Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FIRE RATED DOOR CORE AND DOOR
Document Type and Number:
WIPO Patent Application WO/2014/005056
Kind Code:
A1
Abstract:
A fire rated door includes a core, a first decorative panel and a second decorative panel. The core includes: (a) a fire resistant center panel having a bottom, a top, a first side, a second side, a first end and a second end, wherein the fire resistant center panel is made of a first fire resistant material, and (b) an extruded fire resistant border attached to the first side, the second side, the first end and the second end of the fire resistant center panel, wherein the extruded fire resistant border is made of a second fire resistant material having a higher density than the first fire resistant material. The first decorative panel is attached to the top of the fire resistant center panel and the extruded fire resistant border. The second decorative panel is attached to the bottom of the fire resistant center panel and the extruded fire resistant border.

Inventors:
DANIELS EVAN R (US)
NEWTON JONATHAN (US)
Application Number:
PCT/US2013/048642
Publication Date:
January 03, 2014
Filing Date:
June 28, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DANIELS EVAN R (US)
NEWTON JONATHAN (US)
International Classes:
E06B5/16; E04B9/14; E06B3/70
Domestic Patent References:
WO2002031306A12002-04-18
Foreign References:
US20060070321A12006-04-06
US20110040401A12011-02-17
US20110131921A12011-06-09
JPH0552075A1993-03-02
Attorney, Agent or Firm:
CHALKER, Daniel, J. et al. (LLP14951 North Dallas Parkway,Suite 40, Dallas TX, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A fire rated door comprising:

a core comprising: (a) a fire resistant center panel having a bottom, a top, a first side, a second side, a first end and a second end, wherein the fire resistant center panel is made of a first fire resistant material, and (b) an extruded fire resistant border attached to the first side, the second side, the first end and the second end of the fire resistant center panel, wherein the extruded fire resistant border is made of a second fire resistant material having a higher density than the first fire resistant material;

a first decorative panel attached to the top of the fire resistant center panel and the extruded fire resistant border; and

a second decorative panel attached to the bottom of the fire resistant center panel and the extruded fire resistant border.

2. The fire rated door as recited in claim 1, further comprising:

a notch in the first side of the fire resistant center panel; and

a fire resistant lock block disposed within the notch and attached to the fire resistant center panel and the extruded fire resistant border, wherein the fire resistant lock block is made of the second fire resistant material.

3. The fire rated door as recited in claim 1, wherein the fire resistant center panel comprises:

a first fire resistant center panel disposed between the first side and the second side proximate to the first end, wherein the first fire resistant center panel is made of the first fire resistant material;

a second fire resistant center panel disposed between the first side and the second side proximate to the second end, wherein the second fire resistant center panel is made of the first fire resistant material; and

a fire resistant insert disposed between and attached to the first fire resistant center panel and the second fire resistant center panel, and extending between and attached to the extruded fire resistant border at the first side and the second side, wherein the fire resistant material is made of the second fire resistant material.

4. The fire rated door as recited in claim 1, wherein the extruded fire resistant border is attached to the fire resistant center panel with a set of male-female connectors formed in the extruded fire resistant border and the fire resistant center panel.

5. The fire rated door as recited in claim 4, wherein the male-female connectors are triangular-shaped, curved-shaped, rectangular-shaped, angled, tongue-and-groove, or a combination thereof.

6. The fire rated door as recited in claim 1, wherein the first fire resistant material and the second fire resistant material are extruded or molded.

7. The fire rated door as recited in claim 1, wherein the extruded fire resistant border is assembled and the fire resistant center panel is poured and set within the extruded fire resistant border.

8. The fire rated door as recited in claim 1, wherein the extruded fire resistant border comprises:

a first stile;

a second stile;

a first rail attached to the first stile and the second stile; and

a second rail attached to the first stile and the second stile.

9. The fire rated door as recited in claim 1, further comprising a top panel attached to the top of the fire resistant center panel and the extruded fire resistant border, or a bottom panel attached to the bottom of the fire resistant center panel, or both the top panel and the bottom panel.

