Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EMERGENCY LIGHTING UNIT WITH AC POWER CHARGING
Document Type and Number:
WIPO Patent Application WO/2017/121653
Kind Code:
A1
Abstract:
An emergency unit (1) is provided, comprising input terminals (I1, I2) for supplying the emergency unit (1) with AC power, a battery charging unit (40) designed for charging a battery unit (30) of the emergency unit (1) by using the AC power, a DC/DC converter (10), supplied by the battery unit (30) and designed to provide DC power to DC power output terminals (O1, O2) designed for supplying power to emergency lighting means (EL), a control unit (20) designed for being supplied with a signal indicating the state of the AC power and for outputting commands to the battery charging unit (30) and to the DC/DC converter (10). The control unit (20) can assume a state (S6) in which it causes the DC/DC converter (10) to provide DC power based on the battery power and at the same time start the operation of the battery charging unit (40).

Inventors:
WILSON IAN (GB)
Application Number:
PCT/EP2017/050019
Publication Date:
July 20, 2017
Filing Date:
January 02, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TRIDONIC GMBH & CO KG (AT)
International Classes:
H02J9/06; H05B37/04
Domestic Patent References:
WO2011124723A12011-10-13
Foreign References:
US20120104858A12012-05-03
US20150380968A12015-12-31
US20150091383A12015-04-02
Attorney, Agent or Firm:
BARTH, Alexander et al. (AT)
Download PDF:
Claims:
Claims

1. An emergency unit (1), comprising:

- input terminals (II, 12) for supplying the

emergency unit (1) with AC power,

- a battery charging unit (40) designed for charging a battery unit (30) of the emergency unit (1) by using the AC power,

- a DC/DC converter (10), supplied by the battery unit (30) and designed to provide DC power to DC power output terminals (01, 02) designed for supplying power to emergency lighting means (EL) , and

- a control unit (20) designed for being supplied with a signal indicating the state of the AC power and for outputting commands to the battery charging unit (30) and to the DC/DC converter (10), characterized in that

the control unit (20) can assume a state (S6) in which it causes the DC/DC converter (10) to provide

DC power based on the battery power and at the same time start the operation of the battery charging unit (40) . 2. The emergency unit (1) according to claim 1, wherein the control unit (20) is configured to assume the state (S4) in case the AC power at least partially fails and/or is outside a predefined parameter range.

3. The emergency unit (1) according to claim 1, wherein the AC power is supplied by at least one phase (LI, L2, L3) of a three phase mains system (3) . The emergency unit (1) according to claim 1 or 2, wherein the emergency unit (1) further comprises a first monitoring module (51) configured to issue the signal indicating the state of the AC power, and in particular a signal indicating that the AC power at least partially fails and/or is outside the predefined parameter range.

The emergency unit (1) according to any one of the preceding claims, wherein the emergency unit (1) comprises a second monitoring module (52) configured monitor a DC grid power supplied to a DC grid, and wherein the second monitoring module (52) is connected to the DC grid at DC power input terminals (Dl, D2) .

The emergency unit (1) according claim 8, wherein the second monitoring module (52) is configured to issue a second signal indicating a failure of the DC grid power to the control unit (20), when the DC grid power fails, and wherein the control unit (20) is configured to activate the DC/DC converter (10) to provide the DC power the DC power output terminals (01, 02) . The emergency unit (1) according to any one of the preceding claims, wherein a third monitoring module (53) is configured to monitor charging and/or

discharging of the battery unit (30) . The emergency unit (1) according to any one of the preceding claims, wherein the battery charging unit (40) is a further DC/DC converter, in particular a flyback, buck or boost converter. The emergency unit (1) according to any one of the preceding claims, wherein the first and/or the second monitoring module (51, 52) issue a signal to the control unit (20) when the AC power and/or the DC grid power is interrupted, preferably longer than a

predetermined time.

The emergency unit (1) according to any one of the preceding claims, wherein the control unit (20) activates the charging unit (40) in case the supplied DC grid power fails and the AC power is supplied at least partially to the AC input terminals (II, 12) and/or the third monitoring module (53) detects discharging, and in particular a discharging current, at the battery unit (30) .

