Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AN EFFICIENT PROCESS TO INDUCE ENANTIOSELECTIVITY IN PROCARBONYL COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/2009/095931
Kind Code:
A2
Abstract:
An efficient method to induce the enantioselectivity in procarbonyl compounds using chiral organometallic complexes. The present invention is also described a method for producing organo metallic complexes using a base and a metal halide.

Inventors:
NARAYANA CHAVA SATYA (IN)
BABU BOLLU RAVINDRA (IN)
Application Number:
PCT/IN2008/000476
Publication Date:
August 06, 2009
Filing Date:
July 30, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
APTUIT LAURUS PVT LTD (IN)
NARAYANA CHAVA SATYA (IN)
BABU BOLLU RAVINDRA (IN)
International Classes:
C07F3/06
Foreign References:
EP0981520A12000-03-01
EP1614672A12006-01-11
Other References:
See also references of EP 2235023A2
Download PDF:
Claims:
We claim;

1. A process to prepare organometallic complex comprising the steps of;

• Preparing the salts of chiral and/or achiral additives

• Adding metal halide to the above obtained salts and converting to chiral and/or achiral metal complex

• Adding Grignard reagent/ lithium reagent or Zinc reagent to the above chiral and/or achiral metal complex to form chiral organometal complex. (or)

• Adding terminal alkyne and a base to the above chiral metal complex to form chiral organometal complex.

2. The process as claimed in claim 1, wherein the salts of chiral and/or achiral additives are prepared by treating the chiral and/or achiral additives with a base .

3. The process as claimed in claim 2, wherein the base is selected from metal hydrides, metal alkoxides, metal hydroxides and organic bases

4. The process as claimed in claim 2, wherein the preferred base is a metal hydride.

5. The process as claimed in claim I 5 wherein the metal halide is a transitional metal halide

6. The process as claimed in claim 5, wherein the most preferred metal halides are being

Zinc and copper halides.

7. A process to induce the enantioselectivity in procarbonyl compounds and their enantiomers of formula;

Wherein R 1 is

C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, or C 2 -C 6 -alkynyl, unsubstituted or mono- or di- substituted with a substituent selected from the group consisting of: halo (Cl, Br, F 5 1), CF 3 , CN, NO 2 , NH 2 , NH(C 1 -C 6 -alkyl), N(C 1 -C 6 -alkyl) 2 , CONH 2 , CONH(C 1 -C 6 -alkyl), CON(Ci -C 6 -alkyl) 2) NHCONH 2 , NHCONH(Ci -C 6 -alkyl), NHCON(Ci -C 6 -alkyl) 2 , CO 2 -C 1

-C 6 -alkyl, C 3 -C 7 -cycloalkyl, or Ci -C 6 -alkoxy; phenyl, biphenyl, or naphthyl, unsubstituted or substituted with one to four substituents selected from R 3 , R 4 , R 5 , and R 6 ; R 3 , R 4 , R 5 , and R 6 are independently: halo (Cl 5 Br 5 F 5 1), CF 3 , CN, NO 2 , NH 2 , NH(C 1 - C 6 -alkyl), N(C 1 -C 6 -alkyl) 2 , CONH 2 , CONH(C 1 -C 6 -alkyl), CON(C 1 -C 6 -alkyl) 2 ,

NHCONH 2 , NHCONH(C 1 -C 6 -alkyl), NHCON(Ci -C 6 -alkyl) 2 , aryl, CO 2 -C 1 -C 6 - alkyl, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 3 -C 7 -cycloalkyl, or C 1 -C 6 - alkoxy, such that C 1 -C 6 -alkyl is unsubstituted or substituted with aryl, aryl is defined as phenyl, biphenyl, or naphthyl, unsubstituted or substituted with C 1 -C 6 -alkyl, Ci -C 6 -alkoxy, NO 2 , or halo (Cl, Br, F, I);

R 2 is: H,

C 1 -C 6 -alkyl, C 2 -C 6 - alkenyl, or C 2 -C 6 -alkynyl, unsubstituted or mono- or di- substituted with a substituent selected from the group consisting of: halo (Cl, Br 5 F, I), CF 3 , CN, NO 2 , NH 2 , NH(C 1 -C 6 -alkyl), N(C 1 -C 6 -alkyl) 2 , CONH 2 , CONH(C 1 -C 6 -alkyl),

