyridinyl) carbonyl] amino] benzoic acid 3-([1,1'-Biphenyl]-4- 491 ylmethoxy)-2-[[(6-chloro C26 H19 Cl N2 O4 459 (M+H) 3- pyridinyl) carbonyl] amino] benzoic acid 2- [ (2- 492 Chlorobenzoyl) amino]-3- C22 H16 CI N 05 410 (M+H) (2-oxo-2- phenylethoxy) benzoic acid 2- [ (2- 493 Methoxybenzoyl) amino]- C23 H19 N O6 406 (M+H) 3- (2-oxo-2- phenylethoxy) benzoic acid 2- (Benzoylamino)-3- 494 butoxybenzoic acid C18 H19 N 04 314 (M+H) 3-Butoxy-2- [ (2- 495 methoxybenzoyl) amino] b C19 H21 N 05 344 (M+H) enzoic acid 3-Butoxy-2- [ (3- 496 chorobenzoyl) amino] ben C18 H18 Cl N 04 348 (M+H) zoic acid 3-Butoxy-2- [ (3- 497 methoxybenzoyl) amino] b C19 H21 N 05 344 (M+H) enzoic acid 3-Butoxy-2- [ (1- 498 oxoheptyl) amino] benzoic C18 H27 N 04 322 (M+H) acid 3-Butoxy-2- 499 [(cyclohexylcarbonyl) ami C18 H25 N 04 320 (M+H) no] benzoic acid 3-Butoxy-2- [ (2- 500 quinoxalinylcarbonyl) ami C20 H19 N3 04 366 (M+H) no] benzoic acid 3-Butoxy-2- 501 [(phenylsulfonyl) amino] b C17 H19 N 05 S 350 (M+H) enzoic acid 3-Butoxy-2-[[(2-chloro-3- 502 pyridinyl) carbonyl] amino] C17 H17 Cl N2 04 349 (M+H) benzoic acid 3-Butoxy-2- [ [ (3- 503 chlorophenyl) sulfonyl] am C17 H18 Cl N 05 S 384 (M+H) ino] benzoic acid 3-Butoxy-2-[[(2-chloro-3- 504 pyridinyl) carbonyl] amino] C17 H17 Cl N2 O4 349 (M+H) benzoic acid 2- (Benzoylamino)-3- 505 (cyclohexylmethoxy) ben C21 H23 N 04 354 (M+H) zoic acid 2- [ (2- 506 Chlorobenzoyl) amino]-3- C21 H22 Cl N 04 388 (M+H) (cyclohexlmethoxy) ben zoic acid 3- (Cyclohexylmethoxy)- 507 2-[(2- C22 H25 N O5 384 (M+H) methoxybenzoyl) amino] b enzoic acid 2-[(3- 508 Chlorobenzoyl) amino]-3- C21 H22 Cl N 04 388 (M+H) (cyclohexylmethoxy) ben zoic acid 3- (Cyclohexylmethoxy)- 509 2- [ (3- C22 H25 N 05 384 (M+H) methoxybenzoyl) amino] b enzoic acid 3-(Cyclohexylmethoxy)- 510 2- [ (1- C21 H31 N 04 362 (M+H) oxoheptyl) amino] benzoic acid 2- 511 [(Cyclohexylcarbonyl)ami C21 H29 N O4 360 (M+H) no]-3- (cyclohexylmethoxy) ben zoic acid 3- (Cyclohexylmethoxy)- 512 2-[(2- C23 H23 N3 O4 406 (M+H) quinoxalinylcarbonyl) ami no] benzoic acid 3-(Cyclohexylmethoxy)- 513 2-C20 H23 N 05 S 390 (M+H) [(phenylsulfonyl) amino] b enzoic acid 2-[[(2-Chloro-3- 514 pyridinyl) carbonyl] amino] C20 H21 Cl N2 04 389 (M+H) -3- (cyclohexylmethoxy) ben zoic acid 2- [ [ (3- 515 Chlorophenyl) sulfonyl] a C20 H22 Cl N 05 S 424 (M+H) mino]-3- (cyclohexylmethoxy) ben zoic acid 2-[[(6-Chloro-3- 516 pyridinyl) carbonyl] amino] C20 H21 Cl N2 04 389 (M+H) -3- (cyclohexylmethoxy) ben zoic acid 2-(Benzoylamino)-3-(1- 517 naphthalenylmethoxy) be C25 H19 N 04 398 (M+H) nzoic acid 2-[(2- 518 Chlorobenzoyl) amino]-3- C25 H18 Cl N O4 432 (M+H) (1- naphthalenylmethoxy) be nzoic acid 2- [ (2- 519 Methoxybenzoyl)amino]- C26 H21 N O5 428 (M+H) 3- (1- naphthalenylmethoxy) be nzoic acid 2-[(3- C25 H18 Cl N O4 520 Chlorobenzoyl) amino]-3- 432 (M+H) (1- naphthalenylmethoxy) be nzoic acid 2-[(3- 521 Methoxybenzoyl)amino]- C26 H21 N O5 428 (M+H) 3- (1- naphthalenylmethoxy) be nzoic acid 3- (1- 522 Naphthalenylmethoxy)-2-C25 H27 N 04 406 (M+H) [ (1- oxoheptyl) amino] benzoic acid 2- 523 [(Cyclohexylcarbonyl) ami C25 H25 N 04 404 (M+H) no]-3- (1- naphthalenylmethoxy) be nzoic