Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EXTENDED DYNAMIC RESOURCE ALLOCATION OF PACKET DATA TRANSFER
Document Type and Number:
WIPO Patent Application WO/2004/114709
Kind Code:
A1
Abstract:
A method for control of packet data transmissions in a TDMA wireless network to provide for additional choices in the allocation of communication channels. The fixed relationship in the timing of the downlink allocation signalling and subsequent uplink transmission is altered for certain classes of mobile station to avoid physical constraints. Examples of variations in USF signalling in GPRS are given.

Inventors:
BEARD TIMOTHY GILES
COOPER DAVID EDWARD
Application Number:
PCT/JP2004/002304
Publication Date:
December 29, 2004
Filing Date:
February 26, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MATSUSHITA ELECTRIC IND CO LTD (JP)
BEARD TIMOTHY GILES
COOPER DAVID EDWARD
International Classes:
H04B7/26; H04J3/00; H04J3/06; H04J3/16; H04W72/12; (IPC1-7): H04Q7/38
Foreign References:
EP1107620A22001-06-13
US6501745B12002-12-31
US6356759B12002-03-12
Attorney, Agent or Firm:
Washida, Kimihito (Shintoshicenter Bldg. 24-1, Tsurumaki 1-chom, Tama-shi Tokyo, JP)
Download PDF:
Claims:
CLAIMS
1. A multiple access communication method for a base station that transmits a downlink channel containing a USF for uplink channel assignment, wherein when a shifted USF operation is used, a first assigned USF, which indicates a mobile station to start uplink transmission from a first uplink channel, is transmitted on a second downlink channel.
2. The method according to claim 1, wherein when the shifted USF operation is not used, a second assigned USF, which indicates a mobile station to start uplink transmission from a second uplink channel, is transmitted on a second downlink channel.
3. The method according to claim 1 or 2, wherein a value of the first assigned USF is different from a value of the second assigned USF.
4. The method according to one of claims 1 to 3, wherein the first assigned USF indicates the mobile station to transmit at the first and all consecutive uplink channels allocated for uplink transmission.
5. The method according to one of claims 1 to 4, wherein when the shifted USF operation is not used, a nth (n being an integer) assigned USF, which indicates the mobile station to start uplink transmission from a nth uplink channel, is transmitted on a nth downlink channel.
6. The method according to one of claims 1 to 5, wherein the nth assigned USF indicates the mobile station to start uplink transmission from the nth uplink channel of a next frame or a consecutive group of frames.
7. The method according to claim 5 or 6, wherein the nth assigned USF indicates the mobile station to transmit at the nth uplink channel and all consecutive uplink channels allocated for uplink transmission.
8. The method according to one of claims 1 to 7, wherein the number of downlink channels in one frame is 8 and the number of uplink channels in one frame is 8.
9. The method according to one of claims 1 to 8, wherein the first uplink channel is delayed by three or approximately three time slots with respect to the corresponding downlink channel.
10. The method according to claims 1 to 9, wherein the mobile station performing adjacent cell signal level measurement and preparation for reception before receiving the downlink channel.
11. The method according to claim 10, wherein the time needed for performing adjacent cell signal level measurement and preparation for reception is three slots.
12. The method according to claim 10, wherein the time needed for performing adjacent cell signal level measurement and preparation for reception is one slot.
13. The method according to claim 10, wherein the time needed for performing adjacent cell signal level measurement and preparation for reception is one slot and 31 symbol periods.
14. The method according to claims 1 to 9, further comprising the step of performing adjacent cell signal level measurement and preparation for transmission before transmitting the downlink channel, wherein the time needed for performing adjacent cell signal level measurement and preparation for transmission is one slot.
15. The method according to claim 11, wherein the sifted USF operation is used when three channels are allocated for uplink transmission in a frame.
16. The method according to claim 12 or 13, wherein the sifted USF operation is used when five channels are allocated for uplink transmission in a frame.
17. The method according to claim 14, wherein the sifted USF operation is used when six channels are allocated for uplink transmission in a frame.
18. The method according to one of claims 15 to 17, wherein the usage of the shifted USF operation is automatic.
19. The method according to one of claims 1 to 18, wherein <BR> <BR> <BR> <BR> the number of multislot class is any one of the multislot classes 7,34, 39 and 45.
20. A base station apparatus for multiple access communication comprising a transmission section that transmits a downlink channel containing a USF for uplink channel assignment, wherein when a shifted USF operation is used, a first assigned USF, which indicates a mobile station to start uplink transmission from a first uplink channel, is transmitted on a second downlink channel.
21. The apparatus according to claim 20, wherein when the shifted USF operation is not used, a second assigned USF, which indicates a mobile station to start uplink transmission from a second uplink channel, is transmitted on a second downlink channel.
22. The apparatus according to claim 20 or 21, wherein a value of the first assigned USF is different from a value of the second assigned USF.
23. The apparatus according to one of claims 20 to 22, wherein the first assigned USF indicates the mobile station to transmit at the first and all consecutive uplink channels allocated for uplink transmission.
24. The apparatus according to one of claims 20 to 23, wherein when the shifted USF operation is not used, a nth (n being an integer) assigned USF, which indicates the mobile station to start uplink transmission from a nth uplink channel, is transmitted on a nth downlink channel.
25. The apparatus according to one of claims 20 to 24, wherein the nth assigned USF indicates the mobile station to start uplink transmission from the nth uplink channel of a next frame or a consecutive group of frames.
26. The apparatus according to claim 24 or 25, wherein the nth assigned USF indicates the mobile station to transmit at the nth uplink channel and all consecutive uplink channels allocated for uplink transmission.
Description:
DESCRIPTION EXTENDED DYNAMIC RESOURCE ALLOCATION FOR PACKET DATA TRANSFER Technical Field This invention relates to multiple access communication systems and in particular it relates to dynamic resource allocation in time division multiple access systems.