CON(C 1 -C 6 -alkyl) 2 , NHCONH 2 , NHCONH(Ci -C 6 -alkyl), NHCON(C 1 -C 6 -alkyl) 2 , CO 2 -C 1 -C 6 -alkyl, C 3 -C 7 -cycloalkyl, or Ci -C 6 -alkoxy; C 1 -C 4 - perfluoroalkyl,

R is:

C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, or C 2 -C 6 -alkynyl, unsubstituted or mono- or di- substituted with a substituent selected from the group consisting of: halo (Cl, Br, F, I), CF 3 , CN 5 NO 2 , NH 2 , NH(Ci -C 6 -alkyl), N(Cj -C 6 -alkyl) 2 , CONH 2 , CONH(C 1 -C 6 -alkyl), CON(C 1 -C 6 -alkyl) 2 , NHCONH 2 , NHCONH(C 1 -C 6 -alkyl), NHCON (C 1 -C 6 -alkyl) 2 , CO 2 ~ C 1 -C 6 -alkyl, C 3 -C 7 -cycloalkyl, or C 1 -C 6 -alkoxy;

Comprising the steps of:

• Preparing the salts of chiral and/or achiral additives

• Adding metal halide to the above obtained salts and converting to chiral and/or achiral metal complex • Adding the Grignard reagent/ lithium reagent or Zinc reagent to the above chiral and/or achiral metal complex to form chiral organometal complex.

• Adding the procarbonyl compounds to the chiral organometal complex

8. The process as claimed in claim 7, wherein the metal salts of chiral and/or achiral additives are prepared by treating the chiral and/or achiral additives with a base .

9. The process as claimed in claim 8, wherein the base is selected from metal hydrides, metal alkoxides, metal hydroxides and organic bases.

10. The process as claimed in claim 8, wherein the preferred base is a metal hydride.

11. The process as claimed in claim 7, wherein the metal halide is a transitional metal halide

12. The process as claimed in claim 11, wherein the most preferred metal halides are being

Zinc and copper halides.

13. A process for the preparation of an amino alcohol of formula:

Wherein

R 3 is halo (Cl 5 Br 5 F 5 1) R 1 is amino or substituted amino

R 2 is C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, or C 2 -C 6 -alkynyl, unsubstituted or mono- or di- substituted with a substituent selected from the group consisting of: halo (Cl, Br, F, I),

CF 3 , CN, NO 2 , NH 2 , NH(C 1 -C 6 -alkyl), N(C 1 -C 6 -alkyl) 2 , CONH 2 , CONH(C 1 -C 6 -alkyl), CON(C 1 -C 6 -alkyl) 2 , NHCONH 2 , NHCONH(C, -C 6 -alkyl), NHCON (C 1 -C 6 -alkyl)* CO 2 - C 1 -C 6 -alkyl, C 3 -C 7 -cycloalkyl, or Ci -C 6 -alkoxy; comprising the steps of:

• Adding slowly an alkanol and chiral additive to a base in an organic solvent

• Treating the above reaction mass with a metal halide to get chiral metal complex • Adding organometallic reagent of formula R 2 M, wherein M represents Li,

Zn or MgX; X is Cl, Br, I and F; to the chiral metal complex in a solvent and the suspension was stirred to get chiral organometal complex

• Mixing a carbonyl compound with the chiral organometal complex to give the chiral alcohol.

14. The process as claimed in claim 13, wherein the base is selected from metal hydrides, metal alkoxides, metal hydroxides and organic bases

15. The process as claimed in claim 14, wherein the preferred base is a metal hydride.

16. The process as claimed in claim 13, wherein the metal halide is a transitional metal halide

17. The process as claimed in claim 13, wherein the most preferred metal halides are being Zinc and copper halides.

Description:

"An efficient process to induce enantioselectivity in procarbonyl compounds"

Field of invention:

Present invention is directed towards the cost effective and industrially applicable process to induce enantioselectivity with improved yields. The present invention is also describes an improved process for making organometallic complexes.

Background of the invention:

Asymmetric addition of organometallic compounds to carbonyls is a useful method for the production of chiral secondary/tertiary-alcohols. Typically for asymmetric synthesis, the active catalyst is generated in situ by the reaction of Lewis acid with chiral ligands. Addition of organometallic reagents to aldehydes and activated ketones has been achieved with excellent enantioselectivity. With inactivated ketones there has been some success, e.g., using salen 1 and camphanosulphonamide ligand 2.

