Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ESTER QUATERNARY MIXTURES
Document Type and Number:
WIPO Patent Application WO/2001/093653
Kind Code:
A2
Abstract:
The invention relates to ester quaternary mixtures, containing (c) ester quaternaries with an acyl component which is derived from C¿6?-C¿18? fatty acids and (d) ester quaternaries with an acyl component which is derived from C¿18?-C¿22? fatty acids.

Inventors:
BIGORRA LLOSAS JOAQUIM (ES)
AMELA CONESA CHRISTINA (ES)
PI SUBIRANA RAFAEL (ES)
Application Number:
PCT/EP2001/006126
Publication Date:
December 13, 2001
Filing Date:
May 30, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COGNIS DEUTSCHLAND GMBH (DE)
BIGORRA LLOSAS JOAQUIM (ES)
AMELA CONESA CHRISTINA (ES)
PI SUBIRANA RAFAEL (ES)
International Classes:
A61K8/30; A61K8/40; A61K8/45; A61K8/72; A61K8/92; A61Q5/00; A61Q5/02; A61Q5/12; A61Q19/00; C07C217/08; C07C219/06; C07C219/08; C07C229/06; C07C233/35
Domestic Patent References:
WO1995010500A11995-04-20
WO2000034225A12000-06-15
WO1994021593A11994-09-29
Foreign References:
EP0798287A11997-10-01
EP1006176A12000-06-07
EP0902008A21999-03-17
Other References:
R.PUCHTA ET AL., TENS.SURF.DET., vol. 30, 1993, pages 186
M.BROCK, TENS.SURF.DET., vol. 30, 1993, pages 394
R.LAGERMAN ET AL., J.AM. OIL.CHEM.SOC., vol. 71, 1994, pages 97
SHAPIRO, COSM.TOIL., vol. 109, 1994, pages 77
COSM.TOIL., vol. 108, 1993, pages 95
TODD ET AL., COSM.TOIL., vol. 91, 1976, pages 27
P.FINKEL, SÖFW-JOURNAL, vol. 122, 1996, pages 543
R.LOCHHEAD, COSM.TOIL., vol. 108, 1993, pages 95
J.SOC.COSM.CHEM., vol. 24, 1973, pages 782
Download PDF:
Claims:
Patentansprüche
1. Esterquatmischungen, enthaltend (a) Esterquats, deren Acylkomponente sich von C6C18Fettsäuren ableitet und (b) Esterquats, deren Acylkomponente sich von Ci8C22Fettsäuren ableitet.
2. Esterquatmischunen nach Anspruch 1, dadurch gekennzeichnet, dass sich die Acyl komponente (a) von Kokosfettsäuren mit 8 bis 18 Kohlenstoffatomen ableitet.
3. Esterquatmischungen nach den Ansprüchen 1 und/oder 2, dadurch gekennzeich net, dass sich die Acylkomponente (b) von Stearinsäure und/oder Behensäure ableitet.
4. Esterquatmischungen nach mindestens einem der Ansprüche 1 bis 3, dadurch ge kennzeichnet, dass sie die Acylkomponenten (a) und (b) im Gewichtsverhältnis 60 : 40 bis 95 : 5 enthalten.
5. Esterquatmischungen nach mindestens einem der Ansprüche 1 bis 4, dadurch ge kennzeichnet, dass die Acylkomponenten zusammengenommen die folgende Zu sammensetzung aufweisen : C6 0 bis 2 Gew.% C8 0 bis 2 Gew.% Cl0 0 bis 2 Gew.% C12 20 bis 40 Gew.% CI4 20 bis 45 Gew.% C16 0 bis 25 Gew.% Ci8 0 bis 40 Gew.% C20 0 bis 1 Gew.% C22 0 bis 40 Gew.% mit den Maßgaben, dass sich die Mengenangaben zu 100 Gew.% ergänzen und die Summe C6C16 mindestens 60 Gew.% und die Summe C18C22 mindestens 5 Gew.% ausmacht.
6. Verwendung von Esterquatmischungen nach Anspruch 1 zur Herstellung von kosmeti schen Zubereitungen.
Description:
Esterquatmischungen Gebiet der Erfindung Die Erfindung befindet sich auf dem Gebiet der Kosmetik und betrifft neue Abmischungen von Esterquats unterschiedlicher Acylkettenlänge.

Stand der Technik Im Bereich der Haar-und Hautpflegemittel haben in den letzten Jahren kationische Tenside vom Typ der Esterquats einen festen Platz erobert, da sie gegenüber konventionellen Tetraalkylammoniumverbindungen über eine verbesserte biologische Abbaubarkeit verfügen und sich gegenüber den QAV auch in der sensorischen Bewertung als überlegen erweisen.