Background Art In Multiple access wireless systems such as GSM, a number of mobile stations communicate with a network. The allocation of physical communication channels for use by the mobile stations is fixed. A description of the GSM system may be found in The GSM System for Mobile Communications by M. Mouly and M.

B. Pautet, published 1992 with the ISBN reference 2-9507190-0-7.

With the advent of packet data communications over Time Division Multiple Access (TDMA) systems, more flexibility is required in the allocation of resources and in particular in the use of physical communication channels. For packet data transmissions in General Packet Radio Systems (GPRS) a number of Packet Data CHannels (PDCH) provide the physical communication links. The time division is by frames of 4.615 ms duration and each frame has eight consecutive 0. 577 ms slots.

A description of the GPRS system may be found in (3GPP TS 43. 064

v5. 1.1). The slots may be used for uplink or downlink communication. Uplink communication is a transmission from the mobile station for reception by the network to which it is attached. Reception by the mobile station of a transmission from the network is described as downlink.

In order to utilise most effectively the available bandwidth, access to channels can be allocated in response to changes in channel conditions, traffic loading, Quality of Service and subscription class. Owing to the continually changing channel conditions and traffic loadings a method for dynamic allocation of the available channels is available.

The amounts of time that the mobile station receives downlink or transmits uplink may be varied and slots allocated accordingly. The sequences of slots allocated for reception and transmission, the so-called multislot pattern is usually described in the form RXTY. The allocated receive (R) slots being the number X and the allocated transmit slots (T) the number Y.

A number of multislot classes, one through to 45, is defined for GPRS operation and the maximum uplink (Tx) and downlink (Rx) slot allocations are specified for each class.

In a GPRS system, access to a shared channel is controlled by means of an Uplink Status Flag (USF) transmitted on the downlink to each communicating mobile station (MS). In GPRS two allocation methods are defined, which differ in the convention about which uplink slots are made available on receipt of a USF.

