Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTRIC ENERGY SUPPLY DEVICE COMPRISING A BUSBAR MATRIX, AND METHOD FOR OPERATING THE ENERGY SUPPLY DEVICE
Document Type and Number:
WIPO Patent Application WO/2018/233954
Kind Code:
A1
Abstract:
The invention relates to an electric energy supply device (10) with usage units (12), which generate electric energy or temporarily store same. The energy supply device (10) carries out an energy exchange (E) via the busbar assembly (18), said busbars (18') forming a matrix. The usage units (12) are divided into strands (11), and each usage unit (12) is connected in order to form a series circuit (13). The series circuit (13) is connected to the busbar assembly (18) by a respective DC-DC converter (14) via a respective switching unit (15) that can be galvanically isolated. Connected devices are supplied with energy via the busbar matrix.

Inventors:
HINTERBERGER MICHAEL (DE)
HELLENTHAL BERTHOLD (DE)
BLUM ANDRÉ (DE)
Application Number:
PCT/EP2018/063110
Publication Date:
December 27, 2018
Filing Date:
May 18, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AUDI AG (DE)
International Classes:
H02J1/08; H02J1/14; H02J3/28; H02J7/00
Foreign References:
DE102015216097A12017-03-02
EP2560264A22013-02-20
US20090066291A12009-03-12
US20130057210A12013-03-07
US20130069592A12013-03-21
US20060092583A12006-05-04
US7087327B22006-08-08
US20060092583A12006-05-04
Download PDF:
Claims:
PATENTANSPRÜCHE:

Elektrische Energieliefervorrichtung (10) mit einer Vielzahl von Nutzeinheiten (12), wobei jede Nutzeinheit (12) dazu eingerichtet ist, elektrische Energie zu erzeugen oder zwischenzuspeichern oder dynamisch umzuladen, und wobei eine Steuereinrichtung (19) dazu eingerichtet ist, einen Energieaustausch (E) zwischen der Energieliefervorrichtung (10) einerseits und einem mit der Energieliefervorrichtung gekoppelten Gerät (100) andererseits zu steuern,

dadurch gekennzeichnet, dass

die Energieliefervorrichtung (10) den Energieaustausch (E) über eine Stromschienenanordnung (18) durchführt, wobei Stromschienen (18') der Stromschienenanordnung (18) eine Stromschienenmatrix bilden (mehrere Stromschienenpaare möglich), und in der Energieliefervorrichtung (18) die Nutzeinheiten (12) in Stränge (1 1 ) aufgeteilt sind und in jedem Strang (1 1 ) dessen Nutzeinheiten (12) zu einer Reihenschaltung (13) verschaltet sind und die Reihenschaltung (13) über einen Gleichspannungswandler (14) mit einem Strangende (1 1 ') des Strangs (1 1 ) und jedes Strangende (1 1 ') des Strangs (1 1 ) über eine jeweilige galvanisch trennfähige Schalteinheit (15) mit der Stromschienenanordnung (18) verbunden ist und die Steuereinrichtung (19) dazu eingerichtet ist, für den Energieaustausch (E) zumindest einen der Stränge (1 1 ) nach einem vorbestimmten Eignungskriterium auszuwählen und jeden ausgewählten Strang (1 1 ) durch Schalten von dessen Schalteinheiten (15) mit denjenigen Stromschienen (18') galvanisch zu verbinden, an welche das Gerät (100) angeschlossen ist.

Energieliefervorrichtung (10) nach Anspruch 1 , wobei jede Nutzeinheit (12) jeweils zumindest eine Batteriezelle, insbesondere ein Batteriezellenmodul oder einen Verbund mehrerer Batteriezellenmodule, und/oder zumindest eine Brennstoffzelle und/oder zumindest ein Solarpanel und/oder zumindest einen Kondensator und/oder einen Generator um- fasst.

Energieliefervorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei durch das Eignungskriterium einen Ladezustand und/oder eine Leistungsfähigkeit der Nutzeinheiten (12) des jeweiligen Strangs (1 1 ) in Bezug auf den aktuellen Energieaustauschvorgang vorgegeben ist. Energieliefervorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei innerhalb jedes Strangs (1 1 ) für jede Nutzeinheit (12) eine Überbrückungsschaltung (N1 1 ) vorgesehen ist und die Steuereinrichtung (19) dazu eingerichtet ist, zum Steuern des Energieaustauschs (E) den jeweiligen Gleichspannungswandler (14) jedes Strangs (1 1 ) und die zumindest eine Schalteinheit (15) jedes Strangs (1 1 ) und die Über- brückungsschaltungen (N1 1 ) jeder Nutzeinheit (12) zu steuern.

Energieliefervorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei für jeweils zwei Stränge (1 1 ) jeweils eine weitere Schalteinheit (15') vorgesehen ist, die dazu eingerichtet ist, für den Energieaustausch (E) die zwei Stränge (1 1 ) in Reihe zu schalten, und die Steuereinrichtung (19) dazu eingerichtet ist, die in Reihe geschalteten Stränge (1 1 ) galvanisch mit denjenigen Stromschienen (18') zu verbinden, die zu dem Gerät (100) führen.

Energieliefervorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei die Steuereinrichtung (19) dazu eingerichtet ist, für den Fall, dass mehrere Geräte (100) an unterschiedlichen Stromschienen (18') der Stromschienenanordnung (18) angeschlossen sind, für den Energieaustausch (E) durch Schalten der Schalteinheiten (15) der Stränge (1 1 ) die Geräte untereinander galvanisch getrennt zu halten.

Energieliefervorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei innerhalb jedes Strangs (1 1 ) jeweils Nutzeinheiten (12) derselben Technologie vorgesehen sind, aber sich die Technologien zumindest zwei der Stränge (1 1 ) unterscheiden und die unterschiedlichen Technologien insgesamt ein durch den Energieaustausch (E) vorgegebenes Stromprofil und/oder Leistungsprofil ergeben.

Energieliefervorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei die Energieliefervorrichtung (10) eine mit der Stromschienenanordnung (18) verbundene AC/DC-Wandleranordnung (24) zum Austauschen von elektrischer Energie mit einem öffentlichen elektrischen Versorgungsnetz (22) oder mit einer AC-Energiequelle aufweist und die Steuereinrichtung (19) dazu eingerichtet ist, während des Energieaustauschs (E), wenn sich zumindest einer der Stränge (1 1 ) entlädt, zumindest einen anderen der Stränge (1 1 ) über die AC/DC- Wandleranordnung (24) mit der elektrischen Energie aus dem Versorgungsnetz (22) oder aus der AC-Energiequelle aufzuladen.

Energieliefervorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei an einem Ausgangsanschluss (20) zum Anschließen des Geräts jeweils eine Kondensatoreinrichtung (30) bereitgestellt ist.

Verfahren zum Betreiben einer elektrischen Energieliefervorrichtung

(10) mit einer Vielzahl von Nutzeinheiten (12), wobei jede Nutzeinheit (12) dazu eingerichtet ist, elektrische Energie zu erzeugen oder zwi- schenzuspeichern, und wobei eine Steuereinrichtung (19) einen Energieaustausch (E) zwischen der Energieliefervorrichtung (10) und einem mit der Energieliefervorrichtung gekoppelten Gerät (100) steuert, dadurch gekennzeichnet, dass

die Energieliefervorrichtung (10) den Energieaustausch (E) über eine Stromschienenanordnung (18) durchführt, wobei Stromschienen (18') der Stromschienenanordnung (18) eine Stromschienenmatrix bilden, und in der Energieliefervorrichtung (10) die Nutzeinheiten (12) in Stränge (1 1 ) aufgeteilt sind und in jedem Strang (1 1 ) dessen Nutzeinheiten (12) zu einer Reihenschaltung (13) verschaltet sind und die Reihenschaltung (13) über einen Gleichspannungswandler (14) mit einem Strangsende (1 1 ') des Stranges (1 1 ) und jedes Strangende (1 1 ') des Stranges (1 1 ) über eine galvanisch trennfähige Schalteinheit (15) mit der Stromschienenanordnung (18) verbunden ist und die Steuereinrichtung (19) für den Energieaustausch (E) zumindest einen der Stränge

(1 1 ) nach einem vorbestimmten Eignungskriterium auswählt und jeden ausgewählten Strang (1 1 ) durch Schalten von dessen Schalteinheiten (15) mit denjenigen Stromschienen (18') galvanisch verbindet, die zu dem Gerät (100) führen.

Description:
Elektrische Energieliefervorrichtung mit Stromschienenmatrix sowie Verfahren zum Betreiben der Energieliefervorrichtung

BESCHREIBUNG:

Die Erfindung betrifft eine Energieliefervorrichtung mit einer Vielzahl von Nutzeinheiten. Die Energieliefervorrichtung kann beispielsweise ein stationärer Batteriespeicher oder eine Fahrzeugbatterie für ein Elektrofahrzeug sein. Entsprechend können die Nutzeinheiten jeweils durch ein Batteriezellenmo- dul gebildet sein. Die Energieliefervorrichtung kann eine Stromschienenmatrix aufweisen, über welche die Nutzeinheiten wahlweise mit einem an die Energieliefervorrichtung angeschlossenen Gerät elektrisch verbunden werden können, um einen Energieaustausch mit dem Gerät durchzuführen. Zu der Erfindung gehört auch ein Verfahren zum Betreiben der Energieliefervor- richtung.