Im Handel befindlich sind insbesondere solche Esterquats, die sich vom Triethanolamin und kurz-bzw. mittelkettigen Fettsäuren ableiten. Während der Bereich der Textilavivage von solchen Produkten dominiert wird, die sich von Fettsäuren mit 16 bis 18 Kohlenstoffen ab- leiten, vor allem von der Palm-und der Talgspaltfettsäure, haben sich für den Bereich der Kosmetik die kürzerkettigen Esterquats als eher geeignet erwiesen. So sei beispielsweise auf das Produkt Dehyquart L 80 der Cognis Deutschland GmbH verwiesen, welches ein Ester- quat auf Basis Kokosfettsäure gelöst in Propylenglycol darstellt [vgl. EP 0902008 A2, Cognis). Obschon das Produkt über ausgezeichnete anwendungstechnische Eigenschaften verfügt, besteht doch der Wunsch, diese Eigenschaften in geeigneter Weise zu verbessern und insbesondere die Kämmbarkeit zu erleichtern und die statische Aufladung weiter herab- zusetzen Die Aufgabe der vorliegenden Erfindung hat demzufolge darin bestanden, die sensorischen Eigenschaften von Esterquats auf Basis von Kokosfettsäure zu verbessern.

Beschreibung der Erfindung Gegenstand der Erfindung sind Esterquatmischungen, enthaltend (a) Esterquats, deren Acylkomponente sich von Ce-Cis-Fettsäuren ableitet und (b) Esterquats, deren Acylkomponente sich von Cl8-C22-Fettsäuren ableitet.

Vorzugsweise leitet sich die Acylkomponente (a) von Kokosfettsäuren mit 8 bis 18, insbeson- dere 12 bis 16 Kohlenstoffatomen und die Acylkomponente (b) von Stearinsäure und/oder Behensäure ab, wobei technische Qualitäten letzterer noch einen Anteil an Arachinsäure aufweisen können.

Überraschenderweise wurde gefunden, dass die neuen Abmischungen gegenüber konventio- nellen Esterquats des Handels verbesserte sensorische Eigenschaften aufweisen und insbe- sondere die Haaravivage, die Kämmbarkeit und den Glanz verbessern.

Esterquats Unter der Bezeichnung"Esterquats"werden im allgemeinen quaternierte Fettsäuretrietha- nolaminestersalze verstanden. Es handelt sich dabei um bekannte Stoffe, die man nach den einschlägigen Methoden der präparativen organischen Chemie erhalten kann. In diesem Zu- sammenhang sei auf die Internationale Patentanmeldung WO 91/01295 (Henkel) verwie- sen, nach der man Triethanolamin in Gegenwart von unterphosphoriger Säure mit Fettsäu- ren partiell verestert, Luft durchleitet und anschließend mit Dimethylsulfat oder Ethylenoxid quaterniert. Aus der Deutschen Patentschrift DE 4308794 Cl (Henkel) ist überdies ein Verfahren zur Herstellung fester Esterquats bekannt, bei dem man die Quaternierung von Triethanolaminestern in Gegenwart von geeigneten Dispergatoren, vorzugsweise Fettal- kohlen, durchführt. Übersichten zu diesem Thema sind beispielsweise von R. Puchta et al. in Tens. Surf. Det., 30, 186 (1993), M. Brock in Tens. Surf. Det. 30, 394 (1993), R. Lagerman et al. in J. Am. Oil. Chem. Soc., 71, 97 (1994) sowie I. Shapiro in Cosm. Toil.

109r 77 (1994) erschienen. Die nachfolgend beschriebenen Esterquats stellen geeignete Strukturen sowohl für die Komponente (a) als auch für die Komponente (b) dar und unter- scheiden sich dann lediglich in der Länge des Acylrestes. Wenn also im folgenden von der Länge von Acylresten die Rede ist, so bezieht sich diese Angabe stets auf die Acylkompo- nente der Komponenten (a) und (b) zusammengenommen.