11. The emergency unit (1) according to any one of the preceding claims, comprising a relay unit (50), wherein the control unit (20) is configured to control the relay unit (50) .

12. The emergency unit (1) according to claim 14, wherein the relay unit (50) is configured to switch the DC power provided by the DC/DC converter (10) to the DC power output terminals (01, 02) from the DC grid power supplied at DC power input terminals (Dl, D2) upon a command of the control circuit (20) .

The emergency unit (1) according to any one of the preceding claims, wherein a voltage of the output DC power provided by the DC/DC (10) converter is higher, preferably 55 Volts, than the voltage of the DC grid power. An emergency unit (1), comprising:

AC input terminals (II, 12) for supplying the emergency unit (1) with AC power and/or

DC input terminals (Dl, D2) for providing the emergency unit with DC grid power,

a battery charging unit (40) designed for charging a battery unit (30) of the emergency unit

preferably by using the AC power,

a DC/DC converter (10), supplied by the battery unit (30) and designed to provide DC power to DC power output terminals (01, 02) designed for supplying power to emergency lighting means (EL) , and

a control unit (20) designed for being supplied with a signal indicating the state of the DC grid power and/or the AC power and for outputting commands to the battery charging unit (40) and to the DC/DC converter (10),

characterized in that

the control unit can assume a state (S6) in which it causes the DC/DC converter to provide DC power to the DC power output terminals (01, 02) based on the battery power when the signal indicating the state of the DC grid power indicates a failure of the DC grid power (S7) and, if AC power is

supplied, at the same time start (S5) the operation of the battery charging unit (40) .

Lighting system comprising an emergency unit (1) wording to any one of the preceding claims.

An emergency operating arrangement (100), - an emergency unit (1) according to any one of the claims 1 to 16, and

- a power supply unit (PSU) providing the DC grid power to DC power input terminals (Dl, D2) of the emergency unit (1), wherein

the power supply unit (PSU) and the an emergency unit (1) are supplied by the same three phase mains system (3), wherein the emergency unit (1) is preferably supplied from different phases (LI, L2, L3) of the three phase mains system (3) than the power supply unit (PSU) .

17. A method for operating an emergency unit (1),

comprising the steps of

- receiving, at input terminals (II, 12), an AC power for supplying the emergency unit (1),

- charging, by a battery charging unit (40), a battery unit (30) of the emergency unit (1) using the AC power,

- supplying a DC/DC converter (10) from the battery unit (30) and providing DC power to DC power output terminals (01, 02) designed for supplying power to emergency lighting means (EL) ,

- supplying, to a control unit (20), a signal indicating the state of the AC power, and

- outputting, by the control unit (20), commands to the battery charging unit (30) and to the DC/DC converter (10) ,

characterized in that

the control unit (20) assumes a state (S6) in which it causes the DC/DC converter (10) to provide DC power based on the battery power and at the same time start the operation of the battery charging unit (40) .

Description:
Emergency lighting unit with AC power charging

The invention relates to an emergency unit that supplies devices connected especially to an emergency bus with power and in particular with a DC power or voltage in case an emergency situation is detected. The connected devices are building technology devices and in particular emergency lighting means providing emergency illumination. In particular, a battery unit of the emergency unit is charged in case an AC power is available at the emergency unit .

The emergency unit can be part of an operating arrangement, in which the emergency unit is linked to and/or monitors a voltage output by a power supply unit. Therefore, the emergency unit can be arranged in close proximity to or even in a common enclosure with the power supply unit, but can also be spatially separated from the power supply unit.

Building technical devices can be connected to the emergency unit and/or the power supply unit. Typically a group of devices is supplied from the power supply unit in a non-emergency mode of operation, while other devices are supplied from the emergency unit in an emergency mode of operation. However, the emergency unit can also supply the devices supplied from the power supply unit in the non ¬ emergency case.

The building technical devices connected to the emergency unit and/or the power supply unit, in the following also referred to as connected devices, can be actuators and/or sensors used in a building, such as electrical drives for opening or shutting doors or windows, for controlling ventilation or for sensing smoke, heat, or humidity. While generally a large variety of building technical devices can be supplied and driven by the emergency unit or the operating arrangement according to the invention, the following focuses on lighting means or luminaries comprising lighting means, especially lighting means comprising LEDs . The lighting means also can especially be LEDs.