1 2

Generally, stoichiometric amount of the promoters [Lewis acid, e.g., ZnR 2 (R = alkyl/aryl), Zn(OTf) 2 , Cu(OTf) 2 , etc] is required for these asymmetric syntheses. Although, employing these promoters chiral alcohols has been obtained in high yields and ee upto 99%, they have limited applicability in industrial scale synthesis of the pharmaceutical intermediates, because they are expensive, difficult to store, difficult to handle, especially dialkyl zinc's are highly pyrophoric and require special modification to transfer the reagent. Moreover the liberated byproduct methane/ethane (when using ZnMe 2 / ZnEt 2 ) .are a concern on industrial scale synthesis.

To overcome this problem, herein we report an efficient synthesis of active organometallic catalyst formed in situ from chiral auxiliaries and Metal halides. For example ephedrine zincate 3 was obtained by first deprotonation of alcohol (achiral auxiliary) and N-pyrollidene noreph drine (chiral auxiliary) with a base (e.g. NaH); to the resulting alkoxides was added zinc halides (scheme IA). The advantages include the low cost of zinc halides, ease of storing, handling and transfer. Moreover, the byproduct (sodium halides) formed has no safety issues, Based upon this concept, other active catalysts were synthesized using chiral ligands (such as binols, amino alcohols, amino alcohol derivatives, ethylenediamine, alkylated ethylene diamines and ethylenediamine derivatives in combination with metal source based on zinc and copper (scheme 1).

Scheme-1

Scheme-1 A

Using these chiral catalysts alkylation/alkynation of aldehydes afforded corresponding secondary alcohols (scheme-2),

Scheme-2

RMgX; when

(R = alkyl/termiπal alkyne) > R 1 CHC) or 1 H

. RH/base; when (R = terminal alkyne)

while addition to ketones/β-ketoesters afforded corresponding tertiary alcohols (scheme 3A and 3B).

Scheme-3A

Scheme-3B

Summary of the invention: The main object of the present invention is to provide an improved process to make organometallic complexes using metal halides

Another object of the present invention is to provide a process to induce the enantioselectivity in proketones.

Another object of the present invention is to provide a process to prepare an amino alcohol of formula

by the addition of (un) substituted alkane/alkyne (R 2 ) to a ketone using an organometallic complex

Another object of the present invention is to provide an improved process to prepare organometallic complex without using Dialkyl zinc.

Detailed description of the invention:

In accordance with the present invention the main object is to prepare organometallic complex comprising the steps of;

• Preparing the salts of chiral and/or achiral additives • Adding metal halide to the above obtained salts and converting to chiral and/or achiral metal complex

• Adding Grignard reagent/lithium reagent or Zinc reagent etc, to the above chiral and/or achiral metal complex to form chiral organometal complex.

(or) • Adding terminal alkyne and a base to the above chiral metal complex to form chiral organometal complex.

The process as described above wherein metal salts of chiral and achiral additives are prepared by treating the chiral and/or achiral additives with a base selected from metal hydrides, metal alkoxides or metal hydroxides or organic bases such as DBU, HMDS, lower alkyl amines etc, and metal hydrides are more preferred.

The process as described above wherein the metal halide is a transitional metal halide and the most preferred metal halides are being Zinc and copper halides.

The process as described above wherein the Grignard reagent is selected from alkyl, alkenyl, alkynyl and aryl magnesium halides.

In a specific embodiment of the present invention is to provide an efficient method to induce the enantioselectivity in procarbonyl compounds and their enantiomers which are shown below;

Wherein R 1 is

C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, or C 2 -C 6 -alkynyl, unsubstituted or mono- or di- substituted with a substituent selected from the group consisting of: halo (Cl, Br, F, I), CF 3 , CN, NO 2 , NH 2 , NH(Ci -C 6 -alkyl), N(C 1 -C 6 -alkyl) 2 , CONH 2 , CONH(Ci -C 6 --alkyl),

