Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ENCODING SIGNALS ON FLEXOGRAPHIC PRINTING PLATES TO ENABLE TRACKING AND MANAGEMENT
Document Type and Number:
WIPO Patent Application WO/2022/026847
Kind Code:
A1
Abstract:
The present disclosure relates generally to signal encoding for flexographic printing plates. One aspect is a flexographic, photopolymer printing plate having transparent layers to allow encoded signal printed or laser ablated thereon to be detectable from both sides of the printing plate. Another aspect is a flexographic, photopolymer printing plate having an encoded signal formed in a photocured layer. Still another aspect is a system for tracking such printing plates, including managing location, print impression count, location tracking, etc. Other aspects are described as well.

Inventors:
SPERRY JAY KELLY (US)
VEST RYAN W (US)
Application Number:
PCT/US2021/043932
Publication Date:
February 03, 2022
Filing Date:
July 30, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DIGIMARC CORP (US)
MACDERMID GRAPHICS SOLUTIONS LLC (US)
International Classes:
B32B7/03; C08F299/02; G03C5/08; G03F7/004; G03F7/26; G06T7/30
Domestic Patent References:
WO2017050655A12017-03-30
WO1999022273A11999-05-06
Foreign References:
US20110101088A12011-05-05
US20060117973A12006-06-08
US10783601B12020-09-22
Attorney, Agent or Firm:
CALCAGNI, Jennifer A. (US)
Download PDF:
Claims:
Wliat is claimed is:

1, A flexographic-, phutopolymer printing plate having a plurality of transparent layers, the plurality of transparent layers including a support layer and a photocurable: layer, in which the support layer and the photocprable layer each comprise a bottom side and a top side,: with the top side of the support: layer being: adjacently arranged with the bottom layer of the photoeurable layer, the flexographic, photopplymer printing plate further comprising an encoded signal printed with UV curable ink or laser ablated therein, the encoded signal arranged in a pattern on the bottom side of the support layer,: the encoded signal comprising an orientation signal component and a plural-bit message component, in which the plural-bit message component is detectable from imagery representing the pattern captured through the top side of the photocurable layer and detectable from imagery representing the pattern captured from the femtom side of the support layer,

2, The flexographic. photopolymer printing plate of claim 1 in which the photocurablB layer comprises an unexposed photocurable layer.

3, The flexographic, photopolymer priming plate of claim: 1 tn which the orientation signal component comprises a pattern detectable in a transtonn domain.

4. The flexographic, photopolymer printing plate of claim. 1 in which the pattern comprises a sparse mark pattern, in which elements of the sparse mark pattern occur whentheorientationcomponentandthemessagecomponentincludingcooperating components. 5.Theflexographic;photopolymerprintingplateofclaim1inwhichtheplurality oftransparentlayersfurthercompriseaprotectivelayercomprisingatopsideanda bottomside,withthebottomsideoftheprotectivelayeradjacentlyarrangedwiththetop sideofthephotocurablelayer,andinwhichtheplural-bitmessagecomponentis detectablefromimageryrepresentingthepatterncapturedthroughthetopsideofthe protectivelayeranddetectablefromimageryrepresentingthepatterncapturedfromthe bottomsideofthesupportlayer. •6.Theflexographic,photopolymerprintingplateofclaim1inwhichtheplural- bitmessagecomponentcomprisesapluralityofdatafieldscomprisingatleastaplate identifier. 7. Theflexographic,photopolymerprintingplateofclaim1inwhichthe photocurablelayercomprisesmultiplelayers. 8. Theflexographic,photopolymerprintingplateofclaim1inwhichtheUV curableinkisprintedwithpiezodropon-demandprintheads.

9. Theflexographic,photopolymerprintingplateofclaim1inwhichencoded signalisredundantlyprintedorlaserablatedonthebottomsideofthesupportlayer,with eachredundantlyinstanceoftheencodedsignalcomprisingtheorientationcomponent andtheplural-bitmessagecomponent. 10. A flexographic,photopolymerprintingplatehavingapluralityoftransparent layers,thepluralityoftransparentlayersincludingasupportlayerandaphotocured layer,inwhichthesupportlayerandthephotocuredlayereachcompriseabottomside andatopside,withthetopsideofthesupportlayerbeingadjacentlyarrangedwiththe bottomlayerofthephotocuredlayer,theflexographic,photopolymerprintingplate furthercomprisinganencodedsignalcarriedwithraisedimageelementsinthe photocuredlayer,theencodedsignalarrangedinapatternandcomprisinganorientation signalcomponentandaplural-bitmessagecomponent,inwhichtheplural-bitmessage componentis•detectablefromimageryrepresentingthepatterncapturedthroughthetop sideofthephotocuredlayeranddetectablefromimageryrepresentingthepattern capturedfromthebottomsideofthesupportlayer. 11.Theflexographic,photopolymerprintingplateofclaim10inwhichthe encodedsignaliscarriedwithraisedimageelementsandopenareaswithinthe photocuredlayer.

12.Theflexographic,photopolymerprintingplateofclaim10inwhichencoded signalisformedinoradjacenttoacontrolstripregionoutside ofan imageregion ofthe printingplate. 13. Theflexographic,photopolymerprinting plate ofclaim 10in which the orientation.signalcomponentcomprisesapatterndetectableinatransformdomain. 14. Theflexographic,photopolymerprintingplateofclaim10inwhichthe patterncomprisesasparsemarkpattern,inwhichelementsofthesparsemarkpattern occurwhentheorientationcomponentandthemessagecomponentincludingcooperating componentsatthesamespatiallocation. 15. Theflexographic,photopolymerprintingplateofclaim10inwhichencoded signalisredundantlyprovidedwithinthephotocuredlayer,witheachredundantly instanceoftheencodedsignalcomprisingtheorientationcomponentandtheplural-bit messagecomponent. 16. A methodfortrackingaprintingplateofclaim1,including: usingacamerasystem,capturingimagerytheflexographic,photopolymer printingplate; analyzing captured Imagery to decode the pfomlfoi t message component, In which: said analyzing utilizes the orientation component to resolve scale and orientation of the encoded signal; accessing a data record with the plural-bit message component; and through a graphical user interface updating the data record to reflect station location, print impression cow, print job or customer information,

17. A method for tracking a printing plate of claim 1(1, including: using a camera system, capturing imagery the flexographic, photopolymer printing plate; analysing captu red imagery to decode foe plural -bit message component, in whichsaid analyzing utilizes the orientation component to resolve scale and orientation of the encoded signal; accessing a data record with the plural-bit message component; and through a. graphical user interface updating the data record to reflect station location, print impression count, print job or customer irifonnatiam

18, A flexographic, photopoly tnsr printing: plate having a plurality of transparent layers, the plurality of transparent layers including: a support layer and a photoc arable layer, in which the sapport layer and the photocurabfe layer each comprise a bottom side and a top side, with the top side of the .support layer being adjacently arranged with the bottom layer of the photoeumblc layer, the flexographic, photopolymer printing p'ate fetter eompnsmg as encoded signal printed with U V curable ink or laser ablated therein, the encoded signal arranged in a pattern on the tap side of the support layer, ths encoded signal comprising an orientation signal component and a plaml'-bit message component* in which the piaral-bit message component is detectable from imagery representing the patern captured through the top side of the photocurable layer and detectable from imagery representing the pattern captured from the bottom side of the support layer,

19. The fexugraphic, photopolymer printing plate of claim 18 in which the photouomble layer comprises an unexposed photocurable layer.

20. The flexographic, phompolymcr printing plate of claim 1:S in which the orientation signal component comprises a pattern delectable in a transform domain. 2i , The flexographic, pbotopolymer printing plate of claim 13 in which: the pattern comprises a sparse mark pattern, in which elements of the sparse mark pattern occur when the orientation component and the message component including cooperating components, and in which for an area including the sparse mark pattern, the sparse mark pattern occupies less than 50% of the surface within the area,

22. The fexographie, photopol ymer printing plate of claim IS in which the plurality of transparent layers further comprise a protective layer comprising a top side anda bottomside,withthebottomsideoftheprotectivelayeradjacentlyarrangedwith thetopsideofthephotocurablelayer,andinwhichtheplural-bitmessagecomponentis detectablefromimageryrepresentingthepatterncapturedthroughthetopsideofthe protectivelayeranddetectablefromimageryrepresentingthepatterncapturedfrom the bottomsideofthesupportlayer. 23. Theflexographic,photopolymerprintingplateofclaim18inwhichthe plural-bitmessagecomponentcomprisesapluralityofdatafieldscomprisingatleasta plateidentifier. 24. Theflexographic,photopolymerprintingplateofclaim18inwhichthe photocurablelayercomprisesmultiplelayers. 25. Theflexographic,photopolymerprintingplateofclaim18inwhichtheUV curableinkisprintedwithpiezodropon-demandprintheads. 26.Theflexographic,photopolymerprintingplateofclaim18inwhich redundantinstances oftheencoded signal are printed orlaser ablated on the top side of thesupportlayer,witheachredundantinstanceoftheencodedsignalcomprisingthe orientationcomponentandtheplural-bitmessagecomponent.

Description:
Related Application Data This application claims the benefit of US Patent Application Nos. 634159,® 1 ,

•filed July 31 ; 2020, and 63/113 ,772, filed November 13, 2020, each of which is hereby incorporaied herein by rote recce.

Technical Field Ths present disclosure relates generally to flexographic printing plates and advanced image: signal processing involving signal encoding.

Background and Summary Flexographic printing plates include, e,g., malti-layered structures haying photepolymer material in sheet form. Flexographic plates are processed to form 3D relief print elements raised above open areas.. Processed plates are mounted around cylindrical plate rollers. Some of MacDermid Graphics Solutions' work In printing plates is reflected In US Patent Nos, I Q,lOS,OS7, 10,429,736 and 10,599,035, which are each hereby incorporated herein by reference.

Encoded signals can be represented within a printing plate via relief print elements and/or printed on a layer side of the plate to enable plate identification, tracking, nil ' rmrp and/or plate management.