Die quaternierten Fettsäuretriethanolaminestersalze folgen beispielsweise der Formel (I), in der R'CO für einen gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlen- stoffatomen, W und R3 unabhängig voneinander für Wasserstoff oder R'CO, R4 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine (CH2CH2O) qH-Gruppe, m, n und p in Sum- me für 0 oder Zahlen von 1 bis 12, q für Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht. Zur Herstellung der quaternierten Ester können die Fettsäuren und das Triethanolamin im molaren Verhältnis von 1,1 : 1 bis 3 : 1 eingesetzt werden. Im Hin- blick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatz- verhältnis von 1,2 : 1 bis 2,2 : 1, vorzugsweise 1,5 : 1 bis 1,9 : 1 als besonders vorteilhaft erwiesen. Die bevorzugten Esterquats stellen technische Mischungen von Mono-, Di-und Triestern mit einem durchschnittlichen Veresterungsgrad von 1,5 bis 1,9 dar. Aus anwen- dungstechnischer Sicht haben sich quaternierte Fettsäuretriethanolaminestersalze der Formel (I) als besonders vorteilhaft erwiesen, in der R'CO für einen Acylrest mit 12 bis 22 Kohlen- stoffatomen, R2 für R'CO, R3 für Wasserstoff, R4 für eine Methylgruppe, m, n und p für 0 und X für Methylsulfat steht.

Neben den quaternierten Fettsäuretriethanolaminestersalzen kommen als Esterquats ferner auch quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen der Formel (II) in Be- tracht, in der R'CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder R'CO, R4 und R5 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.

Als weitere Gruppe geeigneter Esterquats sind schließlich die quaternierten Estersalze von Fettsäuren mit 1,2-Dihydroxypropyidialkylaminen der Formel (III) zu nennen,

in der R'CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder R1CO, R4, R6 und R7 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.

Des weiteren kommen als Esterquats noch Stoffe in Frage, bei denen die Ester-durch eine Amidbindung ersetzt ist und die vorzugsweise basierend auf Diethylentriamin der Formel (IV) folgen, in der R'CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder R'CO, R6 und R7 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.

Schließlich kommen als Esterquats auch Stoffe in Frage, die auf Basis von ethoxyliertem Ri- cinusöl oder dessen Härtungsprodukten erhältlich sind und vorzugsweise der Formel (V) folgen, in der WCO für einen gesättigten und/oder ungesättigten ethoxylierten Hydroxyacylrest mit 16 bis 22, vorzugsweise 18 Kohlenstoffatomen sowie 1 bis 50 Oxyethyleneinheiten, A für einen linearen oder verzweigten Alkylenrest mit 1 bis 6 Kohlenstoffatomen, R9, Rl° und Rll unabhängig voneinander für Wasserstoff oder eine Alkylgruppe mit 1 bis 4 Kohlenstoffato- men, Rl2 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder einen Benzylrest und X für Halogen, Alkylsulfat oder Alkylphosphat steht.

Hinsichtlich der Auswahl der bevorzugten Fettsäuren und des optimalen Veresterungsgrades gelten die für (I) genannten Beispiele auch für die Esterquats der Formeln (II) bis (V).

Zur Herstellung der Esterquats der Formeln (I) bis (V) kann sowohl von Fettsäuren als auch den entsprechenden Triglyceriden ausgegangen werden. Ein solches Verfahren, das steller- tretend für den entsprechenden Stand der Technik genannt werden soll, wird in der europäi- schen Patentschrift EP 0750606 Bl (Cognis) vorgeschlagen. Ebenfalls ist es möglich, die Kondensation der Alkanolamine mit den Fettsäuren in Gegenwart definierter Mengen an Di- carbonsäuren, wie z. B. Oxalsäure, Malonsäure, Bernsteinsäure, Maleinsäure, Fumarsäure, Glutarsäure, Adipinsäure, Sorbinsäure, Pimelinsäure, Azelainsäure, Sebacinsäure und/oder Dodecandisäure durchzuführen. Auf diese Weise kommt es zur einer partiell oligomeren Struktur der Esterquats, was sich insbesondere bei Mitverwendung von Adipinsäure auf die Klarlöslichkeit der Produkte vorteilhaft auswirken kann.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung können die Mischungen die Komponenten (a) und (b) im Gewichtsverhältnis 60 : 40 bis 95 : 5, vorzugsweise 70 : 30 bis 90 : 10 und insbesondere 75 : 25 bis 80 : 20 enthalten. Weiterhin bevorzugt sind solche Mischungen, bei denen die Acylkomponenten zusammengenommen die folgende Zusam- mensetzung aufweisen : C6 0 bis 2 Gew.-% C8 0 bis 2 Gew.-% Cl0 0 bis 2 Gew.-% C12 20 bis 40, vorzugsweise 25 bis 35 Gew.-% C14 20 bis 45, vorzugsweise 25 bis 35 Gew.-% C16 0 bis 25, vorzugsweise 1 bis 15 Gew.-% Cis 0 bis 40, vorzugsweise 0 bis 20 Gew.-% C20 0 bis 1 Gew.-% C22 0 bis 40 vorzugsweise 5 bis 30 Gew.-% mit den Maßgaben, dass sich die Mengenangaben zu 100 Gew.-% ergänzen und die Summe Cl-de mindestens 60 Gew.-% und die Summe Ci8-Cz2 mindestens 5 Gew.-% ausmacht. Die erfindungsgemäßen Zubereitungen können durch Ausmischen der Komponenten (a) und (b) hergestellt werden, einfacher-und daher bevorzugt-ist es jedoch, die entsprechenden Mischungen auf der Basis der Fettsäuren herzustellen und diese dann zu verestern und zu quaternieren.