CON(C 1 -C 6 -alkyl) 2 , NHCONH 2 , NHCONH(Ci -C 6 -alkyl), NHCON(Ci -C 6 -alkyl) 2 , CO 2 -Ci -C 6 -alkyl, C 3 -C 7 -cycloalkyl, or C 1 -C 6 -alkoxy; phenyl, biphenyl, or naphthyl, unsubstituted or substituted with one to four substituent selected from R 3 , R 4 , R 5 , and R 6 ; R 3 , R 4 , R 5 , and R 6 are independently: halo (Cl, Br 5 F, I) 5 CF 3 , CN 5 NO 2 , NH 2 , NH(C 1 -

C 6 -alkyl), N(C 1 -C 6 -alkyl) 2 , CONH 2 , CONH(Cj -C 6 -alkyl), CON(C 1 -C 6 -alkyl) 2 , NHCONH 2 , NHCONH(C 1 -C 6 -alkyl), NHCON(Ci -C 6 -alkyl) 2 , aryl, CO 2 -C 1 -C 6 - alkyl, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 3 -C 7 -cycloalkyl, or Ci -C 6 - alkoxy, such that C 1 -C 6 -alkyl is unsubstituted or substituted with aryl, aryl is defined as phenyl, biphenyl, or naphthyl, unsubstituted or substituted with C 1 -C 6 -alkyl, Ci -C 6

-alkoxy, NO 2 , or halo (Cl, Br 5 F, I);

R 2 is: H C 1 -C 6 -alkyl, C 2 -C 6 - alkenyl, or C 2 -C 6 -alkynyl, unsubstituted or mono- or di- substituted with a substituent selected from the group consisting of: halo (Cl, Br, F, I), CF 3 , CN 5 NO 2 , NH 25 NH(Ci -C 6 -alkyl), N(Ci -C 6 -alkyl) 2 , CONH 2 , CONH(Cj -C 6 -alkyl), CON(Ci -C 6 -alkyl) 2 , NHCONH 2 , NHCONH(Ci -C 6 -alkyl), NHCON(Ci -C 6 -alkyl) 2 , CO 2 --Ci -C 6 -alkyl, C 3 -C 7 -cycloalkyl, or Ci -C 6 -alkoxy; a. C 1 -C 4 - perfluoroalkyl,

R is:

C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, or C 2 -C 6 -alkynyl, unsubstituted or mono- or di- substituted with a substituent selected from the group consisting of: halo (Cl, Br, F, I), CF 3 , CN, NO 2 , NH 2 , NH(Cj -C 6 -alkyl), N(Ci -C 6 -alkyl) 2 , CONH 2 , CONH(Ci -C 6 -alkyl),

CON(Ci -C 6 -alkyl) 2 , NHCONH 2 , NHCONH(Ci -C 6 -alkyl), NHCON (C 1 -C 6 -alkyl) 2 , CO 2 - C 1 -C 6 -alkyl, C 3 -C 7 -cycloalkyl, or C 1 -C 6 -alkoxy;

comprising the steps of: • Preparing the salts of chiral and/or achiral additives

• Adding metal halide to the above obtained salts and converting to chiral and/or achiral metal complex

• Adding the Grignard reagent/ lithium reagent or Zinc reagent etc, to the above chiral and/or achiral metal complex to form chiral organometal complex. • Adding the procarbonyl compounds to the chiral organometal complex

The process as described above wherein salts of chiral and achiral additives are prepared by treating the chiral and achiral additives with metal hydride or metal alkoxides or metal hydroxides or organic bases whereas metal hydrides are more preferred.

The process as described above wherein the metal halide is a transitional metal halide and the most preferred metal halides are being Zinc and copper halides.

The process as described above wherein the Grignard reagent is selected from alkyl, alkenyl, alkynyl and aryl magnesium halides.

The process as described above wherein the Lithium/Zinc reagent is selected from alkyl, alkenyl, alkynyl and aryl Lithium/Zinc reagents.