One form of signal encoding is digi tal watermarking. For purposes of this disclosure, the terms “digital watermark,’' “watermark,” “data encoding” and “data hiding” are used interchangeably* We sometimes use the terms ‘encoding/ 5 “encode,” “embedding,” “embed,” and “data hiding” to mean modulating lor transforming) data or physical surfaces to include information therein. For example, data encoding embeds an information signal (e.g., a plural bit payload or a modified version of such, e.g., a 2-D error corrected, spread spectrum signal) in a host signal. This can be accomplished, e,g< , -2 bymodulatingahostsignal(e.g.,image,videooraudio)insomefashio ntocarrythe informationsignal.Themodulatedsignalcanthenbeprintedontoasur faceor used to guideareliefformingprocess. SomeofDigimarcCorporation'sworkinsignalencoding,datahiding,a nddigital 5 watermarkingisreflected,e.g.,inU.S.PatentNos.:6,947,571;6,91 2,295;6,891,959. 6,763,123;6,718,046;6,614,914;6,590,996;6,408,082;6,122,403a nd5,862,260,andin p ublished specificationsWO 9953428andWO 0007356(correspondingtoUS Patent Nos.6,449,377and6,345,104).Eachofthesepatentdocumentsishereb y incorporated byreferencehereininitsentirety. 10 Oneaspectofthedisclosureisaflexographic,photopolymerprinting platehaving apluralityoftransparentlayers.Thepluralityoftransparentlayer sincludingasupport layerandaphotocurablelayer,inwhichthesupportlayerandthephoto curable layer eachcompriseabottomsideandatopside,withthetopsideofthesuppor tlayerbeing adjacentlyarrangedwiththebottomlayerofthephotocurablelayer.T heflexographic, 15 photopolymer printing plate further comprises an encoded signal printed with UV curable inkorlaserablatedtherein.Inonecase,theencodedsignalisarrange dinapatternonthe bottomsideofthesupportlayer.Inanothercase,theencodedsignalis arrangedina patternonthetopsideofthesupportlayer.Theencodedsignalcompris esanorientation s ignal component and a plural-bit message component,in which the plural-bit message 20 componentisdetectablefromimageryrepresentingthepatterncaptur edthrough thetop sideofthephotocurablelayeranddetectablefromimageryrepresenti ngthepattern capturedfromthebottomsideofthesupportlayer. Thephotocurablelayermayincludeanunexposedphotocurablelayer. Theorientationsignalcomponentmayincludeapatterndetectableina transform 25 domain. Thepatternmayincludeasparsemarkpattern,inwhichelementsofthes parse m ark pattern occur when the orientation componentand the message component includingcooperatingcomponents. {N5781896) Thepluralityoftransparentlayersmayfurtherincludeaprotectivel ayer comprisingatopsideandabottomside,withthebottomsideoftheprote ctivelayer adjacentlyarrangedwiththetopsideofthephotocurablelayer.Insuc hacase,theplural- bitmessagecomponentisdetectablefromimageryrepresentingthepat terncaptured throughthetopsideoftheprotectivelayeranddetectablefromimager yrepresentingthe pattern captured from the bottom side ofthe support layer. T he plural-bit message component may include a plurality ofdatafields comprisingatleastaplateidentifier. The photocurablelayermayincludemultiplelayers. Insomeimplementations,theUV curableinkisprintedwithpiezodropon- demandprintheads. Theencodedsignalmay beredundantlyprinted,orlaserablated,onthebottom sideortopsideofthesupportlayer,witheachredundantlyinstanceof theencodedsignal comprising the orientationcomponentandtheplural-bitmessagecomponent. Anotheraspectofthedisclosurecomprisesaflexographic,photopoly merprinting plate havingapluralityoftransparentlayers,thepluralityoftransparen tlayersincluding asupportlayerandaphotocuredlayer.Thesupportlayerandthephotoc uredlayereach compriseabottomsideandatopside,withthetopsideofthesupportlay erbeing adjacentlyarrangedwiththebottomlayerofthephotocuredlayer.The flexographic, photopolymerprintingplatefurthercomprisesanencodedsignalcarr iedwithraised imageelementsinthephotocuredlayer,theencodedsignalarrangedin apatternand comprisinganorientationsignalcomponentandaplural-bitmessagec omponent,in whichtheplural-bitmessagecomponentisdetectablefromimageryrep resentingthe pattern captured through thetop side ofthe photocured layer and detectable from imagery representingthe pattern capturedfromthe bottom sideofthesupportlayer. Insomeimplementations,theencodedsignaliscarriedwithraisedima ge elements and open areaswithinthephotocuredlayer. Theencodedsignalmaybeformedinoradjacenttoacontrolstripregion outside ofanimageregionoftheprintingplate. Theorientationsignalcomponentmayincludeapatterndetectableina transform domain. Theencodedsignalmayberedundantlyprovidedwithinthephotocuredl ayer, witheachredundantlyinstanceoftheencodedsignalcomprisingtheor ientation componentandtheplural-bitmessagecomponent. Accordingtoanotheraspectofthedisclosure,amethodisprovidedfor tracking theaboveprintingplates.Themethodincludes:usingacamerasystem, capturing imagerytheflexographic,photopolymerprintingplate;analyzingca pturedimageryto decodetheplural-bitmessagecomponent,inwhichsaidanalyzingutil izestheorientation componenttoresolvescaleandorientationoftheencodedsignal;acce ssingadatarecord withtheplural-bitmessagecomponent;andthroughagraphicaluserin terfaceupdating thedatarecordtoreflectstationlocation,printimpressioncount,p rintjoborcustomer information. Additionalaspects,features,combinationsandtechnologywillbere adily apparentfromthefollowingdescriptionwithrefencetotheaccompany ingdrawings. BriefDescription ofthe Drawings FIG.1isablockdiagramofasignalencoderforencodingadigitalpaylo adsignal intoanimagesignal. F IG. 2isablockdiagramofacompatiblesignaldecoderforextractin gthedigital payloadsignalfromanimagesignal. FIG.3isaflow diagramillustratingoperationsofasignalgenerator. FIG.4isadiagramillustratingembeddingofanauxiliarysignalintoh ostimage signal. FIG.5isaflow diagramillustratingamethodfordecodingapayloadsignalfrom a host image signal. F IG.6 isablockdiagramofamulti-layeredprintingplate. FIG.7A showsabottomupviewoftheFIG.6 printingplatewithmachine- readableindiciaonsurface101A;andFIG.7B showsatopdownviewoftheFIG.6 printingplatewithmachine-readableindiciaonsurface101B. FIG.8showsimagecaptureofanencodedsignalthroughtheFIG.6 printing plates FIG.9isamodifiedversionoftheFIG.2signaldecoder. Detailed Description Introduction: The followingdetaileddescriptionisdividedintofour(4)generalsecti ons.It shouldbeunderstoodfromtheoutset,however,thatweexpresslyconte mplatecombining subjectmatterfromonesuchsectionwithoneormoreoftheothersectio ns.Thus,the sectionsandsectionheadingsareprovidedforthereader'sconvenien ceandarenot intendedtoimposerestrictionsorlimitations.Thesectionsinclude :I.SignalEncoderand Decoder;II.PrintingPlateTechnology;III.EncodingSignalsonPrin tingPlatesto Enable Identification, Tracking and Management;and IV.Operating Environments. L SignalEncoderand Decoder Encoder/Decoder FIG.1isablockdiagramofasignalencoderforencodingadigitalpaylo adsignal intoanimagesignal.FIG.2isablockdiagramofacompatiblesignaldec oderfor extractingthedigitalpayloadsignalfromanimagesignal. Whilethesignalencoderanddecodermaybeusedforcommunicatingadat a channelformanyapplications,oneobjectiveforuseinphysicalobjec tsisrobustsignal communicationthroughimagesformedonandcapturedfromtheseobject s.Signal encoders and decoders,like those in the Digimarc Barcode Platform from Digimarc Corporation,communicateauxiliarydatainadatacarrierwithinimag econtent. Encodinganddecodingisapplieddigitally,yetthesignalsurvivesdi gitaltoanalog transformationandanalogtodigitaltransformation. Forexample,theencodergenerates amodulateddigitalimagethatisconvertedtoarenderedform,suchasa printedimage. Themodulateddigitalimageincludestheencodedsignalpriortorende ring.Priorto decoding,areceivingdevicehasorcommunicateswithanimagertocapt urethe m odulatedsignal,convertittoanelectricsignal,whichisdigi tizedandthenprocessedby theFIG.2 signal decoder. Inputstothesignalencoderincludeahostimage220andauxiliarydata payload 222. Theobjectivesoftheencoderincludeencodingarobustsignalwithdes iredpayload capacityperunitofhostsignal(e.g.,aunitmayincludethespatialar eaofatwo- dimensionaltilewithinthehostsignal),whilemaintainingperceptu alquality.Insome c ases,theremaybeverylittlevariabilityorpresenceofahosts ignal.Inthiscase,there islittlehostinterferenceontheonehand,yetlittlehostcontentinw hichtomaskthe presenceofthedatachannelwithinanimage. Someexamplesincludeapackagedesign thatisdevoidofmuchimagevariability(e.g.,asingle,uniformcolor ). See,e.g.,US Patent No.9,635,378, incorporatedhereinbyreferenceinitsentirety. Theauxiliarydatapayload222includesthevariabledatainformation tobe conveyedinthedatachannel,possiblyalongwithotherprotocoldatau sedtofacilitate thecommunication. Theprotocoloftheauxiliarydataencodingschemecomprisesthe formatoftheauxiliarydatapayload,errorcorrectioncodingschemes ,payload modulationmethods(suchasthecarriersignal,spreadingsequence,e ncodedpayload scramblingorencryptionkey),signalstructure(includingmapping of modulatedsignal to embedding locations within a tile), error detection in payload(CRC,checksum,etc.), perceptualmaskingmethod,hostsignalinsertionfunction(e.g.,how auxiliarydatasignal isembeddedinorotherwisecombinedwithhostimagesignalinapackage orlabel design),and/orsynchronizationmethodandsignals. Theprotocoldefinesthemannerinwhichthesignalisstructuredanden codedfor robustness,perceptualqualityand/ordatacapacity. Fora particular application,there may beasingle protocol,or morethanoneprotocol,dependingonapplication requirements.Examplesofmultipleprotocolsincludecaseswherethe rearedifferent versions ofthe channel, differentchanneltypes(e.g.,severaldigitalwatermarklaye rs withinahost).Differentversionsmayemploydifferentrobustnessen codingtechniques ordifferentdatacapacity. Protocolselectormodule224determinestheprotocoltobe usedbytheencoderforgeneratingadatasignal. Itmaybeprogrammedtoemploya particularprotocoldependingontheinputvariables,suchasusercon trol,application specificparameters,orderivationbasedonanalysisofthehostsigna l. Perceptualanalyzermodule226analyzestheinputhostsignaltodeter mine parametersforcontrollingsignalgenerationandembedding,asappro priate.Itisnot necessaryincertainapplications,whileinothersitmaybeusedtosel ectaprotocol and/ormodifysignalgenerationandembeddingoperations.Forexampl e,whenencoding inhostcolorimagesthatwillbeprintedordisplayed,theperceptuala nalyzer256isused toascertaincolorcontentandmaskingcapabilityofthehostimage. Theoutputofthis analysis,alongwiththerenderingmethod(displayorprintingdevice )andrendered o