Gewerbliche Anwendbarkeit Die neuen Esterquatgemische zeichnen sich durch besondere sensorische Eigenschaften aus. Ein weiterer Gegenstand betrifft daher ihre Verwendung zur Herstellung von kosmetischen Zubereitungen, insbesondere Haut-und Haarbehandlungsmitteln, in denen sie in Mengen von 1 bis 25, vorzugsweise 2 bis 15 und insbesondere 3 bis 10 Gew.-%-bezogen auf die Mittel-enthalten sein können.

Kosmetische Zubereitungen Die erfindungsgemäßen Esterquatgemische können zur Herstellung von kosmetischen Zube- reitungen, wie beispielsweise Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/Fett-Massen, Stiftpräparaten und dergleichen dienen. Diese Mittel können ferner als weitere Hilfs-und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Kon- sistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconver- bindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV-Licht- schutzfaktoren, Antioxidantien, Deodorantien, Antitranspirantien, Antischuppenmittel, Film- bilder, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentie- rungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.

Tenside Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder ampho- tere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsul- fonate, Alkylethersulfonate, Glycerinethersulfonate, a-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hy- droxymischethersulfate, Monoglycerid (ether) sulfate, Fettsäureamid (ether) sulfate, Mono-und Dialkylsulfosuccinate, Mono-und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, E- thercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretau- ride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und

Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanz- liche Produkte auf Weizenbasis) und Alkyl (ether) phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fett- säureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw.

Mischformale, gegebenenfalls partiell oxidierte Alk (en) yloligoglykoside bzw. Glucoronsäure- derivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxi- de. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typi- sche Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkyl- amidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hin- sichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten bei- spielsweise Falbe (ed.),"Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder 3. Falbe (ed.),"Katalysatoren, Tenside und Mineralöl- additive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d. h. besonders hautverträgliche Tenside sind Fettalkoholpoly- glycolethersulfate, Monoglyceridsulfate, Mono-und/oder Dialkylsulfosuccinate, Fettsäurei- sethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, a-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoace- tate und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenpro- teinen.

Olkörper Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit li- nearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-Cl3- Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z. B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristyl- rucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, I- sostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleyl-

palmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmy- ristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Ci8-C38-Alkylhy- droxycarbonsäuren mit linearen oder verzweigten C6-C2z-Fettalkoholen (vgl. DE 19756377 At), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z. B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-Cio-Fettsäuren, flüssige Mono-/Di- /Triglyceridmischungen auf Basis von Ce-Cis-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Cl2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Koh- lenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und ver- zweigte C6-C22-Fettalkoholcarbonate, wie z. B. Dicaprylyl Carbonate (Cetiol0 CC), Guer- betcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C2z-Alkoholen (z. B. Finsolvo TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z. B. Dicaprylyl Ether (Cetiol0 OE), Ringöfmungs- produkte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Silici- ummethicontypen u. a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z. B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.

Emulgatoren Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage : Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest ; > Alkyl-und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk (en) ylrest und deren ethoxylierte Analoga ; > Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Rizinusöl ;

> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Rizinusöl ; > Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid ; > Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polye- thylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zucker- alkoholen (z. B. Sorbit), Alkylglucosiden (z. B. Methylglucosid, Butylglucosid, Laurylgluco- sid) sowie Polyglucosiden (z. B. Cellulose) mit gesättigten und/oder ungesättigten, linea- ren oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycar- bonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethy- lenoxid ; > Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Me- thylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.

Mono-, Di-und Trialkylphosphate sowie Mono-, Di-und/oder Tri-PEG-alkylphosphate und deren Salze ; > Wollwachsalkohole ; > Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate ; Block-Copolymere z. B. Polyethylenglycol-30 Dipolyhydroxystearate ; > Polymeremulgatoren, z. B. Pemulen-Typen (TR-1, TR-2) von Goodrich ; > Polyalkylenglycole sowie > Glycerincarbonat.

Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fett- säuren, Alkylphenole oder an Rizinusöl stellen bekannte, im Handel erhältliche Produkte dar.

Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Ver- hältnis der Stoffmengen von Ethylenoxid und/oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ciz/l8-Fettsäuremono-und-diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfet- tungsmittel für kosmetische Zubereitungen bekannt.

Alkyl-und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glu- cose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüg- lich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oli-

gomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homolo- genverteilung zugrunde liegt.

Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Öl- <BR> <BR> säuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linol-<BR> <BR> <BR> <BR> <BR> <BR> säuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglyce- rid, Citronensäuremonoglycerid, Citronendiglycerid, Apfelsäuremonoglycerid, Äpfelsäure- diglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungs- produkte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Par- tialglyceride.

Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandii- sostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrieru- cat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricino- leat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesquitartrat, Sorbitanditartrat, Sor- bitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugs- weise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.

Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymuls@ PGPH), Polyglycerin-3-Diisostearate (Lameforme TGI), Polyglyceryl-4 Isostea- rate (Isolan@ GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Iso- Ian@ PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care@ 450), Polyglyceryl-3 Bees- wax (Cera Bellina@), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane@ NL), Polyglyceryl-3 Distearate (Cremophore GS 32) und Polyglyce- ryl Polyricinoleate (Admule WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemi- sche. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di-und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Talgfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behen- säure und dergleichen.

Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterio- nische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat-und eine Sul- fonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Be- taine wie die N-Alkyl-N, N-dimethylammoniumglycinate, beispielsweise das Kokosalkyidi- methylammoniumglycinat, N-Acylaminopropyl-N, N-dimethylammoniumglycinate, beispiels- weise das Kokosacylaminopropyidimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl- 3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl-oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. E- benfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/18-Alkyl-oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine-COOH- oder-SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylamino- buttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N- Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das Ciz/18-Acyisarcosin.

Fette und Wachse Typische Beispiele für Fette sind Glyceride, d. h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u. a. natürliche Wachse, wie z. B. Candelillawachs, Carnaubawachs, Ja- panwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohr- wachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Woll- wachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse ; chemisch modifizierte Wachse (Hartwachse), wie z. B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z. B. Polyalkylenwachse und Polye- thylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine ver- steht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC). Als Beispiele für natürliche Lecithine seien die

Kephalin genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1,2- Diacyl-sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono-und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.

Perlglanzwachse Als Periglanzwachse kommen beispielsweise in Frage : Alkylenglycolester, speziell Ethylengly- coldistearat ; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid ; Partialglyceride, speziell Stearinsäuremonoglycerid ; Ester von mehrwertigen, gegebenenfalls hydroxysubsti- tuierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure ; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, spe- ziell Lauron und Distearylether ; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Be- hensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoff- atomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.

Konsistenzgener und Verdickunqsmittel Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkylo- ligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlånge und/oder Po- lyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil- Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono-und-diester von Fettsäuren, Polyacrylate, (z. B.

Carbopoles und Pemulen-Typen von Goodrich ; Synthalenes von Sigma ; Keltrol-Typen von Kelco ; Sepigel-Typen von Seppic ; Salcare-Typen von Allied Colloids), Polyacrylamide, Poly- mere, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fett- säureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Tri- methylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloli- goglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.

Überfettungsmittel Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin-und Lecithinderivate, Polyolfettsäureester, Monogly- ceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.

Stabilisatoren Als Stabilisatoren können Metallsalze von Fettsäuren, wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat bzw.-ricinoleat eingesetzt werden.

Polymere Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z. B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400e von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Ac- rylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z. B. Luviquate (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryidimonium Hydroxypropyl Hydrolyzed Collagen (LamequateL/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z. B. Amo- dimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine@/Sandoz), Copolymere der Acrylsäure mit Dimethyidiallylammoniumchlorid (Merquate 550/Chemviron), Polyaminopolyamide, wie z. B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie bei- spielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensations- produkte aus Dihalogenalkylen, wie z. B. Dibrombutan mit Bisdialkylaminen, wie z. B. Bis- Dimethylamino-1, 3-propan, kationischer Guar-Gum, wie z. B. Jaguar@ CBS, Jaguar@ C-17, Jaguar@ C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z. B. Mirapole A-15, Mirapole AD-1, Mirapole AZ-1 der Firma Miranol.

Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielswei- se Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylace- tat/Butylmaleat/Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copoly- mere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamido- <BR> <BR> <BR> propyltrimethylammoniumchlorid/Acrylat-Copoiymere, Octylacrylamid/Methylmeth-acry- lat/tert. Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copoly mere, Polyvinylpyr-

rolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/Dimethylaminoethyl- methacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosm. Toil.

108, 95 (1993) aufgeführt.