While emergency units and also modular arrangements are known in the art, e.g. from WO 2011/124723 Al, the invention improves reliability of the detection of an emergency state but also on maintaining operation of the connected devices, especially the connected lighting means .

The emergency unit is typically supplied by an AC supply, typically a mains voltage or power. The emergency unit can be in particular supplied by a three phase mains system. The emergency unit can be connected to all three phases of the three phase mains system or a subset thereof. Hence, if only one phase fails the emergency unit can still be supplied with two phases of the three phase mains system. Further, a DC grid is typically supplied by the power supply unit. The power supply unit preferably is supplied from the same AC supply as the emergency unit and can comprise an AC/DC converter to convert the AC supply voltage to the voltage for the DC grid. The power supply unit can also be connected to the AC supply by three phases of the three phase mains system. Specifically, the power supply unit and the emergency unit are supplied by only one common phase.

Generally, the invention addresses a requirement of central and group battery emergency lighting systems to offer an AC emergency mode. This means that if a phase of a supply in a building fails or a circuit breaker fails as part of the installation, a trigger signal is sent to initiate an AC emergency event. As a result, emergency lighting means at the emergency bus are operated at their defined emergency level. In conventional systems, power is not taken from the battery if normal mains supply is still present. While it is commonly known that an emergency unit monitors an AC supply to operate the building technology devices connected to the emergency bus in case the AC power delivered by the AC supply fails, the emergency unit described herein is configured especially to also deal with conditions in which the AC power supply and/or DC grid power fails.

Therefore, the emergency unit also detects whether the power supply unit correctly delivers a DC voltage to the DC grid. The emergency unit can therefore also detect a failure of the power supply unit and may operate the building technology devices connected to the emergency bus in case the power supply unit fails. In case the power supply unit cannot supply the DC grid, the emergency unit of the invention is configured to supply the emergency lighting means connected to the emergency bus. It should be understood that emergency lighting means as well as non-emergency lighting means can be supplied by the power supply unit during normal operation. However, the emergency lighting means can be connected to a specific segment of a DC bus that is connected to the emergency unit. The emergency lighting means are typically configured to operate in a normal operation mode serving for general illumination. In an emergency mode, the emergency lighting means then switch to an emergency lighting mode, in which they, e.g. operate with a different emission spectrum, and/or in a dimmed mode.

The emergency unit according to the invention comprises a battery, a DC/DC converter supplied by the battery and a control unit configured to control operation of the DC/DC converter and a battery charging unit designed for charging the battery unit. The emergency unit can further comprise a first monitoring module for monitoring the AC voltage or power supplied to the emergency unit by the AC supply, a second monitoring module for monitoring the DC voltage or power supplied by the power supply unit to the DC grid, and/or preferably a third monitoring module for monitoring the battery unit and in particular to monitor charging and discharging of the battery unit.

The control unit of the emergency unit, which can be an microcontroller, an IC, an ASIC, etc. controls operation of the DC/DC converter. Therefore, especially in case of the AC power supply to the emergency unit at least partially fails, which means that for example a phase of a three phase mains system fails, or that the AC power is outside a specified parameter range (i.e. an AC voltage or current supplied to the emergency unit is too low or too high or fluctuates) the control unit activates the DC/DC converter, which is then supplied from the battery unit. After the activation of the DC/DC converter, the power produced by the DC/DC converter is output at DC power output terminals of the emergency unit to the emergency bus. At the same time, if there is still at least a partial supply AC power supplied from the AC supply, the control unit controls the battery charging unit to charge the battery unit using the available AC power. However, in an initial state, the DC/DC converter drives the emergency bus out of power from the battery unit.

Thus, by operating the DC/DC converter, a DC power is supplied to the emergency bus, supplying the emergency lighting means. After the DC/DC converter provides the power at the DC power output terminals, the emergency lighting means can be operated. The battery charging unit starts charging the battery unit as soon as a discharging current and/or voltage is detected by the third monitoring module to compensate for the battery drain (in case any AC power is available) . The battery unit hence functions as a buffering capacitor. Preferably, the energy/current taken up by the DC/DC converter is therefore immediately compensated by the charging function of the battery charging unit.