acid 3- (1- 524 Naphthalenylmethoxy)-2- C27 H19 N3 04 450 (M+H) [ (2- quinoxalinylcarbonyl) ami no benzoic acid 2-[[(2-Chloro-3- 525 pyridinyl) carbonyl] amino] C24 H17 CI N2 04 433 (M+H) -3-(1- naphthalenylmethoxy) be nzoic acid 2-[[(6-Chloro-3- 526 pyridinyl) carbonyl] amino] C24 H17 CI N2 04 433 (M+H) -3-(1- naphthalenylmethoxy) be nzoic acid 2- (Benzoylamino)-3- (2- 527 naphthalenylmethoxy) be C25 H19 N 04 398 (M+H) nzoic acid 2- [ (2- 528 Chlorobenzoyl) amino]-3- C25 H18 Cl N 04 432 (M+H) (2- naphthalenylmethoxy) be nzoic acid 2- [ (2- 529 Methoxybenzoyl)amino]- C26 H21 N O5 428 (M+H) 3-(2- naphthalenylmethoxy)be nzoic acid 2- [ (3- 530 Chlorobenzoyl) amino]-3- C25 H18 Cl N 04 432 (M+H) (2- naphthalenylmethoxy) be nzoic acid 2- [ (3- 531 Methoxybenzoyl) amino]- C26 H21 N 05 428 (M+H) 3- (2- naphthalenylmethoxy) be nzoic acid 3- (2- 532 Naphthalenylmethoxy)-2-C25 H27 N 04 406 (M+H) [ (1- oxoheptyl) amino] benzoic acid 2- 533 [(Cyclohexylcarbonyl) ami C25 H25 N 04 404 (M+H) no]-3- (2- naphthalenylmethoxy) be nzoic acid 3- (2- 534 Naphthalenylmethoxy)-2-C27 H19 N3 04 450 (M+H) [ (2- quinoxalinylcarbonyl) ami no] benzoic acid 2-[[(2-Chloro-3- 535 pyridinyl) carbonyl] amino] C24 H17 Cl N2 O4 433 (M+H) -3-(2- naphthalenylmethoxy) be nzoic acid 2-[[(6-Chloro-3- 536 pyridinyl) carbonyl] amino] C24 H17 Cl N2 04 433 (M+H) -3-(2- naphthalenylmethoxy) be nzoic acid 2- [ (2- 537 Chlorobenzoyl)amino]-3- C21 H15 Cl2 N O4 416 (M+H) [ (4- chlorophenyl) methoxy] be nzoic acid 3- [ (4- 538 Chlorphenyl)methoxy]- C22 H18 Cl N O5 412 (M+H) 2- [ (2- methoxybenzoyl) amino] b enzoic acid 2- [ (3- 539 Chlorobenzoyl) amino]-3-C21 H15 Cl2 N 04 416 (M+H) [ (4- chlorophenyl) methoxy] be nzoic acid 3- [ (4- 540 Chlorophenyl) methoxy]-C22 H18 Cl N 05 412 (M+H) 2- [ (3- methoxybenzoyl) amino] b enzoic acid 3- [ (4- 541 Chlorophenyl) methoxy]- C21 H24 Cl N 04 390 (M+H) 2- [ (1- oxoheptyl) amino] benzoic acid 3- [ (4- 542 Chlorophenyl) methoxy]- C21 H22 Cl N 04 388 (M+H) 2- [ (cyclohexylcarbonyl) ami no benzoic acid 3-[(4- 543 Chlorophenyl) methoxy]- C23 H16 Cl N3 04 434 (M+H) 2- [ (2- quinoxalinylcarbonyl) ami no] benzoic acid 3- [ (4- 544 Chlorophenyl) methoxy]-C20 H14 Cl2 N2 04 417 (M+H) 2-[[(2-chloo-3- pyridinyl) carbonyl] amino] benzoic acid 3- [ (4- 545 Chlorophenyl) methoxy]-C20 H14 Cl2 N2 04 417 (M+H) 2-[[(6-chloo-3- pyridinyl) carbonyl] amino] benzoic acid 2- (Benzoylamino)-3- [ (3- 546 phenoxyphenyl) methoxy] C27 H21 N 05 440 (M+H) benzoic acid 2- [ (2- 547 Chlorobenzoyl) amino]-3- C27 H20 Cl N 05 474 (M+H) [ (3- phenoxyphenyl) methoxy] benzoic acid 2- [ (2- 548 Methoxybenzoyl) amino]- C28 H23 N 06 470 (M+H) 3- [ (3- phenoxyphenyl) methoxy] benzoic acid 2- [ (3- 549 Chlorobenzoyl) amino]-3- C27 H20 Cl N 05 474 (M+H) [ (3- phenoxyphenyl) methoxy] benzoic acid 2- [ (3- 550 Methoxybenzoyl) amino]- C28 H23 N 06 470 (M+H) 3- [ (3- phenoxyphenyl) methoxy] benzoic acid 2- [ (1-Oxoheptyl) amino] - 551 3- [ (3- C27 H29 N 05 448 (M+H) phenoxyphenyl) methoxy] benzoic acid 2- 552 [(Cyclohexylcarbonyl) ami C27 H27 N 05 446 (M+H) no]-3- [ (3- phenoxyphenyl) methoxy] benzoic acid 3- [ (3- 553 Phenoxyphenyl) methoxy C29 H21 N3 05 492 (M+H) ]-2- [ (2- quinoxalinylcarbonyl) ami no] benzoic acid 2-[[(2-Chloo-3- 554 pyridinyl) carbonyl] amino] C26 H19 Cl N2 05 475 (M+H) - 3- [ (3- phenoxyphenyl) methoxy] benzoic acid 2-[[(6-Chloo-3- 555 pyridinyl) carbonyl] amino] C26 H19 Cl N2 05 475 (M+H) - 3- [ (3- phenoxyphenyl) methoxy] benzoic acid 2- (Benzoylamino)-3- [ (3- 556 methoxyphenyl) methoxy] C22 H19 N 05 378 (M+H) benzoic acid 2- [ (2- 557 Chlorobenzoyl) amino]-3- C22Hl8CIN05 412 (M+H) [ (3- methoxyphenyl) methoxy] benzoic acid 2- [ (2- 558 Methoxybenzoyl) amino]- C23 H21 N 06 408 (M+H) 3- [ (3- methoxyphenyl) methoxy] benzoic acid 2- [ (3- 559 Chlorobenzoyl) amino]-3-C22 H18 Cl N 05 412 (M+H) tO- methoxyphenyl) methoxy] benzoic acid 3- [ (3- 560 Methoxyphenyl) methoxy] C22 H27 N 05 386 (M+H) - 2- [ (1- oxoheptyl) amino] benzoic acid 2- 561 [(Cyclohexylcarbonyl) ami C22 H25 N 05 384 (M+H) no]-3- [ (3- methoxyphenyl) methoxy] benzoic acid 3- [ (3- 562 Methoxyphenyl) methoxy] C24 H19 N3 05 430 (M+H) -2-[(2- quinoxalinylcarbonyl) ami no] benzoic acid 3- [ (3- 563 Methoxyphenyl)methoxy] C21 H19 N O6 S 414 (M+H) -2- [(phenylsulfonyl)amino]b enzoic acid 2-[[(2-Chloro-3- 564 pyridinyl) carbonyl] amino] C21 H1 7 Cl N2 05 413 (M+H) - 3- [ (3- methoxyphenyl) methoxy] benzoic acid 2-[[(6-Chloro-3- 565 pyridnyl)carbonyl]amino] C21 H17 Cl N2 O5 413 (M+H) -3-[(3- methoxyphenyl)methoxy] benzoic acid 2- (Benzoylamino)-3- 566 (phenylmethoxy) benzoic C21 H17N04 348 (M+H) acid 2- [ (3- 567 Chlorobenzoyl)amino]-3- C21H16ClNO4 382 (M+H) (phenylmethoxy) benzoic acid 2-(Benzoylamino)-3-[(2- 568 chlorophenyl) methoxy] be C21 H16CIN04 382 (M+H) nzoic acid 2- [ (2- 569 Chlorobenzoyl)amino]-3- C21H15Cl2NO4 416 (M+H) [ (2- chlorophenyl) methoxy] be nzoic acid 2- (Benzoylamino)-3- 570 [(2,4- C21H15Cl2NO4 416 (M+H) dichlorophenyl) methoxy benzoic acid 2- (Benzoylamino)-3- [ (4- 571 chlorophenyl) methoxy] be C21 H16CIN04 382 (M+H) nzoic acid

Examples 572-728 The title compounds were prepared as part of a solid-phase library run employing the method of Examples 394-571, but using 2-hydroxy-3-nitrobenzoic acid instead of 3-hydroxy-2-nitrobenzoic acid. Ex. CAS Name Elemental formula Mass ion type Spec. inferred m/z 572 3-[(2- C21 H15 Br Cl N O4 460 [M+H] Bromobenzoyl) amino]-2- [ (2- chlorophenyl) methoxy] ben zoic acid 573 2-[(2-C21 H15 Cl F N 04 400 [M+H] Chlorophenyl) methoxy] -3- [ (2- fluorobenzoyl) amino] benz oic acid 574 2-[(2-C21 H14 Cl F2 N 04 418 [M+H] Chlorophenyl) methoxy] -3- [ (2, 4- difluorobenzoyl) amino] ben zoic acid 575 2-[(2-C22 H18 Cl N 05 412 [M+H] Chlorophenyl) methoxy] -3- [ (2- methoxybenzoyl) amino] be nzoic acid 576 2-[(2- C22 H18 Cl N O4 396 [M+H] Chlorophenyl) methoxy] -3- [ (2- methylbenzoyl) amino] benz oic acid 577 3-[(3-C21 H15 Br Cl N 04 461 [M+H] Bromobenzoyl) amino-2- [ (2- chlorophenyl) methoxy] ben zoic acid 578 2-[(2-C21 H15 Cl F N 04 401 [M+H] Chloropehnyl)methoxy]-3- [ (3- fluorobenzoyl) amino] benz oic acid 579 3-[(3- C21 H15 Cl2 N O4 416 [M+H] Chlorobenzoyl) amino] -2- [ (2- chlorophenyl) methoxy] ben zoic acid 580 2-[(2- C22 H18 Cl N O5 412 [M+H] Chlorophenyl) methoxy] -3- [ (3- methoxybenzoyl) amino] be nzoic acid 581 2-[(2- C22 H18 Cl