The present invention relates to a particular allocation method,

in which an equal number"N"of PDCH's, a"PDCH"representing a pair of uplink and downlink slots corresponding to each other on a 1-1 basis, are allocated for potential use by the MS. The uplink slots available for actual use by a particular mobile station sharing the uplink channel are indicated in the USF.

The USF is a data item capable of taking 8 values VO-V7, and allows uplink resources to be allocated amongst up to 8 mobiles where each mobile recognises one of these 8 values as valid', i. e. conferring exclusive use of resources to that mobile. A particular mobile station may recognise a different USF value on each of the slots assigned to that mobile station. In the case of the extended dynamic allocation method, for example, reception of a valid USF in the slot 2 of the present frame will indicate the actual availability for transmission of transmit slots 2... N in the next TDMA frame or group of frames, where N is the number of allocated PDCHs. Generally for a valid USF received at receiver slot n, transmission takes place in the next transmit frame at transmit slots n, n+1 et seq. to the allocated number of slots (N). For the extended dynamic allocation method as presently defined these allocated slots are always consecutive.

The mobile station is not able instantly to switch from a receive condition to a transmit condition or vice versa and the time allocated to these reconfigurations is known as turnaround time. It is also necessary for the mobile station, whilst in packet transfer mode, to perform neighbourhood cell measurements. The mobile station has continuously to monitor

all Broadcast Control Channel (BCCH) carriers as indicated by the BA (GPRS) list and the BCCH carrier of the serving cell. A received signal level measurement sample is taken in every TDMA frame, on at least one of the BCCH carriers. (3GPP TS 45. 008v5 10.0). The turnaround and measurement times guaranteed by the network for a mobile station depend on the multislot class to which the mobile claims conformance (3GPP TS 45.002v5. 9. 0 Annex B).

The neighbour cell measurements are taken prior to re-configuration from reception to transmission or prior to re-configuration from transmission to reception.

A mobile station operating in extended dynamic allocation <BR> <BR> <BR> <BR> <BR> mode presently must begin uplink transmission in the Tx timeslot corresponding to the Rx timeslot in which the first valid USF <BR> <BR> <BR> <BR> <BR> is recognised. That is to say that there is a fixed relationship in the timing of the downlink allocation signalling and subsequent uplink transmission. Owing to the physical limitations of single transceiver mobile stations some desirable multislot configurations are not available for use.

These restrictions reduce the availability of slots for uplink transmissions thereby reducing the flow of data and the flexibility of response to changing conditions. There is a need therefore to provide a method with which to enable the use of those multislot configurations currently unavailable for Extended Dynamic Allocation.

Disclosure of Invention

It is an object of this invention to reduce the restrictions affecting extended dynamic allocation with minimal effect on the existing prescript. This may be achieved by altering the fixed relationship in the timing of the downlink allocation signalling and subsequent uplink transmission for certain classes of mobile station.

In accordance with the invention there is a method for controlling uplink packet data transmissions and a mobile station operating in accordance with the method as set out in the attached claims.

Brief Description of Drawings Figure 1 illustrates the GPRS TDMA frame structure showing the numbering convention used for uplink (UL) and downlink (DL) timeslots; Figure 2 illustrates a prior art 4 slot steady state allocation R1T4 ; Figure 3 illustrates a 5 slot steady state allocation R1T5 prohibited in the prior art ; Figure 4 illustrates a 5 slot steady state allocation R1T5 enabled by the method of the present invention ; Figure 5 illustrates a shifted USF applied to a class 7 MS with 3 uplink slots allocated; Figure 6 illustrates a class 7 MS with 2 uplink slots allocated ; Figure 7 is a flow diagram for the implementation of shifted USF in a mobile station;

Figure 8 illustrates a transition from one uplink slot to five uplink slots for a class 34 MS; and Figure 9 illustrates a transition from four to five uplink slots for a class 34 MS.

Best Mode for Carrying Out the Invention In this embodiment, the invention is applied to a GPRS wireless network operating in accordance with the standards applicable to multislot classes.