Eine Energieliefervorrichtung der genannten Art ist beispielsweise aus der US 7,087,327 B2 bekannt. Darin ist beschrieben, dass eine Energieliefervorrichtung eine Reihenschaltung aus Brennstoffzellenstapeln aufweisen kann, die in der Summe eine elektrische Spannung für ein an die Energieliefervorrichtung angeschlossenes Gerät bereitstellen können. Jeder Brennstoffzellenstapel kann in der Reihenschaltung einzeln elektrisch durch eine Diode überbrückt werden, sodass er bei einem Defekt nicht die gesamte Energieliefervorrichtung blockiert oder stilllegt. Es gibt in der Reihenschaltung Ersatz- Brennstoffzellenstapel, um auch bei einem Ausfall eines Brennstoffzellenstapels weiterhin die Spannung bereitstellen zu können. Ein Ersatz- Brennstoffzellenstapel bleibt so lange ungenutzt, bis er aufgrund eines Defekts eines anderen Brennstoffzellenstapels benötigt wird. Um einen größeren Betriebsstrom zu liefern, können mehrere der besagten Reihenschaltun- gen parallel geschaltet sein. Zum Einstellen einer bestimmten Schaltkonstellation als Brennstoffzellenstapeln sind Schalter vorgesehen. Nachteilig bei dieser Anordnung ist, dass aufgrund der notwendigen freien Konfigurierbar- keit eine Steuerung der Ausgangsstromstärke nur innerhalb jedes einzelnen Brennstoffzellenstapels erfolgen kann, was die Energieliefervorrichtung in der Herstellung kostspielig macht.

Eine weitere Energieliefervorrichtung mit einer Vielzahl von Nutzeinheiten in Form von Energiespeicherelementen ist aus der US 2006/0092583 A1 bekannt. Die einzelnen Energiespeicherelemente sind ebenfalls mittels einer Vielzahl von Schaltern zu unterschiedlichen Schaltkonstellationen kombinierbar. Eine galvanische Trennung zwischen den einzelnen Speicherelementen ist nicht vorgesehen.

Der Erfindung liegt die Aufgabe zugrunde, eine variabel konfigurierbare elektrische Energieliefervorrichtung für einen Energieaustausch mit einem Gerät bereitzustellen. Die Aufgabe wird durch die Gegenstände der unabhängigen Patentansprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung sind durch die abhängigen Patentansprüche, die folgende Beschreibung sowie die Figuren beschrieben. Durch die Erfindung ist eine elektrische Energieliefervorrichtung bereitgestellt, in welcher eine Vielzahl von Nutzeinheiten vorgesehen ist. Jede Nutzeinheit ist dazu eingerichtet, elektrische Energie zu erzeugen oder zwischen- zuspeichern oder dynamisch umzuverteilen (wie z.B. ein Kondensator). Die Energieliefervorrichtung kann als stationärer Energiespeicher oder als mobi- ler Energiespeicher ausgestaltet sein.

Um eine Verbindung zwischen einem angeschlossenen Gerät und den einzelnen Nutzeinheiten der Energieliefervorrichtung flexibel zu gestalten, ist erfindungsgemäß vorgesehen, dass die Energieliefervorrichtung einen Ener- gieaustausch über eine Stromschienenanordnung durchführt, wobei Stromschienen der Stromschienenanordnung eine Stromschienenmatrix bilden. Mit anderen Worten sind mehr als zwei Stromschienen vorgesehen, sodass mehrere unterschiedliche Stromschienenpaare zum Übertragen einer Gleichspannung zwischen Nutzeinheiten und an die Energieliefervorrichtung angeschlossenen Geräten möglich sind. Es sind also mindestens drei Stromschienen, bevorzugt aber mehrere Stromschienen pro Plus-Potential und pro Minus-Potential oder Massepotential vorgesehen. Mittels eines der Stromschienenpaare kann dann Gleichspannung zu dem Gerät übertragen werden. Um die Nutzeinheiten flexibel an die Stromschienenmatrix anbinden zu können, wären theoretisch eine Vielzahl von Schaltern an der Stromschien- enmatrix nötig. Dies wird erfindungsgemäß aber verhindert, indem die Nutzeinheiten in Stränge aufgeteilt sind und in jedem Strang dessen Nutzeinheiten zu einer Reihenschaltung verschaltet sind. Jeder Strang hat zwei Stran- genden, nämlich ein Plus-Ende und ein Minus-Ende. Jedes Strangende ist über eine jeweilige galvanisch trennfähige Schalteinheit mit der Stromschienenanordnung verbunden. Eine galvanisch trennfähige Schalteinheit ist eine mechanische Schalteinheit, die beispielsweise zumindest ein Schütz vorsehen kann. Innerhalb des Strangs ist die Reihenschaltung über einen Gleich- spannungswandler (DC/DC-Wandler) mit einem der Strangenden verbunden. Allgemein kann der Gleichspannungswandler ein Hochsetzsteller oder Tiefsetzsteller oder ein Inverswandler sein. Als Gleichspannungswandler wird bevorzugt ein Tiefsetzsteller verwendet. An das andere Strangende kann die Reihenschaltung direkt angeschlossen sein.

Der Energieaustausch zwischen der Energieliefervorrichtung einerseits und einem mit der Energieliefervorrichtung gekoppelten Gerät andererseits kann durch eine Steuereinrichtung gesteuert werden. Die Steuereinrichtung ist dazu eingerichtet, für den Energieaustausch einen der Stränge nach einem vorbestimmten Eignungskriterium auszuwählen und jeden ausgewählten Strang durch Schalten von dessen Schalteinheiten mit denjenigen Stromschienen galvanisch zu verbinden, an welche das Gerät angeschlossen ist. Die ausgewählten Stränge oder der zumindest eine ausgewählte Strang wird also an ein Stromschienenpaar geschaltet, an welches auch das Gerät an- geschlossen ist.

Die Erfindung ist hier zwar für ein einzelnes an ein Stromschienenpaar angeschlossenes Gerät beschrieben. Natürlich kann auch zumindest ein weiteres Gerät an jeweils ein weiteres Stromschienenpaar angeschlossen sein und dann auch für jedes weitere Gerät mittels des Eignungskriteriums zumindest ein Strang für einen Energieaustausch ausgewählt und verbunden werden. Um ein Strangende variabel mit unterschiedlichen Stromschienen der Stromschienenanordnung verbinden zu können, kann jede Schalteinheit beispielsweise mehrere Schütze aufweisen, wobei jeweils ein Schütz zum Verbinden des Strangendes mit einer Stromschiene vorgesehen sein kann. Es kann als Schalteinheit auch ein Schütz vom Typ eines Wechselschalters (1 -zu-N- Multiplexer) vorgesehen sein, der zwischen den unterschiedlichen Stromschienen umschalten kann. Natürlich kann jede Schalteinheit ein Strangende auch galvanisch von allen Stromschienen entkoppeln. Durch die Erfindung ergibt sich der Vorteil, dass mit geringem Schaltungsaufwand Nutzeinheiten abwechselnd mit unterschiedlichen Geräten verbunden werden können.

Zu der Erfindung gehören auch Weiterbildungen, durch die sich zusätzliche Vorteile ergeben.

Die Energieliefervorrichtung kann auf unterschiedlichen Technologien zum Bereitstellen von elektrischer Energie beruhen. Jede Nutzeinheit kann jeweils zumindest eine Batteriezelle, insbesondere ein Batteriezellenmodul oder einen Verbund aus mehreren (zum Beispiel parallel geschalteten) Batteriezellenmodulen umfassen. Zusätzlich oder alternativ dazu kann eine Nutzeinheit zumindest eine Brennstoffzelle und/oder zumindest ein Solarpanel und/oder zumindest einen Kondensator und/oder einen Generator umfassen. Bevorzugt ist vorgesehen, dass in jedem Strang jeweils nur Nutzeinheiten derselben Technologie, zum Beispiel nur Batteriezellenmodule, bereitgestellt sind. Es können aber Stränge unterschiedlicher Technologie bereitgestellt sein, um z.B. ein vorbestimmtes Leistungsprofil und/oder Stromprofil bereitstellen zu können, das mit einer einzelnen Technologie nicht erzeugbar wäre.

Das besagte Eignungskriterium, nach welchem zumindest ein Strang für den Energieaustausch mit dem Gerät ausgewählt wird, kann einen Ladezustand und/oder eine Leistungsfähigkeit der Nutzeinheiten des jeweiligen Strangs in Bezug auf den aktuellen Energieaustauschvorgang vorgeben. Mit Leistungsfähigkeit ist insbesondere eine maximal erzeugbare und/oder über einen vorbestimmten Zeitraum erzeugbare elektrische Leistung gemeint. Sie kann von einem aktuellen Verschleißzustand der Nutzeinheiten des Strangs abhängig sein.