Siliconverbindungen Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpoly- siloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, gly- kosid-und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flus- sig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm. Toil. 91, 27 (1976).

UV-Lichtschutzfilter und Antioxidantien Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z. B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z. B. zu nennen : > 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z. B. 3- (4- Methylbenzyliden) campher wie in der EP 0693471 B1 beschrieben ; > 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino) benzoesäure-2-ethyl- hexylester, 4- (Dimethylamino) benzoesaure-2-octylester und 4- (Dimethylamino) benzoe- säureamylester ; > Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxy- zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2- ethylhexylester (Octocrylene) ; > Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-iso- propylbenzylester, Salicylsäurehomomenthylester ;

Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2-Dihydroxy-4-methoxybenzophenon ; > Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexyl- ester ; > Triazinderivate, wie z. B. 2,4,6-Trianilino-(p-carbo-2-ethyl-1-hexyloxy)-1,3,5-triazin und Octyl Triazon, wie in der EP 0818450 AI beschrieben oder Dioctyl Butamido Triazone (Uvasorbd3 HEB) ; > Propan-1, 3-dione, wie z. B. 1-(4-tert,Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion ; # Ketotricyclo (5.2.1.0) decan-Derivate, wie in der EP 0694521 B1 beschrieben.

Als wasserlösliche Substanzen kommen in Frage : >-2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylam- monium-, Alkanolammonium-und Glucammoniumsalze ; > Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze ; > Sulfonsäurederivate des 3-Benzylidencamphers, wie z. B. 4- (2-Oxo-3-bornylidenme- thyl) benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden) sulfonsäure und deren Salze.

Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1- (4-tert. Butylphenyl)-3- (4-methoxyphenyl) propan-1, 3-dion, 4-tert.-Butyl-4'- methoxydibenzoylmethan (Parsol@ 1789), 1-Phenyl-3-(4-isopropylphenyl)-propan-l, 3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 Al (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans"z. B. 4-tert.-Butyl- 4-methoxydibenzoylmethan (Parsot@ 1789) und 2-Cyano-3,3-phenylzimtsäure-2-ethyl- hexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4- Methoxyzimtsäure-2-ethylhexylester und/oder 4-Methoxyzimtsäurepropylester und/oder 4- Methoxyzimtsäureisoamylester. Vorteilhaft werden deartige Kombinationen mit wasserlösli- chen Filtern wie z. B. 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Am- monium-, Alkylammonium-, Alkanolammonium-und Glucammoniumsalze kombiniert.

Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Licht- schutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeig- nete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze kön- nen Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze

werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und deko- rative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weni- ger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphäri- schen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d. h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandi- oxide, wie z. B. Titandioxid T 805 (Degussa) oder Eusolex0 T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro-oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P. Finkel in SÖFW-Journal 122,543 (1996) sowie Parf. Kosm. 3 Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut ein- dringt. Typische Beispiele hierfür sind Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryp- tophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D, L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Caroti- ne (z. B. a-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Deri- vate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Aurothioglucose, Propylthiou- racil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl-und Lauryl-, Palmitoyl-, Oleyl-, y- Linoleyl-, Cholesteryl-und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distea- rylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr ge- ringen verträglichen Dosierungen (z. B. pmol bis umol/kg), ferner (Metall)-Chelatoren (z. B. a- Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), a-Hydroxysäuren (z. B. Citronen- säure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z. B. y- Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Deri- vate, a-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butyl-

hydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophe- non, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z. B. ZnO, ZnSO4) Selen und dessen Derivate (z. B. Selen- Methionin), Stilbene und deren Derivate (z. B. Stilbenoxid, trans-Stilbenoxid) und die erfin- dungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Pep- tide und Lipide) dieser genannten Wirkstoffe.

Biogene Wirkstoffe Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherol- palmitat, Ascorbinsäure, (Desoxy) Ribonucleinsäure und deren Fragmentierungsprodukte, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.

Deodorantien und keimhemmende Mittel Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dement- sprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibito- ren, Geruchsabsorber oder Geruchsüberdecker fungieren. Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4- Hydroxybenzoesäure und ihre Salze und Ester, N- (4-Chlorphenyl)-N'- (3, 4 dichlor- phenyl) harnstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3, 5-dimethyl- phenol, 2,2'-Methylen-bis (6-brom-4-chlorphenol), 3-Methyl-4- (l-methylethyl)-phenol, 2- Benzyl-4-chlorphenol, 3- (4-Chlorphenoxy)-1, 2-propandiol, 3-Iod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonocaprinat, Glyce- rinmonocaprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N- alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.

Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat,

Tributylcitrat und insbesondere Triethylcitrat (Hydagene CAT). Die Stoffe inhibieren die En- zymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esterasein- hibitoren in Betracht kommen, sind Sterolsulfate oder-phosphate, wie beispielsweise La- nosterin-, Cholesterin-, Campesterin-, Stigmasterin-und Sitosterinsulfat bzw-phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, <BR> <BR> <BR> Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie bei- spielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkgly- cinat.

Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfums unbe- einträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als"Fixateure"bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wur- zeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen.

Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum.

Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Al- dehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa- licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die line- aren Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsäch- lich die Terpene und Balsam. Bevorzugt werden jedoch Mischungen verschiedener Riech- stoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblatteröl, Lin- denblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandi-

nöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citroneilol, Pheny- lethylalkohol, a-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boi- sambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, D-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Flo- ramat allein oder in Mischungen, eingesetzt.

Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkri- nen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typi- scherweise folgende Inhaltsstoffe : > adstringierende Wirkstoffe, > Ölkomponenten, > nichtionische Emulgatoren, >Coemulgatoren, > Konsistenzgeber, > Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder > nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.

Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z. B.

Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquich- lorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1, 2. Aluminiumhydroxy- allantoinat, Aluminiumchloridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium-Zirko- nium-tetrachlorohydrat, Aluminium-Zirkonium-pentachlorohydrat und deren Komplexverbin- dungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öl- lösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllösli- chen Hilfsmittel können z. B. sein : > entzündungshemmende, hautschützende oder wohiriechende ätherische Ole, > synthetische hautschützende Wirkstoffe und/oder > öllösliche Parfümöle.

Übliche wasserlösliche Zusätze sind z. B. Konservierungsmittel, wasserlösliche Duftstoffe, pH- Wert-Stellmittel, z. B. Puffergemische, wasserlösliche Verdickungsmittel, z. B. wasserlösliche

natürliche oder synthetische Polymere wie z. B. Xanthan-Gum, Hydroxyethylcellulose, Polyvi- nylpyrrolidon oder hochmolekulare Polyethylenoxide.

Filmbildner Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quater- niertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Sal- ze und ähnliche Verbindungen.

Antischuppenwirkstoffe Als Antischuppenwirkstoffe kommen Pirocton Olamin (1-Hydroxy-4-methyl-6- (2, 4,4- trimythylpentyl)-2- (lH)-pyridinonmonoethanolaminsalz), Baypival@ (Climbazole), Ketocona- zol0, (4-Acetyl-1- {-4- [2- (2. 4-dichlorphenyl) r-2- (lH-imidazol-1-ylmethyl)-1, 3-dioxylan-c-4-<BR> ylmethoxyphenyl} piperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel kolloidal, Schwefel- polyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexylensaure Monoethanolamid Sulfosuccinat Na-Salz, Lamepon@ UD (Protein-Undecylensäurekondensat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion/Dipyrithion-Magnesiumsulfat in Frage.

Quellmittel Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen so- wie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw.

Quellmittel können der Übersicht von R. Lochhead in Cosm. Toil. 108,95 (1993) entnom- men werden.

Insekten-Repellentien Als Insekten-Repellentien kommen N, N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Buty- lacetylaminopropionate in Frage

Selbstbräuner und Depigmentierungsmittel Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispiels- weise Arbutin, Ferulasäure, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.

Hydrotrope Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, be- sitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind > Glycerin ; > Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Buty- lenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Moleku- largewicht von 100 bis 1.000 Dalton ; > technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-% ; > Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethy- lolbutan, Pentaerythrit und Dipentaerythrit ; > Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl-und Butylglucosid ; Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit, > Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose ; > Aminozucker, wie beispielsweise Glucamin ; > Dialkoholamine, wie Diethanolamin oder 2-Amino-1, 3-propandiol.

Konservierun smittel Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikver- ordnung aufgeführten weiteren Stoffklassen.

Parfümöle Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Na- türliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang- Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kummel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Ange-

lica, Sellerie, Kardamon, Costus, Iris, Camus), Hölzern (Pinien-, Sande-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymin), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie bei- spielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Pro- dukte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riech- stoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Lina- lylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropi- onat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Alde- hyden z. B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronel- lyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Keto- nen z. B. die Jonone, a-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsam. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aro- makomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Ofibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, a-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzy- acetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.

Farbstoffe Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation"Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Che- mie, Weinheim, 1984, S. 81-106 zusammengestellt sind. Diese Farbstoffe werden üb- licherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mi- schung, eingesetzt.

Der Gesamtanteil der Hilfs-und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-%- bezogen auf die Mittel-betragen. Die Herstellung der Mittel kann durch übliche Kalt-oder Heißprozesse erfolgen ; vorzugsweise arbeitet man nach der Phaseninversionstemperatur- Methode.

