Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EXPANDABLE TEMPERATURE-RESISTANT STYRENE COPOLYMERS
Document Type and Number:
WIPO Patent Application WO/2013/030197
Kind Code:
A1
Abstract:
A method for producing an expandable polymer granulated material comprises the steps a) providing a polymer component (P), consisting of PS) 90-100 wt% (relative to P) of a styrene polymer component with a glass-transition temperature ≥ 130°C, which is formed from PS1) 30-100 wt% (relative to P) of one or more styrene polymers, containing PS11) 60-85 wt% (relative to PS1) copolymerized styrene (PS11) or alpha-methylstyrene (PS12) or a copolymerized mixture of alpha-methylstyrene and styrene (PS13), PS12) 15-40 wt% (relative to PS1) of at least one copolymerized monomer from the group consisting of maleic anhydride and maleimides, and PS2) 0-70 wt% (relative to P) of one or more styrene polymers different from PS1, containing PS21) 60-82 wt% (relative to PS2) copolymerized styrene (PS11) or alpha-methylstyrene (PS12) or a copolymerized mixture of styrene and alpha-methylstyrene (PS13), and PS22) 18-40 wt% (relative to PS2) copolymerized acrylonitrile, and PT) 0-10 wt% (relative to P) of one or more thermoplastic polymers from the group consisting of aromatic polyethers; polyolefins; polyacrylates; polycarbonates (PC); polyesters; polyamides; polyethersulfones (PES); polyetherketones (PEK) and polyether sulfides (PES), (b) heating the polymer component (P) to form a polymer melt, (c) introducing 1-5 wt% (relative to P) of a propellant component (T) into the polymer melt to form a foamable melt, (d) homogenizing the mixture, (e) optionally introducing additives into the polymer component (P) in at least one of steps a), b), c) and/or d), (f) extruding the propellant-containing polymer melt through a die plate, (g) granulating the propellant-containing melt in a liquid-filled chamber at a pressure of 1.5-15 bar to form a granulated material. The expandable granulated material is suitable for producing molded foam articles for applications as insulation material and as structural foam elements for lightweight construction and composite applications.

Inventors:
RUCKDAESCHEL HOLGER (DE)
TERRENOIRE ALEXANDRE (DE)
SANDLER JAN KURT WALTER (DE)
HAHN KLAUS (DE)
BELLIN INGO (DE)
GRAESSEL GEORG (DE)
WEBER MARTIN (DE)
Application Number:
PCT/EP2012/066694
Publication Date:
March 07, 2013
Filing Date:
August 28, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
RUCKDAESCHEL HOLGER (DE)
TERRENOIRE ALEXANDRE (DE)
SANDLER JAN KURT WALTER (DE)
HAHN KLAUS (DE)
BELLIN INGO (DE)
GRAESSEL GEORG (DE)
WEBER MARTIN (DE)
International Classes:
C08J9/00; B29C44/00; B29C70/02; C08J9/16; C08J9/232; C08L25/08
Domestic Patent References:
WO2005056652A12005-06-23
WO2009000872A12008-12-31
WO1999032427A11999-07-01
Foreign References:
US4596832A1986-06-24
DE10358801A12005-07-14
DE19710442A11998-09-17
US20110189461A12011-08-04
JP2010229205A2010-10-14
US4596832A1986-06-24
DE20021356U12001-02-22
Attorney, Agent or Firm:
RIPPEL, Hans, Christoph (DE)
Download PDF:
Claims:
Patentansprüche

Verfahren zur Herstellung eines expandierbaren Polymergranulats, umfassend die Schritte

a) Bereitstellen einer Polymerkomponente (P), bestehend aus

PS) 90 bis 100 Gew.-% (bezogen auf P) einer Styrolpolymerkomponente mit einer Glasübergangstemperatur > 130 °C, die gebildet ist aus

PS1 ) 30 bis 100 Gew.-% (bezogen auf P) an einem oder mehreren Styrolpolyme- ren, enthaltend

PS1 1 ) 60 bis 85 Gew.-% (bezogen auf PS1 ) einpolymerisiertes Styrol (PS1 1 ) oder alpha-Methylstyrol (PS12) oder eine einpolymerisierte Mischung aus alpha-Methylstyrol und Styrol (PS13),

PS12) 15 bis 40 Gew.-% (bezogen auf PS1 ) mindestens eines einpolymeri- sierten Monomers aus der Gruppe Maleinsäureanhydrid und Maleinimide und PS2) 0 bis 70 Gew.-% (bezogen auf P) an einem oder mehreren von PS1 unterschiedlichen Stryolpolymeren, enthaltend

PS21 ) 60 bis 82 Gew.-% (bezogen auf PS2) einpolymerisiertes Styrol (PS1 1 ) oder alpha-Methylstyrol (PS12) oder eine einpolymerisierte Mischung aus Styrol und alpha-Methylstyrol (PS13) und

PS22) 18 bis 40 Gew.-% (bezogen auf PS2) einpolymerisiertes Acrylnitril und

PT) 0 bis 10 Gew.-% (bezogen auf P) an einem oder mehreren thermoplastischen Polymeren aus der Gruppe bestehend aus aromatischen Polyethern; Po- lyolefinen; Polyacrylaten; Polycarbonaten (PC); Polyestern; Polyamiden; Po- lyethersulfonen (PES); Polyetherketonen (PEK) und Polyethersulfiden (PES),

(b) Erhitzen der Polymerkomponente (P) zur Ausbildung einer Polymerschmelze,

(c) Einbringen von 1 bis 5 Gew.-% (bezogen auf P) einer Treibmittelkomponente (T), in die Polymerschmelze zur Ausbildung einer schäumbaren Schmelze,

(d) Homogenisieren der Mischung,

(e) gegebenenfalls Zugabe von Additiven zu der Polymerkomponente P in mindestens einem der Schritte a), b), c) und/oder d),

(f) Extrusion der treibmittelhaltigen Polymerschmelze durch eine Düsenplatte,

(g) Granulieren der treibmitteilhaltigen Schmelze in einer flüssigkeitsgefüllten Kammer unter einem Druck von 1 ,5 bis 15 bar zu einem Granulat.

Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die expandierbaren Granulatpartikel eine mittlere Partikelgröße von 0,2 bis 2,5 mm aufweisen.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass maximal 5 Gew.-% der Partikel kleiner als 0,8-mal der mittleren Partikelgröße und maximal 5 Gew.-% größer als 1 ,2-mal der mittleren Partikelgröße sind. 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Komponente PS1 ) aus Styrol und Maleinsäureanhydrid besteht.

5. Verfahren einem der Ansprüche 1 bis 3, wobei die Komponente PS1 ) aus Styrol und Phenylmaleinimid besteht.

6. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Komponente PS1 ) aus Styrol, Maleinsäureanhyrid und Phenylmaleinimid besteht.

7. Verfahren einem der Ansprüche 1 bis 6, wobei die Komponente PS2) aus Styrol und Acrylnitril besteht.

8. Verfahren einem der Ansprüche 1 bis 6, wobei die Komponente PS2) aus Styrol, Acrylnitril und Maleinsäureanhyrid besteht. 9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Menge der eingebrachten Treibmittelkomponente (T) weniger als 4 Gew.-% (bezogen auf P)beträgt.

10. Verfahren nach einem der Ansprüche 1 bis 9, wobei als Treibmittel C3 - C 8 - Kohlenwasserstoffe und Mischungen daraus eingesetzt werden.

1 1 . Verfahren nach einem der Ansprüche 1 bis 10, wobei als Co-Treibmittel Ketone und/oder Alkohole eingesetzt werden.