N O4 396 [M+H] Chloropehnyl)methoxy]-3- [(3- methylbenzoyl)amino]benz oic acid 582 2- [ (2- C21 H15 Cl F N 04 400 [M+H] Chloropehnyl)methoxy]-3- [(4- fluorobenzoyl)amino]benz oic acid 583 3- [ (4- C21 H 15 C12 N 04 416 [M+H] Chlorobenzoyl) amino] -2- [ (2- chlorophenyl) methoxy] ben zoic acid 584 2-[(2- C22 H18 Cl N O5 412 [M+H] Chlorophenyl) methoxy] -3- [ (4- methoxybenzoyl) amino] be nzoic acid 585 3- [ (4- C25 H24 Cl N 05 454 [M+H] Butoxybenzoyl) amino] -2- [ (2- chlorophenyl) methoxy] ben zoic acid 586 3-[([1,1'-Biphenyl]-4- C27 H20 Cl N O4 458 [M+H] ylcarbonyl)amino]-2-[(2- chlorophenyl) methoxy] ben zoic acid 587 2-[(2-C22 H15 Cl F3 N 04 450 [M+H] Chlorophenyl) methoxy] -3- [ [4- (trifluoromethyl)benzoyl] a mino] benzoic acid 588 2-[(2-C22 H18 Cl N 04 396 [M+H] Chlorophenyl) methoxy] -3- [ (4- methylbenzoyl)amino] benz oic acid 589 2-[(2-C24 H22 Cl N 04 424 [M+H] Chlorophenyl) methoxy] -3- [ (4- propylbenzoyl) amino] benz oic acid 590 2-[(2- C18 H18 Cl N O4 348 [M+H] Chlorophenyl) methoxy] -3- [(2-methyl-1- oxopropyl) amino] benzoic acid 591 2-[(2- C22 H18 Cl N O5 412 [M+H] Chlorophenyl) methoxy] -3- [(phenoxyacetyl) amino] be nzoic acid 592 2-[(2- C23 H18 Cl N O4 408 [M+H] Chlorophenyl)methoxy]-3- [[(2E)-1-oxo-3-phenyl-2- propenyl] amino] benzoic acid 593 2-[(2-C17 H16 Cl N 04 334 [M+H] Chlorophenyl) methoxy] -3- l (i- oxopropyl) amino] benzoic acid 594 2-[(2-C23 H20 Cl N 04 410 [M+H] Chlorophenyl) methoxy] -3- [ (1-oxo-3- phenylpropyl) amino] benzoi c acid 595 2-[(2- C21 H24 Cl N 04 390 [M+H] Chlorophenyl) methoxy] -3- [ (1- oxoheptyl) amino] benzoic acid 596 2-[(2- C21 H15 Cl 1 N O4 508 [M+H] Chlorophenyl) methoxy] -3- [ (4- iodobenzoyl) amino] benzoi c acid 597 2-[(2-C18 H16 Cl N 04 346 [M+H] Chlorophenyl) methoxy] -3- [(cyclopropylcarbonyl) amin o] benzoic acid 598 2-[(2-C20 H20 Cl N 04 374 [M+H] Chlorophenyl) methoxy] -3- [(cyclopentylcarbonyl) amin o] benzoic acid 599 2-[(2-C22 H24 Cl N 04 402 [M+H] Chlorophenyl) methoxy] -3- [ (3-cyclopentyl-1- oxopropyl) amino] benzoic acid 600 2- [ (2- C21 H22 Cl N 04 388 [M+H] Chlorophenyl) methoxy] -3- [(cyclohexylcarbonyl) amin o] benzoic acid 601 2-[(2- C19 H14 Cl N O5 372 [M+H] Chlorophenyl) methoxy] -3- [ (2- furanylcarbonyl) amino] ben zoic acid 602 2-[(2- C20 H16 Cl N O4 S 402 [M+H] Chlorophenyl) methoxy] -3- [ (2- thienylacetyl) amino] benzoi c acid 603 2-[(2- C20 H16 Cl N O5 S 418 [M+H] Chlorophenyl) methoxy] -3- [(phenylsulfonyl) amino] ben zoic acid 604 2-[(2-C20 H15 Cl N2 04 383 [M+H] Chlorophenyl) methoxy] -3- [ (4- pyridinylcarbonyl) amino] be nzoic acid 605 3- [ (1, 3-Benzodioxol-5- C22 H16 Cl N 06 426 [M+H] ylcarbonyl) amino]-2- [ (2- chlorophenyl) methoxy] ben zoic acid 606 3- [ (Benzo [b] thiophen-2- C23 H16 CI N 04 S 434 [M+H] ylcarbonyl)amino]-2-[(2- chlorophenyl) methoxy] ben zoic acid 607 2-[(2-C20 H14 Cl2 N2 04 417 [M+H] Chlorophenyl) methoxy] -3- [[(2-chloro-3- pyridinyl) carbonyl] amino] b enzoic acid 608 2-[(2-C20 H15 Cl2 N 05 S 452 [M+H] Chlorophenyl)methoxy]-3- [[(3- chlorophenyl)sulfonyl[amin o benzoic acid 609 2-[(2-C20 H14 Cl2 N2 04 417 [M+H] Chlorophenyl) methoxy] -3- [[(6-chloro-3- pyridinyl) carbonyl] amino] b enzoic acid 