10. The fire rated door as recited in claim 9, wherein the top panel or the bottom panel comprise a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, one or more protective layers or a combination thereof.

1 1. The fire rated door as recited in claim 10, wherein the one or more protective layers comprise a fire resistant material, a blast resistant material, a ballistic resistant material, a shielding material, a chemical resistant material, a biohazard resistant material, a radiation resistant material, a dampening material, a grounding material, insulating material or a combination thereof.

12. The fire rated door as recited in claim 10, wherein the one or more protective layers comprise one or more gypsum boards, one or more metallic sheets, one or more lead sheets, one or more Kevlar sheets, one or more ceramic sheets, a layer of urethane foam, a layer of graphite, a wire mesh or a combination thereof. 13. The fire rated door as recited in claim 1, wherein the fire resistant center panel and the extruded fire resistant border are coated with an intumescent or fire resistant material.

14. The fire rated door as recited in claim 1, further comprising an exterior banding attached to each side and end of the extruded fire resistant border.

15. The fire rated door as recited in claim 14, further comprising an intumescent banding material disposed between the exterior banding and the extruded fire resistant border.

16. The fire rated door as recited in claim 1, wherein the first decorative panel and the second decorative panel comprise a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic or a combination thereof. 17. The fire rated door as recited in claim 1, wherein the first fire resistant material and the second fire resistant material are composed of water, gypsum, a cellulose or fiber material, glass, a ceramic material, and one or more binding agents.

18. The fire rated door as recited in claim 1, wherein the fire resistant center panel comprises:

a center panel made of the first fire resistant material or the second fire resistant material; a top insulating panel attached to the top of the center panel; and

a bottom insulating panel attached to the bottom of the center panel.

19. The fire rated door as recited in claim 18, wherein the top insulating panel and the bottom insulating panel are made of a corrugated filler having a plurality of voids filled with an acoustical insulating material.

20. A method of manufacturing a fire rated door comprising the steps of:

providing a core comprising the steps of: providing a fire resistant center panel having a bottom, a top, a first side, a second side, a first end and a second end, wherein the fire resistant center panel is made of a first fire resistant material,

attaching a first stile of an extruded fire resistant border to the first side of the fire resistant center panel, wherein the extruded fire resistant border is made of a second fire resistant material having a higher density than the first fire resistant material,

attaching a second stile of the extruded fire resistant border to the second side of the fire resistant center panel,

attaching a first rail of the extruded fire resistant border to the first end of the fire resistant center panel and the first stile and the second stile of the extruded fire resistant border, and

attaching a second rail of the extruded fire resistant border to the second end of the fire resistant center panel and the first stile and the second stile of the extruded fire resistant border;

attaching a first decorative panel to a top of the core; and

attaching a second decorative panel to a bottom of the core.

21. The method as recited in claim 20, further comprising the steps of:

forming a notch in the first side of the fire resistant center panel; and

inserting a fire resistant lock block within the notch and attaching the fire resistant lock block to the fire resistant center panel and the extruded fire resistant border, wherein the fire resistant lock block is made of the second fire resistant material.

22. The method as recited in claim 20, wherein the fire resistant center panel comprises: a first fire resistant center panel disposed between the first side and the second side proximate to the first end, wherein the first fire resistant center panel is made of the first fire resistant material;

a second fire resistant center panel disposed between the first side and the second side proximate to the second end, wherein the second fire resistant center panel is made of the first fire resistant material; and

a fire resistant insert disposed between and attached to the first fire resistant center panel and the second fire resistant center panel, and extending between and attached to the extruded fire resistant border at the first side and the second side, wherein the fire resistant material is made of the second fire resistant material.

23. The method as recited in claim 20, further comprising the step of forming a set of male- female connectors in the extruded fire resistant border and the fire resistant center panel.