12. Verfahren nach einem der Ansprüche 1 bis 10, wobei als Co-Treibmittel Aceton eingesetzt wird.

13. Verfahren nach einem der Ansprüche 1 bis 12, wobei als Additiv ein oder mehrere UV-Stabilisatoren zugesetzt werden.

14. Verfahren nach einem der Ansprüche 1 bis 13, wobei die flüssigkeitsgefüllte Kammer bei einer Temperatur im Bereich von 20 bis 95°C betrieben wird.

Expandierbares Granulat, erhältlich nach dem Verfahren gemäß einem der Ansprüche 1 bis 14, dessen Partikel jeweils mindestens 10 Hohlräume pro mm3 im Größenbereich von 1 bis 200 μηη enthalten und das eine Polymerkomponente (P) enthält, bestehend aus

PS) 90 bis 100 Gew.-% (bezogen auf P) einer Styrolpolymerkomponente mit einer Glasübergangstemperatur > 130 °C, bestehend aus

PS1 ) 30 bis 100 Gew.-% (bezogen auf P) an einem oder mehreren Styrolpolyme- ren, enthaltend jeweils

PS1 1 ) 60 bis 85 Gew.-% (bezogen auf PS1 ) einpolymerisiertes Styrol (PS1 1 1 ) oder alpha-Methylstyrol (PS1 12) oder eine einpolymerisierte Mischung aus alpha-Methylstyrol und Styrol (PS1 13),

PS12) 15 bis 40 Gew.-% (bezogen auf PS1 ) mindestens eines einpolymeri- sierten Monomers aus der Gruppe Maleinsäureanhydrid und Maleinimide und

PS2) 0 bis 70 Gew.-% (bezogen auf P) an einem oder mehreren von PS1 unterschiedlichen Stryolpolymeren, enthaltend

PS21 ) 60 bis 82 Gew.-% (bezogen auf PS2) einpolymerisiertes Styrol (PS1 1 ) oder alpha-Methylstyrol (PS12) oder eine einpolymerisierte Mischung aus Styrol und alpha-Methylstyrol (PS13) und

PS22) 18 bis 40 Gew.-% (bezogen auf PS2) einpolymerisiertes Acrylnitril und

PT) 0 bis 10 Gew.-% (bezogen auf P) an einem oder mehreren thermoplastischen Polymeren aus der Gruppe bestehend aus aromatischen Polyethern, Polyolefinen, Polyacrylaten, Polycarbonaten (PC), Polyestern, Polyamiden, Polyethersulfonen (PES), Polyetherketonen (PEK) und Polyethersulfiden (PES).

Formteile erhältlich aus dem expandierbaren Granulat nach Anspruch 15, dadurch gekennzeichnet, dass es eine Dichte von 15 bis 300 g/l und eine maximale Dimensionsänderung von maximal 3 % bei thermischer Belastung von mindestens 130°C aufweist.

Verbundformkörper, enthaltend ein Formteil gemäß Anspruch 16.

Verwendung eines Formteils gemäß Anspruch 16 oder eines Verbund körpers gemäß Anspruch 17 als Isolationsmaterial für technische Anwendungen und den Baubereich oder als strukturelles Schaumelement für Leichtbau und Verbundan- Wendungen in der Bauindustrie, in Windkraftanlagen, der Automobilindustrie, im Boots- und Schiffsbau, im Möbelbau und dem Messebau.

Description:
Expandierbare temperaturbeständige Styrol-Copolymere

Beschreibung Die Erfindung betrifft expandierbare Granulate enthaltend temperaturbeständige Styrol- Copolymere und Blends aus Styrolcopolymeren, Verfahren zu deren Herstellung, Partikelschäume und Partikelschaumformteile, erhältlich aus den expandierbaren Granulaten sowie die Verwendung der Schäume und Schaumformteile insbesondere in Windkraftanlagen.

Partikelschaumstoffe auf Basis von Styrolcopolymeren werden aufgrund ihres geringen Gewichtes und ihrer guten Isolationseigenschaften in vielen Bereichen der Technik eingesetzt (siehe z.B. WO 2005/056652 und WO 2009/000872). In der JP-A 2010-229205 ist die Herstellung expandierbarer Granulate beschrieben, bei denen mindestens eine Komponente eine Glasübergangstemperatur von mindestens 1 10 °C besitzt. In den Beispielen werden Blends aus Polystyrol (PS) mit einem höherwarmformbeständigen Polymeren wie SMA oder PPE genutzt. Durch den Zusatz von PS verbessern sich die Schaumverarbeitungseigenschaften und reduzieren sich die Materialkosten. Als Herstellverfahren ist ein Schmelzeimprägnierverfahren mit Un- terwassergranulierung beschrieben.

US 4,596,832 offenbart ein Verfahren zur Herstellung eines wärmeformbeständigen Schaums umfassend die Schritte: Bereitstellen eines Styrol-Maleinsäureanhydrid- Copolymers; Zufügen von 0,5 bis 5 Gew.-% eines chemischen Treibmittels, das ein Metallcarboxylat oder Metallcarbonat ist; Schmelzen und Homogenisieren; Extrudieren der treibmittelhaltigen Polymerschmelze durch eine Düse; Pelletieren und anschließendes Quenchen der vorgeschäumten Pellets in Wasser. Obwohl mit den bekannten Schäumen in vielen Bereichen bereits gute Ergebnisse erzielt werden, besteht doch die ständige Aufgabe, solche Materialien beispielsweise im Hinblick auf Lösemittelbeständigkeit, Temperaturbeständigkeit, mechanische Steifheit, eine geringe Wasseraufnahme und Treibmittelhaltevermögen zu verbessern. Dabei ist es gewünscht, dass Neuentwicklungen auf den vorhandenen Maschinen zur EPS- bzw. EPP-Herstellung verarbeitet werden können. Insbesondere für Bau-, Struktur- und Leichtbauanwendungen, wo eine Kombination von hoher Warmformbeständigkeit und guten mechanischen Eigenschaften erforderlich ist, besteht nach wie vor ein hoher Bedarf an geeigneten Materialien. Zudem ist beim Herstellverfahren der expandierbaren Materialien zu beachten, dass die Verweilzeiten möglichst kurz bzw. die Temperaturen möglichst gering sind, um eine Zersetzung des Materials zu vermeiden. Es wurde gefunden, dass sich Partikelschäume mit einer hohen Wärmeformbeständigkeit bei gleichzeitig hervorragenden mechanische Eigenschaften und guter Verarbeit- barkeit erhalten lassen, wenn Styrolpolymere eingesetzt werden, die einen Styrolanteil von 60-85 Gew.-% haben und eine Glasübergangstemperatur von mindestens 130 °C aufweisen, wobei die entsprechenden expandierbaren Granulate durch Schmelzimprägnierung hergestellt werden.

Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines expandierbaren Polymergranulats, umfassend die Schritte a) Bereitstellen einer Polymerkomponente (P), bestehend aus

PS) 90 bis 100 Gew.-% (bezogen auf P) einer Styrolpolymerkomponente mit einer Glasübergangstemperatur > 130 °C, die gebildet ist aus

PS1 ) 30 bis 100 Gew.-% (bezogen auf P) an einem oder mehreren Styrolpolyme- ren, enthaltend

PS1 1 ) 60 bis 85 Gew.-% (bezogen auf PS1 ) einpolymerisiertes Styrol (PS1 1 ) oder alpha-Methylstyrol (PS12) oder eine einpolymerisierte Mischung aus alpha-Methylstyrol und Styrol (PS13),

PS12) 15 bis 40 Gew.-% (bezogen auf PS1 ) mindestens eines einpolymeri- sierten Monomers aus der Gruppe Maleinsäureanhydrid und Maleinimide und

PS2) 0 bis 70 Gew.-% (bezogen auf P) an einem oder mehreren von PS1 unterschiedlichen Stryolpolymeren, enthaltend

PS21 ) 60 bis 82 Gew.-% (bezogen auf PS2) einpolymerisiertes Styrol (PS1 1 ) oder alpha-Methylstyrol (PS12) oder eine einpolymerisierte Mischung aus Styrol und alpha-Methylstyrol (PS13) und

PS22) 18 bis 40 Gew.-% (bezogen auf PS2) einpolymerisiertes Acrylnitril

und

PT) 0 bis 10 Gew.-% (bezogen auf P) an einem oder mehreren thermoplasti- sehen Polymeren aus der Gruppe bestehend aus aromatischen Polyethern;

Polyolefinen; Polyacrylaten; Polycarbonaten (PC); Polyestern; Polyamiden; Polyethersulfonen (PES); Polyetherketonen (PEK) und Polyethersulfiden (PES),

(b) Erhitzen der Polymerkomponente (P) zur Ausbildung einer Polymerschmel- ze,

(c) Einbringen von 1 bis 5 Gew.-% (bezogen auf P) einer Treibmittelkomponente (T) in die Polymerschmelze zur Ausbildung einer schäumbaren Schmelze,

(d) Homogenisieren der Mischung,

(e) gegebenenfalls Zugabe von Additiven zu der Polymerkomponente P in mindestens einem der Schritte a), b), c) und/oder d), (f) Extrusion der treibmittelhaltigen Polymerschmelze durch eine Düsenplatte,

(g) Granulieren der treibmitteilhaltigen Schmelze in einer flüssigkeitsgefüllten Kammer unter einem Druck von 1 ,5 bis 20 bar zu einem Granulat. Die Treibmittelkomponenten (T) kann als physikalisches Treibmittel in die Schmelze eingebracht werden oder durch chemische Treibmittel gebildet werden. Bevorzugt ist der Einsatz von physikalischen Treibmitteln.

Weiterhin Gegenstand der Erfindung ist ein expandierbares Granulat, erhältlich nach dem erfindungsgemäßen Verfahren, dessen Partikel jeweils mindestens 10 Hohlräume pro mm 3 im Größenbereich von 1 bis 200 μηη enthalten und das eine Polymerkomponente (P) enthält, bestehend aus

PS) 90 bis 100 Gew.-% (bezogen auf P) einer Styrolpolymerkomponente mit einer Glasübergangstemperatur > 130 °C, bestehend aus

PS1 ) 30 bis 100 Gew.-% (bezogen auf P) an einem oder mehreren Styrolpolyme- ren, enthaltend jeweils

PS1 1 ) 60 bis 85 Gew.-% (bezogen auf PS1 ) einpolymerisiertes Styrol (PS1 1 1 ) oder alpha-Methylstyrol (PS1 12) oder eine einpolymerisierte Mischung aus alpha-Methylstyrol und Styrol (PS1 13),

PS12) 15 bis 40 Gew.-% (bezogen auf PS1 ) mindestens eines einpolymeri- sierten Monomers aus der Gruppe Maleinsäureanhydrid und Maleinimide und

PS2) 0 bis 70 Gew.-% (bezogen auf P) an einem oder mehreren von PS1 unterschiedlichen Stryolpolymeren, enthaltend

PS21 ) 60 bis 82 Gew.-% (bezogen auf PS2) einpolymerisiertes Styrol (PS1 1 ) oder alpha-Methylstyrol (PS12) oder eine einpolymerisierte Mischung aus Styrol und alpha-Methylstyrol (PS13) und

PS22) 18 bis 40 Gew.-% (bezogen auf PS2) einpolymerisiertes Acrylnitril und

PT) 0 bis 10 Gew.-% (bezogen auf P) an einem oder mehreren thermoplastischen Polymeren aus der Gruppe bestehend aus aromatischen Polyethern, Polyolefinen, Polyacrylaten, Polycarbonaten (PC), Polyestern, Polyamiden, Polyethersulfonen (PES), Polyetherketonen (PEK) und Polyethersulfiden (PES).

Ebenso Gegenstand der Erfindung ist ein Formteil, erhältlich aus dem erfindungsgemäßen Granulat, ein Verbundformkörper, enthaltend das Formteil sowie dessen Verwendung, insbesondere als Isolationsmaterial für technische Anwendungen und für den Baubereich oder als strukturelles Schaumelement für Leichtbau- und Verbundan- Wendungen in der Bauindustrie, in Windkraftanlagen, der Automobilindustrie, im Bootsund/oder Schiffsbau, im Möbelbau und dem Messebau. Das erfindungsgemäße Granulat weist bevorzugt eine mittlere Partikelgröße von 0,2 bis 2,5 mm auf (analysiert durch Siebanalyse, Bestimmung der mittleren Partikelgröße durch Annahme einer RRSB-Verteilung). Bevorzugt ist dabei, dass maximal 5 Gew.-% der Partikel kleiner als 80 % der mittleren Partikelgröße und maximal 5 Gew.-% größer als 120 % der mittleren Partikelgröße sind.

Die Polymerkomponente P weist bevorzugt eine Vicat-Temperatur (gemessen nach ISO 306 VST /B50) im Bereich von mehr als 120 °C auf.

Die erfindungsgemäß als Polymerkomponente (P) eingesetzten Styrolcopolymere (PS) und die thermoplastischen Polymere (PT) können nach dem Fachmann bekannten Verfahren, beispielsweise durch radikalische, anionische oder kationische Polymerisation in Substanz, Lösung, Dispersion oder Emulsion hergestellt werden. Bevorzugt ist im Falle von P1 die Herstellung durch radikalische Polymerisation.

Die Komponente PS enthält ein oder mehrere Styrolcopolymere PS1 , enthaltend, vorzugsweise bestehend aus,

PS1 1 ) 60 bis 85 Gew.-%, bevorzugt 60 bis 97 Gew.-%, besonders bevorzugt 65 bis 95 Gew.-% (bezogen auf PS1 ) einpolymerisiertes Styrol (P1 1 1 ) oder alpha-Methylstyrol (P1 12) oder eine einpolymerisierte Mischung aus al- pha-Methylstyrol und Styrol (P1 13),

PS12) 15 bis 40 Gew.-%, bevorzugt 3 bis 35 Gew.-%, besonders bevorzugt 5 bis 30 Gew.-% (bezogen auf PS1 ) mindestens eines einpolymerisierten Mo- nomers aus der Gruppe bestehend aus Maleinsäureanhydrid und Malei- nimiden.

Bevorzugte Maleinimide sind Maleinimid selbst, N-Alkyl-substituierte Maleinimide (vorzugsweise mit CrC 6 -Alkyl) und N-Phenyl-substituiertes Maleinimid.

In einer bevorzugten Ausführungsform enthält die Komponente (PS1 ) 15 bis 22 Gew.- %, vorzugsweise 15 bis 20 Gew.-%, an einem oder mehreren einpolymerisierten Comonomeren (PS12) aus der Gruppe bestehend aus Maleinsäureanhydrid und Mal- einimiden.

In einer bevorzugten Ausführungsform besteht die Komponente (PS1 1 ) aus einpolyme- risiertem Styrol (PS1 1 1 ).

In einer weiteren bevorzugten Ausführungsform besteht die Komponente (PS1 1 ) aus einpolymerisiertem alpha-Methylstyrol (PS1 12). In einer weiteren bevorzugten Ausfüh- rungsform besteht die Komponente (PS12) aus einer Mischung von einpolymerisiertem Styrol (PS1 1 1 ) und einpolymerisiertem alpha-Methylstyrol (PS1 13).

In einer bevorzugten Ausführungsform besteht die Komponente (PS12) aus einpolyme- risiertem Maleinsäureanhydrid und/oder einpolymerisiertem N-Phenylmaleinimid.