Therefore, essentially, the invention proposes to drive the emergency bus in order to operate the emergency lighting means by power supply from the battery unit, while at the same time, essentially immediately, recharging the battery unit out of the AC mains power using the battery charger unit power provided that in particular at least two phases of the main voltage are fully operative. In addition, the emergency unit according to the invention is also configured to provide a DC power if only the DC grid power provided by the power supply unit fails, the control unit will control a relay of the emergency unit to switch the external DC grid power from the external power supply unit to the DC power supplied by the DC/DC converter of the emergency unit. The lighting means connected to the emergency bus can thus be operated as normal lighting means during normal operation, but may be operated in an emergency mode in case an emergency is detected. The voltage output by the emergency unit in the emergency state may be different from the voltage output by the power supply unit and can in particular be higher. The emergency lighting means at the emergency bus preferably detect the emergency situation by detecting a voltage drop when the emergency unit takes over operation followed by a voltage soar caused by the supply provided from the emergency unit. The building technology devices may therefore connected to the emergency bus can then switch operation to emergency operation, e.g. connected emergency lighting means (which includes lighting means providing an emergency mode) operate with a brightness dimmed to a specific degree. Non-emergency devices may be switched off in case of emergency operation.

The invention therefore provides an emergency unit, a lighting system and a method for operating an emergency unit according to the independent claims. Further aspects of the invention are subject to the dependent claims.

In a first aspect, an emergency unit is provided, comprising input terminals for supplying the emergency unit with AC power, a battery charging unit designed for charging a battery unit of the emergency unit by using the AC power, a DC/DC converter and designed to provide DC power to DC power output terminals designed for supplying power to emergency lighting means designed for being supplied with a signal indicating the state of the AC power and for outputting commands to the battery charging unit and to the DC/DC converter. The control unit can assume a state in which it causes the DC/DC converter to provide DC power based on the battery power and at the same time start the operation of the battery charging unit can assume the state in case the AC power at least partially fails and/or is outside a predefined parameter range. The parameter range in particular defines characteristic values for a voltage, power and/or a current supplied to the emergency unit and/or threshold values for the voltage, current and/or power supplied that may not be exceeded or surpassed.

The AC power is supplied by at least one phase of a three phase mains system. In particular, the emergency unit can be connected to one phase, LI, L2, and/or L3 and to the neutral line N.

The emergency unit can further comprise a first monitoring module to monitor a DC grid power supplied to a DC grid, and wherein the second monitoring module is connected to the DC grid at DC power input terminals.

The second monitoring module may issue a second signal indicating a failure of the DC grid power to the control unit. The control unit can activate the DC/DC converter to provide the DC power the DC power output terminals can to monitor charging and/or discharging of the battery unit may be a further DC/DC converter, in particular a flyback, buck or boost converter. The first and/or the second monitoring module can issue a signal to the control unit when the AC power and/or the DC grid power is interrupted, preferably longer than a predetermined time. The first and/or the second monitoring module can therefore comprise an energy buffer and/or a timer and may issue the signal when the energy buffer depletes or the timer reaches a predefined timer value.

The control unit can activate the charging unit in case the supplied DC grid power fails and the AC power is supplied at least partially to the AC input terminals in series with capacitive elements of the battery unit. The measurement element preferably is a shunt resistor. The emergency unit may comprise a relay unit. The control unit can control the relay unit and can switch the DC power provided by the DC/DC converter to the DC power output terminals from the DC grid power supplied at DC power input terminals upon a command of the control circuit converter is higher, preferably 55 Volts, than the voltage of the DC grid power.

In another aspect, an emergency unit is provided, comprising AC input terminals for supplying the emergency unit with AC power and/or DC input terminals for providing the emergency unit with DC grid power, a battery charging unit designed for charging a battery unit of the emergency unit preferably by using the AC power, a DC/DC converter, supplied by the battery unit and designed to provide DC power to DC power output terminals designed for supplying power to emergency lighting means, a control unit designed for being supplied with a signal indicating the state of the DC grid power and/or the AC power and for outputting commands to the battery charging unit and to the DC/DC converter. The control unit can assume a state in which it causes the DC/DC converter to provide DC power to the DC power output terminals based on the battery power when the signal indicating the state of the DC grid power indicates a failure of the DC grid power and, if AC power is supplied, at the same time start the operation of the battery charging unit. In yet another aspect a lighting system comprising an emergency unit as described herein.

