Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTRICAL IMPEDANCE MEASUREMENT DEVICE AND METHOD FOR PORTABLE ELECTRICAL IMPEDANCE IMAGING SYSTEM
Document Type and Number:
WIPO Patent Application WO/2013/040817
Kind Code:
A1
Abstract:
An electrical impedance measurement device and method for a portable electrical impedance imaging system adopt a "current excitation and voltage measurement" principle. An excitation signal is a square wave current signal with constant strength. A response voltage signal on an imaging target passes through circuits such as a buffer amplification circuit, a resistor-capacitor direct current-blocking circuit, and a differential amplification circuit sequentially and is processed into a square signal with suitable amplitude, which is converted into a digital signal by an analog to digital converter at a suitable point of time. The ADC performs data sampling on a measured voltage signal at a high level and a low level of a square wave cycle, to obtain sampling results V1 and V2, and the difference between the V1 and V2 is used as a voltage measurement result in this cycle. The average of voltage measurement results in a plurality of cycles is used as a final voltage measurement result. Due to the constant strength of the excitation current signal, the voltage measurement result can reflect electrical impedance information of the imaging target.

Inventors:
DONG XIUZHEN (CN)
HUO XUYANG (CN)
YOU FUSHENG (CN)
SHI XUETAO (CN)
FU FENG (CN)
LIU RUIGANG (CN)
JI ZHENYU (CN)
XU CANHUA (CN)
YANG BIN (CN)
YANG MIN (CN)
QI JIAXUE (CN)
ZHANG WEN (CN)
WANG NAN (CN)
Application Number:
PCT/CN2011/080741
Publication Date:
March 28, 2013
Filing Date:
October 13, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FOURTH MILITARY MEDICAL UNIV (CN)
DONG XIUZHEN (CN)
HUO XUYANG (CN)
YOU FUSHENG (CN)
SHI XUETAO (CN)
FU FENG (CN)
LIU RUIGANG (CN)
JI ZHENYU (CN)
XU CANHUA (CN)
YANG BIN (CN)
YANG MIN (CN)
QI JIAXUE (CN)
ZHANG WEN (CN)
WANG NAN (CN)
International Classes:
G01R27/14; A61B5/053
Foreign References:
CN1543912A2004-11-10
US5749369A1998-05-12
US20070007973A12007-01-11
US5544662A1996-08-13
GB2447477A2008-09-17
US20050151545A12005-07-14
Other References:
See also references of EP 2759261A4
Attorney, Agent or Firm:
XI' AN TONG DA PATENT AGENCY CO., LTD (CN)
西安通大专利代理有限责任公司 (CN)
Download PDF:
Claims:
权利要求书

1、一种便携式电阻抗成像系统的电阻抗测量装置, 其特征在于: 包括与 成像目标相接触的一对产生方波电流激励信号 (1) 的激励电极 (1) 以及与 该激励电极的输出端相连接的并联的第一、 第二运算放大器 (2、 3), 第一、 第二运算放大器 (2、 3) 的输出端分别与第一、 第二阻容高通滤波电路 (4、 5)相连接, 第一、 第二阻容高通滤波电路(4、 5) 的信号输出端经差分放大 电路 (6) 与 A/D电路 (8) 相连。

2、一种如权利要求 1所述的便携式电阻抗成像系统的电阻抗测量装置的 测量方法, 其特征在于:

1)首先, 方波电流激励信号(1)通过一对激励电极施加到成像目标后, 在成像目标上产生响应电压信号;

2)然后,采集的响应电压信号通过一对高输入阻抗的运算放大器(2、 3) 进行缓冲放大, 消除电极-皮肤接触阻抗的影响;

3) 由运算放大器(2、 3)缓冲放大后的电压信号经过阻容高通滤波电路 (4、 5), 滤除工频干扰、 电极极化电压干扰;

4)滤波后的信号进入差分放大电路(6), 将提取到的响应电压差分信号 转变成单端信号, 并进行放大;