24. The method as recited in claim 23, wherein the male-female connectors are triangular- shaped, curved-shaped, rectangular-shaped, angled, tongue-and-groove, or a combination thereof.

25. The method as recited in claim 20, further comprising the steps of:

extruding or molding the first fire resistant material to form the fire resistant center panel; and

extruding or molding the second fire resistant material to form the first stile, the second stile, the first rail and the second rail of the extruded fire resistant border.

26. The method as recited in claim 20, further comprising the steps of:

extruding or molding the first fire resistant material to form the fire resistant center panel; and

extruding or molding the second fire resistant material to form a sheet, and gang ripping the sheet to form one or more of the first stile, the second stile, the first rail or the second rail of the extruded fire resistant border.

27. The method as recited in claim 20, further comprising the step of attaching a top panel to the top of the fire resistant center panel and the extruded fire resistant border, or attaching a bottom panel to the bottom of the fire resistant center panel, or attaching both the top panel and the bottom panel.

28. The method as recited in claim 27, wherein the top panel or the bottom panel comprise a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, one or more protective layers or a combination thereof. 29. The method as recited in claim 28, wherein the one or more protective layers comprise a fire resistant material, a blast resistant material, a ballistic resistant material, a shielding material, a chemical resistant material, a biohazard resistant material, a radiation resistant material, a dampening material, a grounding material, insulating material or a combination thereof.

30. The method as recited in claim 28, wherein the one or more protective layers comprise one or more gypsum boards, one or more metallic sheets, one or more lead sheets, one or more Kevlar sheets, one or more ceramic sheets, a layer of urethane foam, a layer of graphite, a wire mesh or a combination thereof.

31. The method as recited in claim 20, further comprising the step of coating the fire resistant center panel and the extruded fire resistant border with an intumescent or fire resistant material. 32. The method as recited in claim 20, wherein the method is performed as part of a continuous manufacturing process.

33. The method as recited in claim 20, further comprising the step of forming a fire rated door by attaching a first decorative panel to a top of the core and attaching a second decorative panel to a bottom of the core. 34. The method as recited in claim 20, wherein the fire resistant center panel comprises: a center panel made of the first fire resistant material or the second fire resistant material; a top insulating panel attached to the top of the center panel; and

a bottom insulating panel attached to the bottom of the center panel.

35. The method as recited in claim 34, wherein the top insulating panel and the bottom insulating panel are made of a corrugated filler having a plurality of voids filled with an acoustical insulating material.

36. A method of manufacturing a fire rated door comprising the steps of:

providing a core comprising the steps of:

providing an extruded fire resistant border having a central void by providing a first stile of the extruded fire resistant border, attaching a first rail of the extruded fire resistant border to the first stile of the extruded fire resistant border, attaching a second rail of the extruded fire resistant border to the first stile and attaching a second stile of the extruded fire resistant border to the first rail and the second rail of the extruded fire resistant border, wherein the extruded fire resistant border is made of a second fire resistant material,

filling the void within the extruded fire resistant border with a first fire resistant material that has a lower density than the second fire resistant material to form a fire resistant center panel, and

baking the extruded fire resistant border and first fire resistant material;

attaching a first decorative panel to a top of the core; and attaching a second decorative panel to a bottom of the core.

37. The method as recited in claim 36, further comprising the step of inserting a fire resistant lock block within the extruded fire resistant border, wherein the fire resistant lock block is made of the second fire resistant material. 38. The method as recited in claim 36, wherein the fire resistant center panel comprises: a first fire resistant center panel disposed between the first side and the second side proximate to the first end, wherein the first fire resistant center panel is made of the first fire resistant material;

a second fire resistant center panel disposed between the first side and the second side proximate to the second end, wherein the second fire resistant center panel is made of the first fire resistant material; and

a fire resistant insert disposed between and attached to the first fire resistant center panel and the second fire resistant center panel, and extending between and attached to the extruded fire resistant border at the first side and the second side, wherein the fire resistant material is made of the second fire resistant material.