In still another aspect, an emergency operating arrangement is provided, comprising an emergency unit as described herein, and a power supply unit providing the DC grid power to DC power input terminals of the emergency unit, wherein the power supply unit and the an emergency unit are supplied by the same three phase mains system, wherein the emergency unit is preferably supplied from different phases of the three phase mains system than the power supply unit.

In a further aspect, a method for operating an emergency unit is provided, comprising the steps of - receiving, at input terminals, an AC power for supplying the emergency unit,

- charging, by a battery charging unit, a battery unit of the emergency unit using the AC power,

- supplying a DC/DC converter from the battery unit and providing DC power to DC power output terminals designed for supplying power to emergency lighting means,

- supplying, to a control unit, a signal indicating the state of the AC power, and - outputting, by the control unit, commands to the battery charging unit and to the DC/DC converter. The control unit assumes a state in which it causes the DC/DC converter to provide DC power based on the battery power and at the same time start the operation of the battery charging unit .

The invention is now also described with reference to the figures. In particular,

Fig. 1 illustrates schematically the emergency

unit according to the invention, and

Fig. 2 shows a flow chart illustrating operation of the emergency unit.

The emergency unit described herein allows to control a charging unit (i.e. a flyback, buck or boost converter) to regulate a battery charging in a way that if an AC emergency event is triggered, power can be regulated both for the battery charging unit and the driving of the emergency lighting means.

Fig. 1, shows an exemplary setup of the employed emergency unit 1 inside a DC infrastructure 100. In Fig. 1 it is illustrated that there is a detection circuit 2 monitoring phases LI, L2, L3 and N (neutral) of the three phase mains supply system 3. The detection circuit 2 can typically be a rail mounted unit in a distribution cabinet of a building.

The detection unit 2 can detect a phase failure and can then trigger an emergency event. However, as long as the emergency unit 1 is still powered from an AC power supply 4, i.e. is still powered from at least one phase, e.g. L2 and N, in addition to or different from a failed phase, e.g. L3, the emergency unit 1 can still use the remaining AC power for its operation.

In case the AC power supply 4 fails, which in this case means that at least phase L2 of the three phase mains system 3 fails (or in case the emergency unit 1 can no longer be sufficiently supplied) , a failure of the AC power is detected by the emergency unit 1 and emergency lighting means EL will be operated and supplied off a battery unit 30 of the emergency unit. In case there is still AC power supplied to the emergency unit 1, the emergency unit will switch to a state, in which an internal DC/DC converter 10 is activated/operated by a control unit 20 to output DC power to DC power output terminals 01, 02 of the emergency unit 1, but at the same time, uses the AC power still supplied at input terminals II, 12 to charge the battery unit 30 of the emergency unit 1. To achieve this, the control unit 20 controls operation of a battery charging unit 40 to charge the battery unit 30 from the remaining AC power.

In addition, a power supply unit PSU is shown external to the emergency unit 1. The power supply unit PSU supplies power to a DC bus 5 (used for general illumination in normal operation by supplying lighting means L with DC power) as well as the emergency lighting bus. If the power supply unit PSU fails, the emergency unit 1 will take over supply of the emergency bus by switching the DC power output terminal 01, 02 to the DC power provided by the DC/DC converter 10.

The DC power supplied by the power supply unit PSU is fed to the emergency unit at DC power input terminals Dl, D2 and a second monitoring module 52 can be used to detect the case when the DC power supplied from the power supply unit PSU fails. Such an event can also trigger the emergency lighting means to illuminate EL. This function can e.g. be used to allow people in a building to safely exit the building.

Especially, in case the power supply unit PSU fails while normal AC supply voltage is still present, a typical emergency unit would not detect an emergency situation and an emergency event would not be triggered as the AC power supply is still as normal. However, when the external power supply PSU fails, no power is supplied to the DC bus 5 and the lighting means L as well as the emergency lighting means EL fail and to go dark. No emergency situation would be detected by a normal emergency unit, but is by the emergency unit according to the invention. It should be understood that the lighting means and emergency lighting means can also be other building technical devices.