A further embodiment of the invention is the process for the preparation of an amino alcohol of formula:

Wherein

R 3 is halo (Cl, Br, F 8 1) R 1 is amino or substituted amino

R 2 is C 1 -C 6 -allcyl, C 2 -C 6 -alkenyl, or C2 -C 6 -alkynyl, unsubstituted or mono- or di- substituted with a substituent selected from the group consisting of: halo (Cl, Br, F, I), CF 3 , CN, NO 2 , NH 25 NH(C 1 -C 6 -allcyl), N(C 1 -C 6 -alkyl) 2 , CONH 2 , CONH(C 1 -C 6 -alkyl), CON(Ci -C 6 -alkyl) 2 , NHCONH 2 , NHCONH(Ci -C 6 -alkyl), NHCON (C, -C 6 -alkyl) 2 , CO 2 -Ci -C 6 -alkyl, C 3 -C 7 - cycloalkyl, or C 1 -C 6 -alkoxy;

comprising the steps of:

• Adding slowly an alkanol and chiral additive to a base in an organic solvent • Treating the above reaction mass with a metal halide to get chiral/achiral metal complex

• Adding organometallic reagent of formula R 2 M, wherein M represents Li, Zn or MgX; X is Cl 9 Br, I and F; to the metal complex to get an organometal complex • Mixing a carbonyl compound with the organometal complex to give the chiral alcohol.

The process as described above wherein the chiral additive is pyrrolidinyl norephidrine or its enantiomer or diastereomer.

The process as described above wherein the metal halide is a transitional metal halide and the most preferred metal halides are being Zinc and copper halides.

The process as described above wherein the base is selected from metal hydrides, metal alkoxides, metal hydroxides and organic bases.

The process as described above wherein the preferred metal hydride is sodium hydride.

The compounds of the present invention have asymmetric centers and this invention includes all of the optical isomers and mixtures thereof.

Examples:

The present invention will now be further explained in the following examples. However, the present invention should not be construed as limited thereby. One of ordinary skill in the art will understand how to vary the exemplified preparations to obtain the desired results.

Example -1: Preparation of (S)-5-Chloro-oi-(cyclopropylethynylV2-amino-α- ftrifluoromethyD benzene methanol.

Cyclopropyl acetylene Zinc bromide Sodium hydride [1R,2S]-N-pyrτolidinyl norephedrine

2,2,2-Trifluoro B lhaπol (S)-5-chloro-a-(cyclopropylethynyl)-

4-chloro-2-trifluoroacatyl aniline n-Bulyl magnesium chloride 2-amlno-a-(trifluoromethyl)banzena methanol

A solution of chloromagnesiurn-cyclopropylacetylide (CPA-MgCl) was prepared by adding neat cyclopropyl acetylene (3.62 g, 54.7 mmol) to a stirred solution of rc-butyl magnesium chloride (2M solution in THF, 26.8 ml, 53.7 mmol) at 0-5 0 C. The solution was stirred for another 2h at 0-5 °C. In another dry flask, to anhydrous THF (80 ml) at 0-5 0 C 5 NaH (57% dispersion in mineral oil, 4.71 g, 117.7 mmol) was added slowly. The ice-bath was removed and the contents stirred at ambient temp for 30 min and cooled again to 0-5 0 C. 2,2,2- Trifluoroethanol (4.3g, 3.13 ml, 42.9 mmol), and (IR, 2S)-pyrrolidinyl norephidrine (13.5 g,

65.8 mmol) were added and the resulting pale yellow solution was stirred at ambient temp for

60 min. A solution of zinc bromide (11.98 g, 54 mmol) in THF (40 ml) was added and the suspension was stirred for 60 min at 25-30 °C. The solution of CPA-MgCl was then warmed to

25-30 "C and then transferred to the ephedrine zincate reagent by cannula, over 15 min., with THF (5 ml) as a wash, and the suspension was stirred for another 2h. 4-Chloro-2- trifluoroacetylaniline (10 g, 44.7 mmol) was added in one portion to the reaction mixture and stirred for 15h.

The reaction mixture was quenched with 30% aq K 2 CO 3 (5.5 ml) and aged for Ih. The solid material was filtered and washed with THF (5 x 10 ml). The combined filtrate concentrated to approx 10 ml under reduced pressure, toluene (100 ml) was added and sequentially washed with 30% citric acid (2 x 50 ml) and water (50 ml). The combined aqueous layer was back-

extracted with toluene (25 ml) and saved for pyrrolidinyl norephidrine recovery. The combined organic phase was concentrated to approx 10 ml and hexane (50 ml) was added slowly with stirring. The mixture was cooled to O 0 C, the solid was collected by filtration, washed with cold hexane (2 x 10 ml) and dried to give 10 g of pure (S)-5-Chloro-α-(cyclopropylethynyl)-2- amino-ct- (trifluoromethyl) benzene methanol as a white solid.