Es kann aber zunächst auch vorgesehen sein, einen Strang gezielt so zu konfigurieren, dass er für einen Energieaustausch nutzbar wird, also den Strang umzukonfigurieren, damit er das Eignungskriterium erfüllt. Hierzu sieht eine Weiterbildung vor, dass innerhalb jedes Strangs für jede Nutzein- heit eine Überbrückungsschaltung vorgesehen ist. Somit kann also in jedem Strang zumindest eine Nutzeinheit mittels ihrer Überbrückungsschaltung elektrisch überbrückt werden, sodass sie bei dem Energieaustauschvorgang nicht beteiligt ist und somit keine elektrische Leistung liefern muss. Hierdurch kann der Einfluss einer verschlissenen oder zu gering geladenen Nutzeinheit ausgeschlossen werden und der Strang mit den übrigen Nutzeinheiten kann dann zum Beispiel das Eignungskriterium erfüllen und für den Energieaustausch genutzt werden. Die besagte Steuereinrichtung dazu eingerichtet ist, zum Steuern des Energieaustauschs den jeweiligen Gleichspannungswand- ler jedes Strangs und die zumindest eine Schalteinheit jedes Strangs und die Überbrückungsschaltungen der Nutzeinheiten zu steuern.

Die Reihenschaltung der Nutzeinheiten eines Strangs erzeugt eine Strangspannung, die mittels des Gleichspannungswandlers innerhalb vorbestimm- ter Grenzen eingestellt werden kann. Falls ein Gerät eine elektrische Spannung benötigt, die größer als die größte Strangspannung ist, kann theoretisch dieses Gerät mit der Energieliefervorrichtung nicht versorgt werden. Genauso kann andersherum eine Ladespannung, die größer ist als sie die Reihenschaltung der Nutzeinheiten aufnehmen kann, nicht für das Aufladen von Nutzeinheiten genutzt werden. Um hier dennoch eine solche elektrische Spannung verarbeiten zu können, sieht eine Weiterbildung vor, dass für jeweils zwei Stränge jeweils eine weitere Schalteinheit vorgesehen ist, die dazu eingerichtet ist, für den Energieaustausch die zwei Stränge in Reihe zu schalten. Durch die in Reihe geschalteten Stränge addieren sich die Strang- Spannungen. Die Steuereinrichtung der Energieliefervorrichtung ist dann dazu eingerichtet, die in Reihe geschalteten Stränge galvanisch mit demjenigen Stromschienenpaar zu verbinden, das zu dem zumindest einen Gerät führt, welches die Spannung erzeugt oder benötigt. Das Gerät kann also eine Energiequelle zum Aufladen von Nutzeinheiten sein.

Wie bereits ausgeführt, können für den Energieaustausch auch mehrere Geräte an unterschiedlichen der Stromschienen der Stromschienenanordnung angeschlossen sein. Die Steuereinrichtung ist dann bevorzugt dazu eingerichtet, durch Schalten der Schalteinheiten der Stränge die Geräte unterei- nander galvanisch getrennt zu halten. Hierdurch kann zum Beispiel eine gesetzliche Vorschrift in Bezug auf das galvanische Trennen von elektrischen Geräten an einer Energieliefervorrichtung eingehalten werden. Wird die Energieliefervorrichtung beispielsweise als Ladesäule für elektrische Fahrzeuge ausgestaltet, können so mehrere Fahrzeuge an die Energieliefervor- richtung angeschlossen sein, ohne dass sich hierdurch eine galvanische Verbindung zwischen den Kraftfahrzeugen ergibt.

Wie bereits ausgeführt, sind innerhalb jedes Strangs die Nutzeinheiten derart gewählt, dass jeweils Nutzeinheiten derselben Technologie in einem Strang vorgesehen sind, also beispielsweise nur Batte ezellenmodule einer bestimmten Leistungsklasse (Leistungsmodule oder Speichermodule). Die Energieliefervorrichtung kann aber einen Mix aus unterschiedlichen Technologien vorsehen. Hierzu unterscheiden sich die Technologien zumindest zwei der Stränge. Die unterschiedlichen Technologien sind dabei insgesamt derart ausgewählt, dass sie ein durch den Energieaustausch vorgegebenes Stromprofil und/oder Leistungsprofil ergeben. Mit anderen Worten wird während des Energieaustauschs ein unterschiedlicher Beitrag durch die Stränge erzeugt. Es ergibt sich ein Stromprofil und/oder Leistungsprofil, also zum Bei- spiel ein vorbestimmter zeitlicher Verlauf für ein Schnellladen eines Kraftfahrzeugs. In einem ersten Zeitabschnitt eines Energieaustauschvorgangs kann dann der Beitrag eines Strangs größer sein als der Beitrag eines anderen Strangs, was sich dann aber in einem zweiten Zeitabschnitt des Energieaustauschvorgangs umkehren kann, sodass der andere Strang einen größe- ren Beitrag liefert. So kann beispielsweise der erste Strang für eine größere Leistung als der andere Strang sorgen, während der andere Strang einen größeren Dauerstrom liefert als der erste Strang.

Um die Energieliefervorrichtung an eine Wechselstromquelle anschließen zu können, kann die Energieliefervorrichtung eine mit der Stromschienenanordnung verbundene AC/DC-Wandleranordnung zum Austauschen von elektrischer Energie mit einem öffentlichen elektrischen Versorgungsnetz oder mit einer AC-Energiequelle (AC - Wechselstrom) aufweisen. Ein Beispiel für eine AC-Energiequelle ist eine netzautarke Energiequelle, wie z.B. ein Notstromaggregat oder eine Windkraftanlage. Die Steuereinrichtung der Energieliefervorrichtung ist dann dazu eingerichtet, während des Energieaustauschs mit einem Gerät, wenn sich also zumindest einer der Stränge entlädt, zumindest einen anderen der Stränge über die AC/DC-Wandleranordnung mit der elektrischen Energie aus dem Versorgungsnetz oder der AC-Energiequelle aufzuladen. Hierdurch ist also ein gleichzeitiges Laden und Entladen unterschiedlicher Stränge möglich.

Bevorzugt ist an einem Ausgangsanschluss, der zum Anschließen des Geräts ausgestaltet ist, eine Kondensatoreinrichtung bereitgestellt. Hierdurch können Lastspritzen an dem Ausgangsanschluss kompensiert werden. Zusätzlich oder alternativ kann auch an einem Eingangsanschluss, über welchen die AC/DC-Wandleranordnung mit einem elektrischen Versorgungsnetz oder einer anderen AC-Energiequelle verbunden werden kann, ebenfalls eine Kondensatoreinrichtung bereitgestellt. Durch den Betrieb der erfindungsgemäßen Energieliefervorrichtung ergibt sich das erfindungsgemäße Verfahren. Das Verfahren geht davon aus, dass die Energieliefervorrichtung die Vielzahl von Nutzeinheiten aufweist, wobei jede Nutzeinheit dazu eingerichtet ist, elektrische Energie zu erzeugen oder zwischenzuspeichern. Eine Steuereinrichtung steuert den Energieaustausch zwischen der Energieliefervorrichtung und einem mit der Energieliefervorrichtung gekoppelten Gerät. Die Energieliefervorrichtung führt den Energieaustausch über die Stromschienenanordnung durch, welche Stromschienen aufweist, welche die besagte Stromschienenmatrix bilden, also eine Möglichkeit bieten, unterschiedliche Stromschienenpaare zu bilden, indem pro Polarität (Plus und Minus) mehr als eine Stromschiene bereitgestellt ist. In der Energieliefervorrichtung sind die Nutzeinheiten in Stränge aufgeteilt und in jedem Strang sind dessen Nutzeinheiten zu einer Reihenschaltung verschal- tet. Die Reihenschaltung ist über einen Gleichspannungswandler mit einem Strangende des Strangs verbunden und jedes Strangende des Strangs ist wiederum über eine galvanisch trennfähige Schalteinheit mit der Stromschienenanordnung verbunden. Die Steuereinrichtung wählt für den Energieaustausch zumindest einen der Stränge nach einem vorbestimmten Eignungskri- terium aus und verbindet jeden ausgewählten Strang durch Schalten von dessen Schalteinheiten mit denjenigen Stromschienen galvanisch, die zu dem Gerät führen, das heißt an welche das Gerät angeschlossen ist.

Zu der Erfindung gehören auch Weiterbildungen des erfindungsgemäßen Verfahrens, die Merkmale aufweisen, wie sie bereits im Zusammenhang mit den Weiterbildungen der erfindungsgemäßen Energieliefervorrichtung beschrieben worden sind. Aus diesem Grund sind die entsprechenden Weiterbildungen des erfindungsgemäßen Verfahrens hier nicht noch einmal beschrieben.