Typically, the emergency unit 1 can for example output a power of 10 or 25 to 35 Watts, in particular about 15 or 30 Watts to the emergency bus. The battery charging unit 40 is configured to be flexible for different configurations of the battery unit 30, such as Pb-, NiCd-, NiMh-, and/or Li-ion battery units. The battery charging unit 40 preferably comprises a fly back converter. The battery charging unit 40 of the emergency unit can be configured to provide DC power to the emergency bus and to charge the battery unit 30 with, for example, a power of 10-20 Watts and especially with a power of 15 Watts.

Now also in view of Fig. 2 the function of the emergency unit should be explained. In normal mode SI, the DC/DC converter 10 is off. In mode SI, a relay unit 50 connects the emergency bus to the power supply unit PSU. The power supply unit PSU (which can also be part of the emergency unit 1) preferably supplies a DC supply voltage of 48 Volts. The battery unit 30 is charged from the battery charging unit 40 (in intervals and/or when a third monitoring module 53 detects that a specific discharge level is reached) . Charging and/or discharging of the battery is monitored by the third monitoring module 53, for example at a resistor connected in series with capacitive elements of the battery unit 30. The control unit 20 can now check whether an emergency event occurs (Step S2) . The control unit 20 can detect an AC or DC emergency event in mode S2 by evaluating signals fed to the control unit by the monitoring modules 51, 52, 53. For example, an AC emergency can be detected by a first monitoring module 51 monitoring the AC power output to the emergency unit 1 at input terminals II, 12 from the AC power supply 4. The first monitoring module 51 may issue a respective detection signal to the control unit 20 in case the AC power monitored by the first monitoring module 51 either fails partially, completely or is outside of predefined characteristic parameter ranges for the AC power supply. The control unit then assumes a state S4 (AC emergency mode) . In this mode the control unit 20 switches on the DC/DC converter 10. The DC/DC converter 10 takes power from the battery unit 30. The control unit 20 will control the relay unit 50 to switch the power output by the DC/DC converter 10 derived from the battery unit 30 to the output terminals 01, 02. The emergency bus is supplied by the DC/DC converter 10 and the battery unit discharges.

However, the battery charging unit 40 will try to maintain a charging current for the battery unit and the third monitoring module 53 will also detect a discharge current. Thus, in case there is at least some AC power being supplied to the emergency unit 1 in step S5, the control unit 20 will automatically increase power supplied from the battery charging unit 40 (i.e. the fly back converter) to supply power for charging the battery unit 30 in step S6, which in turn produces power to operate the emergency lighting means EL at the emergency bus. Therefore, in case the external AC power supply fails only partially and there is still some AC power supplied to the emergency unit 1, the emergency unit 1 will use this power to power the emergency bus from the DC/DC converter 10 while at the same time the battery charging unit 40 is used to (re ¬ charge the battery unit 30. The control unit 20 can also detect a DC emergency event (step S2) by evaluating signals fed to the control unit from the second monitoring module 52. For example, a DC emergency can be detected by the second monitoring module 52 monitoring the DC power output to the emergency unit 1 from the power supply unit PSU. The second monitoring module 52 may issue a respective detection signal to the control unit 20 in case the DC power monitored by the second monitoring module 52 either fails or is outside of predefined characteristic parameter ranges for the DC supply. The control unit then assumes a state S7 (DC emergency mode) . In this mode the control unit 20 switches on the DC/DC converter 10. The DC/DC converter 10 takes power from the battery unit 30. The control unit 20 will control the relay unit 50 to switch the power output by the DC/DC converter 10 and derived from the battery unit 30 to the output terminals 01, 02. The emergency bus is supplied by the DC/DC converter 10 and the battery unit discharges.