In figure 1 the GPRS TDMA frame structure is illustrated and shows the numbering convention used for uplink (Tx) and downlink (Rx) timeslots. It should be noted that in practice Tx may be advanced relative to Rx due to timing advance (TA), although this is not shown in the illustration. Thus in practice the amount of time between the first Rx and first Tx of a frame may be reduced a fraction of a slot from the illustrated value of 3 slots due to timing advance.

Two successive TDMA frames are illustrated with downlink (DL) and uplink (UL) slots identified separately. The slot positions within the first frame are shown by the numerals 0 through to 7 with the transmission and reception slots offset by a margin of three slots. This is in accordance with the convention that that the first transmit frame in a TDMA lags the first receive frame by an offset of 3 (thus ordinary single slot GSM can be regarded as a particular case in which only slot 1 of transmit and receive is used).

The remaining figures conform to the illustration of

figure 1 but the slot numbering has been removed for extra clarity. The shaded slots are those allocated for the particular states and the arrowed inserts indicate the applicable measurement and turnaround intervals. The hashed slots indicate reception of a valid USF and the timeslot in which that USF is received. As mentioned above, constraints are imposed by the need to allow measurement and turnaround slots and the prescript for these in 3GPP TS 45.002 Annex B limits dynamic allocation as shown in table 1.

Table 1 Multislot Maximum Minimum number of class number of slots slots Rx Tx Sum Tta Ttb Tra Trb 7 3 3 4 3 1 3 34 5 5 6 2 1 1 39 5 5 6 2 1 1+to 1 45 6 6 7 1 1 1 to Tta is the time needed for the MS to perform adj acent cell signal level measurement and get ready to transmit.

Ttb is the time needed for the MS to get ready to transmit Tra is the time needed for the MS to perform adjacent cell signal level measurement and get ready to receive.

Trb is the time needed for the MS to get ready to receive It should be noted that in practice the times Tta and Ttb may be reduced by a fraction of a slot due to timing advance. to is 31 symbol periods timing advance offset

With reference to figure 2, a steady state single downlink and 4 uplink slot allocation for a class 34 mobile station is illustrated. The turnaround and measurement periods for this class are shown in table 1 as Tra, Trb and Ttb each having one slot and Tta having two slots. These periods can be accommodated for this allocation when a valid USF is received in time slot 0.

When the allocation of uplink slots extends to five, however, a constraint arises as indicated in the illustration of figure 3 which is for a class 34 mobile station with an allocation of one downlink and five uplink slots.

The constraint occurs at the position indicated by A' because no time is allowed for the changeover from transmit to receive (Trb). In the downlink time slot 0 a valid USF is received and the following two slots provide for Tta. In accordance with the invention, for this embodiment the mobile has uplink slots assigned in the usual way, through the use of USFTNO... USFTN7 Information Elements in Packet Uplink Assignment and Packet Timeslot Reconfigure messages. The network sends the USF, however, for both first and second assigned timeslots on the downlink PDCH associated with the second assigned timeslot.

Considering by way of example a class 34 MS with an <BR> <BR> <BR> <BR> <BR> <BR> assignment of 5 uplink slots (TNO-TN4) as discussed above where the network sends USFTNO on timeslot 1 rather than timeslot 0. This arrangement is illustrated in figure 4 where it can be seen that slots marked B'and C'provide for turnaround

times Tra and Trb respectively.

An allocation by the network of 4 uplink slots to the MS will be signalled by the sending of USFTN1 on timeslot 1. The characters of the two signals USF TNO and USF TN1 must differ and must be distinguishable by the mobile station.

It is not necessary to add extra information elements to indicate when the Shifted USF mechanism is to be used, as it may be made implicit in the timeslot allocations for the particular multislot class of the mobile station. Therefore no increase in signalling overhead would be required.

With reference to figure 5, another example of an allocation enabled by implementation of a shifted USF is illustrated in figure 5. The application is a class 7 MS with three uplink slots allocated. The USF on downlink slot 1 allocating the 3 uplink slots indicates that the first uplink slot available is uplink slot 0 rather than the usual slot 1.