Bei den im Folgenden erläuterten Ausführungsbeispielen handelt es sich um bevorzugte Ausführungsformen der Erfindung. Bei den Ausführungsbeispielen stellen die beschriebenen Komponenten der Ausführungsformen jeweils einzelne, unabhängig voneinander zu betrachtende Merkmale der Erfindung dar, welche die Erfindung jeweils auch unabhängig voneinander weiterbilden und damit auch einzeln oder in einer anderen als der gezeigten Kombination als Bestandteil der Erfindung anzusehen sind. Des Weiteren sind die beschriebenen Ausführungsformen auch durch weitere der bereits beschriebenen Merkmale der Erfindung ergänzbar. In den Figuren sind funktionsgleiche Elemente jeweils mit denselben Bezugszeichen versehen. Fig. 1 zeigt eine elektrische Energieliefervorrichtung 10, die als Energiespeicher oder als reine Energiequelle oder als eine Kombination daraus ausgestaltet sein kann. Die Energieliefervorrichtung 10 kann z.B. als ein Stationärspeicher für elektrische Energie vorgesehen sein. Sie kann z.B. an einem Straßennetz aufgebaut sein. An die Energieliefervorrichtung 10 kann dann zumindest ein Gerät 100, z.B. ein elektrisch antreibbares Kraftfahrzeug, angeschlossen werden, um mittels eines Energieaustauschs E z.B. eine Traktionsbatterie des Kraftfahrzeugs aufzuladen. Die Energieliefervorrichtung 10 kann auch für die Verwendung als Mobilbatterie oder Traktionsbatterie oder Solarspeicher vorgesehen sein. Als Traktionsbatterie kann an die Energielie- fervorrichtung z.B. eine elektrische Maschine eines Traktionsantriebs angeschlossen sein. Die Energieliefervorrichtung 10 kann im geladenen Zustand mindestens 1 kW elektrische Leistung ausgeben und/oder mindestens 1 kWh elektrische Energie liefern. In der Energieliefervorrichtung 10 können für den Energieaustausch E mehrere Schaltungszweige oder Strings oder Stränge 1 1 vorgesehen sein, wobei in jedem Strang 1 1 jeweils mehrere der Nutzeinheiten 12 zu einer Reihenschaltung 13 verschaltet sein können. Die Nutzeinheiten 12 sind also in der Energieliefervorrichtung 10 zusammengefasst, also z.B. in einer Fahrzeug- Traktionsbatterie oder in einem elektrischen Stationärspeicher. Die Energieliefervorrichtung 10 kann ein Gehäuse aufweisen, in welchem die Stränge 1 1 und die Stromschienenanordnung 18 angeordnet sind.

Jede Nutzeinheit 12 kann jeweils einen elektrischen Energiespeicher und/oder eine reine Quelle für elektrische Energie enthalten. Als Energiespeicher kann eine Nutzeinheit z.B. eine elektrochemische Batteriezelle oder ein Batteriezellenmodul mit mehreren Batteriezellen oder einen Kondensator oder eine Kondensatoranordnung mit mehreren Kondensatoren enthalten. Beispiele für Batteriezellen sind solche mit der Technologie Lithium-Ionen, Blei, Solid-State/Festkörper. Beispiele für geeignete Kondensatoren sind Doppelschichtkondensatoren (sog. Supercaps (R) ) mit einer Kapazität von bevorzugt mindestens 1 mF insbesondere mindestens 100mF). Beispiele für eine reine Quelle sind jeweils einen Brennstoffzelle und eine Solarzelle. Als Energiequelle kann eine Nutzeinheit 12 z.B. eine Brennstoffzelle oder einen Brennstoffzellenstapel oder eine Solarzelle oder ein Solarpanel oder einen Generator z.B. eines Kraftwerks (z.B. eines Pumpspeicherkraftwerks) enthalten. Eine Nutzeinheit 12 kann zur Stromerhöhung auch eine Parallelschaltung von z.B. mehreren Batteriezellen oder Batteriezellenmodulen aufweisen.

Innerhalb jedes Strangs 1 1 ist die verwendete Technologie der Nutzeinheiten 12 einheitlich, d.h. es sind z.B. nur Batteriemodule oder nur Solarzellen vorgesehen. Jeder Strang 1 1 weist also Nutzeinheiten 12 gleicher Technologie auf, also z.B. als Batteriezellenmodul jede einen Lithium-Ionen-Akkumulator. Aber es können gemischte Technologien durch unterschiedliche Stränge 1 1 bereitgestellt sein. Hierdurch kann die Energieliefervorrichtung an einen Einsatzzweck oder an ein benötigtes Betriebsprofil angepasst sein. Z.B. können für den Einsatz der Energieliefervorrichtung 10 im Kraftfahrzeug als Traktionsbatterie z.B. zwei Stränge unterschiedlicher Technologie vorgesehen sein, z.B. mit einer Aufteilung der Anzahl der Nutzeinheiten 12: 80% Energiezellen (große Speicherkapazität), 20% Leistungszellen (teurer, aber größerer Leistungsfluss).

Pro Strang 1 1 können, wie in Fig. 1 gezeigt, zusätzlich zu der Reihenschal- tung 13 aus Nutzeinheiten 12 noch vorgesehen sein: ein Gleichspannungswandler 14, jeweils eine mechanische Schalteinheit 15 an den Strangenden 1 1 ', eine Messeinrichtung 16 für eine Strangstromstärke I und/oder eine Spannungsmesseinrichtung zum Erfassen einer Summenspannung oder Strangspannung U des Stranges 1 1 .

Jeder Gleichspannungswandler 14 kann in an sich bekannter Weise ausgestaltet sein. Allgemein kann der Gleichspannungswandler ein Hochsetzsteller oder Tiefsetzsteller oder ein Inverswandler sein. Jeder Gleichspannungswandler 14 kann insbesondere ein Tiefsetzsteller sein. Jede Schalteinheit 15 kann mechanisch schaltend ausgestaltet sein und ist insbesondere galvanisch trennfähig. Jede Schalteinheit 15 kann mehrere ON/OFF-Schütze oder (wie in Fig. 1 gezeigt) einen als Wechselschalter ausgestaltetes Schütz aufweisen (1 -zu-N-Multiplexer). Mittels jeder Schalteinheit 15 kann das jeweilige Strangende 1 1 ' galvanisch mit Stranganschlüssen 17 abwechselnd verbun- den und getrennt werden. Jeder Stranganschluss 17 stellt einen elektrischen Anschluss zu einer Stromschiene 18' dar. Die Stromschienen 18' insgesamt bilden eine Stromschienenanordnung 18 aus unabhängigen Stromschienen 18'. Jeder Stranganschluss 17 eines Strangs 1 1 kann dabei mit einer anderen Stromschiene 18' der Stromschienenanordnung 18 verbunden sein. Pro Strangende 1 1 ' (Plus-Pol und Minus-Pol) können also mehrere Stranganschlüsse 17 vorgesehen sein, um den Strang 1 1 an mehrere unterschiedliche Stromschienen 18' der Stromschienenanordnung 18 abwechselnd zu verbinden oder von jeder Stromschiene 18' galvanisch zu trennen. Durch Öffnen der beiden Schalteinheiten 15 eines Strangs 1 1 kann dieser somit galvanisch entkoppelt werden und im laufenden Betrieb der Energieliefervorrichtung 10 auch ausgetauscht werden.

Jeder Strang 1 1 kann mittels der Reihenschaltung 13 eine — Summenspannung oder Gleichspannung U an den Stranganschlüssen 17 bereitstellen. Die Gleichspannung U kann eine Gleichspannung (HV) sein, die mehr als 60V, insbesondere mehr als 100V betragen kann. Es kann aber auch vorgesehen sein, dass die Gleichspannung U im Bereich von 8V bis 60V liegt. Zwischen zwei Stromschienen 18' liegt somit eine Gleichspannung an, wenn ein Strang 1 1 galvanisch mit ihnen verbunden ist. Jeder Strang 1 1 kann dazu mittels seiner Schalteinheiten 15 abwechselnd mit jeweils einem Paar aus Stromschienen 18 galvanisch verbunden werden. Der Strang 1 1 kann mittels der Schalteinheiten 15 abwechselnd mit jeweils einem Stromschienen-Paar galvanisch verschaltet werden, indem jeweils ein Stangende 1 1 ' an eine Stromschiene 18' des Stromschienenpaars verbunden wird, sodass die Gleichspannung U an dem Stromschienen-Paar abfällt.

Die Messeinheit 16 kann auch die besagte Gesamtspannungsmessung über den String 1 1 vorsehen, um die Gleichspannung U zu erfassen. Die Mess- einheit 16 ist dazu bevorzugt dem Gleichspannungswandler 14 nachgeschaltet, wie in Fig. 1 dargestellt, um eine Spannungsregelung mittels des Gleichspannungswandlers 14 zu ermöglichen. Wie im Zusammenhang mit Fig. 2 noch erläutert werden wird, ist noch eine Einzelspannungsmessung in jeder Nutzeinheit 12 vorgesehen.

Über die Stromschienenanordnung 18 kann das zumindest eine Gerät 100 mit den Strängen 1 1 verbunden werden. Durch die Stromschienen 18' der Stromschienenanordnung 18 ist somit eine Stromschienenmatrix gebildet, über die wahlweise zumindest ein ausgewählter Strang 1 1 mit einem ausge- wählten Gerät 100 elektrisch verbunden werden kann, während zugleich ein anderes Gerät mit zumindest einem anderen Strang 1 1 elektrisch verbunden werden kann. Die Geräte bleiben dabei galvanisch voneinander getrennt. ^ ^

Welcher Strang 1 1 mit welcher Stromschiene 18' elektrisch verbunden wird, kann durch eine Steuereinrichtung 19 festgelegt werden. Die Steuereinrichtung 19 kann hierzu einen jeweiligen Energiebedarf und/oder einen jeweiligen Leistungsbedarf des zumindest einen angeschlossenen Geräts 100 er- mittein und dann zumindest einen Strang 1 1 auswählen, mittels welchem dem Bedarf entsprochen werden kann. Den Bedarf kann das Gerät 100 selbst z.B. über eine Kommunikationsschnittstelle mitteilen oder er kann z.B. als ein fest vorgegebener Wert in der Steuereinrichtung 19 gespeichert sein. Die Steuereinrichtung 19 kann dann die Schalteinheiten 15 jedes ausgewähl- ten Strangs 1 1 mit den Stromschienen 18' verbinden, die zu dem angeschlossenen Gerät 100 führen.