39. The method as recited in claim 36, further comprising the step of forming a set of male- female connectors in the extruded fire resistant border and the fire resistant center panel.

40. The method as recited in claim 39, wherein the male-female connectors are triangular- shaped, curved-shaped, rectangular-shaped, angled, tongue-and-groove, or a combination thereof.

41. The method as recited in claim 36, further comprising the steps of:

extruding or molding the first fire resistant material to form the fire resistant center panel; and

extruding or molding the second fire resistant material to form the first stile, the second stile, the first rail and the second rail of the extruded fire resistant border.

42. The method as recited in claim 36, further comprising the steps of:

extruding or molding the first fire resistant material to form the fire resistant center panel; and extruding or molding the second fire resistant material to form a sheet, and gang ripping the sheet to form one or more of the first stile, the second stile, the first rail or the second rail of the extruded fire resistant border.

43. The method as recited in claim 36, further comprising the step of attaching a top panel to the top of the fire resistant center panel and the extruded fire resistant border, or attaching a bottom panel to the bottom of the fire resistant center panel, or attaching both the top panel and the bottom panel.

44. The method as recited in claim 40, wherein the top panel or the bottom panel comprise a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, one or more protective layers or a combination thereof.

45. The method as recited in claim 44, wherein the one or more protective layers comprise a fire resistant material, a blast resistant material, a ballistic resistant material, a shielding material, a chemical resistant material, a biohazard resistant material, a radiation resistant material, a dampening material, a grounding material, insulating material or a combination thereof.

46. The method as recited in claim 45, wherein the one or more protective layers comprise one or more gypsum boards, one or more metallic sheets, one or more lead sheets, one or more Kevlar sheets, one or more ceramic sheets, a layer of urethane foam, a layer of graphite, a wire mesh or a combination thereof.

47. The method as recited in claim 45, further comprising the step of coating the fire resistant center panel and the extruded fire resistant border with an intumescent or fire resistant material.

48. The method as recited in claim 36, wherein the method is performed as part of a continuous manufacturing process.

49. The method as recited in claim 36, wherein the first fire resistant material and the second fire resistant material are composed of water, gypsum, a cellulose or fiber material, glass, a ceramic material, and one or more binding agents.

50. The method as recited in claim 36, further comprising the step of forming a fire rated door by attaching a first decorative panel to a top of the core and attaching a second decorative panel to a bottom of the core.

51. The method as recited in claim 36, wherein the fire resistant center panel comprises: a center panel made of the first fire resistant material or the second fire resistant material; a top insulating panel attached to the top of the center panel; and

a bottom insulating panel attached to the bottom of the center panel.

52. The method as recited in claim 52, wherein the top insulating panel and the bottom insulating panel are made of a corrugated filler having a plurality of voids filled with an acoustical insulating material.

Description:
FIRE RATED DOOR CORE AND DOOR

Field of Invention

The present invention relates generally to the field of door manufacturing and, more particularly, to a fire rated door core and fire rated door Background Art

Many methods and techniques for manufacturing fire rated doors and door cores have been developed over time. But most of these prior art designs do not lend themselves well to fully automated manufacturing processes. Moreover, the prior art fire rated doors are expensive and require the internal mineral core. The internal core can be exposed in routed details and may reduce the strength of the door as a result of the reduced thickness of the door panels. In addition, alignment of the panels during assembly can be troublesome and require additional finishing to square the door after assembly. As a result, there is a need for a fire rated door and door core that does not suffer from these deficiencies.

Summary of the Invention The door of the present invention provides the fire resistant capabilities necessary to receive the necessary fire certifications. The fire rated door includes a fire rated door core having typical dimensions in widths of three feet and four feet and having a length ranging from seven feet to ten feet. The thickness of the fire core can range from 1.50 inches to 2.00 inches. In some cases, an exterior banding may be added to the sides and ends of the fire rated door core. In other cases, an intumescent banding may be added between the exterior banding and fire rated door core.