Beispiele Herstellbeispiel H1. In einer Rührapparatur wurden 500 g (2,42 Mol) gehärtete C1216- Kokosfettsäure, 100 g (0,29 Mol) Behensäure und 0,5 g Hypophosphorige Säure vorgelegt und auf 80 °C erhitzt. Danach wurde der Druck auf 20 mbar abgesenkt und portionsweise 215 g (1,44 Mol) Triethanolamin zugegeben, wobei die Temperatur bis auf 180 °C gesteigert und das freiwerdende Kondensationswasser kontinuierlich abdestilliert wurde. Nach Beendi- gung der Zugabe wurde der Druck bis auf 2 mbar vermindert und die Mischung weiterge- rührt, bis die Säurezahl unter 5 mg KOH/g abgesunken war. 500 g (0,94 Mol) des auf die- sem Wege erhaltenen Kokos/Behensäure-TEA-esters wurden in eine zweite Rührapparatur überführt und bei einer Temperatur von 60 °C in 153 g Propylenglycol gelost. Anschließend wurden portionsweise 112 g (0,89 Mol) Dimethylsulfat zugegeben und die Mischung bei 70 °C über 4 h gerührt. Die resultierende Esterquat-Mischung wieß einen Feststoffgehalt von 80 Gew.-% auf.

Die haarkosmetischen Eigenschaften der erfindungsgemäßen Esterquatgemische wurde wie folgt untersucht : > Die Trockenkämmbarkeit wurde unter Zulassung der elektrostatischen Aufladung un- tersucht. Es wurde eine relative Luftfeuchtigkeit von 20 % eingestellt. Die Konditio- nierungszeit betrug 12 h bei 30 °C. Die Messung erfolgte über den Ladungsabgriff an ei- nem doppelten Faraday-Käfig nach Ausführung von 10 Kämmungen. Der Fehler bei den Messungen betrug im Mittel 2,5 %, die statistische Sicherheit lag bei mindestens 99,9 %.

> Die Nasskämmbarkeit wurde an braunem Haar (Alkinco &num 6634, Strähnenlänge 12 cm, Strähnenmasse 1 g) untersucht. Nach der Nullmessung wurden die Strähnen mit 100 ml der Testformulierungen getränkt. Nach einer Einwirkzeit von 5 min wurden die Strähnen 1 min unter fließendem Wasser (11/min, 38 °C) ausgespült. Die Strähnen wurden erneut vermessen und mit der Nullmessung verglichen. Der Fehler bei den Messungen betrug im Mittel 2 %, die statistische Sicherheit lag bei mindestens 99 %. Eine ausführliche Be- schreibung der Meßmethoden befindet sich in J. Soc. Cosm. Chem., 24, 782 (1973).

> Zur Bestimmung der Biegefestigkeit wurde eine Haarsträhne mit einer Testlösung be- handelt, zwischen zwei Punkten gelagert und in der Mitte mit einem Gewicht von 150 g Wasser (Standard = 100 %) belastet. Das Gewicht wurde bis zum Durchbiegen der Haarsträhne erhöht und das Ergebnis relativ zum Standard angegeben.

Die Ergebnisse sind in Tabelle 1 zusammengefaßt. Beispiel 1 ist erfindungsgemäß, die Bei- spiele V1 bis V3 dienen zum Vergleich.

Tabelle 1 Haarkosmetische Untersuchungen (Mengenangaben als Gew.-%-bezogen auf Aktivsubstanz) 3. : Zusi'ammenset. z, pin, q 3' °. .,,,... ; : : : Esterquat gemäß Beispiel 1 0, 5 Dehyquart L 80 t) 0 5 Deh uartX AU 56-0, 5 Yq, Distearyidimethylammoniumchlorid-0, 5 Wasser ad 100 Trockenkammbarkeit -vorher [mJ] 5, 5 5,2 5,9 5,7 -nachher mJ] 4,2 4,3 5,1 5 4 -Rest %-rel. 76 82 87 95 Nasskämmbarkeit -vorher mJ] 67,7 71,8 72,2 68 5 -nachher [mJ] 52, 1 58, 8 61, 4 63, 0 -Rest [%-rel.] 77 82 85 92 Biegefestigkeit [%-rel.] 117 105 104 102 1) Esterquat auf Basis Kokosfettsäure ; Cl$-C22-Anteil < 5 Gew.-% bezogen auf Acylkomponente 2) Esterquat auf Basis Palmfettsäure ; C6-C16-Anteil < 60 Gew.-% bezogen auf Acylkomponente