utputform(e.g.,inkandsubstrate)isusedtocontrolauxiliar ysignalencodingin particularcolorchannels(e.g.,oneormorechannelsofprocessinks, Cyan,Magenta, Yellow,orBlack(CMYK)orspotcolors),perceptualmodels,andsignal protocolstobe usedwiththosechannels. Pleasesee,e.g.,thevisibilityandcolormodeltechnology used inperceptualanalysisinUS PatentNos.7,352,878,9,117,268,9,380,186,9,401,001and 9,449,357,whichareherebyincorporatedbyreferenceintheirentire ty. The perceptualanalyzermodule226alsocomputesaperceptualmodel,as appropriate,tobeusedincontrollingthemodulationofadatasignalo ntoadatachannel withinimagecontentasdescribedbelow. Thesignalgeneratormodule228operatesontheauxiliarydataandgene ratesa datasignalaccordingtotheprotocol. Itmayalsoemployinformationderivedfromthe host signal,such as that provided by perceptual analyzer module 226,to generate the s ignal. Forexample,theselectionofdatacodesignalandpattern,themodulat ion function,andtheamountofsignaltoapplyatagivenembeddinglocatio nmay be adapteddependingontheperceptualanalysis,andinparticularonthe perceptualmodel andperceptualmaskthatitgenerates. Pleaseseebelowandtheincorporatedpatent documentsforadditionalaspectsofthisprocess. Embeddermodule230takesthedatasignalandmodulatesitintoanimage by combiningitwiththehostimage. Theoperationofcombiningmay beanentirelydigital signalprocessingoperation,suchaswherethedatasignalmodulatest hehostsignal digitally,maybeamixeddigitalandanalogprocessormaybepurelyana nalogprocess (e.g.,whererenderedoutputimages,withsomesignalsbeingmodulate ddataandothers beinghostimagecontent,suchasthevariouslayersofapackagedesign file). Thereareavarietyofdifferentfunctionsforcombiningthedataand hostin digitaloperations. Oneapproachistoadjustthehostsignalvalueasafunctionofthe correspondingdatasignalvalueatanembeddinglocation,whichislim itedorcontrolled accordingtotheperceptualmodelandarobustnessmodelforthatembed dinglocation. The adjustmentmaybealteringthehostimagebyaddingascaleddatasignal or multiplyingbyascalefactordictatedbythedatasignalvaluecorresp ondingtothe embeddinglocation,withweightsorthresholdssetontheamountofthe adjustment accordingtotheperceptualmodel,robustnessmodel,and/oravailabl edynamicrange. The adjustmentmayalsobealteringbysettingthemodulatedhostsignalto aparticular level(e.g.,quantizationlevel)ormovingitwithinarangeorbinofal lowablevaluesthat satisfyaperceptualqualityorrobustnessconstraintfortheencoded data. Asdetailedfurtherbelow,thesignalgenerator228producesadatasig nalwith dataelementsthataremappedtoembeddinglocationsinanimagetile.T hesedata e lementsaremodulatedontothehostimageattheembeddinglocat ions. A tilemay includeapatternofembeddinglocations.Thetilederivesitsnamefro mthewayinwhich itisrepeatedincontiguousblocksofahostsignal,butitneednotbear rangedthisway. Inimage-basedencoders,we may usetilesintheformofatwodimensionalarray(e.g., 128x 128,256x256,512x512)ofembeddinglocations. Theembeddinglocations correspond to host signal samples at which an encoded signal elementis embedded in an embeddingdomain,suchasaspatialdomain(e.g.,pixelsataspatialre solution), frequencydomain(frequencycomponentsatafrequencyresolution),o rsomeother featurespace.We sometimesrefertoanembeddinglocationasabitcell,referringtoa unitofdata(e.g.,anencodedbitorchipelement)encodedwithinahost signalatthe locationofthecell. Again,pleaseseethedocumentsincorporatedhereinformore informationonvariationsforparticulartypeof media. Theoperationofcombiningmayincludeoneormoreiterationsofadjust mentsto optimizethemodulatedhostforperceptualqualityorrobustnesscons traints. One approach,forexample,istomodulatethehostimagesothatitsatisfie saperceptual qualitymetricasdeterminedbyperceptualmodel(e.g.,visibilitymo del)forembedding locationsacrossthesignal. Anotherapproachistomodulatethehostimagesothatit satisfiesarobustnessmetricacrossthesignal. Yetanotheristomodulatethehostimage accordingtoboththerobustnessmetricandperceptualqualitymetric derivedforeach embeddinglocation. Theincorporateddocumentsprovide examples ofthesetechniques. B elow,we highlight afew examples. See, e.g.,US PatentNo.9,449,357;and see also, US 9,401,001andUS 9,565,335,whichareeachherebyincorporatedbyreferenceinits entirety. F orcolor images,the perceptualanalyzergeneratesaperceptualmodelthat e valuates visibility ofan adjustmenttothehostbytheembedderandsetslevelsof controlstogoverntheadjustment(e.g.,levelsofadjustmentpercolo rdirection,andper maskingregion). Thismayincludeevaluatingthevisibilityofadjustmentsofthe color at anembeddinglocation(e.g.,unitsofnoticeableperceptualdifferen ceincolor direction in termsofCIELabvalues),ContrastSensitivityFunction(CSF),spatia lmaskingmodel (e.g.,usingtechniquesdescribedbyWatsoninUS PublishedPatentApplicationNo.US 2006-0165311Al,whichisincorporatedbyreferencehereininitsenti rety),etc. One waytoapproachtheconstraintsperembeddinglocationistocombineth e data with the h ost atembedding locationsandthenanalyzethedifferencebetweentheencodedh ost withtheoriginal.Theperceptualmodelthenspecifieswhetheranadju stmentis noticeablebasedonthedifferencebetweenavisibilitythresholdfun ctioncomputedfor anembeddinglocationandthechangeduetoembeddingatthatlocation. Theembedder thencanchangeorlimittheamountofadjustmentperembeddinglocatio ntosatisfythe visibilitythresholdfunction. Ofcourse,therearevariouswaystocomputeadjustments t hat satisfy a visibility threshold,with different sequence ofoperations.See,e.g.,US Patent Nos.7,352,878,9,117,268, 9,380,186,9,401,001 and 9,449,357,US A1,already incorporated herein. TheEmbedderalsocomputesarobustnessmodel. Thecomputingofarobustness modelmayincludecomputing a detectionmetricforanembeddinglocationorregionof locations. The approach is to model how well the decoder will be able to recover the data signalatthelocationorregion. Thismayincludeapplyingoneormoredecode operationsandmeasurementsofthedecodedsignaltodeterminehow strongorreliable theextractedsignal. Reliabilityandstrengthmaybemeasuredbycomparingthe extractedsignalwiththeknowndata signal. Below,we detailseveraldecodeoperations thatarecandidatesfordetectionmetricswithintheembedder. Oneexampleisan extractionfilterwhichexploitsadifferentialrelationshiptoreco verthedatasignalin the presenceofnoiseandhostsignalinterference. Atthisstageofencoding,thehost interferenceisderivablebyapplyinganextractionfiltertothemodu latedhost.The e xtraction filter models data signal extraction from the modulated host and assesses whetherthedifferentialrelationshipneededtoextractthedatasign alreliablyis maintained.Ifnot,themodulationofthehostisadjustedsothatitis. Detectionmetricsmaybeevaluatedsuchasbymeasuringsignalstrengt hasa measureofcorrelationbetweenthemodulatedhostandvariableorfixe ddatacomponents inregionsofthehostormeasuringstrengthasameasureofcorrelation betweenoutputof anextractionfilterandvariableorfixeddatacomponents. Dependingonthestrength measureatalocation or region,theembedderchangestheamountandlocationofhost signalalterationtoimprovethecorrelationmeasure. Thesechangesmay beparticularly tailoredsoastoestablishrelationshipsofthedatasignalwithinapa rticulartile,regionin atileorbitcellpatternofthemodulatedhost.Todoso,theembedderad justsbitcells thatviolatetherelationshipsothattherelationshipneededtoencod eabit(orM-ary symbol)valueissatisfiedandthethresholdsforperceptibilityares atisfied. Where robustnessconstraintsaredominant,theembedderwill exceed theperceptibility thresholdwherenecessarytosatisfyadesiredrobustnessthreshold. T he robustnessmodelmay alsomodel distortion expectedtobe incurred by the modulatedhost,applythedistortiontothemodulatedhost,andrepeat theaboveprocess ofmeasuringdetectionmetricsandadjustingtheamountofalteration ssothatthedata signal will withstand the distortion. See,e.g.,9,380,186, 9,401,001 and 9,449,357for i magerelatedprocessing. Thismodulatedhostisthenoutputasanoutputimagesignal232,withad ata channelencodedinit.Theoperationofcombiningalsomay occurintheanalogrealm wherethedatasignalistransformedtoarenderedform,suchasalayero finkorcoating applied by a commercialpresstosubstrate. Anotherexampleisadatasignalthatis overprintedasalayerofmaterial,engravedin,oretchedontoasubstr ate,whereitmay be mixedwithothersignalsappliedtothesubstratebysimilarorotherma rkingmethods. Inthesecases,theembedderemploysapredictivemodelofdistortiona ndhostsignal interferenceandadjuststhedatasignalstrengthsothatitwillberec overedmorereliably. The predictive modelingcanbeexecutedbyaclassifierthatclassifiestypesofnoise sourcesorclassesofhostimageandadaptssignalstrengthandconfigu rationofthedata patterntobemorereliabletotheclassesofnoisesourcesandhostimag esignalsthatthe encoded data signal islikelytobeencounterorbecombinedwith. T he output232from the Embedder signal typically incurs various forms of distortionthroughitsdistributionoruse. Forprintedobjects,thisdistortionoccurs throughrenderinganimagewiththeencodedsignalintheprintingproc ess,and subsequentscanning back to a digital image via a camera or like image sensor. TurningtoFIG.2,thesignaldecoderreceivesanencodedhost signal 240 and operatesonitwithoneormoreprocessingstagestodetectadatasignal ,synchronizeit, andextractdata. Thedecoderispairedwithaninputdeviceinwhichasensorcapturesana nalog formofthesignalandananalogtodigitalconverterconvertsittoadig italformfor digital signal processing. Thoughaspectsof the decodermaybeimplementedasanalog components,e.g.,suchaspreprocessingfiltersthatseektoisolateo ramplifythedata channelrelativetonoise,muchofthedecoderisimplementedasdigita lsignalprocessing modulesthatimplementthesignalprocessingoperationswithinascan ner. Asnoted, thesemodulescanbeimplementedassoftwareinstructionsexecutedwi thinanimage scannerorcamera,anFPGA,orASIC,etc. Thedetector242isasignalprocessingmodulethatdetectspresenceof thedata channel.Theincomingsignalisreferredtoasasuspecthostbecauseit may nothavea datachannelormaybesodistortedastorenderthedatachannelundetec table. The detectorisincommunicationwithaprotocolselector244togetthepro tocolsitusesto detect thedatachannel. Itmaybeconfiguredtodetectmultipleprotocols,eitherby detectingaprotocolinthesuspectsignaland/orinferringtheprotoc olbasedonattributes ofthehostsignalorothersensedcontextinformation. A portionofthedatasignalmay havethepurposeofindicatingtheprotocolofanotherportionoftheda tasignal. Assuch, thedetectorisshownasprovidingaprotocolindicatorsignalbacktot heprotocolselector 244. The synchronizermodule246synchronizestheincomingsignaltoenableda ta