In einer besonders bevorzugten Ausführungsform besteht die Komponente (PS1 ) aus einpolymerisiertem Styrol (PS1 1 1 ) und einpolymerisiertem Maleinsäureanhydrid oder aus einpolymerisiertem Styrol und einpolymerisiertem N-Phenylmaleinimid oder aus einpolymerisiertem Styrol (PS1 1 1 ), einpolymerisiertem Maleinsäureanhydrid und einpolymerisiertem N-Phenylmaleinimid.

Ganz besonders bevorzugt als Komponente (PS1 ) ist ein Copolymer bestehend aus 85 bis 60 Gew.-% einpolymerisiertem Styrol (PS1 1 1 ) und 15 bis 40 Gew.-% einpolymeri- siertem Maleinsäureanhydrid.

In einer weiteren bevorzugten Ausführungsform besteht die Komponente (PS) aus einem oder mehreren, vorzugsweise einem Styrolcopolymer (PS1 ). In einer weiteren Ausführungsform besteht die Komponente (PS) aus einem oder mehreren, vorzugsweise einem Styrolcopolymer (PS1 ) und einem oder mehreren, vorzugsweise einem, von PS1 unterschiedlichen Styrolpolymeren (PS2).

Geeignete, von (PS1 ) verschiedene Styrolcopolymere (als Komponente PS2) sind bei- spielsweise Acrylnitril-Butadien-Styrol (ABS), SAN, Acrylnitril-Styrol-Acrylester (ASA). Bevorzugt sind SAN (Styrol-Acrylnitril) Polymere. Weiterhin bevorzugt als Komponente PS2 sind Terpolymere bestehend aus Styrol, Acrylnitril und Maleinsäureanhydrid.

In einer weiteren bevorzugten Ausführungsform enthält die Polymerkomponente P (und somit auch der Schaumstoff) 0,1 bis 15 Gew.-%, besonders bevorzugt 0,5 bis 5 Gew.- % eines thermoplastischen Polymers PT (jeweils bezogen auf P).

Als thermoplastische Polymere (PT) der Polymerkomponente (P) werden gegebenenfalls aromatische Polyether, Polyolefine, Polyacrylate, Polycarbonate (PC), Polyester, Polyamide, Polyethersulfone (PES), Polyetherketone (PEK), Polyethersulfide (PES) oder Mischungen davon eingesetzt.

Als aromatischer Polyether (PT) eignet sich z. B. Polyphenylenether (Poly(oxy-2,6- dimethyl-1 ,4-phenylen). Geeignete Polyolefine (als Komponente PT) sind beispielsweise Polypropylen (PP) Polyethylen (PE) und Polybutadien.

Ein geeignetes Polyacrylat (als Komponente PT) ist beispielsweise Polymethylmethac- rylat (PMMA).

Geeignete Polyester (als Komponente PT) sind beispielsweise Polyethylenterephthalat (PET) und Polybutylenterephthalat (PBT). Geeignete Polyamide (als Komponente PT) sind beispielsweise Polyamid 6 (PA6), Polyamid 6,6, Polyamid 6i und Polyamid 6/6.6.

Bevorzugt als Komponente (PT) sind Polyacrylate. In einer bevorzugten Ausführungsform besteht die Komponente (P) aus der Komponente (PS).

In einer bevorzugten Ausführungsform besteht die Komponente (P) aus der Komponente (PS) und der Anteil von (PS2) ist kleiner als 10 Gew.-%.

Die Treibmittelkomponente (T) umfasst ein oder mehrere Treibmittel in einem Anteil von insgesamt 1 bis 5 Gew.-%, bevorzugt 1 bis 4 Gew.-%, besonders bevorzugt 2 bis 4 Gew.-%, bezogen auf (P). Als Treibmittel eignen sich z.B. aliphatische Kohlenwasserstoffe mit 2 bis 8, vorzugsweise mit 3 bis 8 Kohlenstoffatomen und Mischungen von 2 oder mehr solcher Kohlenwasserstoffe und/oder 2 oder mehr Isomeren solcher Kohlenwasserstoffe. Weiterhin geeignet sind z.B. halogenierte Kohlenwasserstoffe, Stickstoff und Kohlendioxid. Bevorzugt sind Butan- und Pentanisomere, wie iso-Butan, n- Butan, iso-Pentan, n-Pentan und deren Mischungen, insbesondere Pentanisomere, wie iso-Pentan und n-Pentan, und Mischungen solcher Isomere. Geeignet insbesondere als Cotreibmittel, vorzugsweise in einem Anteil von 0 bis 3 Gew.-%, bevorzugt von 0,25 bis 2,5 Gew.-%, insbesondere 0,5 bis 2,0 Gew.-% (bezogen auf (P)), sind (d-C 4 )- Carbonylverbindungen, wie Ketone und Ester, d-C 4 -Alkohole und d-C 4 -Ether. Bevorzugt als Cotreibmittel sind Ketone, besonders bevorzugt Aceton. Treibmittel wie Stickstoff und Kohlendioxid können auch durch den Zerfall chemischer Treibmittel erzeugt werden. In einer Ausführungsform der Erfindung werden daher zusätzlich 0,1 bis 5,0 Gew.-% (bezogen auf P) an einem oder mehreren Treibmitteln zugesetzt. Beispiele für solche chemischen Treibmittel sind Azodicarbonamid, Sulfohyd- razide wie 4,4-Oxybis-benzolsulfonylhydrazid, p-Toluolsulfonylhydrazid, Benzazimide, p-Toluolsulfonylhydrazid, Benzazimide, p-Toluolsulfonylsemicarbazid, Dinitrosopenta- methylentetramin und Phenyltetrazol. Besonders bevorzugt besteht die Treibmittelkomponente aus einem oder mehreren Pentanisomeren und Aceton, insbesondere 2 bis 4 Gew.-% an einem oder mehreren Pentanisomeren und 0,5 bis 3 Gew.-% Aceton (wobei sich die Gew.-% auf (P) bezie- hen).

Durch die geringe Löslichkeit aliphatischer Kohlenwasserstoffe in den Styrolpolymeren PS1 , wie SMA, SPMI und SMAPMI, können niedrige Schüttdichten bereits bei geringen Treibmittelmengen erreicht werden. Zusätzlich vorteilhaft ist die Zugabe von hydrophi- leren Cotreibmitteln, die eine entsprechend höhere Löslichkeit in der Polymermatrix aufweisen. Beispielsweise kann durch den Einsatz von Aceton die Verschweißung und folglich die mechanischen Eigenschaften der Formteile verbessert werden.

Die erfindungsgemäßen expandierbaren Polymergranulate weisen in der Regel eine Schüttdichte von höchstens 700 g/l, bevorzugt 300 bis 700 g/l, besonders bevorzugt im Bereich von 500 bis 660 g/l auf. Bei Verwendung von Füllstoffen können in Abhängigkeit von der Art und Menge des Füllstoffes Schüttdichten im Bereich von 500 bis 1200 g/l auftreten. Neben Polymer- (P) und Treibmittelkomponente (T) enthält das erfindungsgemäß eingesetzte Granulat vorzugsweise eine Additivkomponente (AK). Geeignete Additive sind dem Fachmann bekannt.