610 3-[[(3- C23 H15 Cl2 N O4 S 472 [M+H] Chlorobenzo [b] thiophen-2- yl) carbonyl]amino]-2-[(2- chlorophenyl) methoxy] ben zoic acid 611 3-[[(5-Bromo-3- C20 H14 Br Cl N2 461 [M+H] pyridinyl) carbonyl] amino]- 04 2- [ (2- chlorophenyl) methoxy] ben zoic acid 612 3- [ [ [3, 5-Bis (methylthio)-4-C20 H17 Cl N2 04 481 [M+H] isothiazolyl] carbonyl] amino S3 ]-2- [ (2- chlorophenyl) methoxy] ben zoic acid 613 2-[(2- C21 H15 Br F N O4 444 [M+H] Bromophenyl) methoxy] -3- [ (2- fluorobenzoyl) amino] benz oic acid 614 2-[(2-C21 H14 Br F2 N 04 462 [M+H] Bromophenyl) methoxy] -3- [ (2, 4- difluorobenzoyl) amino] ben zoic acid 615 2-[(2-C21 H14 Br Cl2 N 494 [M+H] Bromophenyl) methoxy]-3- 04 [ (2, 4- dichlorobenzoyl) amino] ben zoic acid 616 2-[(2- C22 H18 Br N O5 456 [M+H] Bromophenyl) methoxy] -3- [ (2- methoxybenzoyl) amino] be nzoic acid 617 2-[(2- C22 H18 Br N O4 440 [M+H] Bromophenyl) methoxy] -3- [ (2- methylbenzoyl) amino] benz oic acid 618 3- [ (3- C21 H15 Br2 N 04 504 [M+H] Bromobenzoyl) amino] -2- [(2- bromophenyl) methoxy] ben zoic acid 619 2-[(2-C21 H15 Br F N 04 444 [M+H] Bromophenyl) methoxy] -3- [ (3- fluorobenzoyl)amino]benz oic acid 620 2-[(2-C21 H15 Br Cl N 04 460 [M+H] Bromophenyl) methoxy] -3- [ (3- chlorobenzoyl) amino] benz oic acid 621 2-[(2- C22 H18 Br N O5 456 [M+H] Bromophenyl) methoxy]-3- [ (3- methoxybenzoyl) amino] be nzoic acid 622 2-[(2- C22 H18 Br N O4 440 [M+H] Bromophenyl) methoxy] -3- [ (3- methylbenzoyl) amino] benz oic acid 623 2-[(2-C21 H15 Br F N 04 444 [M+H] Bromophenyl) methoxy] -3- [ (4- fluorobenzoyl) amino] benz oic acid 624 2-[(2-C21 H15 Br Cl N 04 460 [M+H] Bromophenyl) methoxy] -3- [ (4- chlorobenzoyl) amino] benz oic acid 625 2-[(2-C22 H18 Br N 05 456 [M+H] Bromophenyl) methoxy] -3- [ (4- methoxybenzoyl) amino] be nzoic acid 626 2-[(2- C25 H24 Br N O5 498 [M+H] Bromophenyl) methoxy] -3- [ (4- butoxybenzoyl) amino] benz oic acid 627 3- [ ( [1, 1'-Biphenyl]-4- C27 H20 Br N 04 502 [M+H] ylcarbonyl) amino]-2-[(2- bromophenyl) methoxy] ben zoic acid 628 2-[(2-C22 H15 Br F3 N 04 494 [M+H] Bromophenyl) methoxy] -3- [ [4- (trifluoromethyl) benzoyl] a mino] benzoic acid 629 2-[(2- C22 H18 Br N O4 440 [M+H] Bromophenyl) methoxy] -3- [ (4- methylbenzoyl) amino] benz oic acid 630 2- [ (2- C24 H22 Br N 04 468 [M+H] Bromophenyl) methoxy] -3- [ (4- propylbenzoyl) amino] benz oic acid 631 2-[(2- C18 H18 Br N O4 392 [M+H] Bromophenyl) methoxy] -3- [(2-methyl-1- oxopropyl) amino] benzoic acid 632 2-[(2- C22 H18 Br N O5 456 [M+H] Bromophenyl) methoxy] -3- [(phenoxyacetyl) amino] be nzoic acid 633 2-[(2- C23 H18 Br N 04 452 [M+H] Bromophenyl) methoxy] -3- [[(2E)-1-oxo-3-phenyl-2- propenyl] amino] benzoic acid 634 2-[(2-C19 H18 Br N 06 436 [M+H] Bromophenyl) methoxy] -3- [ (3-ethoxy-1, 3- dioxopropyl) amino] benzoic acid 635 2-[(2-C17 H16 Br N 04 378 [M+H] Bromophenyl) methoxy] -3- [ (1- oxopropyl) amino] benzoic acid 636 2-[(2- C23 H20 Br N O4 454 [M+H] Bromophenyl) methoxy]-3- [ (1-oxo-3- phenylpropyl) amino] benzoi c acid 637 2- [ (2- C21 H24 Br N 04 434 [M+H] Bromophenyl) methoxy] -3- [ (1- oxoheptyl) amino] benzoic acid 638 2-[(2- C21 H15 Br N O4 552 [M+H] Bromophenyl) methoxy] -3- [ (4- iodobenzoyl) amino] benzoi c acid 639 2-[(2- C20 H20 Br N O4 418 [M+H] Bromophenyl) methoxy] -3- [(cyclopentylcarbonyl) amin o] benzoic acid 640 2-[(2- C22 H24 Br N 04 446 [M+H] Bromophenyl) methoxy] -3- [ (3-cyclopentyl-1- oxopropyl) amino] benzoic acid 641 2- [ (2- C21 H22 Br N 04 432 [M+H] Bromophenyl) methoxy] -3- [ (cyclohexylcarbonyl) amin o] benzoic acid 642 2-[(2- C19 H14 Br N O5 416 [M+H] Bromophenyl) methoxy] -3- [ (2- furanylcarbonyl) amino] ben zoic acid 643 2-[(2-C20 H1 6 Br N 04 S 446 [M+H] Bromophenyl) methoxy] -3- [ (2- thienylacetyl) amino] benzoi c acid 644 2-[(2- C20 H16 Br N O5 S 462 [M+H] Bromophenyl) methoxy] -3- [(phenylsulfonyl) amino] ben zoic acid 645 2-[(2- C23 H20 Br N 05 470 [M+H] Bromophenyl)methoxy]-3- [[(3- methoxyphenyl)acetyl]ami no] benzoic acid 646 2-[(2-C20 H15 Br N2 04 427 [M+H] Bromophenyl) methoxy] -3- [ (3- pyridinylcarbonyl) amino] be nzoic acid 647 2-[(2- C20 H15 Br N2 O4 427 [M+H] Bromophenyl) methoxy] -3- [ (4- pyridinylcarbonyl)amino] be nzoic acid 648 3- [ (1, 3-Benzodioxol-5- C22 H16 Br N 06 470 [M+H] ylcarbonyl) amino]-2-[(2- bromophenyl) methoxy] ben zoic acid 649 3-[(Benzo [b] thiophen-2-C23 H16 Br N 04 S 482 [M+H] ylcarbonyl) amino]-2-[(2- bromophenyl) methoxy] ben zoic acid 650 2-[(2- C20 H15 Br Cl N O5 496 [M+H] Bromophenyl)methoxy]-3- S [[(3- chlorophenyl)sulfonyl]amin o benzoic acid 651 2-[(2-C20 H14 Br2 N2 04 505 [M+H] Bromophenyl) methoxy]-3- [ [ (5-bromo-3- pyridinyl) carbonyl]amino] b enzoic acid 652 3-[(2-C21 H15 Br2 N 04 504 [M+H] Bromobenzoyl) amino] -2- [ (4- bromophenyl) methoxy] ben zoic acid 653 2- [ (4- C22 H18 Br N 05 456 [M+H] Bromophenyl) methoxy] -3- [ (2- methoxybenzoyl) amino] be nzoic acid 654 2- [ (4- C22 H18 Br N 04 440 [M+H] Bromophenyl) methoxy] -3- [ (2- methylbenzoyl) amino] benz oic acid 655 3- [ (3- C21 H15 Br2 N 04 504 [M+H] Bromobenzoyl) amino] -2- [ (4- bromophenyl) methoxy] ben zoic acid 656 2- [ (4- C21 H15 Br CI N 04 460 [M+H] Bromophenyl) methoxy] -3- [ (3- chlorobenzoyl) amino] benz oic acid 657 2- [ (4- C22 H18 Br N 05 456 [M+H] Bromophenyl) methoxy] -3- [ (3- methoxybenzoyl) amino] be nzoic acid 658 2- [ (4- C22 H18 Br N 04 440 [M+H] Bromophenyl) methoxy] -3- [ (3- methylbenzoyl) amino] benz oic acid 659 3- [ (4- C21 H15 Br2 N 04 504 [M+H] Bromobenzoyl) amino] -2- [ (4- bromophenyl) methoxy] ben zoic acid 660 2- [ (4- C21 H15 Br F N 04 444 [M+H] Bromophenyl) methoxy] -3- [ (4- fluorobenzoyl) amino] benz oic acid 661 2- [ (4- C21 H15 Br CI N 04 460 [M+H] Bromophenyl) methoxy] -3- [ (4- chlorobenzoyl) amino] benz oic acid 662 2- [ (4- C22 H18 Br N 05 456 [M+H] Bromophenyl) methoxy]-3- [ (4- methoxybenzoyl) amino] be nzoic acid 663 2- [ (4- C25 H24 Br N 05 498 [M+H] Bromophenyl) methoxy] -3- [ (4- butoxybenzoyl) amino] benz oic acid 664 2- [ (4- C22 H18 Br N 04 440 [M+H] Bromophenyl) methoxy] -3- [ (4- methylbenzoyl) amino] benz oic acid 665 2- [ (4- C24 H22 Br N 04 468 [M+H] Bromophenyl) methoxy] -3- [ (4- propylbenzoyl)amino]benz oic acid 666 2- [ (4- C22 H18 Br N 05 456 [M+H] Bromophenyl) methoxy] -3- [(phenoxyacetyl) amino] be nzoic acid 667 2- [ (4- C23 H18 Br N 04 452 [M+H] Bromophenyl) methoxy] -3- [[(2E)-1-oxo-3-phenyl-2- propenyl] amino] benzoic