Es kann jeweils eine weitere Schalteinheit 15' zwischen je zwei Strängen 1 1 vorgesehen sein, um zwei Stränge 1 1 in Reihe zu schalten und somit deren Strangspannung zu addieren. Damit kann zwischen zwei Stromschienen 18' auch ein größere Spannung bereitgestellt werden, als sie von einem einzelnen Strang 1 1 erzeugt werden kann.

Die Stromschienen 18' können jeweils paarweise mit einem Ausgangsan- schluss 20 verbunden sein, an welchem jeweils ein Gerät 100 angeschlossen sein kann. Die Verbindungen der Stromschienen 18' mit den einzelnen elektrischen Kontakten der Ausgangsanschlüsse 20 sind in Fig. 1 durch korrespondierende Beschriftungen 1 +, 2+, 3+, 1 -, 2-, 3-, wobei „+" für Plus- Potential und„-" für Minus-Potential oder Masse-Potential stehen kann. Die Bezeichnungen symbolisieren drei mögliche Stromschienenpaare 1 +,1 - und 2+, 2- und 3+, 3-, wobei durch eine weitere, nicht dargestellte Schalteinrichtung auch die elektrischen Kontakte der Ausgangsanschlüsse 20 abwechselnd mit unterschiedlichen der Stromschienen 18' verbindbar ausgestaltet sein können. Die Ausgangsanschlüsse 20 können dabei stets untereinander galvanisch getrennt bleiben, solange jede Stromschiene 18' eines Anschlusses 20 mit einem anderen Strang 1 1 galvanisch verbunden ist.

Hierbei kann auch ein gleichzeitiges Laden und Entladen unterschiedlicher Stränge 1 1 vorgesehen sein, um z.B. ein Gerät 100 nacheinander mit elektri- sehe Energie aus unterschiedlichen Strängen 1 1 zu versorgen, die zwischendurch wieder aufgeladen werden. Z.B. kann ein Ladevorgang eines Elektrofahrzeugs (oder allgemein eines Geräts) über ein Stromschienen-Paar mit einer Ausgangsspannung von z.B. 400V erfolgen, während gleichzeitig das Aufladen anderer Stränge 1 1 z.B. über einen Transformator 21 bei einer Ladespannung von z.B. 800 V aus einem Versorgungsnetz 22 oder aus einer anderen vorrichtungsexternen Energiequelle erfolgen kann. Der Transformator 21 kann an einem Eingangsanschluss 23 der Einergieliefervorrichtung 10 angeschlossen sein. Sind die Stränge 1 1 nicht für diese Ladespannung aus- gelegt, können sie mittels der Schalteinheit 15' in Reihe zu einer Serienschaltung verschaltet werden. Die galvanische Trennung erfolgt durch die Nutzung unterschiedlicher Stromschienen 18' für die jeweiligen Stränge 1 1 und/oder jede Spannungsebene (Ausgangsspannung und Ladespannung, z.B. 400V und 800V).

Durch die Stränge 1 1 kann auch eine Leistungskonzentration erfolgen, indem an dem Eingangsanschluss 23 eine Energiequelle, z.B. eine Solaranlage, mit einer ersten Leistung Energie in zumindest einen Strang 1 1 einspeist und anschließend der Strang 1 1 diese Energie mit einer zweiten Leistung, die größer als die erste Leistung ist, an ein an einen Ausgangsanschluss 20 angeschlossenes Gerät 100 wieder abgibt.

Als Stationärspeicher kann die Energieliefervorrichtung 10 optional für den Eingangsanschluss 23 eine modular aufgebaute AC/DC-Wandleranordnung 24 mit mehreren AC/DC-Wandlern 24' aufweisen, die individuell zwischen den Stromschienen 18' mittels einer Schalteinheit 25 umgeschaltet werden können, um auf einer Stromschiene 18' eine vorbestimmte Stromstärke und/oder Ladespannung für einen Ladestrom bereitstellen zu können oder auch den jeweiligen AC/DC-Wandlern 24' galvanisch von der Stromschie- nenanordnung 18 trennen zu können. Mittels weiterer Schalteinheiten 26 ist auch eine galvanische Trennung von dem Eingangsanschluss 23 möglich. Die Schalteinheiten 25, 26 können jeweils durch ein Schütz gebildet sein. Die Schalteinheiten 25, 26 können durch die Schalteinrichtung 19 gesteuert werden. Durch Öffnen der beiden Schalteinheiten 25, 26 eines AC/DC-Wandlers 24' kann dieser somit galvanisch entkoppelt werden und im laufenden Betrieb der Energieliefervorrichtung 10 auch ausgetauscht werden. Die Schalteinheiten 25, 26 stellen somit Entkopplungsschalter dar. Die AC/DC-Wandler 24' können galvanisch trennend ausgestaltet sein. Die AC/DC- Wandleranordnung 24 muss aber nicht unbedingt galvanisch trennende AC/DC-Wandler 24' aufweisen. Andere Wandler sind günstiger. Die galvanische Trennung kann jederzeit mittels der mechanischen Schalter der Stränge sichergestellt werden. An den Eingangsanschluss 23 anstelle des Versorgungsnetzes 22 eine netzautarke Energiequelle, wie z.B. ein Notstromaggregat oder eine Windkraftanlage, angeschlossen sein. Anders herum kann auch die Energieliefervorrichtung 10 selbst netzbildend wirken, d.h. es kann ein gegenüber anderen an den Eingangsanschluss angeschlossenen Geräten eine Netzfrequenz vorgeben. Dies ist insbesondere für den Einsatz der Energieliefervorrichtung 10 in einer Region ohne eigenes Versorgungsnetz 22 vorteilhaft. Es können AC- Geräte ohne Anpassung wie an einem öffentlichen Versorgungsnetz betrieben werden. Das Gegenteil zum netzbildenden Betrieb ist der netzfolgende Betrieb, d.h. es wird auf eine vorgegebene Netzfrequenz aufsynchronisiert.

Zum Schalten der Schalteinheiten 15, 15', 25, 26 und der Nutzeinheiten 12 sowie zum Empfangen von Daten aus den Nutzeinheiten 12 kann die Steuereinrichtung 19 mit diesen Komponenten über eine Kommunikationseinrich- tung 27 gekoppelt sein. Die Kommunikationseinrichtung 27 kann z.B. einen Kommunikationsbus umfassen, z.B. einen CAN-Bus (CAN - Controller Area Network), oder ein Ethernet.

Die Steuereinrichtung 19 akkumuliert somit allgemein Wissen darüber, was wie geschaltet werden kann, also z.B. welche Stromschiene 18' auf weichen String 1 1 geschaltet werden kann. Die Steuereinrichtung 19 kann zumindest teilweise als eine zentrale Steuereinrichtung für alle Stränge 1 1 und/oder zumindest teilweise als verteilte Steuereinrichtung pro Strang 1 1 ausgestaltest sein. Sie kann eine Prozessoreinrichtung mit zumindest einem Mikrocon- troller und/oder zumindest einem Mikroprozessor aufweisen. Ein Betriebsprogramm der Prozessoreinrichtung kann dazu eingerichtet sein, bei Ausführen durch die Prozessoreinrichtung die beschriebenen Verfahrensschritte zum Betreiben der Energieliefervorrichtung 10 durchzuführen. Optional können Kondensatoren 30, 31 (insbesondere Doppelschichtkondensatoren) an den Ausgangsanschlüssen 20 und/oder am Eingangsanschluss 23 vorgesehen sein, um Lastspitzen zu puffern. Durch die Nutzeinheiten 12 können damit bei Lastspitzen / Peaks (im Bereich z.B. bis zu einer Dauer von z.B. 3s oder 5s) schonender betrieben werden, da die Lastspitze gedämpft wird. Eine Lastspitze kann eine elektrische Leistung größer als eine Summe der Einzelnennleistungen der zugeschalteten Nutzeinheiten 12 sein, insbesondere eine Leistung größer als das 1 ,2-fache der Summe. Für einen Umschaltvorgang an den Stromschienen 18' kann eine Umla- deschaltung oder Begrenzungsschaltung 32 (Schalter und Widerstandsele- ment) in Reihe zum jeweiligen Kondensator 30, 31 geschaltet sein, um einen Kondensatorstrom über das Widerstandselement zu führen, wodurch die Stromstärke des Kondensatorstroms auf einen vorbestimmten Höchstwert begrenzt wird. Die Begrenzungsschaltung 32 kann für das Laden und Entladen des jeweiligen Kondensators 30, 31 genutzt werden. Ein Kondensator 30, 31 mit seiner Begrenzungsschaltung 32 stellt eine Kondensatoreinrichtung dar. Die Begrenzungsschaltung 32 stellt also eine Vorladeschaltung dar.

Eine Kühlung der Stränge 1 1 (insbesondere der Nutzeinheiten 12 in den Strängen 1 1 ) kann z.B. in einem Regal durch Anordnung einer Kühlebene unter der Strang-Ebene vorgesehen sein. Jede Stromschiene 18' kann aus Aluminium oder Kupfer sein. Aluminium ist der preisgünstigere Werkstoff und leichter als Kupfer. Aluminium generiert durch einen spezifischen Widerstand Verlustleistung (und zwar mehr als Kupfer), woraus Heizleistung für eine Temperierung der Nutzeinheiten 12 (insbesondere Batteriezellen) generiert werden kann, die über eine thermi- sehe Kopplung, z.B. einen Kühlkreislauf, von den Stromschienen 18' zu den Nutzeinheiten 12 übertragen werden kann.