More specifically, the present invention provides a fire rated door that includes a core, a first decorative panel and a second decorative panel. The core includes: (a) a fire resistant center panel having a bottom, a top, a first side, a second side, a first end and a second end, wherein the fire resistant center panel is made of a first fire resistant material, and (b) an extruded fire resistant border attached to the first side, the second side, the first end and the second end of the fire resistant center panel, wherein the extruded fire resistant border is made of a second fire resistant material having a higher density than the first fire resistant material. The first decorative panel is attached to the top of the fire resistant center panel and the extruded fire resistant border. The second decorative panel is attached to the bottom of the fire resistant center panel and the extruded fire resistant border.

In addition, the present invention provides a method of manufacturing a fire rated door by providing a core, attaching a first decorative panel to a top of the core, and attaching a second decorative panel to a bottom of the core. The core is provided by providing a fire resistant center panel, attaching a first stile of an extruded fire resistant border to the first side of the fire resistant center panel, attaching a second stile of the extruded fire resistant border to the second side of the fire resistant center panel, attaching a first rail of the extruded fire resistant border to the first end of the fire resistant center panel and the first stile and the second stile of the extruded fire resistant border, and attaching a second rail of the extruded fire resistant border to the second end of the fire resistant center panel and the first stile and the second stile of the extruded fire resistant border. The fire resistant center panel has a bottom, a top, a first side, a second side, a first end and a second end. The fire resistant center panel is made of a first fire resistant material. The extruded fire resistant border is made of a second fire resistant material having a higher density than the first fire resistant material. Moreover, the present invention provides a method of manufacturing a fire rated door by providing a core, attaching a first decorative panel to a top of the core, and attaching a second decorative panel to a bottom of the core. The core is provided by providing an extruded fire resistant border having a central void, filling the void within the extruded fire resistant border with a first fire resistant material that has a lower density than the second fire resistant material to form a fire resistant center panel, and baking the extruded fire resistant border and first fire resistant material. The extruded fire resistant border is provided by providing a first stile of the extruded fire resistant border, attaching a first rail of the extruded fire resistant border to the first stile of the extruded fire resistant border, attaching a second rail of the extruded fire resistant border to the first stile, and attaching a second stile of the extruded fire resistant border to the first rail and the second rail of the extruded fire resistant border. The extruded fire resistant border is made of a second fire resistant material.

The present invention is described in detail below with reference to the accompanying drawings. Brief Description of the Drawings

The above and further advantages of the invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which:

FIGURE 1 is a perspective view of a door core for a fire rated door in accordance with one embodiment of the present invention;

FIGURE 2 is a perspective view of a door core for a fire rated door in accordance with another embodiment of the present invention;

FIGURES 3A-3D are cross-sectional views of various interfaces of the center panel and the border of a door core in accordance with one embodiment of the present invention; FIGURE 4 is a perspective view of a door core for a fire rated door in accordance with another embodiment of the present invention;

FIGURE 5 is a perspective view of a door core for a fire rated door in accordance with another embodiment of the present invention;

FIGURE 6 is a perspective view of a door core for a fire rated door in accordance with another embodiment of the present invention;

FIGURE 7 is a perspective view of a door core for a fire rated door in accordance with another embodiment of the present invention;

FIGURE 8 is a perspective view of a door core for a fire rated door in accordance with another embodiment of the present invention; FIGURE 9 is a perspective view of a door core for a fire rated door in accordance with another embodiment of the present invention;

FIGURE 10A is an exploded perspective view of door core for a fire rated door in accordance with another embodiment of the present invention;

FIGURE 10B is a cross-sectional view of the door core of FIGURE 10A; FIGURE 1 1 A is an exploded perspective view of a fire rated door in accordance with one embodiment of the present invention; FIGURE 1 IB is a cross-sectional view of the fire rated door of FIGURE 11A;