acid 668 2- [ (4- C17 H16 Br N 04 378 [M+H] Bromophenyl) methoxy] -3- [ (1- oxopropyl) amino] benzoic acid 669 2- [ (4- C23 H20 Br N 04 454 [M+H] Bromophenyl) methoxy] -3- [ (1-oxo-3- phenylpropyl) amino] benzoi c acid 670 2- [ (4- C21 H24 Br N 04 434 [M+H] Bromophenyl) methoxy] -3- [ (1- oxoheptyl) amino] benzoic acid 671 2- [ (4- C20 H20 Br N 04 418 [M+H] Bromophenyl) methoxy] -3- [(cyclopentylcarbonyl) amin o] benzoic acid 672 2- [ (4- C22 H24 Br N 04 446 [M+H] Bromophenyl) methoxy] -3- [ (3-cyclopentyl-1- oxopropyl) amino] benzoic acid 673 2- [ (4- C21 H22 Br N 04 432 [M+H] Bromophenyl) methoxy] -3- [(cyclohexylcarbonyl) amin o] benzoic acid 674 2- [ (4- C19 H14 Br N 05 416 [M+H] Bromophenyl) methoxy] -3- [ (2- furanylcarbonyl) amino] ben zoic acid 675 2- [ (4- C20H16BrN04S 446 [M+H] Bromophenyl) methoxy] -3- [ (2- thienylacetyl) amino] benzoi c acid 676 2- [ (4- C20H16BrN05S 462 [M+H] Bromophenyl) methoxy] -3- [(phenylsulfonyl) amino] ben zoic acid 677 2- [ (4- C20 H15 Br N2 04 427 [M+H] Bromophenyl) methoxy] -3- [ (3- pyridinylcarbonyl) amino] be nzoic acid 678 2- [ (4- C20 H15 Br N2 04 427 [M+H] Bromophenyl) methoxy] -3- [ (4- pyridinylcarbonyl) amino] be nzoic acid 679 3- [ (1, 3-Benzodioxol-5- C22 H16 Br N 06 470 [M+H] ylcarbonyl) amino]-2- [ (4- bromophenyl) methoxy] ben zoic acid 680 3-[(Benzo [b] thiophen-2-C23 H16 Br N 04 S 482 [M+H] ylcarbonyl) amino]-2- [ (4- bromophenyl) methoxy] ben zoic acid 681 2- [ (4- C20 H14 Br Cl N2 461 [M+H] Bromophenyl) methoxy]-3- 04 [[(2-chloro-3- pyridinyl) carbonyl] amino] b enzoic acid 682 2- [ (4- C23 H15 Br Cl N 04 516 [M+H] Bromophenyl)methoxy]-3- S [[(3- chlorobenzo[b]thiophen-2- yl) carbonyl] amino] benzoic acid 683 3- [ [ [3, 5-Bis (methylthio)-4- C20 H17 Br N2 O4 525 [M+H] isothiazolyl] carbonyl] amino S3 ]-2- [ (4- bromophenyl) methoxy] ben zoic acid 684 3- [ (2- C21 H22 Br N 04 432 [M+H] Bromobenzoyl) amino] -2- (cyclohexylmethoxy) benzoi c acid 685 2- (Cyclohexyimethoxy)-3- C21 H21 F2 N 04 390 [M+H] [ (2, 4- difluorobenzoyl) amino] ben zoic acid 686 3-[(2- C21 H22 Cl N 04 388 [M+H] Chlorobenzoyl) amino] -2- (cyclohexylmethoxy) benzoi c acid 687 2-(Cyclohexylmethoxy)-3- C21 H21 Cl2 N 04 422 [M+H] [ (2, 4- dichlorobenzoyl) amino] ben zoic acid 688 2-(Cyclohexylmethoxy)-3- C22 H25 N O5 384 [M+H] [ (2- methoxybenzoyl) amino] be nzoic acid 689 2- (Cyclohexylmethoxy)-3- C22 H25 N 04 368 [M+H] [ (2- methylbenzoyl) amino] benz oic acid 690 3- [ (3- C21 H22 Br N 04 432 [M+H] Bromobenzoyl) amino] -2- (cyclohexylmethoxy) benzoi c acid 691 2- (Cyclohexylmethoxy)-3- C21 H22 F N 04 372 [M+H] [ (3- fluorobenzoyl) amino] benz oic acid 692 3- [ (3- C21 H22 Cl N 04 388 [M+H] Chlorobenzoyl) amino] -2- (cyclohexylmethoxy) benzoi c acid 693 2- (Cyclohexylmethoxy)-3- C22 H25 N 05 384 [M+H] [ (3- methoxybenzoyl) amino] be nzoic acid 694 2-(Cyclohexylmethoxy)-3-C22 H25 N 04 368 [M+H] [ (3- methylbenzoyl) amino] benz oic acid 695 3- [ (4- C21 H22 Br N 04 432 [M+H] Bromobenzoyl) amino-2- (cyclohexylmethoxy) benzoi c acid 696 2-(Cyclohexylmethoxy)-3- C21 H22 F N 04 372 [M+H] [ (4- fluorobenzoyl) amino] benz oic acid 697 3- [ (4- C21 H22 Cl N 