Bei einer Stromaufteilung bei mehreren Strängen 1 1 an einer Stromschiene 18' kann durch Stellen / Regeln der einzelnen Strangströme I über den Gleichspannungswandler 14 des Strangs 1 1 die Stromstärke I angepasst werden, z.B. angeglichen oder dynamisch verlagert werden. So kann z.B. das Aufteilen der benötigten Gesamtstromstärke für das Gerät 100 auf N Stränge 1 1 aufgeteilt werden, z.B. N=3, und jeder Strang 1 1 eine eigens für ihn eingestellte Stromstärke I erzeugen, z.B. bei N=3: 50%, 25%, 25%.

Hierdurch kann die im jeweiligen Strang 1 1 verfügbare Technologie der Nutzeinheiten 12 berücksichtigt werden, so dass die Nutzeinheiten 12 innerhalb ihrer Spezifikation betrieben werden. Da die elektrischen Spannungen U ermittelt werden können, kann mittels des Gleichspannungswandlers 14 dann der Strom I gestellt werden, damit z.B. Ausgleichströme zwischen den Strängen 1 1 fließen, die kleiner als ein Schwellenwert sind. So kann z.B. sichergestellt werden, dass im Falle von Batterien pro Batteriezelle ein Strom I von bis zu 300-400 A nur für 15 s, aber ein Dauerstrom nur bis 150 A fließt. Jeder Strang 1 1 kann also mit einer eigenen Betriebsstrategie betrieben werden, angepasst an dessen Technologie. Eine geeignete Stromstärke I kann mittels des Gleichspannungswandlers 14 eingestellt werden.

Zusätzlich oder alternativ kann in Abhängigkeit von der Leitungslänge 28 der Stromschienenabschnitte, die von einem Strang 1 1 zu einem Ausgangsanschluss 20 führen (also zu einem Verbraucher), die Stromstärke I des jeweiligen Stranges 1 1 mittels dessen Gleichspannungwandlers 14 durch die Steuereinrichtung 19 eingestellt werden, um die Aufteilung der Stromstärken

I bei mehreren parallel geschalteten Strängen 1 1 in Abhängig von der Lei- tungslänge 28 und in Abhängigkeit von den folglich resultierenden Verlusten einzustellen, damit die Verluste optimiert (z.B. minimiert oder zum Heizen maximiert) und/oder örtlich aufgeteilt werden können. Ein Strang 1 1 mit kürzerer Leitungslänge 28 der Zuleitung über die Stromschienen 18' kann für die Minimierung eine größere Stromstärke I zugewiesen bekommen als ein Strang 1 1 mit längerer Leitungslänge 28. Somit wird die Auswirkung unterschiedlicher Leitungslängen kompensiert. Die Stromstärke I kann auch in Abhängigkeit von einer aktuellen Temperatur der Leitungsabschnitte eingestellt werden. Durch ein solches Leistungsmanagement kann der Nachteil des höheren spezifischen Widerstands von Aluminium kompensiert werden durch Vorgeben und Anpassen der Stromstärke auf einzelnen Leitungsabschnitten.

Bei Bedarf können durch die Steuereinrichtung 19 somit zusammenfassend die Stränge 1 1 mit der aktuell benötigten Eigenschaft an die verwendeten Stromschienen 18 geschaltet werden, die zu dem Ausgangsanschluss 20 führen, an dem die Leistung durch ein angeschlossenes Gerät 100 abgegriffen wird. Jeden Strang 1 1 kann man nach Bedarf mittels seiner Schalteinheiten 15 einkoppeln. Jeder Strang 1 1 kann einzeln entleert / geladen werden. Zusätzlich oder alternativ kann eine Wirkungsgradoptimierung für den Gleichspannungswandler 14 innerhalb des Strangs 1 1 durchgeführt werden, indem seine Eingangsspannung durch Auswählen und Zuschalten von Nutzeinheiten 12 eingestellt wird. Der Gleichspannungswandler 14 jedes Strangs

I I kann somit zwei Aufgaben erfüllen. Er begrenzt den Strangstrom I auf einen vorgebbaren Sollwert, damit Nutzeinheiten 12 gemäß ihrer vorgegebe- nen Spezifikation (Betriebsgrenzen) betrieben werden können. Die Spannung U des Strangs 1 1 kann an die Stromschienenspannung angeglichen werden. So können die Ausgleichsströme zwischen mehrerer Stränge 1 1 vermindert werden. Zusätzlich stellt der Gleichspannungswandler 14 sicher, dass an den Stranganschlüssen 17 eine vorgegebene Sollspannung anliegt, unabhängig von der Anzahl der im Strang 1 1 aktiv betriebenen Nutzeinheiten 12.

Eine Strommessung 16 für den Strangstrom I kann in der beschriebenen Weise zentral in der Messeinheit 16 im Strang 1 1 erfolgen und ist ohnehin für die Regelung des Gleichspannungswandlers 14 nötig.

Die zentrale Steuereinrichtung kann auch innerhalb jedes Strangs 1 1 diesen individuell rekonfigurieren, d.h. Nutzeinheiten 12 in der Reihenschaltung 13 des Strangs 1 1 zu- und abschalten. Falls z.B. die Strangspannung U kleiner ist als eine benötigte Schienenspannung der zugeschalteten Stromschienen 18', können mehr Nutzeinheiten 12 in der Reihenschaltung 13 des Strangs 1 1 zugeschaltet werden. Dies kann mittels Halbleiterschaltern (z.B. Transistoren) derart schnell erfolgen, dass es in einer Schaltpause des Gleichspan- nungswandlers 14 erfolgen kann.

In Fig. 2 ist hierzu gezeigt, wie jede Nutzeinheit 12 durch eine individuelle Schalteinrichtung N10 elektrisch überbrückt, elektrisch isoliert und/oder entladen werden kann. Hierzu sind in der besagten Weise Halbleiterschalter T (Transistoren) vorgesehen. Jede Nutzeinheit 12 kann als Funktionen vorsehen: ein Bridging / eine Überbrückungsschaltung N1 1 , eine Diagnoseeinheit N12, ein (insbesondere passives) Loadbalancing / eine Entladeschaltung N13, eine Entkopplung/Trennschaltung N14. Ein Halbleiterschalter T muss nur eine Niedervoltspannung sperren können, z.B. 2x Einzelspannung V der Nutzeinheit 12. Das Loadbalancing kann auch in bekannter Weise aktiv erfolgen (sogenanntes aktives Loadbalancing). Zusätzlich zum Schalter für die Trennschaltung N14 kann auch für den zweiten, gegenüberliegenden Pol ein weiterer Schalter vorgesehen sein (allpoliges Schalten). Die Diagnoseeinheit N12 kann in bekannter Weise für eine Zellanalyse, z.B. eine Impedanzmes- sung mittels z.B. Impedanzspektroskopie, ausgestaltet sein. Die Diagnoseeinheit N12 kann hierzu pro Nutzeinheit 12 für eine Impedanzspektralanalyse (0Hz bis z.B. 3kHz), einen Messstrom Γ und eine Einzelspannung V bei mehreren Frequenzen f ermitteln, was den Impedanzverlauf über der Frequenz f ergibt. Dies stellt ein Impedanzspektrum dar. Die Diagnoseeinheit N12 kann einen aktuellen Zustandswert 29 eines Messstroms Γ und/oder der Einzelspannung V und/oder der gemessenen Impedanz über die Kommunikationseinrichtung 27 an die Steuereinrichtung 19 signalisieren. Mit dem Begriff „Impedanz" ist im Zusammenhang mit der Erfindung ein Impedanzwert bei einer vorbestimmten Frequenz, z.B. 0Hz, oder ein Impedanzverlauf über der Frequenz f gemeint. Mehrere Frequenzen können in einem Frequenz- sweep mit einer schrittweisen Erhöhung oder Verringerung überprüft werden. Alternativ dazu kann eine Multifrequenzanregung bei mehreren Frequenzen zugleich vorgesehen sein. Die Multifrequenzanregung kann z.B. als Multisi- nusanregung oder als Rechtecksignal oder als Sprungsignal ausgestaltet sein.

Jede Nutzeinheit 12 kann so individuell überwacht werden z.B. in Bezug auf ihren SoH (State of Health - Verschleißzustand) und/oder SoC (State of Charge - Energielieferkapazität) und/oder SoF (State of Function - Leistungsfähigkeit, Leistungsabgabefähigkeit). Die Kenngrößen SoH und SoC und SoF sind an sich aus dem Stand der Technik bekannt.

Unabhänig von der Impedanzmessung kann auch die Einzelspannung V der Nutzeinheit 12 ohne die Wechselspannung der Impedanzmessung gemessen werden. Auch eine Nutzeinheit 12, die überbrückt ist (mittels der Überbrückungschaltung N1 1 ) kann in Bezug auf ihre Einzelspannung V überwacht werden. Vor dem Zuschalten (N14 schließen oder elektrisch leitend schalten) kann die Einzelspannung V der Nutzeinheit 12 mittels des Loadba- lancing N13 individuell angepasst werden. Es kann optional auch eine elektrische Ladeeinheit pro Nutzeinheit 12 vorgesehen sein, die individuell die Nutzeneinheit 12 auch bei offenem Halleiterschalter der Trennschaltung N14 aufladen kann (jede Nutzeinheit 12 kann somit individuell geladen werden). Die Energieversorgung der Ladeeinheit kann z.B. über die Kommunikations- einrichtung 27 erfolgen (z.B. mittels Power-over-Ethernet-Technologie) oder mittels einer galvanisch getrennten Stromversorgungseinheit.