FIGURE 1 1C is a cross-sectional view of an alternative version of the fire rated door of FIGURE 11 A;

FIGURE 12A is an exploded perspective view of a fire rated door in accordance with another embodiment of the present invention;

FIGURE 12B is a cross-sectional view of the fire rated door of FIGURE 12A;

FIGURE 13 A is an exploded perspective view of a fire rated door in accordance with another embodiment of the present invention;

FIGURE 13B is a cross-sectional view of the fire rated door of FIGURE 13A; FIGURE 13C is a cross-sectional view of an alternative version of the fire rated door of

FIGURE 13 A;

FIGURE 14A is an exploded perspective view of a fire rated door in accordance with another embodiment of the present invention;

FIGURE 14B is a cross-sectional view of the fire rated door of FIGURE 14A; FIGURE 14C is a cross-sectional view of an alternative version of the fire rated door of

FIGURE 14A;

FIGURE 15A is an exploded perspective view of a fire rated door in accordance with another embodiment of the present invention;

FIGURE 15B is a cross-sectional view of the fire rated door of FIGURE 15A; FIGURE 16 is a flow chart of a method of manufacturing a door core for a fire rated door in accordance with one embodiment of the present invention;

FIGURE 17 is a flow chart of a method of manufacturing a door core for a fire rated door in accordance with another embodiment of the present invention; and

FIGURE 18 is a flow chart of a method of manufacturing a fire rated door in accordance with one embodiment of the present invention. Detailed Description of the Invention

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention. The discussion herein relates primarily to fire rated doors, but it will be understood that the concepts of the present invention are applicable to any type of door.

The door core of the present invention provides the fire resistant capabilities necessary to receive the necessary certification. The length and width of the fire core will match the length and width specifications of the final door product. The dimensions of the fire core will typically be in widths of three feet and four feet and having a length ranging from seven feet to ten feet. The thickness of the door core will typically be between 0.125" and 1.5". A door manufacturer can use any of the completed core designs described herein as the fire resistant core of the manufacturer's fire-rated door. The resulting fire rated door can have fire ratings of 20-30, 45, 60, 90 or 120 minutes depending on the configuration and materials used. The manufacturer will typically finish the final door product by adding a final piece of wood or veneer to the door to provide the aesthetic appeal of the product.

Now referring to FIGURE 1, a perspective view of a door core 100 for a fire rated door in accordance with one embodiment of the present invention is shown. The core 100 includes a fire resistant center panel 102 and an extruded fire resistant border 104. The fire resistant center panel 102 has a bottom (not shown), a top 106, a first side 108, a second side 110, a first end 112 and a second end 1 14. The fire resistant center panel 102 is made of a first fire resistant material that is either pourable or extrudable. The first fire resistant material can be composed of gypsum, water, glass, a ceramic material, a cellulose or fiber material, and one or more binding agents. One non-limiting example of such a material is StarLite licensed by StarStone, LLC (a subsidiary of E. Khashoggi Industries, LLC). Other materials can be used. The extruded fire resistant border 104 is made of a second fire resistant material having a higher density than the first fire resistant material so that second fire resistant material has holding capacity (e.g., fasteners will adhere to the second fire resistant material and remain fixed once installed) and can be shaped using an extrusion process. One non-limiting example of such a material is StarStone licensed by StarStone, LLC (a subsidiary of E. Khashoggi Industries, LLC). Other materials can be used. The extruded fire resistant border 104 can be made of a molded piece of the second fire resistant material (e.g., FIGURE 1), or stiles and rails made of the second fire resistant material that are glued or fastened together (e.g., FIGURE 4). The extruded fire resistant border 104 is attached to the first side 108, the second side 110, the first end 112 and the second end 114 of the fire resistant center panel 102 using glue, fasteners or a bonding process (e.g., pouring the first fire resistant material into a "mold" formed by the extruded fire resistant border 104). Several examples of the interface between the extruded fire resistant border 104 and the fire resistant center panel 102 are shown in FIGURES 3A-3D.