5) 最后, 放大后的响应电压信号 (7) 经过高速、 高精度 A/D电路 (8) 转变为数字信号, 用于进行电阻抗信息的计算和解调;

3、根据权利要求 2所述的测量方法, 其特征在于: 所述的响应电压信号 的采集是对于一个信号周期, 分别在其高电平和低电平期间进行一次采样, 设在高电平期间的相对采样时刻为 ^ = i,其中 ^为绝对采样时刻距方 波激励信号上升沿的时间间隔, T 为方波激励信号的周期; 与此对应设低电 平期间的相对采样时刻为^ = 则^ = 通过计算高电平和低电平期间采样结果的差值 vz = v, -v2,进行电阻抗信 息的解调;

将多个周期的解调结果^的均值作为最终解调结果。

Description:
一种便携式电阻抗成像系统的电阻抗测量装置 及测量方法

技术领域

本发明属于生物电阻抗成像技术领域, 具体涉及一种便携式电阻抗成像 系统的电阻抗测量装置及测量方法。

背景技术

生物电阻抗成像技术是使用从生物体表无创测 量到的一组电阻抗信息, 对生物体的内部结构进行成像的一种断层成像 技术。 该技术需要使用电阻抗 测量设备对成像目标进行电阻抗测量, 得到包含成像目标内部信息的、 某频 率下的一组电阻抗值。 在进行电阻抗测量时, 一般需要对成像目标施加一个 恒定强度的电流激励, 并测量成像目标上的响应电压, 从中解调出成像目标 的电阻抗信息。

传统的电阻抗成像技术中进行电阻抗测量时, 一般对成像目标施加正弦 电流激励信号, 并使用高速模拟数字转换器(ADC)对响应正弦 压信号进行 高速采样, 然后使用数字正交解调的方法, 解调出成像目标的电阻抗信息。

在这种传统的生物电阻抗测量电路中, 需要使用 FPGA、 高速 ADC等功耗 较高的芯片; 而且在数字正交解调方法中, 需要进行较多的乘法运算, 导致 微控制器的运算量大、 功耗大, 因而这种传统的生物电阻抗测量方法不便于 在电池供电的手持式电阻抗成像系统中使用。

所以, 需要一种结构简单、 运算量小、 功耗低的生物电阻抗测量方法, 以适应便携式电阻抗成像系统对小体积、 低功耗等方面的要求。

发明内容

本发明的目的在于提供一种以电池供电、 结构简单、 功耗低的用于便携 式电阻抗成像系统的电阻抗测量装置及测量方 法。

为达到上述目的, 本发明的电阻抗测量装置包括与成像目标相接 触的一 对产生方波电流激励信号的激励电极以及与该 激励电极的输出端相连接的并 联的第一、 第二运算放大器, 第一、 第二运算放大器的输出端分别与第一、 第二阻容高通滤波电路相连接, 第一、 第二阻容高通滤波电路的信号输出端 经差分放大电路与 A/D电路相连。

本发明的测量方法如下:

1 )首先, 方波电流激励信号通过一对激励电极施加到成 像目标后, 在成 像目标上产生响应电压信号;

2 )然后,采集的响应电压信号通过一对高输入 抗的运算放大器进行缓 冲放大, 消除电极-皮肤接触阻抗的影响;

3 )由运算放大器缓冲放大后的电压信号经过阻 高通滤波电路,滤除工 频干扰、 电极极化电压干扰;

4)滤波后的信号进入差分放大电路,将提取到 响应电压差分信号转变 成单端信号, 并进行放大;

5)最后, 放大后的响应电压信号经过高速、高精度 A/D电路转变为数字 信号, 用于进行电阻抗信息的计算和解调;

所述的响应电压信号的采集是对于一个信号周 期, 分别在其高电平和低 电平期间进行一次采样, 分别得到采样结果 和 V 2 ; 设在高电平期间的相对采样时刻为 ^ = i,其中 ^为绝对采样时刻距方 波激励信号上升沿的时间间隔, T 为方波激励信号的周期; 与此对应设低电 平期间的相对采样时刻为 =-^-; 则 ^ = t n2 ; 通过计算高电平和低电平期间采样结果的差值 v z = v, -v 2 ,进行电阻抗信 息的解调;