Es kann eine gegenseitige Verriegelung von N1 1 und N14 vorgesehen werden (z.B. software-technisch oder mittels einer Logikschaltung), damit kein Kurzschluss erzeugt wird.

Zusätzlich kann eine Temperaturmessung durch die Diagnoseeinheit N12 oder z.B. durch die Steuereinrichtung 19 ein Rückschluss auf die Temperatur aus der Impedanz vorgesehen sein.

Es besteht somit für die Steuereinrichtung 19 Zugriff auf jede einzelne Nutzeinheit 12 über die Kommunikationseinrichtung 27. Der Zustand jeder Nutzeinheit 12 kann ausgelesen und die Schalteinrichtung N10 jeder Nutzeinheit 12 kann gesteuert werden, insbesondere die Überbrückungsschaltung N1 1 in Kombination mit der Trennschaltung N14. Durch kombiniertes Schalten der Überbrückungsschaltung N1 1 und der Trennschaltung N14 kann eine Nutzeinheit 12 in der Reihenschaltung abwechselnd zugeschaltet und weggeschaltet werden.

Auf dieser Grundlage kann der Verschleiß / Zustand jeder Nutzeinheit 12 zentral in der Steuereinrichtung 19 ermittelt werden (z.B. in Form der Impedanz als Verschleißwert) und der Schaltzustand jeder Nutzeinheit 12 in Abhängigkeit von vom ermittelten Zustand eingestellt werden. Einzelne Nutz- einheiten 12 lassen sich aus dem String 1 1 elektrisch herausnehmen (Überbrücken N1 1 ), hereinnehmen (in Reihe schalten), einzeln entladen (Entladewiderstand R, Balancingschaltung N13), zeitweise elektrisch trennen (N14 öffnen/elektrisch sperrend schalten) z.B. für die Diagnoseeinheit N12. Somit kann auf unterschiedlichen Verschleiß / individuelle Parameterstreuung der Nutzeinheiten 12 im Strang 1 1 reagiert werden: Es werden bevorzugt nur Nutzeinheiten 12 mit ähnlichen Parameterwerten aktiv betrieben. Die Ähnlichkeit kann durch ein Ähnlichkeitskriterium definiert sein, das z.B. einen maximalen Unterschied zumindest einer Kenngröße vorgibt, wobei der Unterschied in einem Bereich von 10% bis 100% (das Doppelte/die Hälfte) liegen kann. Eine alte/schwache Nutzeinheit 12 werden zunächst überbrückt / herausgeschaltet. Diese kann durch ein Leistungsfähigkeitskriterium erkannt werden, das sich z.B. auf die Impedanz bezieht oder dadurch definiert ist, dass das Ähnlichkeitskriterium verletzt ist. Das Leistungsfähigkeitskriteri- um schließt also zu schwache Nutzeinheiten 12 aus. Das Zuschalten alter Nutzeinheiten 12 / schwacher Nutzereinheit 12 wird später wieder möglich, sobald die Strangbedingungen passen, das heißt die übrigen Nutzeinheiten 12 ebenfalls soweit verschlissen sind, dass wieder das Ähnlichkeitskriterium erfüllt ist.

Durch das Ähnlichkeitskriterium kann die Notwendigkeit für ein Loadbalan- cing reduziert werden. Die Leistung pro Nutzeinheit (Strom I im Strang ist gleich, aber bei unterschiedlicher Spannung ergibt sich eine unterschiedliche Leistung, was eine lokale Erhitzung und damit Alterung/Verschleiß zur Folge hat) kann im Voraus angeglichen werden. Denn das Loadbalancing erfordert einen Angleich auf die „schwächste" Nutzeinheit, die also die niedrigste Spannung erzeugt, d.h. es muss auf die niedrigste Spannung reduziert werden. Indem im Voraus gleiche oder ähnliche Betriebsbedingungen mittels des Ähnlichkeitskriteriums geschaffen werden, ist weniger Balancing nötig. Sind also z.B. die Einzelspannungen V=4,1Volt und V=3,9Volt in einem Strang vorhanden, müsste ein Balancing auf die schwächste Nutzeinheit einstellen, d.h. auf 3,9Volt. Durch die Innenwiderstand-Messung (Impedanz- spektroskopie) kann die schwächste Nutzeinheit (größter Innenwiderstand) erkannt werden (Leistungsfähigkeitskriterium) und aus dem Strang 1 1 geschaltet werden (Bridging N1 1 ). Die Impedanz ist aber nur ein Beispiel für die Erkennung einer schwachen Nutzeinheit. Allgemein kann das Erkennen der schwächsten Nutzeinheit in Abhängigkeit von einem Zustand der Nutzeinheit erfolgen.

Durch elektrisches Entkoppeln / Trennen N14 aller Nutzeinheiten 12 eines Strangs 1 1 kann der Strang 1 1 auch HV-frei geschaltet werden. Alle Nutzeinheiten 12 werden voneinander entkoppelt. In diesem Sicherungsmodus kann der Strang 1 1 z.B. für eine Montage, eine Unfallsicherung, einen Not- fall, einen Transport gesichert werden. Die Schaltreihenfolge ist wichtig: Erst werden die mechanischen Schalteinheiten 15 (Schütze) geöffnet, dann erfolgt der Reihe nach Entkoppeln N14 der Nutzeinheiten 12.

Durch die Steuereinrichtung 19 kann auch ein Verschleißangleich / Wear- Leveling der einzelnen Nutzeinheiten 12 vorgesehen werden. Das Wear- Leveling sieht die homogene Nutzung des Felds/der Anordnung aus Nutzeinheiten 12 vor. Man erzielt hierdurch einen Verschleißangleich beim Betrieb der Nutzeinheiten 12. Vorbild kann das Wear-Leveling aus der FLASH- Speichertechnologie (https://en.wikipedia.org/wiki/Wear_leveling) sein.

Vorteil der Vergleichmäßigung des Verschleißes ist die Verlängerung der Gesamtlebensdauer der Energieliefervorrichtung 10, da eine Ausfallwahrscheinlichkeit einzelner Nutzeinheiten 12, wie er durch überdurchschnittliche Abnutzung einer einzelnen Nutzeinheit 12 verursacht werden kann, verringert wird.

Die Zufuhr/Entnahme von Energie, d.h. der Energieaustausch E mit einem angeschlossenen Gerät 100, erfolgt mittels der nächsten Nutzeinheiten 12, die gemäß Wear-Leveling dran sind. Es wird hierzu für jede Nutzeinheit 12 ein aktueller Verschleißzustand als Verschleißwert angegeben. Ziel dieser Maßnahmen ist also ein gleichmäßiger Verschleiß. Der Verschleißwert kann z.B. durch die Impedanz der Nutzeinheit 12 repräsentiert sein. Der Verschleißwert gibt eine Abnutzung der Nutzeinheit 12 an. Für jede Nutzeinheit 12 kann in Abhängigkeit von dem Verschleißwert ein jeweiliger Sollwert zumindest eine Betriebsgröße, z.B. des Stromes I beim Entladen und/oder der Einzelspannung V beim Aufladen, auf der Grundlage eines Angleichkriteriums ermittelt werden, wobei das Angleichkriterium vor- sieht, dass durch Einstellen jedes Sollwerts eine oder einige oder alle der Nutzeinheiten 12 insgesamt den Energieaustausch E zwar vollständig vollziehen, hierbei aber ein aus allen Verschleißwerten berechneter Unterschied der Abnutzung der Nutzeinheiten 12 minimal gehalten wird. Die Abnutzung der Nutzeinheiten 12 wird also während des Energieaustauschs E angegli- chen, indem stärker abgenutzte Nutzeinheiten 12 weniger belastet werden als weniger abgenutzte Nutzeinheiten 12. Letztere nutzen dabei weiter ab, wodurch sich ihr Abnutzungszustand dem der weniger belasteten Nutzeinheiten 12 angleicht. Der Verschleißwert ändert sich im Betrieb, und zwar umso schneller, falls die Nutzeinheit 12 in einem Betriebspunkt betrieben wird, der von einem Idealzustand abweicht (die Nutzeinheit verschleißt weiter). Daher sind auch Schonmaßnahmen sinnvoll. Bevorzugt werden hierzu die Nutzeinheiten 12 nur innerhalb eines Toleranzintervalls um einen Idealladezustand herum betrieben, der z.B. bei einem Ladezustand von 50% liegen kann, und/oder ein Stromprofil eines während des Energieaustauschs fließenden elektrischen Stromes der Nutzeinheit 12 vorgeben kann.

Allgemein ist der Idealzustand von der verwendeten Technologie der Nutzeinheit abhängig und im Stand der Technik bekannt. Der Idealzustand kann bei Batteriemodulen definiert sein durch die folgenden Parameter:

SoC - State of Charge (Energieinhalt) - ideal sind z.B. 50%;

DoD - Depth of Discharge - Entladungsgrad (Stromprofil) z.B. idealer Ladezustand 50% minus maximal 20% (Toleranzintervall).

Die angegebenen Idealwerte sind abhängig von der Elektrochemie und/oder der vorgesehenen Anwendung und jeweils für die konkrete Energieliefervorrichtung vom Fachmann zu bestimmen.