This provides for the Ttb and Tra periods (as required by table 1) and as indicated in figure 5 at D and E respectively. The allocation would not previously have been available for want of a sufficient period for Tra.

The 2 slot allocation illustrated in figure 6 reverts to normal operation i. e. the USF is not shifted. There are no physical constraints in normal allocations for this 2 slot arrangement of figure 6 and the standard USF in time slot 1 allocates uplink slots beginning with uplink slot number 1.

Alternatively it may be convenient to apply positive signalling of the shift in position of the uplink allocation

and an implementation of a shifted USF in a mobile station operating extended dynamic allocation is illustrated in figure 7. It should be noted that the indication (2) in figure 7 may be explicit (i. e. extra signalling) or implicit (automatic for particular multislot class configuration). With reference to figure 7, the mobile station receives at 1 an assignment of uplink resources and USF's from the network. If at 2, an indication to use a shifted USF is detected then, for the first USF, the second downlink slot is monitored (3) otherwise the first downlink slot is monitored (4). In either case, when a valid USF has been received at 5 then uplink transmissions are initiated in the first uplink slot from the mobile station (6).

When no valid USF has been received at 5 then the second downlink slot is monitored for a second USF at 7 and if valid (8) then uplink transmissions are initiated in the second uplink slot (9).

In the examples illustrated in figures 2 to 6 the allocations are steady state such that the allocations shown are maintained from frame to frame. The invention is not restricted to steady state allocations and may be applied also to control of uplink resources that change from one frame to another.

Examples of transitions are illustrated in figures 8 and 9. These figures each represent four consecutive frames but have been split for presentation.

Figure 8 illustrates the transition from one uplink slot allocation to five uplink slots allocation, for a Class 34

mobile. The first (top) two frames show steady state operation with one slot and the next (bottom) two frames show the transitional frames. For this transition the slot location of the USF is changed.

Figure 9 illustrates the transition from four uplink slots to five uplink slots, for a Class 34 mobile. The first two frames show steady state operation with four slots and the next two frames show the transitional frames. For this transition the USF slot location is constant but the value of the USF is changed.

In order to implement the invention in GPRS for example a table (Table 2) may be constructed for a Type 1 MS to allow extended dynamic allocation using the principles below: In the case of extended dynamic allocation it is desirable <BR> <BR> <BR> <BR> <BR> for the MS to be able to"transmit up to its physical slot limit" ; specifically, the MS should be able to transmit the maximum number of slots possible according to the limitation of its multislot class, while continuing to receive and decode the USF value on exactly one slot and performing measurements. If it is not possible to define a multislot configuration which permits the MS to"transmit up to its physical slot limit"using Tra, but it would be possible by using Tta, then Tta shall be used.

If it is not possible to define a multislot configuration for extended dynamic allocation which permits the MS to "transmit up to its physical slot limit"but it would be possible by using the shifted USF mechanism, then shifted USF shall be used. In this case Tra will be used as first preference, but if this is not possible Tta will be used as second preference.

Table 2

Medium No of Slots Tra Tta Applicable Note access shall shall Multislot apply apply classes Uplink, 1-3 19-45 Ext. Dynamic 4 38-39, 43-45 5 Yes 5 Yes 44-45 6 Yes 45 Down + up, d+u = 19-45 Ext. Dynamic d+u 19-45 1 d 1, u = 4 No Yes 30-45 d+u 6, d>1 Yes 3 d = 1, u 5 Yes d+u = No Yes 40-45 4 d = 1, u Yes 45 5 Note 1 Normal measurements are not possible (see 3GPP # TS 45.008).

Note 2 Normal BSIC decoding is not possible (see 3GPP # TS 45.008).

Note 3 TA offset required for multislot classes 35-39. # Note 4 TA offset required for multislot classes 40-45.

Note 5 Shifted USF operation shall apply (see 3GPP TS # 44. 060)