In einer bevorzugten Ausführungsform wird der Polymerkomponente (P) wenigstens ein Nukleierungsmittel zugesetzt. Als Nukleierungsmittel können z.B. feinteilige, anorganische Feststoffe wie Talkum, Siliziumdioxid, Mika, Ton, Zeolithe, Calziumcarbonat und/oder Polyethylenwachse eingesetzt werden in Mengen von im Allgemeinen 0,1 bis 10 Gew.-%, bevorzugt 0,1 bis 3 Gew.-%, besonders bevorzugt 0,1 bis 1 ,5 Gew.-%, bezogen auf (P), eingesetzt werden. Der mittlere Teilchendurchmesser des Nukleie- rungsmittels liegt in der Regel im Bereich von 0,01 bis 100 μηη, bevorzugt 1 bis 60 μηη. Ein besonders bevorzugtes Nukleierungsmittel ist Talkum, beispielsweise Talkum von der Firma Luzenac Pharma. Das Nukleierungsmittel kann nach dem Fachmann bekannten Methoden zugegeben werden. Gewünschtenfalls können weitere Additive, wie Füllstoffe (beispielsweise mineralische Füllstoffe, wie Glasfasern), Weichmacher, Flammschutzmittel, IR-Absorber, wie Ruß, Kokse, Graphene und/oder Graphit, Aluminiumpulver und Titandioxid, lösliche und unlösliche Farbstoffe, Pigmente, UV-Stabilisatoren und/oder thermische Stabilisatoren zugegeben werden. Ganz besonders bevorzugt wird Graphit in Mengen von im Allgemeinen 0,05 bis 25 Gew.-%, insbesondere bevorzugt in Mengen von 2 bis 8 Gew.-%, bezogen auf (P), zugegeben. Geeignete Teilchengrößen für das eingesetzte Graphit liegen im Bereich von 1 bis 50 μηη, bevorzugt im Bereich von 2 bis 10 μηη.

Als vorteilhaft hat sich der Einsatz von UV-Stabilisatoren erwiesen. Speziell bei den Polymeren PS1 ) wie SMA führt starke UV-Einstrahlung zu einer sichtbaren Vergilbung und zur chemischen Umwandlung des Materials, die mit einer signifikanten Ver- sprödung einhergeht. Für die Wahl geeigneter UV-Stabilisatoren spielt die Reaktivität, z.B. mit SMA, eine entscheidende Rolle. Während Stabilisatoren auf Basis von Ben- zotriazolen wie Tinuvin 234 die UV-Beständigkeit ohne Veränderung der Verarbei- tungs- und Schaumeigenschaften verbessern kann, eignen sich Stabilisatoren auf Basis sterisch gehinderter Amine wie Uvinul 4050 und Tinuvin 770 in geringerem Maße für das erfindungsgemäße Stoffsystem.

Bevorzugt enthält das erfindungsgemäße Granulat als Additiv einen UV-Stabilisator auf Basis von Benzotriazolen in Mengen im Bereich von 0,05 bis 5 Gewichtsanteilen, bevorzugt 0,1 bis 1 Gewichtsanteilen, bezogen auf 100 Gewichtsteile Polymer P. Aufgrund der Brandschutzbestimmungen in verschiedenen Industrien werden vorzugsweise ein oder mehrere Flammschutzmittel zugegeben. Geeignete Flammschutzmittel sind beispielsweise Tetrabrombisphenol A, bromierte Polystyrol Oligomere, Tet- rabrombisphenol-A-diallylether und Hexabromcyclododecan (HBCD), insbesondere die technischen Produkte, welche im Wesentlichen das o, ß- und γ-lsomer und einen Zu- satz von Synergisten wie Dicumyl enthalten. Bevorzugt sind bromierte Aromaten, wie Tetrabrombisphenol A, und bromierte Styrololigomere. Als halogenfreie Flammschutzmittel eignen sich beispielsweise Blähgraphit, roter Phosphor und Phosphorverbindungen, wie Blähgraphit, roter Phosphor, Triphenylphosphat und 9,10-Dihydro-9-oxa-10- phosphaphenanthren-10-oxid.

Die Gesamtmenge an Additiven beträgt im Allgemeinen 0 bis 30 Gew.-%, vorzugsweise 0 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Extrusionsschaums.

Bevorzugt zur Wärmedämmung ist insbesondere die Zugabe von Graphit, Ruß, Kok- sen, Graphenen, Aluminiumpulver oder eines IR-Farbstoffs (z.B. Indoanilin-Farbstoffe, Oxonol-Farbstoffe oder Anthrachinon-Farbstoffe). Besonders bevorzugt sind Graphit und Ruß.

In der Regel werden die Farbstoffe und Pigmente in Mengen im Bereich von 0,01 bis 30, bevorzugt im Bereich von 1 bis 5 Gew.-% zugesetzt (bezogen auf P). Zur homogenen und mikrodispersen Verteilung der Pigmente in der Polymerschmelze kann es ins- besondere bei polaren Pigmenten zweckmäßig sein, ein Dispergierhilfsmittel, z.B. Or- ganosilane, Epoxygruppen-haltige Polymere oder Maleinsäureanhydrid-gepfropfte Sty- rolpolymere, einzusetzen. Bevorzugte Weichmacher sind Fettsäureester, Fettsäu- reamide und Phthalate, die in Mengen von 0,05 bis 10 Gew.-%, bezogen auf die Poly- merkomponente P, eingesetzt werden können.

Zur Herstellung des erfindungsgemäßen Granulats und des daraus erhaltenen Partikelschaums wird das Treibmittel, vorzugsweise bei erhöhten Drücken, insbesondere von 20 bis 500 bar, bevorzugt bei 40 bis 280 bar, direkt in die Polymerschmelze ein- gemischt. Zudem kann ein bereits mit dem Treibmittel imprägniertes Polymermaterial eingesetzt werden, dass vor der Zugabe des Treibmittels entgast wird oder bevorzugt mit dem Treibmittel aufgeschmolzen in den Prozess eingebracht wird. Ein mögliches Verfahren umfasst die Stufen a) Bereitstellung der Polymere, b) Schmelzerzeugung, c) Einbringung und Mischen der Treibmittel, d) Homogenisieren, e) gegebenenfalls Zuga- be von Additiven und f) Granulieren. Jede der Stufen a) bis e) kann durch die in der Kunststoffverarbeitung bekannten Apparate oder Apparatekombinationen ausgeführt werden. Die Polymerschmelze kann direkt aus einem Polymerisationsreaktor entnommen werden oder direkt in dem Mischextruder oder einem separaten Aufschmelzextruder durch Aufschmelzen von Polymergranulaten erzeugt werden. Zur Einmischung der Treibmittel eignen sich statische Mischer oder dynamische Mischer, beispielsweise Extruder. Zur Einstellung der gewünschten Schmelzetemperatur kann gegebenenfalls eine Kühlung der Schmelze vorgenommen werden. Dazu eignen sich die eingesetzten Mischaggregate, separaten Kühler oder Wärmeaustauscher. Die Granulierung erfolgt durch druckbeaufschlagte Granulierung in einer flüssigkeits-, insbesondere wasserge- füllten Kammer. Damit wird eine Expansion der treibmittelhaltigen Schmelze beim Düsenaustritt zumindest teilweise unterdrückt. Zum Druckaufbau für die Düsen der Granulierung kann das Mischaggregat (Extruder) an sich oder eine zusätzliches, druckaufbauendes Schmelzeaggregat eingesetzt werden. Bevorzug wird eine Zahnradpumpe eingesetzt. Zur Durchführung des Verfahrens geeignete Apparateanordnungen sind beispielsweise, ohne darauf beschränkt zu sein:

Polymerisationsreaktor - statischer Mischer/Kühler - Zahnradpumpe - Granulator Polymerisationsreaktor - Schmelzeextruder - Zahnradpumpe - Granulator Extruder - statischer Mischer - Granulator

Extruder - Zahnradpumpe - Granulator

- Extruder - Zahnradpumpe - statischer Mischer - Granulator

Extruder - statischer Mischer - Zahnradpumpe - Granulator

Extruder - Granulator.

Extruder - statischer Mischer - Zahnradpumpe - Granulator

Extruder - Zahnradpumpe - statischer Mischer / Wärmetauscher - Zahnradpumpe - Granulator Extruder - statischer Mischer - Zahnradpumpe - statischer Mischer / Wärmetauscher - Zahnradpumpe - Granulator.