04 388 [M+H] Chlorobenzoyl)amino]-2- (cyclohexylmethoxy) benzoi c acid 698 2- (Cyclohexylmethoxy)-3- C22 H25 N 05 384 [M+H] [ (4- methoxybenzoyl) amino] be nzoic acid 699 3- [ (4- C25 H31 N 05 426 [M+H] Butoxybenzoyl) amino] -2- (cyclohexylmethoxy) benzoi c acid 700 3-[([1,1'-Biphenyl]-4- C27 H27 N O4 430 [M+H] ylcarbonyl) amino] -2- (cyclohexylmethoxy) benzoi c acid 701 2-(Cyclohexylmethoxy)-3- C22 H22 F3 N O4 422 [M+H] [ [4- (trifluoromethyl)benzoyl] a mino] benzoic acid 702 2- (Cyclohexylmethoxy)-3- C22 H25 N 04 368 [M+H] [ (4- methylbenzoyl) amino] benz oic acid 703 2- (Cyclohexylmethoxy)-3- C24 H29 N 04 396 [M+H] [ (4- propylbenzoyl) amino] benz oic acid 704 2-(Cyclohexylmethoxy)-3-C18 H25 N 04 320 [M+H] [ (1-oxo-2- methylpropyl) amino] benzoi c acid 705 2- (Cyclohexylmethoxy)-3- C22 H25 N 05 384 [M+H] [(phenoxyacetyl) amino] be nzoic acid 706 2-(Cyclohexylmethoxy)-3-C23 H25 N 04 380 [M+H] [[(2E)-1-oxo-3-phenyl-2- propenyl] amino] benzoic acid 707 2- (Cyclohexylmethoxy)-3- C17 H23 N 04 306 [M+H] [(1- oxopropyl) amino] benzoic acid 708 2-(Cyclohexylmethoxy)-3- C23 H27 N O 4 382 [M+H] [(1-oxo-3- phenylpropyl) amino] benzoi c acid 709 2-(Cyclohexylmethoxy)-3- C21 H31 N O4 362 [M+H] [ (1- oxoheptyl) amino] benzoic acid 710 2- (Cyclohexylmethoxy)-3- C18 H23 N 04 318 [M+H] [(cyclopropylcarbonyl) amin o] benzoic acid 711 2-(Cyclohexylmethoxy)-3- C20 H27 N O4 346 [M+H] [(cyclopentylcarbonyl) amin o] benzoic acid 712 2-(Cyclohexylmethoxy)-3- C22 H31 N O4 374 [M+H] [ (3-cyclopentyl-1- oxopropyl) amino] benzoic acid 713 3-C21 H29 N 04 360 [M+H] [(Cyclohexylcarbonyl) amin o]-2- (cyclohexylmethoxy) benzoi c acid 714 2- (Cyclohexylmethoxy)-3- C19 H21 N 05 344 [M+H] [ (2- furanylcarbonyl) amino] ben zoic acid 715 2- (Cyclohexylmethoxy)-3- C20 H23 N 04 S 374 [M+H] [ (2- thienylacetyl) amino] benzoi c acid 716 2-(Cyclohexylmethoxy)-3- C20 H23 N O5 S 390 [M+H] [(phenylsulfonyl) amino] ben zoic acid 717 2- (Cyclohexylmethoxy)-3- C23 H27 N 05 398 [M+H] [ [ (3- methoxyphenyl) acetyl] ami no] benzoic acid 718 2-(Cyclohexylmethoxy)-3-C20 H22 N2 04 355 [M+H] [ (3- pyridinylcarbonyl) amino] be nzoic acid 719 2- (Cyclohexylmethoxy)-3- C20 H22 N2 04 355 [M+H] [ (4- pyridinylcarbonyl) amino] be nzoic acid 720 3- [ (1, 3-Benzodioxol-5- C22 H23 N 06 398 [M+H] ylcarbonyl) amino] -2- (cyclohexylmethoxy) benzoi c acid 721 3- [ (Benzo [b] thiophen-2- C23 H23 N 04 S 410 [M+H] ylcarbonyl) amino] -2- (cyclohexylmethoxy) benzoi c acid 722 3-[[(2-Chloro-3-C20 H21 Cl N2 04 389 [M+H] pyridinyl) carbonyl] amino] - 2- (cyclohexylmethoxy) benzoi c acid 723 3- [ [ (3- C20 H22 Cl N 05 S 424 [M+H] Chlorophenyl) sulfonyl] ami no]-2- (cyclohexylmethoxy) benzoi c acid 724 3-[[(6-Chloro-3- C20 H21 Cl N2 04 389 [M+H] pyridinyl) carbonyl] amino] - 2- (cyclohexylmethoxy) benzoi c acid 725 3- [ [ (5-Bromo-3- C20 H21 Br N2 04 433 [M+H] pyridinyl) carbonyl] amino] - 2- (cyclohexylmethoxy) benzoi c acid 726 3-(Benzoylamino)-2-[(2- C21 H16 Br N O4 426 [M+H] bromophenyl) methoxy] ben zoic acid 727 3-(Benzoylamino)-2-[(2-C21 H16 Cl N 04 382 [M+H] chlorophenyl) methoxy] ben zoic acid 728 3-(Benzoylamino)-2- C21 H23 N 04 354 [M+H] (cyclohexylmethoxy) benzoi c acid