However, the battery charging unit 40 will try to maintain a charging current for the battery unit and the third monitoring module 53 will also detect a discharge current. Since there is still AC power being supplied to the emergency unit 1 in step S5, the control unit 20 will increase power supplied from the battery charging unit 40 (i.e. the fly back converter) to supply power for (re ¬ charging the battery unit 30, which in turn produces power to operate the emergency lighting means EL at the emergency bus. Therefore, in case the power supply unit PSU and hence the DC supply fails, but there is still, at least partially, some AC power supplied to the emergency unit 1 (state S5) , the emergency unit 1 will power the emergency bus from the DC/DC converter 10 while at the same time the battery charging unit 40 is used to charge the battery unit 30.

Of course, the control unit 20 can cyclically check whether the emergency operation still is present. If the signals fed to the control unit no longer indicate an emergency situation, normal operation SI can be assumed. Also, an AC emergency mode S4 may be detected in a DC emergency mode S7 if the AC power fails to some degree, and vice versa.

Therefore, in case there is still some AC power supply for the emergency unit 1, the emergency unit will power the emergency bus from the DC/DC converter 10 while at the same time the battery charging unit 40 is used to charge the battery unit 30 (state S6) . In addition, the DC/DC converter 10 can be operated by the control unit 20 to switch its output voltage to a DC voltage of 55 Volts. As a result, the emergency lighting means EL connected to the emergency bus can detect that an emergency state, especially by a voltage increase to 55 Volts DC, preferably from 48 Volts DC. Therefore, the emergency lighting means can operate at a lower output level, e.g. dimmed to a level of 10 % to allow operation of the emergency lighting means for an extended time to provide an emergency light output.

The charging unit 40 can alternatively be also realized as a buck or boost converter. The monitoring modules 51, 52, 53 may output detection events to the control unit 20 and especially when AC power and/or a DC grid power (partially) fails or is interrupted, in particular for a predetermined time.

The battery unit 30 may clamp the output of the charging unit 40 and provides a power supply to the DC/DC converter (which can be a buck or boost converter as well) used for supplying the emergency bus. In this way, the DC/DC converter is initially powered from the battery unit, which also allows transient events and switch overs to be covered without power loss. Battery charging is also sensed by the third monitoring module 53 at the resistor connected in series with capacitive elements of the battery unit 30. Thereby, excessive losses in the emergency unit 1 when operating in AC mode/normal mode can be prevented. The at least one sensing resistor preferably is only connected in series with the capacitive elements of the battery unit 30 and hence with the battery charging current and not with the AC power supply.

If there is still some kind of AC power supplied to the emergency unit the battery charge current is maintained as the battery charging unit recharges the battery unit and therefore replaces the current which was diverted when the DC/DC converter starts supplying the emergency bus. Therefore, monitoring for failure of the DC grid power supply as well as a failure in the AC power supply can be detected by the emergency unit 1 and can be handled in both cases - the emergency lighting means on the emergency bus can be operated.

In an alternative embodiment, the DC bus 5 and the

emergency bus may be formed by the same grid to which both the lighting means L as well as the emergency lighting means EL are connected. In such case the DC bus 5 forms the emergency bus in an emergency case. The lighting means L and the emergency lighting means EL may be connected to the same bus. In such example the emergency lighting means EL which are connected to the DC bus 5 is operated as normal lighting means during normal operation, but is operated in an emergency mode in case an emergency is detected. If the voltage output by the emergency unit 1 in the emergency state is different from the voltage output by the power supply unit PSU, in particular higher, the emergency lighting means EL detects the emergency

situation by detecting a voltage drop when the emergency unit takes over operation followed by a voltage soar caused by the supply provided from the emergency unit. In emergency mode the emergency unit 1 is designed to power the DC bus 5 with different from the voltage output by the power supply unit PSU and therefore take over the supply of the DC bus 5 from the power supply unit PSU. The building technology devices which are connected to the bus then switch operation to emergency operation, e.g.

connected emergency lighting means EL are operated with a brightness dimmed to a specific degree below 100% lighting level. The lighting means L (as non-emergency means) is switched off in case of emergency operation in order to safe battery power.

Signaling of emergency operation may be also performed by transmission of a control signal. For instance a power line communication (PLC) may be applied to signal an emergency mode, e.g. by transmission of high-frequency PLC signals. The emergency lighting means EL and lighting means L may detect the emergency operation by monitoring of the voltage of the bus, e.g. of the emergency bus and / or the DC bus 5.