将多个周期的解调结果^的均值作为最终解调 果。

本发明的激励信号为方波电流信号, 成像目标上的响应电压信号首先经 过运算放大器进行缓冲, 以降低电极-皮肤接触阻抗的影响;再经由阻 高通 滤波电路进行滤波, 以消除电极极化电压的影响; 再经过差分放大电路进行 信号放大; 最后使用高速、 高分辨率、 高精度模拟数字转换器 (ADC) , 将模 拟信号转换为数字信号, 用于电阻抗的解调。

采集过程分别在方波的高电平和低电平期间进 行一次采样, 其差值即为 解调结果。为了提高测量精度,将多次解调结 果的均值作为最终的解调结果。 解调过程中, 在高电平和低电平期间的相对采样时刻保持一 致。

与现有技术相比, 本发明的优点在于: 首先, 阻抗测量电路可以全部采 用低电压、 低功耗的器件, 可以单电源供电, 便于应用于电池供电的便携式 电阻抗成像系统。 其次, 将高电平和低电平期间的采样结果的差值作为 解调 结果, 可以进一步降低工频干扰、 电极极化电压等干扰信号的影响。 最后, 将多次解调结果进行平均, 使用其均值作为最终的解调结果, 有利于进一步 提高测量精度。

附图说明

图 1是本发明电阻抗测量电路示意图。

图 2是本发明电阻抗测量方法的相对采样时刻的 意图。

具体实施方式

下面结合附图对本发明作进一步详细说明。 参见图 1, 本发明的测量装置包括与成像目标相接触的一 对产生方波电 流激励信号 1的激励电极 1以及与该激励电极的输出端相连接的并联的 一、 第二运算放大器 2、 3, 第一、 第二运算放大器 2、 3的输出端分别与第一、 第二阻容高通滤波电路 4、 5相连接, 第一、 第二阻容高通滤波电路 4、 5的 信号输出端经差分放大电路 6与 A/D电路 8相连。

本发明采用强度恒定的方波电流信号进行激励 , 采用对方波高电平和低 电平期间的电压幅度求差值的方法进行电阻抗 信息的解调与测量。

电阻抗测量方法, 其模拟信号处理流程为:

方波电流激励信号 1通过一对激励电极施加到成像目标后, 在成像目标 上产生响应电压信号;

通过一对测量电极提取此响应电压信号, 使用高输入阻抗的运算放大器 2、 3进行缓冲放大, 由于运算放大器的输入阻抗足够高, 所以可以消除电极 -皮肤接触阻抗的影响;

缓冲放大后的电压信号经过阻容高通滤波电路 4、 5, 滤除工频干扰、 电 极极化电压等干扰的影响;

滤波后的信号进入差分放大电路 6, 将一对测量电极提取到的响应电压 差分信号转变成单端信号, 并进行放大;

最后, 放大后的响应电压信号 7经过高速、 高精度 A/D电路 8转变为数 字信号, 用于进行电阻抗信息的计算和解调。

其电阻抗解调方法为:

参见图 2, 对于一个信号周期, 分别在其高电平和低电平期间进行一次 采样, 分别得到采样结果 ^和¥ 2 ; 设在高电平期间的相对采样时刻为 = ^,其中 ^为绝对采样时刻距方 波激励信号上升沿的时间间隔, T 为方波激励信号的周期; 对于此对应设低 电平期间的相对采样时刻为 则^ = 相对采样时刻 ^、 ^的值一般为 0. 8, 此值可以进行调整, 以适应不同 的成像需要;

通过计算高电平和低电平期间采样结果的差值 ,来进行电阻抗 信息的解调;

通过将多个周期的解调结果 ^的均值作为最终解调结果的方法, 来提高 电阻抗信息的测量精度。