Allgemein sollte die DoD„klein" bleiben, d.h. nicht zu weit nach unten sinken. Je weiter der aktuelle Betriebspunkt vom Idealzustand entfernt ist, desto schneller steigt der Verschleißwert. Der aktuelle Betriebspunkt kann eingestellt werden, indem der Ladestrom / Entladestrom I für die Nutzeinheiten 12 entsprechend eingestellt wird. Die AC/DC-Wandleranordnung 24 kann für das Einstellen des Ladestroms, der Gleichspannungswandler 14 für das Einstellen des Entladestroms genutzt werden. Die Verschleißzustände / Verschleißwerte aller Nutzeinheiten sollen dabei angeglichen werden.

Eine weitere Schonmaßnahme ist die folgende: Es kann eine Überkapazität an Nutzeinheiten 12 vorgehalten werden. Ohne zusätzlichen Schalter kann mittels einer Überkapazität an Nutzeinheiten 12 die Belastung verteilt werden. Es ergibt sich eine geringere Belastung pro Nutzeinheit 12, indem alle Nutzeinheiten immer mitverwenden werden, um gleichmäßig abzunutzen. Es verlängert sich aber zudem die Lebensdauer auch schon wegen der geringeren Belastung; denn wenn z.B. pro Strang bei 1 10% Kapazität (Summe der Einzelkapazitäten der Nutzeinheiten 12 im Strang) mit Drosselung durch die Steuereinrichtung 19 nur 100% (nomineller Nennwert) abgerufen werden, ergibt sich eine geringere Spitzenbelastung pro Nutzeinheit 12. Der Strang 1 1 liefert z.B. eine größere Spannung als benötigt, es muss also weniger Strom I für dieselbe Leistung als bei einer Besetzung von nur 100% Nennwert (Nennkapazität) fließen. Ein Beispiel: 12 Nutzeinheiten sind bereitgestellt, aber einen Nennwert von nur 10 Nutzeinheiten wird nominell Verfügbar gemacht.

Ohne Schalter müssen 12 Nutzeinheiten zugeschaltet sein, aber elektronisch erfolgt nur das Abrufen der Kapazität für nur 10 Nutzeinheiten (kein Schalten nötig!). Hierdurch sind auch schwächere Nutzeinheiten möglich, da deren Peak-Ströme geringer sind, und zwar wegen der sich ergebenden höheren Strangspannung U, da mehr Nutzeinheiten in Reihe geschaltet als nominell vorhanden. Die Nutzung billigerer Nutzeinheiten möglich.

Falls Schalter verfügbar sind, z.B. die Halbleiterschalter T, kann ein Durch- wechseln zwischen den Nutzeinheiten 12 eines Strangs 1 1 vorgesehen sein, z.B. sind immer 10 Nutzeinheiten bereitgestellt (ergibt die Nennkapazität) und 2 Nutzeinheiten überbrückt.

Das Bereitstellen einer Überkapazität an Nutzeinheiten 12 bedeutet, dass die Summe der Einzelnennkapazitäten der Nutzeinheiten 12 (d.h. deren kombinierte Bruttokapazität) größer ist als die nach außen hin verfügbar gemachte Nennkapazität. Hierdurch kann auch ein Ausfall einer Nutzeinheit kompensiert werden. So kann die Energieliefereinrichtung 10 z.B. als ein Energiespeicher (z.B. Batteriespeicher) mit einer ausgewiesenen oder nominellen Nennkapazität (z.B. 100 kWh) bereitgestellt werden. Tatsächlich wird intern eine Bruttokapazität vorgesehen, die größer als die von außen verfügbar gemachte Nennkapazität ist (tatsächliche Bruttokapazität von z.B. 1 10kWh, größer als die Nettokapazität von z.B. 100kWh). Mit anderen Worten sind mehr Nutzeinheiten (z.B. Batteriezellenmodule) vorhanden, als für die Bereitstellung der Nennkapazität nötig sind.

Es werden z.B. nach außen immer nur so viele Nutzeinheiten für das Entladen verfügbar gemacht, wie es der Nennkapazität entspricht. Diese Nutzein- heiten sind dann aktive Einheiten oder„Aktiveinheiten". Die übrigen (nicht aktiv genutzten) Speichereinheiten sind„Reserveeinheiten".

Gemäß einem Bad-Block-Management (BBM - Bad Block Management) werden defekte oder verbrauchte Aktiveinheiten erkannt und außer Betrieb genommen. D.h. bei Ausfall / Defekt einer Aktiveinheit (defekte Nutzeinheit), kann diese ausgefallene Aktiveinheit außer Betrieb und eine Reserveeinheit (bisher inaktive Nutzeinheit) als neue Aktiveinheit in Betrieb genommen werden. So bleibt trotz Ausfall einer Nutzeinheit / mehrerer Nutzeinheiten die nominelle Nennkapazität erhalten. Der Begriff Bad-Block-Management (BBM) kommt aus der Flash-Speicher-Technologie (https://en.wikipedia.Org/wiki/Flash_memory#Memory_wear).

Im Normalbetrieb kann aber auch ein Rotieren oder Durchwechseln (z.B. gemäß dem Round-Robin-Algorithmus oder allgemein einer vorbestimmten Austauschvorschrift) zwischen den Nutzeinheiten erfolgen, um alle Nutzeinheiten gleichmäßig abzunutzen. Wird dann eine Reservereinheit als Ersatz für eine ausgefallene Aktiveinheit aktiviert, so weist die Reserveeinheit bereits ähnliche elektrische Eigenschaften wie die übrigen Aktiveinheiten auf, weil sie bereits einen ähnlichen Abnutzungsgrad (im Sinne des genannten Ähnlichkeitskriteriums) aufweist. Dies kann den Grad des notwendigen Loadbalancing in der beschriebenen Weise reduzieren.

Aufgrund der Einteilung von Nutzeinheiten in Aktiveinheiten und Reserveeinheiten können auch während des Betriebs des Energiespeichers Nutzeinhei- ten bei einer Wartung ausgewechselt werden, ohne dass die Nennkapazität beeinträchtigt wird. Auszuwechselnde Nutzeinheiten können hierbei als Reserveeinheit separiert / aus dem Betrieb genommen werden und dann ausgebaut / ersetzt werden (dynamischer Wechsel der Nutzeinheiten). Das Bad-Block-Management und/oder das Auswechseln kann auch gruppenweise oder Strang-weise erfolgen, d.h. es wird dann eine Gruppe aus Nutzeinheiten 12 oder die gesamte Reihenschaltung 13 eines Strangs geschaltet und/oder ausgewechselt. Auch innerhalb einer Nutzeinheit 12 kann ein Bad-Block-Management erfolgen. So können z.B. eine bei einer als Batteriemodul ausgestalteten Nutzeinheit 12 mehrere Batteriezellen vorgesehen sein, z.B. 12 Batteriezellen als 3-fache Reihenschaltung von je 4 Batteriezellen im Parallelverbund. Es kann dann jeweils ein Parallelverbund rausgeschaltet werden, z.B. durch Überbrücken.

In Bezug auf ein Lade-Management für die Stränge kann folgendes vorgesehen sein.

Über die Stromschienen 18 können mittels der Gleichspannungswandler 14 zusammengeschaltet werden, um Energie umzuladen. Ein Strang 1 1 kann somit über mehrere Quellen aufgeladen werden, z.B. 40kW aus anderem Strang 1 1 und 10kW aus einem Netz-AC/DC-Wandler 24', um 50kW Ladeleistung bereitzustellen. Bei der Leistungsabgabe kann ein Lastprofil geglättet / vergleichmäßigt werden, indem z.B. einige Stränge 1 1 den Verbraucher versorgen, während sich andere Stränge 1 1 schon aufladen, um dann für den weiteren Ladevorgang bereitzustehen. Z.B. kann gleichzeitig Laden mit z.B. 10A und Entladen mit z.B. 20A erfolgen (zumindest ein Strang 1 1 lädt das Gerät 100, zumindest ein anderer Strang 1 1 wird aus dem Versorgungsnetz 22 aufgeladen). Es kann auch ein Boost-Strom (kurzzeitiges Peak, z.B. mehr als Faktor 1 ,5) durch Zuschalten eines Strangs 1 1 erzeugt werden.

Die (thermische / elektrische) Belastung der einzelnen Stränge 1 1 kann be- grenzt werden, indem abwechselnd unterschiedliche Stränge 1 1 ein angeschlossenes Gerät 100 versorgen (z.B. ein E-Fahrzeug aufladen). So kann auch die besagte DoD (Depth of Discharge) begrenzt werden, z.B. auf 20%.

Mittels der mechanischen Schalteinheiten 15 an jedem Strang 1 1 kann auch eine vollständige galvanische Trennung zwischen den Strängen erfolgen, falls diese an unterschiedliche Stromschienen geschaltet werden. Dies ist die Voraussetzung, um mehrere Geräte 100 (z.B. E-Fahrzeuge) gleichzeitig aufladen zu können. Jedes E-Fahrzeug wird an eine andere Stromschiene 18' angeschlossen, die von den übrigen Stromschienen galvanisch getrennt ist. Insgesamt zeigen die Beispiele, wie durch die Erfindung eine Energieliefervorrichtung mit einer Stromschienenmatrix zum variablen Verschalten von Strängen bereitgestellt werden kann.