Example -2: Preparation of ffl-5-Chloro-α-rcyclopropylethynyl)-2-amino-α-(trifluorome thyl) benzene methanol hydrochloride

A solution of chloromagnesium-cyclopropylacetylide (CPA-MgCl) was prepared by adding neat cyclopropyl acetylene (3.62 g, 54.7 mmol) to a stirred solution of «-butyl magnesium chloride (2M solution in THF, 26.8 ml, 53.7 mmol) at 0-5 "C. The solution was stirred for another 2h at 0-5 0 C. In another dry flask, to anhydrous THF (80 ml) at 0-5 °C, NaH (57% dispersion in mineral oil, 4.71 g, 117.7 mmol) was added slowly. The ice-bath was removed and the contents stirred at ambient temp for 30 min and cooled again to 0-5 °C. 2,2,2- Trifluoroethanol (4.3g, 3.13 ml, 42.9 mmol), and (IR, 2S)-pyrrolidinylnorephidrine (13.5 g, 65.8 mmol) were added and the resulting pale yellow solution was stirred at ambient temp for 60 min. A solution of zinc bromide (11.98 g, 54 mmol) in THF (40 ml) was added and the suspension was stirred for 60 min at 25-30 °C. The solution of CPA-MgCl was then warmed to 25-30 0 C and then transferred to the ephedrine zincate reagent by cannula, over 15 min., with THF (5 ml) as a wash, and the suspension was stirred for another 2h. 4-Chloro-2- trifluoroacetylaniline (10 g, 44.7 mmol) was added in one portion to the reaction mixture and stirred for 15h.

The reaction mixture was quenched with 30% aq K 2 CO 3 (5.5 ml) and aged for Ih. The solid material was filtered and washed with THF (5 x 10 ' ml). The combined filtrate concentrated completely under reduced pressure. The residue was dissolved in isopropyl acetate (100 ml) and sequentially washed with 30% citric acid (2 x 50 ml) and water (50 ml). The combined aqueous layer was back-extracted with IPAc (25 ml) and saved for pyrrolidinylnorephidrine recovery. To the combined organic phase was added 12N HCl (4.1 ml). The resulting mixture was aged at 25-30 0 C and then dried azeotropically and flushed with IPAc (2 x 25 ml). The

slurry was aged for another 24 h at 25-30 0 C and then filtered and washing was performed with cold IPAc (3 x 10 ml) and dried to afford 10 g of analytically pure (5>5-Chloro-α- (cyclopropylethynyl)-2-amino-α-(trifluoromethyl) benzene methanol hydrochloride as a white solid.

Example -3: Preparation of ιfi)-5-Chloro-α-(cyclopropylethynylV2-ammo-α- (trifluoromethyP benzene methanol.

A solution of chloromagnesium-cyclopropylacetylide (CPA-MgCl) was prepared by adding neat cyclopropyl acetylene (36.2 g, 0.548 mol) to a stirred solution of «-butyl magnesium chloride (2M solution in THF, 268.0 ml, 0.535 mol) at 0-5 0 C. The solution was stirred for another 2h at 0-5 °C. In another dry flask, to anhydrous THF (300 ml) at 0-5 0 C, NaH (57% dispersion in mineral oil, (44.0 g, 0.916 mol) was added slowly. The ice-bath was removed and the contents stirred at ambient temp for 30 min and cooled again to 0-5 0 C. 2,2,2- Trifluoroethanol (43g, 0.429 mol), and (IR, 2S)-pyrrolidinyl norephidrine (135 g, 0.65 mol) were added and the resulting pale yellow solution was stirred at ambient temp for 60 min. Zinc chloride (73.1 g, 0.53mol) was added in four lots and stirred for 60 min at 25-30 0 C. The solution of CPA-MgCl was then warmed to 25-30 °C and then transferred to the ephedrine zincate reagent, over 15 min., and the suspension was stirred for another 2h. 4-Chloro-2- trifluoroacetylaniline (100 g, 0.447 mol) was added in one portion to the reaction mixture and stirred for reaction completion.

The reaction mixture was diluted with toluene (300ml) and stirred for Ih and quenched into IM citric acid solution (1000ml) and stirred for 10 min. Toluene layer was separated and washed with water (2X500ml). The toluene layer was concentrated completely to give residue. The obtained residue was dissolved in methanol (300ml) and isolated by adding DM water (450ml).

Yield: 130 g