extraction.Synchronizingincludes,forexample,determiningthedi stortiontothehost signalandcompensatingforit.Thisprocessprovidesthelocationand arrangementof encodeddataelementswithinthehostsignal. Thedataextractormodule248getsthislocationandarrangementandth e correspondingprotocolanddemodulatesadatasignalfromthehost. Thelocationand arrangementprovide the locations of encoded data elements.The extractor obtains estimatesoftheencodeddataelementsandperformsaseriesofsignald ecoding operations. As detailedinexamplesbelowandintheincorporateddocuments,thedete ctor, synchronizer and data extractor may share common operations, and in some cases may be c ombined. Forexample,thedetectorandsynchronizermaybecombined,asinitial detectionofaportionofthedatasignalusedforsynchronizationindi catespresenceofa candidatedatasignal,anddeterminationofthesynchronizationofth atcandidatedata signalprovidessynchronizationparametersthatenablethedataextr actortoapply extractionfiltersatthecorrectorientation,scaleandstartlocati onofatile.Similarly, dataextractionfiltersusedwithindataextractormay alsobeusedtodetectportionsofthe datasignalwithinthedetectororsynchronizermodules. Thedecoder architecture may bedesignedwithadataflowinwhichcommon operationsarere-usediteratively,ormay be organized in separatestagesinpipelineddigitallogiccircuitssothatthehostda ta flowsefficientlythroughthepipelineofdigitalsignaloperationsw ithminimalneedto movepartiallyprocessedversionsofthehostdatatoandfromasharedm emoryunit, suchasaRAM memory. SignalGenerator FIG.3isaflow diagramillustratingoperationsofasignalgenerator.Eachofthe blocks in the diagram depict processing modules thattransform the input auxiliary data intoadigitalpayloaddatasignalstructure.Theinputauxiliarydata mayinclude,e.g.,a GlobalTradeItemNumber(GMT)developedbyGS1. Forexample,theGTIN maybe structuredintheGTIN-12formatforUPC codes. Ofcourse,theinputauxiliarydatamay represent other plural bit codes as well. For a given protocol,each block provides one or moreprocessingstageoptionsselectedaccordingtotheprotocol.Inp rocessingmodule 300,theauxiliarydatapayloadisprocessedtocomputeerrordetectio nbits,e.g.,suchas a CyclicRedundancyCheck(CRC),Parity,checksum orlikeerrordetectionmessage symbols. Additionalfixedandvariablemessagesusedinidentifyingtheprotoc oland facilitatingdetection,suchassynchronizationsignalsmaybeadded atthisstageor subsequentstages. Errorcorrectionencodingmodule302transformsthemessagesymbolso fthe digitalpayloadsignalintoanarrayofencodedmessageelements(e.g. ,binaryorM-ary elements)usinganerrorcorrectionmethod. Examplesincludeblockcodes,BCH,Reed Solomon,convolutionalcodes,turbocodes,etc. Repetitionencodingmodule304repeatsandconcatenatesthestringof symbols fromthepriorstagetoimproverobustness.Forexample,certainmessa gesymbolsmay be repeated atthe same or differentrates by mapping them to multiplelocations within a unitareaofthedatachannel(e.g.,oneunitareabeingatile ofbit cells,as described further below). Repetitionencodingmayberemovedandreplacedentirelywitherrorco rrection coding. Forexample,ratherthanapplyingconvolutionalencoding(1/3rate)f ollowedby repetition(repeatthreetimes),thesetwocanbereplacedbyconvolut ionencodingto produceacodedpayloadwithapproximatelythesamelength. Next,carriermodulationmodule306takesmessageelementsoftheprev ious stageandmodulatesthemontocorrespondingcarriersignals.Forexam ple,acarrier mightbeanarrayofpseudorandomsignalelements,withequal number ofpositive and negativeelements(e.g.,16,32,64elements),orotherwaveform, such as sine wave or orthogonalarray.Inthecaseofpositiveandnegativeelements,thepa yloadsignalisa formofbinaryantipodalsignal.Italsomaybeformedintoaternary(of 3levels,-1,0,1) orM-arysignal(ofM levels).Thesecarriersignalsmay bemappedtospatialdomain locationsorspatialfrequencydomainlocations. Anotherexampleofcarriersignalsare sine waves, which are modulated using a modulation scheme like phase shifting, phase quantization,and/oron/offkeying.Inoneembodiment,carriermodul ationmoduleXORs eachbitofascrambledsignaturewithastringof16binaryelements(a "spreadingkey"), yielding 16 "chips" having "0"and "1" values. Iferror correction encoding yields a signatureof1024bits(whichcanthenberandomized),thenthecarrier modulation module306produces16,384outputchips. Mappingmodule308mapssignalelementsofeachmodulatedcarriersign alto locations withinthechannel.Inthecasewhereadigitalhostsignalisprovided, the locations correspondtoembeddinglocationswithinthehostsignal. Theembedding locationsmaybeinoneormorecoordinatesystemdomainsinwhichtheho stsignalis representedwithinamemoryofthesignalencoder. Thelocationsmaycorrespondto regionsinaspatialdomain,temporaldomain,frequencydomain,orsom eothertransform domain. Stated another way,the locations may correspond to a vector ofhostsignal features,which are modulatedtoencodeadatasignalwithinthefeatures. Mappingmodule308alsomapsasynchronizationsignaltoembeddingloc ations withinthehostsignal,forembodimentsemployinganexplicitsynchro nizationsignal. An explicitsynchronizationsignalisdescribedfurtherbelow. To accuratelyrecoverthepayload,thedecoderextractsestimatesofthe codedbits attheembeddinglocationswithineachtile Thisrequiresthedecodertosynchronizethe image under analysis to determinetheembeddinglocations.Forimages,wherethe embeddinglocationsarearrangedintwodimensionalblockswithinati le,the synchronizerdeterminesrotation,scaleandtranslation(origin)of eachtile.Thismay alsoinvolveapproximatingthegeometricdistortionofthetilebyana ffinetransformation thatmapstheembeddedsignalbacktoitsoriginalembeddinglocations . To facilitatesynchronization,theauxiliarysignalmayincludeanexpl icitor i mplicitsynchronizationsignal. An explicitsynchronizationsignalisanauxiliarysignal separatefromtheencodedpayloadthatisembedded withtheencodedpayload,e.g., withinthesametile). An implicitsynchronizationsignalisasignalformedwiththe encodedpayload,givingitstructurethatfacilitatesgeometric/tem poralsynchronization. Examplesofexplicitandimplicitsynchronizationsignalsareprovid edinpatent nos. 6,614,914,and5,862,260,whichareeachherebyincorporatedhereinb yreferencein theirentirety. Inparticular,one example ofan explicit synchronizationsignalisasignal comprised ofa set ofsine waves,with pseudo -random phase,which appear as peaks in theFourierdomainofthesuspectsignal.See,e.g.,6,614,914,and5,8 62,260,describing useofasynchronizationsignalinconjunctionwitharobustdatasigna l. AlsoseeUS Patent No.7,986,807, which is hereby incorporated by reference in its entirety. U S PatentNo. 9,182,778,whichisherebyincorporatedbyreferenceinits entirety,providesadditionalmethodsfordetectinganembeddedsign alwiththistypeof structureandrecoveringrotation,scaleandtranslationfromthesem ethods. Examplesofimplicitsynchronizationsignals,andtheiruse,areprov idedinUS PatentNos.5,862,260,6,614,914,6,625,297,7,072,490,9,747,656, whicharehereby incorporatedbyreferencein their entirety. SignalEmbeddingInHost FIG.4 isadiagramillustratingembeddingofanauxiliarysignalintohostsi gnal. Asshown,theinputsareahostsignalblock(e.g.,blocksofahostdigit alimage)(320) andanencodedauxiliarysignal(322) whichistobeinsertedintothesignalblock. The encodedauxiliarysignalmayincludeanexplicitsynchronizationcom ponent,orthe encodedpayloadmay beformulatedtoprovideanimplicitsynchronizationsignal. Processingblock324isaroutineofsoftwareinstructionsorequivale ntdigitallogic configuredtoinsertthemappedsignal(s)intothehostbyadjustingth ecorresponding hostsignalsample(s)atanembeddinglocationaccordingtothe value ofthe mapped signal element. Forexample,the mapped signal is added/subtracted from corresponding a samplevalue,withscalefactorandthresholdfromtheperceptualmode lorlikemask controllingtheadjustmentamplitude. Inimplementationswithanexplicit synchronizationsignal,theencodedpayloadandsynchronizationsig nalsmaybe combined and then added or added separately with separate mask coefficients to control thesignalamplitudeindependently. Followingtheconstructionofthepayload,errorcorrectioncodingis appliedto thebinarysequence. Thisimplementationappliesaconvolutionalcoderatrate/14,which producesanencodedpayloadsignalof4096bits.Eachofthesebitsismo dulatedontoa binaryantipodal,pseudorandomcarriersequence(-1,1)oflength16, e.g., multiply or XOR thepayloadbitwiththebinaryequivalentofchipelementsinitscarri ertoyield 4096modulatedcarriers,forasignalcomprising65,536elements. Theseelementsmap tothe65,536embeddinglocationsineachofthe256by256tiles. An alternativeembodiment,forrobustencodingonpackagingemploystil esof 128by 128embeddinglocations.Throughconvolutionalcodingofaninputpay loadat rate1/3andsubsequentrepetitioncoding,anencodedpayloadof1024b itsisgenerated. Eachofthesebitsismodulatedontoasimilarcarriersequenceoflengt h16,andthe resulting16,384signalelementsaremappedtothe16,384embeddinglo cationswithin the128by 128tile. Thereareseveralalternativesformappingfunctionstomaptheencode dpayload toembeddinglocations.Inone,theseelementshaveapseudorandommap pingtothe embeddinglocations.Inanother,theyaremappedtobitcellpatternso fdifferentially encodedbitcellsasdescribedinUS PatentApplicationNo.14/724,729(issuedasUS 7747656) Inthelatter thetilesizemaybeincreasedtoaccommodatethedifferential encodingofeachencodedbitinapatternofdifferentialencodedbitce lls,wherethebit cellscorrespondingtoembeddinglocationsatatargetresolution(e. g., 300DPI). US PatentNo.9,635,378describesmethodsforinsertingauxiliarysigna lsinareas o f packageandlabeldesignsthathavelittlehostimagevariabili ty.Thesemethodsare particularlyusefulforlabels,includingpricechangelabelsandfre shfoodlabels.These signalencodingmethodsmay beportedtotheprintingsub-systeminscalesusedwithin freshfood,deliandmeatdepartmentstoencodeGTINsandcontrolflags forvariable weightitemsintheimageofalabel,whichisthenprintedbytheprinter sub-system (typicallyathermalprinter)onthelabelandaffixedtoanitem. Foranexplicitsynchronizationsignal,themappingfunctionmapsadi screte digitalimageofthesynchronizationsignaltothehostimageblock. Forexample,where thesynchronizationsignalcomprisesasetofFouriermagnitudepeaks orsinusoidswith pseudorandomphase,thesynchronizationsignalisgeneratedinthesp atialdomainina blocksizecoextensivewiththe256by256tile(orothertilesize,e.g. ,128by128)at targetembeddingresolution. Variousdetailedexamplesofencodingprotocolsandprocessingstage softhese protocolsareprovidedinUS PatentsNos.6,614,914,5,862,260,and6,674,876,which areherebyincorporatedbyreference,andUS PatentNos.9,117,268and9,635,378, previouslyincorporated. Morebackgroundonsignalingprotocols,andschemesfor managingcompatibilityamongprotocols,areprovidedinUS PatentNo.7,412,072, whichisherebyincorporatedbyreference. Onesignalingapproach,whichisdetailedinUS Patents6,614,914,and 5,862,260,istomapelementstopseudo-randomlocationswithinachan neldefinedbya domainofahostsignal.See,e.g.,FIG.9of6,614,914.Inparticular,e lementsofa watermark signal are assigned to pseudo-random embedding locations within an arrangement ofsub-blocks within a block(referred to as a "tile"). The elements of this watermarksignalcorrespondtoerrorcorrectioncodedbits.Thesebit saremodulated onto a pseudo-randomcarriertoproducewatermarksignalelements(b lock306ofFIG. 