The physical dimensions of the core 100 and other cores described below in reference to FIGURES 2-10, the fire resistant center panel 102 and the extruded fire resistant border 104 will vary depending on the specific application for which the door core is manufactured. Typical dimensions may include, but are not limited to, 1.5" to 2.0" thickness of the fire resistant panel 102 and the extruded fire resistant border 104, a 7' to 10' overall length of the core 100, a 3 ' to 4' overall width of the core 100, a 1" to 3" width of the top and bottom portions (rails) of the extruded fire resistant border 104, and a 1.0" to 3" (e.g., 1.625") width of the left and right portion (stiles) of the extruded fire resistant border 104.

The core 100 and other cores described below in reference to FIGURES 2-10 can be manufactured by assembling the fire resistant border 104, pouring the first fire resistant material in the area formed by the fire resistant border 104, and baking the core 100. Alternatively, the core 100 can be manufactured by creating sheets of the first fire resistant material and the second fire resistant material using an extrusion process, gang ripping the sheets of the second fire resistant material to make the fire resistant border stiles and rails, finishing the extruded stiles and rails to profile or cut them to the desired smoothness, size and shape, and gluing or fastening the fire resistant border stiles and rails to the fire resistant center panel 102. Referring now to FIGURE 2, a perspective view of a door core 200 for a fire rated door in accordance with another embodiment of the present invention is shown. The core 200 includes a first fire resistant center panel 102a, a second fire resistant center panel 102b and an extruded fire resistant border 104. The first fire resistant center panel 102a has a bottom (not shown), a top 106a, a first side 108a, a second side 1 10a, a first end 1 12 and a second end 202. The second fire resistant center panel 102b has a bottom (not shown), a top 106b, a first side 108b, a second side 110b, a first end 204 and a second end 114. The first fire resistant center panel 102a and second fire resistant center panel 102b are made of the first fire resistant material that is either pourable or extrudable. The extruded fire resistant border 104 is made of the second fire resistant material having a higher density than the first fire resistant material so that second fire resistant material has holding capacity (e.g., fasteners will adhere to the second fire resistant material and remain fixed once installed) and can be shaped using an extrusion process. The extruded fire resistant border 104 also includes a center rail 206 made of the second fire resistant material. The extruded fire resistant border 104 can be made of a molded piece of the second fire resistant material (e.g., FIGURE 2), or stiles and rails made of the second fire resistant material that are glued or fastened together (e.g., FIGURE 5). The extruded fire resistant border 104 (including center rail 206) is attached to the first side 108a, the second side 110a, the first end 112a and the second end 202 of the fire resistant center panel 102a and the first side 108b, the second side 1 10b, the first end 204 and the second end 1 14 of the second fire resistant center panel 102b using glue, fasteners or a bonding process (e.g., pouring the first fire resistant material into a "mold" formed by the extruded fire resistant border 104). Several examples of the interface between the extruded fire resistant border 104 and the fire resistant center panels 102a, 102b are shown in FIGURES 3A-3D.

The physical dimensions of the core 200 and other cores described below in reference to FIGURES 3-10, the fire resistant center panels 102a, 102b and the extruded fire resistant border 104 will vary depending on the specific application for which the door core is manufactured. Typical dimensions may include, but are not limited to, 1.5" thickness of the fire resistant panels 102a, 102b and the extruded fire resistant border 104, a 7' to 10' overall length of the core 100, a 3' to 4' overall width of the core 100, a 1" to 3" width of the top, bottom and center portions (rails) of the extruded fire resistant border 104, and a 1" to 3" (e.g., 1.625") width of the left and right portion (stiles) of the extruded fire resistant border 104.