Bevorzugt sind die Anordnungen:

- Extruder - Zahnradpumpe - Granulator

Extruder - Zahnradpumpe - statischer Mischer - Granulator.

Weiterhin vorteilhaft ist die Schmelzeimprägnierung während des Extrusionsschritts durch Zugabe des Treibmittels im Extruder, wodurch Verweilzeit und thermische Belas- tung des Materials bei der Herstellung der Granulate deutlich vermindert werden können.

Weiterhin kann die Anordnung ein oder mehrere Seitenextruder oder Seitenbeschickungen zur Einbringung von weiteren Polymeren und Additiven, z.B. von Feststoffen oder thermisch empfindlichen Zusatzstoffen aufweisen. Zudem können flüssige Additive an jedem Ort des Verfahrens injiziert werden, bevorzugt im Bereich der statischen und dynamischen Mischaggregate.

Die treibmittelhaltige Polymerschmelze wird in der Regel mit einer Temperatur im Be- reich von 150 bis 300 °C, bevorzugt 180 bis 260°C, besonders bevorzugt im Bereich von 190 bis 230 °C durch die Düsenplatte gefördert.

Die Düsenplatte wird bevorzugt auf mindestens 10 °C über der Temperatur der treib- mittelhaltigen Polymerschmelze beheizt, um Polymerablagerungen in den Düsen zu verhindern und eine störungsfreie Granulierung zu gewährleisten. Bevorzugt liegt die Temperatur der Düsenplatte im Bereich von 10 bis 200°C, besonders bevorzugt 10 bis 120 °C über der Temperatur der treibmittelhaltigen Polymerschmelze

Die Extrusion durch die Düsenplatte erfolgt in eine Kammer, die mit einer Flüssigkeit, bevorzugt Wasser, gefüllt ist. Die Temperatur der Flüssigkeit liegt bevorzugt im Bereich von 20 bis 95 °C, besonders bevorzugt 40 bis 80 °C.

Um marktfähige Granulatgrößen zu erhalten, liegt der Durchmesser (D) der Düsenbohrungen am Düsenaustritt bevorzugt im Bereich von 0,2 bis 2,0 mm, besonders bevor- zugt im Bereich von 0,3 bis 1 ,5 mm, insbesondere im Bereich von 0,3 bis 1 ,0 mm. Damit lassen sich auch nach Strangaufweitung Granulatgrößen unter 2,5 mm, insbesondere im Bereich 0,4 bis 1 ,5 mm gezielt einstellen.

Bevorzugt ist ein Verfahren zur Herstellung eines erfindungsgemäßen Granulats, um- fassend die Schritte a) Her- oder Bereitstellen einer Schmelze der Polymerkomponenten PS) und gegebenenfalls PT) ,

b) Einmischen von mindestens einer physikalischen Treibmittelkomponente und gegebenenfalls von Additiven, wie Wasser oder Talkum, in die Polymer- schmelze mittels statischer oder dynamischer Mischer bei einer Temperatur von mindestens 150°C,

c) thermisches Homogenisieren und ggf. Kühlen der Treibmittel- und Polymerschmelze auf eine Temperatur von mindestens 120°C

d) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Dü- senaustritt höchstens 1 ,5 mm beträgt,

e) Gegebenenfalls Zugabe von Additiven zu der Polymerkomponente P oder in mindestens einem der Schritte a), b), und/oder c),

f) Granulieren der treibmittelhaltigen Schmelze direkt hinter der Düsenplatte in einer Flüssigkeit, bevorzugt Wasser, bei einem Druck im Bereich von 1 bis 20 bar zu einem Granulat, dessen Partikel jeweils mindestens 10 Hohlräume pro mm 3 im Größenbereich von 1 bis 200 μηη enthalten.

Die erfindungsgemäßen Granulatpartikel weisen jeweils mindestens 10 Hohlräume pro mm 3 im Größenbereich von 1 bis 200 μηη auf.

Dieser Parameter kann in dem Fachmann bekannter Weise durch Einstellen der Granulierbedingungen wie Düsentemperatur, Wassertemperatur, Druck, Messerdrehzahl, Wasserdurchsatz, gegebenenfalls unter Durchführung von Routineversuchen, verwirklicht werden. Ziel ist es dabei, ein vollständiges Aufschäumen der treibmittelhaltigen Schmelze zu unterdrücken, aber eine geringfügige Expansion zuzulassen. Dabei wird bevorzugt eine große Zahl von Hohlräumen durch begrenztes Anschäumen der Partikel angestrebt. Neben den Granulierparametern kann der Prozess auch durch die Geometrie der Düsenplatte und durch die Rezeptur, insbesondere durch Wahl der Matrixpolymere, der Treibmittel und Treibmittelmengen sowie durch Additive (insbesondere Nukleierungsmittel) gesteuert werden.

Durch die angeschäumten Strukturen kann im expandierbaren, treibmittelhaltigen Granulat eine zelluläre Morphologie eingestellt werden. Die mittlere Zellgröße im Zentrum der Partikel kann dabei größer als in den Randbereichen sein, die Dichte kann in den Randbereichen der Partikel höher sein. Dadurch werden Treibmittelverluste soweit wie möglich minimiert.

Durch die angeschäumten Strukturen ist eine deutliche bessere Zellgrößenverteilung und einer Reduzierung der Zellgröße nach dem Vorschäumen erzielbar. Zudem ist die benötigte Menge an Treibmittel zum Erreichen einer minimalen Schüttdichte geringer und die Lagerstabilität des Materials verbessert. Weiterhin ist eine deutliche Verkür- zung der Vorschäumzeiten bei konstantem Treibmittelgehalt und eine deutliche Reduzierung der Treibmittelmengen bei gleichbleibenden Schäumzeiten und minimalen Schaumdichten möglich. Zudem wird durch die angeschäumten Strukturen die Produkthomogenität verbessert.

In einer bevorzugten Ausführungsform sind die expandierbaren Granulate mit einer oder mehreren Beschichtungskomponenten beschichtet, wobei diese Beschichtungskomponenten gegebenenfalls an einen porenhaltigen Feststoff adsorbiert sein können. Als Beschichtungskomponenten eignen sich beispielsweise Glycerinester, Zinkstearat und Ester der Zitronensäure.

Bevorzugt sind die Mono-, Di- und Triglyceride, die aus Glycerin und Stearinsäure, Glycerin und 12-Hydroxystearinsäure und Glycerin und Ricinolsäure erhältlich sind, sowie gemischte Di- und Triglyceride, die neben Stearinsäure, 12-Hydroxystearinsäure und Ricinolsäure aus einer oder zwei Fettsäuren aus der Gruppe Ölsäure, Linolsäure, Linolensäure und Palmitinsäure erhältlich sind.

Besonders bevorzugt sind die entsprechenden Handelsprodukte, welche im Allgemei- nen Mischungen der entsprechenden Mono-, Di- und Triester darstellen, die auch geringe Anteile an freiem Glycerin und freien Fettsäuren enthalten können, wie beispielsweise Glycerintri- oder Glycerinmonostearate.

Bevorzugt als Beschichtungsmaterial sind insbesondere Weichmacher aus der Gruppe bestehend aus a) einem oder mehreren Alkylestern von Cyclohexancarbonsäuren mit einem Siedepunkt > 160 °C, b) einem oder mehreren C1 0 -C21- Alkansulfonsäurephenylestern mit einem Siedepunkt > 150 °C und c) Mischungen der Komponenten a) und b). Bevorzugt als Weichmacher a) sind Alkylester von Cyclohexancarbonsäuren der Formel (I),

worin die Symbole und Indizes folgende Bedeutungen haben:

R 1 ist d-Cio-Alkyl oder C 3 -C 8 -Cycloalkyl; vorzugsweise Ci-Cio-Alkyl; m ist 0, 1 , 2 oder 3;

n ist 1 , 2, 3 oder 4 und

R ist d-Cso-Alkyl. Besonders bevorzugt haben die Symbole und Indizes in der Formel (I) folgende Bedeutungen:

m ist 0;

n ist 2 und

R ist C 8 -Cio-Alkyl.