3) whichinturn areassignedtothepseudorandomembeddinglocationswithinthesub- blocks(block308ofFIG.3).Anembeddermodulemodulatesthissignalo ntoahost signalbyincreasingordecreasinghostsignalvaluesattheselocatio nsforeacherror correctioncodedbitaccordingtothevaluesofthecorrespondingelem entsofthe modulatedcarriersignalforthatbit. FIG.5isaflowdiagramillustratingamethodfordecodingapayloadsig nalfrom a hostimagesignal.Theframesarecapturedataresolutionpreferablyn earthe resolution at which the auxiliary signal has been encoded within the originalimage(e.g., 300DPI,100DPI,etc.). Animageup-samplingordown-samplingoperationmaybe performedtoconverttheimageframessuppliedbytheimagertoatarget resolutionfor furtherdecoding. Theresultingimageblockssuppliedtothedecoderfromtheseframesma y potentiallyincludeanimagewiththepayload. Atleastsomenumberoftilesofencoded signalmay becapturedwithinthefieldofview,ifanobjectwithencodeddataisbe ing scanned. Otherwise,noencodedtileswillbepresent.Theobjective,therefore ,isto determineasefficientlyaspossiblewhetherencodedtilesare present. Intheinitialprocessingofthedecodingmethod,itisadvantageousto select framesandblockswithinframesthathaveimagecontentthataremostli kelytocontain theencodedpayload. Fromtheimagepassedtothedecoder,thedecoderselects image blocksforfurtheranalysis.Theblocksizeoftheseblocksisset large enough to span substantiallyallofacompletetileofencodedpayloadsignal,andpre ferablyaclusterof neighboringtiles.However,becausethedistancefromthecameramay vary,thespatial scaleoftheencodedsignalislikelytovaryfromitsscaleatthetimeof encoding. This spatialscaledistortionisfurtheraddressedinthesynchronization process. Formoreonblockselection,pleaseseeUS PatentNo.9,521,291,whichishereby incorporated by reference. PleasealsoseeUS PatentNo.9,922,220,whichisherebyincorporatedby reference,formoreonblockselectionwhereprocessingtimeismoreli mited. Thefirststageofthedecodingprocessfilterstheimagetoprepareitf ordetection andsynchronizationoftheencodedsignal(402) Thedecodingprocesssub-dividesthe imageintoblocksandselectsblocksforfurtherdecodingoperations. Forcolorimages,a firstfilteringstageconvertstheinputcolorimagesignal(e.g.,RGB values)toacolor channelorchannelswheretheauxiliarysignalhasbeenencoded. See,e.g.,US Patent No.9,117,268,whichisherebyincorporatedhereinbyreferenceinits entirety,formore on colorchannelencodinganddecoding. Foranimagecapturedunderredillumination by a monochrome scanner,the decoding process operates on this "red"channel sensed by thescanner.SomescannersmaypulseLEDsofdifferentcolortoobtainp luralcoloror spectralsamplesperpixelasdescribedinUS PatentNo.9,749,607,whichishereby incorporatedbyreference. A secondfilteringoperationisolatestheauxiliarysignalfrom the hostimage. Pre -filteringisadaptedfortheauxiliarysignalencodingformat ,includingthetypeof synchronizationemployed. Forexample,whereanexplicitsynchronizationsignalis used,pre-filteringisadaptedtoisolatetheexplicitsynchronizati onsignalforthe s ynchronization process. Insomeembodiments,thesynchronizationsignalisacollectionofpea ksinthe Fourierdomain. PriortoconversiontotheFourierdomain,theimageblocksarepre- filtered.See,e.g.,LaPlacianpre-filterinUS PatentNo.6,614,914. A windowfunction is applied to the blocksandthenatransformtotheFourierdomain,applyinganFFT. AnotherfilteringoperationisperformedintheFourierdomain. See,e.g.,pre-filtering optionsinUS PatentNos.6,988,202,6,614,914,and9,182,778,whicharehereby incorporatedbyreferenceintheirentirety. Formoreonfilters,alsoseeUS PatentNo.7,076,082,whichishereby incorporated by referenceinitsentirety.Thispatentdescribesamulti-axisf ilter,e.g.,an oct-axisfilter.Octaxiscomparesadiscreteimagesamplewitheightn eighborsto provideacomparevalue(e.g.,+1forpositivedifference,-1ornegati vedifference),and sumsthecomparevalues. Differentarrangementsofneighborsandweightsmay be appliedtoshapethefilteraccordingtodifferentfunctions. Anotherfiltervariantisa crossshapedfilter,inwhichasampleofinterestiscomparedwithanav erageof horizontalneighborsandverticalneighbors whicharethensimilarly summed. Next,synchronization process(404)is executed on afiltered block to recoverthe rotation,spatialscale,andtranslationoftheencodedsignaltiles. Thisprocessmay employalogpolarmethodasdetailedinUS PatentNo.6,614,914orleastsquares approachofUS PatentNo.9,182,778,torecoverrotationandscaleofasynchronizati on signalcomprisedofpeaksintheFourierdomain.To recovertranslation,thephase correlationmethodof6,614,914isused,orphaseestimationandphase deviation methodsofUS PatentNo.9,182,778are used. Alternativemethodsperformsynchronizationonanimplicitsynchron ization signal,e.g.,asdetailedinUS 9,747,656. Next,thedecoderstepsthroughtheembeddinglocationsinatile,extr actingbit estimatesfromeachlocation(406). Thisprocessapplies,foreachlocation,therotation, scaleandtranslationparameters,toextractabitestimatefromeache mbeddinglocation (406). Inparticle,asitvisitseachembeddinglocationinatile,ittransfor msittoa locationinthereceivedimagebasedontheaffinetransformparameter sderivedinthe s ynchronization,and then samples around each location. It does this processfor the embeddinglocationanditsneighborstofeedinputstoanextractionfi lter(e.g.,oct-axis orcrossshaped). A bitestimateisextractedateachembeddinglocationusingfiltering operations,e.g.,octaxisorcrossshapedfilter(seeabove),tocompa reasampleat e mbeddinglocationswithneighbors. Theoutput(e.g.,1,-1)ofeach compare operation issummedtoprovideanestimateforanembeddinglocation.Eachbitest imateatan embeddinglocationcorrespondstoanelementofamodulatedcarriersi gnal. Thesignaldecoderestimatesavalueofeacherrorcorrectionencodedb itby accumulatingthebitestimatesfromtheembeddinglocationsofthecar riersignalforthat bit (408). Forinstance,intheencoderembodimentabove, error correction encoded bits aremodulatedoveracorrespondingcarriersignalwith16elements(e. g.,multipliedbyor XOR withabinaryanti-podalsignal). A bitvalueisdemodulatedfromtheestimates extractedfromthecorrespondingembeddinglocationsoftheseelemen ts. This demodulationoperationmultipliestheestimatebythecarriersignal signandaddsthe result Thisdemodulationprovidesasoftestimateforeacherrorcorrectione ncodedbit. These softestimates are inputtoanerrorcorrectiondecodertoproducethe p ayload signal(410). For aconvolutional encoded payload,a Viterbi decoderis used to producethepayloadsignal,includingthechecksumorCRC. Forotherformsoferror correction,acompatibledecoderisappliedtoreconstructthepayloa d. Examplesinclude blockcodes,BCH,ReedSolomon,Turbocodes. Next,thepayloadisvalidatedbycomputingthechecksum andcomparingwith thedecodedchecksumbits(412). Thechecksum matchestheoneintheencoder,of course. Fortheexampleabove,thedecodercomputesaCRC foraportionofthepayload andcomparesitwiththeCRC portioninthepayload. Atthisstage,thepayloadisstoredinsharedmemoryofthedecoderproc ess. The recognitionunitinwhichthedecoderprocessresidesreturnsittothe controllerviaits interface.Thismaybeaccomplishedbyvariouscommunicationschemes ,suchasIPC, sharedmemory withinaprocess,DMA,etc. Technologyforso-called "sparse"markencoding(e.g.,encodingwithvariable density to adapt for visual quality and reliability)is described in, e.g., Digimarc's US PublishedPatentApplicationNos.US 2(116-0275639Al,US 2019-0171856Al,andUS 2019-0332840A1,andPCT internationalpatentapplicationno.PCT/US19/19410,filed February25,2019(publishedasWO 2019/165364),eachofwhichisherebyincorporated hereinbyreferenceinitsentirety.A sparsemarkmayincludeapatternofspatial locationswhereinkisdepositedornot(orwhereanareaisengravedorn ot).For example,asparsesignalmay becomprisedofinkdotsonalightbackground,suchthat thesignalformsapatternofsubtlydarkerspatiallocations.Thesign alisdesignedtobe sparsebythespacingapartofthedarkerlocationsonthelightbackgro und.Conversely, the signal may be designed as an array oflighter "holes"on a relatively darker background.Instillothercases,thesignalmayincludeapatternofbo thdarkerand lightersignalelements. Sparsedatasignalscanbebinary(0,1),trinary(-1,0,1),orothercoa rse quantization.Sparsesignalsaretypicallylowdensity,i.e.,lessth an50%inkorlessthan 50% space Suchasignalhasmaximum robustnessat50% soanyoptimalsparse algorithmshouldincreaseinrobustnessastheink/spacedensitytend stoward50%. Unlessotherwiseindicated,theterm "sparse"as used hereinreferstoabitonalcodein which50% orlessofthesurfacecontainsmarkingtoproduceacontrastingmark(e .g., inkonasubstrate,oralightvoidsurroundedwithcontrastingink). Moretypically,a sparsemarkhaslessthan30% ofthesurfaceso-marked,e.g.,30%-10%,withaprint densityof2-15%beingmostcommon.