Insbesondere handelt es sich um 1 ,2-Cyclohexandicarbonsäurediisononylester, wie er zum Beispiel unter der Bezeichnung Hexamoll ® DINCH von der BASF SE (Ludwigshafen, Deutschland) vertrieben wird. Herstellung und Verwendung als Weichmacher sind beispielsweise in der W099/32427 und der DE 20021356 beschrieben.

Weiterhin bevorzugt als Weichmacher sind Phenylester von (Ci 0 -_C 2 i)- Alkylsulfonsäuren der Formel (II) (Komponente b))

O l) wobei

R 2 (Cio-C 2 i)-Alkyl, bevorzugt (C 13 -C 17 )-Alkyl, ist.

Bevorzugte Weichmacher b) sind Mischungen aus (Ci 0 -C 2 i)-Alkansulfonsäure- phenylestern. Besonders bevorzugt ist dabei eine Mischung, die zu 75 bis 85 % aus einem Gemisch sekundärer Alkansulfonsaurephenylester besteht und zusätzlich 15 bis 25 % sekundäre Alkandisulfonsäurediphenylester sowie 2 bis 3 % nicht sulfonierte Al- kane enthält, wobei die Alkylreste überwiegend unverzweigt sind und die Kettenlängen im Bereich von 10 bis 21 hauptsächlich von 13 bis 17 Kohlenstoffatomen liegen.

Solche Gemische werden zum Beispiel unter den Mesamoll ® Marken von der Lanxess AG (Leverkusen, Deutschland) vertrieben.

Bevorzugt wird der erfindungsgemäß eingesetzte Weichmacher in einer Menge von 0,01 bis 1 Gew.-%, bevorzugt 0,1 -0.8 Gew.-%, besonders bevorzugt 0,2-0,5 Gew.-%, auf das expandierbare Granulat aufgebracht. Die Beschichtung kann weitere Zusatzstoffe, wie Antistatika, Hydrophobisierungsmittel, Flammschutzmittel, feinteilige Kieselsäure und anorganische Füllstoffe enthalten. Der Anteil dieser Mittel hängt von des Art und Wirkung ab und beträgt für anorganische Füllstoffe in der Regel 0 bis 1 Gew.-%, bezogen auf beschichtete Polymerpartikel.

Als Antistatika kommen beispielsweise Verbindungen wie Emulgator K30 (Gemisch aus sekundären Natriumalkansulfonaten) oder Tensid 743 in Betracht. Die expandierbaren Granulatpartikel können zu erfindungsgemäßen Schaumstoffen mit Dichten im Bereich von 5 bis 300 kg/m 3 , bevorzugt 50 bis 200 kg/m 3 , besonders bevorzugt 70 bis 150 kg/m 3 verarbeitet werden. Hierzu werden die expandierbaren Partikel vorgeschäumt. Dies geschieht zumeist durch Erwärmen mit Wasserdampf in sogenannten Vorschäumern. Die so vorgeschäumten Partikel werden danach zu Formköpern verschweißt. Hierzu werden die vorgeschäumten Partikel in nicht gasdicht schließende Formen gebracht und mit Wasserdampf beaufschlagt. Nach dem Abkühlen können die erfindungsgemäßen Formteile entnommen werden.

Erfindungsgemäße Partikelschaumformteile weisen bevorzugt eine Druckfestigkeit in alle drei Raumrichtungen von mindestens 100 kPa, bevorzugt mindestens 300 kPa, insbesondere mindestens 400 kPa, auf.

Partikelschaumformteile aus dem erfindungsgemäß hergestellten Granulat weisen im Allgemeinen eine Dichte von 15 bis 300 g/l auf, bevorzugt von 50 bis 200 g/l, beson- ders bevorzugt von 70 bis 150 g/l. Bevorzugt weisen die Formteile eine maximale Dimensionsänderung von maximal 3 % bei thermischer Belastung von mindestens 130°C auf. Solche Partikelschaumformteile weisen eine Zellzahl im Bereich 1 bis 30 Zellen pro mm, bevorzugt von 3 bis 20 Zellen pro mm, insbesondere von 3 bis 25 Zellen pro mm auf. Die erfindungsgemäßen Partikelschaumformteile weisen eine hohe Geschlos- senzelligkeit auf, wobei in der Regel mehr als 60%, bevorzugt mehr als 70%, besonders bevorzugt mehr als 80% der Zellen der einzelnen Schaumpartikel geschlossen- zellig sind (bestimmt nach ISO 4590).

Die erfindungsgemäßen Schäume und Formteile finden vorzugsweise Verwendung als Isolationsmaterial für technische Anwendungen und den Baubereich oder als Schaumelement für Leichtbau- und Verbundanwendungen, beispielsweise in Automobilanwendungen und Windkraftanlagen, insbesondere in Rotorblättern solcher Windkraftanlagen. Neben diesen und den oben genannten Verwendungen ist eine Verwendung für Verbundformteile im Möbelbau bevorzugt. Zu diesem Zweck wird auf die erfindungsgemä- ßen Schaumformteile, welche in Form einer Schaumplatte vorliegen, nach bekannten, dem Fachmann geläufigen Methoden mindestens eine weitere Schicht aufgebracht.

Neben einer ersten Schicht aus der beschriebenen Schaumplatte enthalten derartige Verbundformteile somit mindestens eine weitere Schicht. Bevorzugt ist die erste Schicht wenigstens auf zwei Flächen mit einer oder mehreren weiteren Schichten verbunden. Weiterhin bevorzugt ist die erste Schicht auf mindestens zwei Flächen (im Fall eines rechtwinkligen Querschnitts oben und unten), ebenso bevorzugt sind alle Flächen mit einer oder mehreren weiteren Schichten verbunden.

In einer Ausführungsform der Erfindung besteht der Aufbau des Verbundformteils aus einer oder mehreren Kernschichten, einer oder mehreren Deckschichten und einer Oberflächenschicht. In einer weiteren Ausführungsform der Erfindung besteht der Aufbau des Verbundformteils aus einer Kernschicht und einer Oberflächenschicht.

Zur Beplankung als Oberflächen- und gegebenenfalls Deckschicht sind beispielsweise Aminoplastharzfilme, insbesondere Melaminfilme, PVC (Polyvinylchlorid), Glasfaser- verstärkter Kunststoff (GFK), beispielsweise ein Verbund aus Polyesterharz, Epo- xiharz, oder Polyamid und Glasfasern, Vorimprägnate, Folien, Laminate, beispielsweise HPL (high pressure laminate) und CPL (continuous pressure laminate), Furniere, und Metall-, insbesondere Aluminium- oder Bleibeschichtungen, geeignet. Weiterhin geeignet sind Gewebe und Vliesstoffe, insbesondere aus Natur- und/oder Kunstfasern.

Weiterhin kommen für eine Beplankung der erfindungsgemäßen Verbundformteile(n) alle Werkstoffe in Betracht, die aus Holzstreifen, Holzfasern, Holzspänen, Hölzern, Holzfurnieren, verleimten Hölzern, Furnieren oder einer Kombination der entsprechenden Herstellungsverfahren gefertigt sind. Ebenfalls bevorzugt ist eine Beplankung der erfindungsgemäßen Formteile(n) mit OSB, Spanplatten, HDF (hochdichte Faserplatten) oder MDF (mitteldichten Faserplatten), insbesondere dünnen Spanplatten, HDF und MDF mit einer Dicke von 2 bis 10 mm.