(N differentlevelsofprintdensitycanbedefined. Forexample,N canbe19,correspondingtoinkcoveragesof5%,10%,15%,...95%. A 5% print density is achieved by selectingthelowestvaluepixels,e.g.,subjecttoakeep- outdistanceconstraint,until5% ofthepixelshavemarks.Similarlyfor10%,15%,etc. SeeFig.9oftheWO 2019/165364publication.) II.PrintingPlateTechnology Thissectiondescribesexamplesofprintingplatesthatmaybeenhance dwith encodedsignalssuchasthosediscussedaboveinSectionI.Constructi ondetails,system componentsandbenefitsofsucharedescribedbelowinSectionIII. Exampleprintingplatesareprovidedby,e.g.,MacDermid,under the tradenames ofLUX ITP60andDigitalRAVE.Additionally,flexographicprintingplatesa re described,e.g.,inMacDermid'sUS PatentNos.10,108,087,10,429,736and10,599,035, whichareeachherebyincorporatedhereinbyreferenceinitsentirety .Examplesfrom these documents include some ofthe following. Flexographyisaprintingtechnologythatusesaprintingplatemounte dtoa printingorplatecylinder.Flexographicprintingplatescomprising ,e.g.,photopolymer, areusedforprintingonavarietyofsubstrates,e.g.,suchaslabels,t ags,paper, paperboardstock,corrugatedboard,films,foilsandlaminates.Foro urpurposeshere,a photopolymer(orlight-activatedresin)includesapolymerthatchan gesitsproperties whenexposedtolight,oftenin the ultravioletorvisible region ofthe electromagnetic spectrum. Flexographicprintingplatescanincludereliefplateswithimageele mentsraised aboveopenareas.Generally,suchaprintingplateissomewhatsoft andflexibleenough towraparoundaprintingcylinder,anddurableenoughtoprintmany(so metimes millions)ofcopies.Suchplatesofferanumberofadvantagestothepri nter,e.g.,basedon theirdurabilityandtheeasewithwhichtheycanbemade.Withreferenc etoFIG.6,an exampleflexographicprintingplateincludesamultilayeredarticle witha supportlayer or b acking 101;one or more unexposed photocurable layers 102;optionally a protective layerorslipfilm103;andoptionally,aprotectivecoversheet104. Ofcourse,aprinting plate mayincludemoreorlesslayers. Thesupport(orbacking)layer101providessupporttotheplate.Thesu pport layer101canbeformedfromatransparentoropaquematerialsuchaspap er,cellulose film,plastic,ormetal.Preferredmaterialsincludesheetsmadefrom syntheticpolymeric materialssuchaspolyesters,polystyrene,polyolefins,polyamides ,andthelike.The supportlayer101includesabottomside101Athatisnotadjacentlycou pledtoanother layersuchasthephotocurablelayers102,andatopside101Bthatis adjacently arranged toanotherlayersuchasthephotocurablelays102. Oneexamplesupportlayercomprises a flexiblefilmofpolyethyleneterephthalate(PET). Asdiscussedbelow,atransparent supportlayer101offersmanyadvantageswhenusedinconnectwithenco dedsignals. T he photocurable layer(s) 102can include any ofthe known polymers, m onomers, initiators, reactiveand/ornon-reactivediluents,fillers,anddyes.Asu sed herein,theterm "photocurable"referstoacompositionwhichundergoespolymerizati on, cross-linking,oranyothercuringor hardening reactioninresponsetoactinicradiation with the resultthatthe unexposed portions of the material can be selectively separated and removedfromtheexposed(cured)portionstoformathree-dimen sionalreliefpattern ofcuredmaterial.Exemplaryphotocurablematerialsaredisclosedin EuropeanPatent A pplicationNos.0456336A2and0640878Al toGoss,etal.,BritishPatentNo. 1,366,769,U.S.Pat.No.5,223,375toBerrier,etal.,U.S.Pat.No.3,8 67,153to MacLahan,U.S.Pat.No.4,264,705toAllen,U.S.Pat.Nos.4,323,636,4 ,323,637, 4,369,246,and4,423,135alltoChen,etal.,U.S.Pat.No.3,265,765to Holden, et al., U.S.Pat.No. 4,320,188 to Heinz,et al., U.S.Pat.No. 4,427,759 to Gruetzmacher,et al., U.S.Pat.No. 4622088toMin andUS Pat No 5135827toBohm,etal.,thesubject matterofeachofwhichishereinincorporatedbyreferenceinitsentir ety.Photocurable materialsgenerallycross-link(e.g.,cure)andhardenthroughradic alpolymerizationinat leastsomeactinicwavelengthregion.Forourpurposeshere, "actinicradiation"refersto radiationthatiscapableofpolymerizing,crosslinkingorcuringthe photocurablelayer. Actinicradiationincludes,forexample,amplified(e.g.,laser)and non-amplifiedlight, e.g.,intheultraviolet(UV)andvioletwavelengthregions. The protectivelayerorslipfilm103mayincludealayerthatprotectsthe photopolymerfromdustandincreasesitseaseofhandling.Inaconvent ional("analog") platemaking process,the slipfilmistransparenttoUV light,andtheprinterpeelsthe coversheetofftheprintingplateblank,andplacesanegativeontopof theslipfilmlayer. Theplateandnegativearethensubjectedtoflood-exposurebyUV lightthroughthe negative.Theareasexposedtothelightcure,orharden,andtheunexpo sedareasare removed(developed)tocreatethereliefimageontheprintingplate. Ina "digital"or "directtoplate"process,alaserisguidedbyanimagestoredin anelectronicdatafile,andisusedtocreateaninsitunegativeinadig ital(i.e.,laser ablatable)masking'layer,whichisgenerallyaslipfilmwhichhasbee nmodifiedto include aradiationopaque material. Portions ofthelaser ablatablelayer are thenablated byexposingthemaskinglayertolaserradiationataselectedwaveleng thandpowerof thelaser.Examplesoflaserablatablelayersaredisclosed,forexamp le,inU.S.Pat.No. 5,925,500toYang,etal.,andU.S.Pat.Nos.5,262,275and6,238,837to Fan,thesubject matter ofeach ofwhich is herein incorporated by reference in its entirety. Processingstepsforformingflexographicprintingplateswithrelie fimage printingelementsmayincludethefollowing:1)Imagegeneration,whi chmaybemask ablationfordigital "computertoplate"printingplatesornegativeproductionfor conventionalanalogplates;2)Backexposuretocreateafloorlayerin thephotocurable layerandestablishthedepthofrelief;3)Faceexposurethroughthema sk(ornegative)to selectivelycrosslinkandcureportionsofthephotocurablelayernot coveredbythemask, therebycreatingthereliefimage;4)Developmenttoremoveunexposed photopolymerby solvent(includingwater)orthermaldevelopment;and5)Ifnecessary ,postexposureand detackification. Otherprocesseshavebeendevelopedwherebyphotopolymerprintingpl atesare preparedusingheatandthedifferentialmeltingtemperaturebetween curedanduncured photopolymerisusedtodevelopthereliefimage.Thebasicparameters ofthisprocess aredescribedinU.S.Pat.Nos.7,122,295,6,773,859,5,279,697,5,17 5,072,inpublished U.S.patentpublicationNos.U.S.2006/0124009and,U.S.2010/011997 8,andinWO 01/88615,WO 01/18604,andEP 1239329,eachofwhichareincorporatedhereinby referencein its entirety.Theseprocessesallowfortheeliminationofdevelopment solventsandthelengthyplatedryingtimesneededtoremovethesolven t. III.EncodingSignalsonPrintingPlatestoEnableIdentification,Tr ackingand Manageme nt Identifying,trackingandmanagingprintingplatesthroughouttheir expected lifecycleiscriticaltoensurequalitycontrol,properuse,storage, and accurate plate impression monitoring. Forexample,oncereceivedfromamanufacture,aprintingplate isformedtoinclude3D reliefprintingelements,inspected,mountedforprintingona press,unmounted,cleaned,andstoredforfutureprintruns.Theprint ingplateneedstobe tracked,managed,maintained,looked after and monitored throughout this process. EmbodimentOne An indelibleidentifier—carriedbyanencodedsignaland,inthisfirs t embodiment,printed,engraved,etchedorablatedwithinorontheprin tingplateitself— providesabackbonetouniquelyandpersistentlyidentifyaprintingp latethroughoutits lifecycle. A printingplateisassignedauniqueidentifierduringthemanufacturi ngprocess orshortlythereafter.Theidentifierispreferablycarriedbyanenco ded signal as discussedinSectionI eg asocalledsparsemarkhavingasignalelementdensity adapted for visualqualityandreliability.Inthiscase,weprefertoweightrobus tnessover visualquality.Onceformed,thesparsemarkpatternisprinted(e.g., usinganinkjet printer)orlaseretched/engravedonsupportlayerorbacking101,and inthis embodiment,preferablyonthebottomside101A(alsocalled "outside").Inafirst implementationusinginkjet,weprintusingoneormoreinkswithastro ngadhesion property,e.g.,a UV curableink. A first set ofUV curable inks is the Uvijet KV,KN and/or KOinks provide by FujiFilm,NorthAmericaCorporation,GraphicSystems Division,withofficesinTempe,AZ,USA,includingproductnumbersKV 052Yellow, KV867 Magenta,KV215 Cyan,KV004Black,KV021 White,K0215Cyan,K0052 Yellow,K0004Black,K0867Magenta, 101215 Cyan,KN052Yellow,KNO04Black, KN867 Magenta,KN335 LightMagenta,andKN255 LightCyan. TheUvijetKV,KN and/orKO inkscanbeprintedusing,e.g.,FujifilmAcuityUV inkjetprintersorwith piezodrop-on-demandprintheads.Seealsotheprintheaddiscussedin US PatentNo. 9,227,394,which isherebyincorporatedhereinbyreference. OtherUV curableinksare providedby,e.g.,AGFA withofficesinElmwoodPark,NJ,USA. Visually,thesparsemarkpatternmaylooklikearandompatternofinkd ots occupyingasomeorallofthebottomside10I,A(seeFIG.7A,corners)Th eidentifier itselfincludes a plurality ofn-bits,e.g., 16-256 bits,which may be further error corrected and expandedasdiscussedabove.Alsorecallthatthepayloadisrep eated,e.g.,tiled, withintheencodedsignal.Sothereisanadvantageofprinting,engrav ingoretchinga largeportion(30-75%,andevenmorepreferably,50-90%)ofthesurfac eareaofbottom side101A withthesparsemarksignal.A detectorneednot analyzeimage data corresponding to the entire bottomside101A,butonlyportionofsuchtograbasingle instance ofsuchatile.Thus,thisallowsforaquickimagecaptureofonly aportionofthe bottomside101Atodecodethecarriedidentifier. Repeatingthesignalontheplatealsofacilitatesplateassociationi ntheeventthat aplateiscutorotherwisedividedandimageformation.Forexample,th eplatemay includeduplicateimagesthatareseparatedpriortoattachmenttoapr intcylinder.Or, if portions are trimmed from the plate,the portions can be identified with their host plate. Inotherimplementations,thesparsemarkisprinted,engraved,ablat edoretched intooneormorepredeterminedlocationsofthebottomside.Forexampl e,thesparse markisprovidedinoneormorecornerareasofbottomside101A. FIG.7A showsthis arrangement,fromtheviewpointoflookingattheprintingplatefromt hebottomside 101A,withsparsemarkinginthecornerareas. Theidentifierisreadablefromanalysisofimagedatarepresentingso meorallof theencodedsignalonthebottomside101A. Forexample,imagedatacapturedbyan AppleiPhoneoranAndroidpowereddevicetakesapictureorvideoofapo rtionofthe printingplate.Thiscapturedimagedatacanbeprocessedastheencode dhostsignal240 inFIG.2andanalyzedaccordinglytovalidatetheidentifier,e.g.,as discussedwith referencetoFIG.5. Ourpreferredprintingplateforthisfirstembodimentincludesalltr ansparent materialsforlayers101-104.Thisallowsfordetectionfromimagedat acapturedofthe sparse mark signalfrom the top side (FIG.8),through the transparentlayered plate structure104-101,tocapturetheprinting,engraving,ablationoret chingonthebottom side101A. Preferably,thesparsemarkisalsodetectablefromimagedatacapture dfrom thebottomside101A.Toaccommodatereadingfrombothsides,asignald etector(ora p reprocessingmodule)analyzestwoormoreversionsoftheimage dataasshowninFIG. 9. Thisisbecausethesignalwillappearreversedinatopcaptureifprint edfordetection onthebottomside101A,andviceversa.Thus,theoriginalversionofth eimagedataand amirrorversionoftheimagedataareanalyzedtodecodethesignal.The detectioncanbe stagedorprocessedinparallel.Forexample,ifanunsuccessfuldecod eresultsfromthe original version ofthe image data,the mirrored version oftheimage data is processed. Or,ifamorelikelyimagecapturescenarioisthroughtheprintingplat e,themirrored versioncanbeprocessedfirstandthentheoriginalversion.Parallel processingofboth imagecaptureversionsisalsoenvisioned.(Forourpurposeshere,ami rrorimage versionmayincludeahorizontalflip,averticalflip,orboth.) The unique ide»tifc may include one or more fields, and can be used as an index into a data repository to access related information. For example, the identifier may carry plate identifier and or other information:

The plate’s unique identifier provides a backbone for a data management system, liter example, the uteque identifier is associated with a data record to manage the lifecycle of its cormspoading plate. 1'Ite data record may provide the foil owing information, which can be updated to reflect the states of a printing plate. For example, the record may include one or mere of the following fields: Consider a system using such technology. The system includes or communicates with a plurality of an image capture devices, e.g'., an iOS or Android smartphones, tablets or scanners. Such devices include one or more cameras, e.g., a CMOS or CCD based camera arrays. An image capture device includes or communicates with a signal decoder, e.g., as discusses: above in Section I. The system also includes a data record system, having a plurality of configurable data records, and a user interface to allow user access orcreationofsuchdatarecords.Thedatarecordsystemcanbemaintain edonacloud- basednetwork,accessibleviacellserviceortheinternet,orhousedl ocallyonacompany server(andaccessiblevia,e.g.,WIFI). Ataprintingpress,anew printingplateisunpackaged,anditsencodedsignalis scanned with theimage capture device(e.g., imagery is captured representing a portion of theprintedsparsemarkpattern).Thedecoderanalyzesthecapturedim agerytovalidatea uniqueidentifiercarriedbythesparsemark,andprovidessuchtothed atarecordsystem. Theuserinterfacefacilitatesdataentryofinformationassociatedw ithaprintrunusing thatprintingplate. Forexample,printjob,customerinformation,colororink information,numberofimpressions,etc.Thesystemcanbeconfigured todisplayor otherwiseprovideaccesstoadatarecordassociatedwithanidentifie reachtimean identifierisreceivedfromanimagecapturedevice. Thedatarecordsystemallowsreal-timetrackingofaprintingplate.F or example, anoperatorscanstheplatetoobtaintheidentifierpriortoand/oraft ertheplateentersa station.Theidentifierisusedtoaccessanassociateddatarecord,an dtheoperatormaybe presentedwitha "check-in/check-out"interface,whichallowsthemtoscrollorother wise select an appropriate station(e.g., plate forming,inspection,plate mounting,plate cleaning)orstoragelocation(row/rackorotherstoragearea).Theda tarecordcanbe constructedtofollowaprocessflow,wherestationcheckinwillbepro hibitedunlessit wasfirstcheckoutofapreviousstation.Lateron,whenlookingforapl ateorprintjob, the status can be queried within the data record system to find thelastscanned location. Thedatarecordalsoprovidesanupdateablefieldtotrackprintimpres sions, whichhelpsmanagethenumberofprintsmadefromaplate. Afteraprintrun,theplate canberescannedtoaccessthedatarecord(orthedatarecordotherwise accessed)andthe numberofprintimpressionscanberecorded.(Insomecases,theprinti ngpressprovides thisinformationdirectlytothedatarecord.)Thedatarecordcanalso accommodate expirationinformation,tonotifyauserifa plate hasreacheda predetermined numberof impressions(e.g.,1-2 million impressions)or has extended use beyond a shelflife date. EmbodimentTwo ThisrdEmbodimentincorporatesthedetailsfromthe1stEmbodimentun less notedotherwise. Insteadofprintinganencodedsignalonaflexographicphotopolymerp rinting plateasinEmbodimentone,theencodedsignalisformedinreliefwithi ntheplateitself. Recallfromabovethatanimageisusedtoguidephoto-exposureofaprin tingplateto form3D reliefprintingelementsthereon.Thatimagemayincludeaprintedima geregion inwhichartwork,text,graphics,etc.maybeprinted.Theprintedimag eregionincludes all the stuff that will be seen,e.g., when a resulting print is used for packaging or labels. Theimagemayalsoincludeoneormoreprintcontrolstripslocatedouts idetheprinted imageregion.Inafirstimplementationofthis 2nd Embodiment,theimageincludes(oris updated to include)anencodedsignalwithinoradjacenttothecontrolstr ip.For example,thetechnologydescribedabovewithrespecttoFIGS.1and3,a ndwiththe sparsemarkdescription,canbeusedtogenerateasignal.Theprinting platewillinclude theencodedsignalwhenitisformedbasedontheimage.Thereafter,ani magecapture devicecancaptureanimageoftheencodedsignalwithintheprinting plate to obtain the identifier. Inasecondimplementationofthis 2nd Embodiment,theencodedsignalisformed withintheprintedimageregion.Inthiscase,iftheimagetobecarried bytheprinting plate already includes an encoded signal, such an encoded signal can be used as a part of orotherassociatedwiththeuniqueidentifier. Thereareadvantagestohavingtheencodedsignalformedwithinthepro cessed printingplate.Oneexampleissurvivabilityofthesignalthroughmul tiplecyclesofa printingplatecleaningprocess. Sincetheencodedsignalisrepresentedwithinthe formedprintingplatebyreliefsignalelements,justlikeartwork, images and text,the encoded signal shouldwearatrelativelythesamepaceastheartwork. Whereasinkmay degradeafterseveralcleanings,theformedinencodedsignalshouldr emainconsistently robustwithotherformedreliefprintelements. EmbodimentThree This3rdEmbodimentincorporatesthedetailsfromthe1Stand2ndEmbod iments unlessnotedotherwise. TheuniqueidentifierisassociatedwithorservesasaserializationI D,andcanbe applied(e.g.,viainkjetorlaserablation)attimeofmanufacture,pr iortoshippingor uponuseataprintingpress.ThetechniquesdiscussedinDigimarc'sUS PatentNo. 10,235,731forpayloadandorientationsignalusagefordigitalwater markserialization canbeusedhere.The 10,235,731patentisherebyincorporatedherebyreferenceinits entirety.Serializationallowsforpreciseplatetrackingandinvent orycontrol. Serializationwithinaplatecanbegranular,e.g.,differentsection softheplatecan includedifferentpayloads. Orthedifferentsectionsmayincludethesamebase identifier,butincludeauniquesubsection identifier. A payloadschemeexampleis providedbelowfor3uniquesubsections: Insteadofusingsubsectionidentifiers,theorientationcomponenti tselfmay conveypositioninformationwithintheplate.Forexample,theorient ationsignalmay establishabasespatialreferencepointontheplate,e.g.,atthetopl eftorrightcornerof the plate (oratthecenteroftheplate,etc.).Therelativepositionofth eorientationsignal withinatilecanthenprovidespatiallocationinformationwhendecod ed.Soifpiecesof theplatearetrimmedorotherwiseseparated,theorientationsignalc anbedecodedand usedtoobtainrelativespatialpositionofthetile. EmbodimentFour T his 4th Embodiment incorporatesthedetailsfromthelstand3rdEmbodiments u nless noted otherwise. A printingplateisassignedauniqueidentifierduringthemanufacturi ngprocess. The identifierispreferablycarriedbyanencodedsignalasdiscussedinS ectionI,e.g.,a so-calledsparsemarkhavingasignalelementdensityadaptedforvisu alqualityand reliability.Inthiscase,we prefertoweightrobustnessovervisualquality.Onceformed, thesparsemarkpatternisprinted(e.g.,usinganinkjetprinter)orla seretched/engraved on supportlayerorbacking101,andinthis4thEmbodiment,onthetopside 101B(also calledthe "inside")oflayer101.Thatis,printingoccursontheinsideofsuppor tlayer, e.g.,apolyesterfilm,itself,andthenaphotocurablematerialisext rudedorotherwise providedontopoftheprinting. Inafirstimplementationusinginkjet,andpriortoextrudingorother wise providingphotocurablelayer(s)102ontotopside101B,weprintusing oneormoreinks withastrongadhesionproperty,e.g.,aUV curableink. A firstsetofUV curableinksis theUvijetKV,KN and/orKO inksprovidebyFujiFilm,NorthAmericaCorporation, GraphicSystemsDivision,withofficesinTempe,AZ,USA,includingpr oductnumbers KV052 Yellow,KV867Magenta,KV215Cyan,KV004Black,KV021 White,K0215 Cyan,K0052Yellow,K0004Black,K0867Magenta,KN215Cyan,KN052Yell ow, KNO04 Black,KN867 Magenta,KN335LightMagenta,andKN255LightCyan. The UvijetKV,KN and/orKO inkscanbeprintedusing,e.g.,FujifilmAcuityUV inkjet printersorwithpiezodrop-on-demandprintheads.Seealsotheprinth eaddiscussedinUS PatentNo.9,227,394,whichisherebyincorporatedhereinbyreferenc e. OtherUV curableinksareprovidedby,e.g.,AGFA withofficesinElmwoodPark,NJ,USA. A UV curableinkthencanbecuredonthetopside101B. Insecondimplementation,and priortoextrudingorotherwiseprovidingphotocurablelayer(s)102o ntotopside101B, aninkjetprintswithnon-UV curableink.Thearrangementofthecodewithlayersof materialonbothsidesmay protectthecodeduringitslifecycle. Visually,thesparsemarkpatternmaylooklikearandompatternofinkd ots occupyingasomeorallofthetopside101B.FIG.7B showsthisarrangement,fromthe viewpointoflookingattheprintingplatefromthetopside101B,perha pseventhrough layers103and104.Inotherimplementations,thesparsemarkisprinte d,engraved, ablatedoretchedintooneormorepredeterminedlocationsofthebotto mside101B. For example,thesparsemarkisprovidedinoneormorecornerareasoftopsi de101B. Theidentifierisreadablefromanalysisofimagedatarepresentingso meorallof theencodedsignalonthetopside101B. Forexample,imagedatacapturedbyanApple i Phone or an Android powered device takes a picture or video ofa portion ofthe printing plate.Thiscapturedimagedatacanbeprocessedastheencodedhostsig nal240inFIG.2 andanalyzedaccordinglytovalidatetheidentifier,e.g.,asdiscuss edwithreferenceto FIG.5. Ourpreferredprintingplateforthis4thEmbodimentincludesalltran sparent materialsforlayers101-104.Thisallowsfordetectionofacodefromi magedata capturedofthesparsemarksignal(FIG.8),throughthetransparentla yeredplate structure104-101,tocapturetheprinting,engraving,ablationoret chingonthetopside 101B.Preferably,thesparsemarkprintedontoplayer101Bisalsodete ctablefrom imagedatacapturedfromthebottomside101A.Toaccommodatereadingf romboth sides,asignaldetector(orapreprocessingmodule)analyzestwoormo reversionsofthe i mage data as shown in FIG.9. This is because the signal will appear reversed in a bottomsidecaptureifprintedfordetectiononthetopside101B,andvi ceversa.Thus, theoriginalversionoftheimagedataandamirrorversionoftheimaged ataareanalyzed todecodethesignal.Thedetectioncanbestagedorprocessedinparall el.Forexample, ifanunsuccessfuldecoderesultsfromtheoriginalversionoftheimag edata,themirrored versionoftheimagedataisprocessed.Or,ifamorelikelyimagecaptur escenariois throughtheprintingplate,themirroredversioncanbeprocessedfirs tandthenthe o riginal version.Parallel processingofbothimagecaptureversionsisalsoenvisioned. (Forourpurposeshere,amirrorimageversionmayincludeahorizontal flip,avertical flip orboth) Therearemanyadvantagestoprinting,engravingorablatingamachine -readable codeonthetopsideoflayer101(i.e.,topside101B). Forexample,duringacleaning, mountingorhandlingstage,thecodeisprotectedandinsulatedbyplat e material(s),thus avoiding direct contact and preventingdamageandwear.Anotherbenefitisthatthe encodedsignalisinherentwithintheplatewhenacustomerreceivesit fromaplate manufacturer. IV.OperatingEnvironmentsforSignalEncodingDecoding,andData Record System Thecomponentsandoperationsofthevariousdescribedembodimentsan d implementationsshowninfiguresand/ordiscussedintextabove,canb eimplementedin modules. Notwithstandinganyspecificdiscussionofthe embodiments setforth herein, the term "module" may referto software,firmwareand/orcircuitryconfiguredtoperform anyofthemethods,processes,algorithms,functionsoroperationsde scribedherein. Softwaremaybeembodiedasasoftwarepackage,code,instructions,in structionsets,or data recorded on non -transitorycomputerreadablestoragemediums. Software i nstructionsforimplementingthedetailedfunctionalitycanb eauthoredbyartisans withoutundueexperimentationfromthedescriptionsprovidedherein ,e.g.,writteninC, C++,Objective-C,andC#,Ruby,MatLab,VisualBasic,Java,Python,Tc l,Perl,Scheme, andassembledinexecutablebinaryfiles,etc.,inconjunctionwith associated data. Firmware may beembodiedascode,instructionsorinstructionsetsordatathatareh ard- coded(e.g.,nonvolatile)inmemorydevices.Asusedherein,theterm "circuitry"may include,forexample,singlyorinanycombination,hardwiredcircuit ry,programmable circuitrysuchasoneormorecomputerprocessorscomprisingoneormor eindividual instructionprocessingcores,parallelprocessors,statemachine circuitry, orfirmwarethat storesinstructionsexecutedbyprogrammable circuitry. A pplicant's work alsoincludestakingthescientificprinciplesandnaturallawson which the present technologyrestsandtyingthemdowninparticularlydefined implementations Forexample thesystemsandmethodsdescribedwithreferenceto FIGS. 1-5,8 and 9,sparse marks, and Table 2. Onesuch realization ofsuch implementationsiselectroniccircuitrythathasbeencustom-design edandmanufactured toperformsomeorallofthecomponentacts,asanapplicationspecific integratedcircuit (ASIC). Torealizesuchimplementations,someorallofthetechnologyisfirst implementedusingageneralpurposecomputer,usingsoftwaresuchasM atLab(from MathWorks,Inc.). A toolsuchasHDLCoder(alsoavailablefromMathWorks)isnext employedtoconverttheMatLab modeltoVHDL(anIEEEstandard,anddoubtlessthe mostcommon hardwaredesignlanguage).TheVHDL outputisthenappliedtoa h ardware synthesisprogram,suchasDesignCompilerbySynopsis,HDL Designerby MentorGraphics,orEncounterRTL CompilerbyCadenceDesignSystems. The hardwaresynthesisprogramprovidesoutputdataspecifyingaparticu lararrayof electroniclogicgatesthatwillrealizethetechnologyinhardwarefo rm,asaspecial- p urpose machine dedicated to such purpose. This output data is then provided to a semiconductorfabricationcontractor,whichusesittoproducethecu stomizedsilicon part.(SuitablecontractorsincludeTSMC,GlobalFoundries,andON Semiconductors.) Anotherspecificimplementationofthepresentdisclosureincludesa spectsofthe data record system hosted on a specifically configured smartphone(e.g.,iPhone 11 or Androiddevice)orothermobiledevice,suchphoneordevice.Thesmart phoneormobile devicemaybeconfiguredandcontrolledbysoftware(e.g.,anApporope ratingsystem) residentonthesmartphonedevice. Stillanotherspecificimplementationofthepresent disclosure includes aspects ofthe data record system operating in a cloud environment, e.g.,Amazon CloudorMicrosoftAzureenvironments. Multipleprocessorscanbeused toreduceoverallprocessingtime. Themethods,processes,components,technology,apparatusandsyste ms describedabovemaybeimplementedinhardware,softwareoracombinat ionof hardwareandsoftware. Forexample,thecolormanagedembeddingandoptimizations may beimplementedinsoftware,firmware,hardware,combinationsofsoft ware, firmwareandhardware,aprogrammablecomputer,electronicprocessi ngcircuitry, digital signal processors(DSP),FPGAs,graphicprocessingunits(GPUs),a programmablecomputer,electronicprocessingcircuitry,and/orbye xecutingsoftwareor instructionswithaoneormoreprocessorsincludingparallelprocess ors,multi-core processor(s)and/orothermulti-processorconfigurations. Conclud ing Remarks Havingdescribedandillustratedtheprinciplesofthetechnologywit hreferenceto specificimplementations,itwillberecognizedthatthetechnologyc anbeimplementedin manyother,different,forms. Toprovideacomprehensivedisclosurewithoutunduly lengtheningthespecification,applicantherebyincorporatesbyref erenceeachofthe abovereferencedpatentdocumentsinitsentirety. Theparticularcombinationsofelementsandfeaturesintheabove-det ailed embodimentsareexemplaryonly;theinterchangingandsubstitution ofthese teachings with other teachingsinthisandtheincorporated-by-referencepatentsa nddocumentsare alsocontemplated.