Als Klebstoffe können übliche Materialien, beispielsweise Dispersionsklebstoffe z.B. Weißleim, Epoxidharze, Formaldehyd-Kondensationsharze, wie Phenolharze, Harnstoff-Formaldehyd-Harze, Melamin-Formaldehyd-Harze, Melamin-Harnstoff-Formal- dehyd-Harze, Resorcin- und Phenolresorcinharze, Isocyanatklebstoffe, Polyurethanklebstoffe und Schmelzkleber verwendet werden. Die Erfindung wird durch die Beispiele näher erläutert, ohne sie dadurch beschränken zu wollen. Beispiele:

Einsatzstoffe:

Luran ® HH120 AMSAN mit einem Acrylnitrilgehalt von 31 Gew.-% und einer Viskositätszahl von 57 ml/g(Handelsprodukt der BASF SE)

Luran ® 3380 SAN mit einem Acrylnitrilgehalt von 33 Gew.-% und einer Viskositätszahl von 80 ml/g (Handelsprodukt der BASF SE)

Luran ® 2580 SAN mit einem Acrylnitrilgehalt von 25 Gew.-% und einer Viskositätszahl von 80 ml/g (Handelsprodukt der BASF SE)

Talkum Talkum IT Extra, Luzenac Pharma

158 K Polystyrol mit einer Viskositätszahl von 93 - 98 ml/g (Handelsprodukt der BASF SE)

Tinuvin ® 234 2-(2H-Benzotriazol-2-yl)-4,6-bis(1 -methyl-1 -phenylethyl)phenol, UV- Absorber (Handelsprodukt der BASF SE)

Polyphenylenether: PX 100F (Mitsubishi Engineering Plastics)

Styrol-co-Maleinsäureanhydrid (SMA): Xiran 26080 (Polyscope) Styrol-co-Maleinsäureanhydrid (SMA): Xiran 28065 (Polyscope)

Styrol-co-N-Phenylmaleinimid (SPMI): Denka IP (Denka)

Herstellung der expandierbaren Granulate auf einer Labor-Anlage (Extrusionsprozess) Die Herstellung der expandierbaren Granulate erfolgte nach einem Schmelzimpräg- nierverfahren. Dazu wurden zunächst die Polymere in einem Extruder plastifiziert (Leistritz, Schneckendurchmesser 18 mm, Drehzahl 150 Upm). Die Schmelze wurde im Extruder mit technischem s-Pentan (80 % n-Pentan / 20 % iso-Pentan) und ggf. anderen Treibmitteln wie Aceton imprägniert und homogenisiert. Die entsprechenden Rezepturen sind der Tabelle zu entnehmen. Durch eine Schmelzepumpe am Extruder- köpf wurde Druck aufgebracht, um das Material über eine Lochplatte (2 Löcher ä 0.65 mm) mit einer drucküberlagerten Unterwassergranulierung zu granulieren (Wasserdruck siehe Tabelle, Wassertemperatur 60 °C). Die mittlere Partikelgröße betrug ca. 1 .25 mm. Der Gesamtdurchsatz betrug 4.5 kg/h. Die gemessene Schmelzetemperatur am Düsenaustritt lag bei ca. 225 °C, die maximale Schmelzetemperatur entlang der gesamten Verfahrensstrecke betrug 240-250 °C. Die mittlere Verweilzeit betrug ca. 2.5 min.

Herstellung der expandierbaren Granulate auf der Labor-Anlage (Mischerprozess) Die Herstellung der expandierbaren Granulate erfolgte nach einem Schmelzeimpräg- nierverfahren unter Verwendung statischer Mischapparate. Dazu wurden zunächst die Polymere in einem Extruder plastifiziert (Berstorff ZE40, Drehzahl 200 Upm) und über eine Schmelzepumpe in eine Serie von statischen Mischern und Wärmetauschern dosiert. Am Eingang des ersten statischen Mischers wird technisches s-Pentan (80 % n- Pentan / 20 % iso-Pentan) zugegeben und die Schmelze imprägniert. Die entsprechenden Rezepturen sind der Tabelle zu entnehmen. Anschließend wurde die Schmel- zetemperatur über einen Wärmetauscher reduziert und die Schmelzetemperatur über einen weiteren statischen Mischer homogenisiert. Durch eine Schmelzepumpe am Extruderkopf wurde Druck aufgebracht, um das Material über eine Lochplatte (70 Löcher ä 0.7 mm) mit einer drucküberlagerten Unterwassergranulierung zu granulieren (Wasserdruck siehe Tabelle, Wassertemperatur 70 °C). Die mittlere Partikelgröße be- trug ca. 1 .20 mm. Der Gesamtdurchsatz betrug 60 kg/h. Die gemessene Schmelzetemperatur am Düsenaustritt lag bei ca. 210 °C, die maximale Schmelzetemperatur entlang der gesamten Verfahrensstrecke betrug ca. 255 °C. Die mittlere Verweilzeit betrug ca. 15 min. Verarbeitung und Charakterisierung der expandierbaren Granulate

Als Beschichtungskomponenten wurde 60 Gew.-% Gycerintristearat (GTS), 30 Gew.-% Glycerinmonostearat (GMS) und 10 Gew.-% Zinkstearat verwendet, die nach der Granulierung auf das Material aufgebracht wurden. Das treibmittelhaltige Granulat wurde in einem Druckvorschäumer bei bis zu 2.3 bar (absolut) zu Schaumperlen mit einer Dichte von 100 - 120 g/L vorgeschäumt. Anschließend wurden vorgeschäumten Granulate nach einer Zwischenlagerzeit von 12 h in einem EPP-Formteilautomaten bei bis zu 3 bar (absolut) zu Formteilen verarbeitet. Typische Verarbeitungsparameter wie die Vorschäumzeit und die Entformzeit sind in den folgenden Tabellen dargestellt.

An den Formteilen wurden verschiedene mechanische Messungen durchgeführt, u.a. wurde die Druckeigenschaften nach DIN EN 826 und die Biegefestigkeit nach DIN EN 12089 bestimmt. Die Biegearbeit wurde aus den Messwerten zur Biegefestigkeit ermit- telt. Die Warmformbeständigkeiten der Materialien wurden nach DIN EN 1604 bestimmt.

Die Glasübergangstemperaturen wurden nach DIN ISO 1 1357-2 bei einer Heizrate von 20 K/min unter Schutzgasatmosphäre (N2) bestimmt. Tabelle 1: Beispiele für Extruderprozess

Tabelle 2: Beispiele für Mischerprozess

Beispiel 7 Beispiel 8

A1 ) SMA Xiran SZ 26080, Polyscope 100

Xiran SZ 28065, Polyscope 40

A2) SAN Luran 2580, BASF 60

A3)

B1 ) Treibmittel s-Pentan 4 4

B2) Aceton

C1 ) Talkum IT Extra 0.5 0.5

C2) Stabilisator Tinuvin 234 0.2 0.2

Maximale Schmelzetemperatur bei Herstellung (°C) 255 255

Glasübergangstemperatur (°C) 157 131

Wasseranteil nach Beschichtung (Gew.-%) < 0.5 <0.3

Vorschau md ruck (bar) 2.3 1.7

Max. Vorschäumtemperatur (°C) 135 125

Vorschäumzeit (s) 50 57

Schüttdichte nach dem Vorschäumen (g/l) 98 109

Schäumdruck Formteilherstellung (s) 3.0 2.3

Zykluszeit Formteilherstellung (s) 415 415

Dichte Formteil (g/l) 98 1 13

Druckfestigkeit (MPa) - DIN EN 826 1.1 1.1

Biegefestigkeit (MPa) - DIN EN 12089 1.2 1.2

Warmformbeständigkeit (°C) - DIN 1604

> 150 > 120 Dimensionsänderung < 3% bei angegebener Temperatur