Now referring to FIGURES 3A-3D, cross-sectional views of various interfaces of the center panel 102 and the border 104 of a door core 100, 200, 400, 500, 600, 700, 800 and 900 in accordance with one embodiment of the present invention is shown. FIGURE 3A shows a straight interface wherein a glue is used to attach the extruded fire resistant border 104 to the fire resistant center panel 102. Note that the straight interface can be angled with respect to the top of the fire resistant center panel 102 instead of being substantially perpendicular. As shown in FIGURES 3B-3D, the extruded fire resistant border 104 can be attached to the fire resistant center panel 102 with a set of male-female connectors 300 formed in the extruded fire resistant border 104 and the fire resistant center panel 102. The male-female connectors can be triangular-shaped 302 (FIGURE 3B), curved-shaped 304 (FIGURE 3C) or 306 (FIGURE 3D), rectangular-shaped, angled, tongue-and-groove, or a combination thereof. A glue is typically used is used to attach the extruded fire resistant border 104 to the fire resistant center panel 102, but fasteners or a bonding process can also be used.

Referring now to FIGURE 4, a perspective view of a door core 400 for a fire rated door in accordance with another embodiment of the present invention is shown. The core 400 includes a fire resistant center panel 102 and an extruded fire resistant border 104. The fire resistant center panel 102 has a bottom (not shown), a top 106, a first side 108, a second side 1 10, a first end 1 12 and a second end 1 14. The fire resistant center panel 102 is made of the first fire resistant material that is either pourable or extrudable. The extruded fire resistant border 104 is made up of a first stile 402 (left), a second stile 404 (right), a first rail 406 (top) and a second rail 408 (bottom). The first stile 402 (left), second stile 404 (right), first rail 406 (top) and second rail 408 (bottom) are made of the second fire resistant material having a higher density than the first fire resistant material so that second fire resistant material has holding capacity (e.g., fasteners will adhere to the second fire resistant material and remain fixed once installed) and can be shaped using an extrusion process. The first stile 402 (left), second stile 404 (right), first rail 406 (top) and second rail 408 (bottom) are glued or fastened together and to the fire resistant center panel 102. The first stile 402 (left) is attached to the first side 108 of the fire resistant center panel 102 using glue, fasteners or a bonding process. The second stile 404 (right) is attached to the second side 1 10 of the fire resistant center panel 102 using glue, fasteners or a bonding process. The first rail 406 (top) is attached to the first end 112 of the fire resistant center panel 102 using glue, fasteners or a bonding process. The second rail 408 (top) is attached to the second end 1 14 of the fire resistant center panel 102 using glue, fasteners or a bonding process. Several examples of the interface between the stiles 402, 404, the rails 406, 408, and the fire resistant center panel 102 are shown in FIGURES 3A-3D. Now referring to FIGURE 5, a perspective view of a door core 500 for a fire rated door in accordance with another embodiment of the present invention is shown. The core 500 includes a first fire resistant center panel 102a, a second fire resistant panel 102b and an extruded fire resistant border 104. The first fire resistant center panel 102a has a bottom (not shown), a top 106a, a first side 108a, a second side 1 10a, a first end 1 12 and a second end 202. The second fire resistant center panel 102b has a bottom (not shown), a top 106b, a first side 108b, a second side 1 10b, a first end 204 and a second end 114. The first fire resistant center panel 102a and second fire resistant center panel 102b are made of the first fire resistant material that is either pourable or extrudable. The extruded fire resistant border 104 is made up of a first stile 402 (left), a second stile 404 (right), a first rail 406 (top), a second rail 408 (bottom) and a third rail or insert 502 (center). The first stile 402 (left), second stile 404 (right), first rail 406 (top), second rail 408 (bottom) and third rail or insert 502 (center) are made of the second fire resistant material having a higher density than the first fire resistant material so that second fire resistant material has holding capacity (e.g., fasteners will adhere to the second fire resistant material and remain fixed once installed) and can be shaped using an extrusion process. The first stile 402 (left), second stile 404 (right), first rail 406 (top), second rail 408 (bottom), third rail or insert 502 (center) are glued or fastened together and to the fire resistant center panels 102a and 102b. The first stile 402 (left) is attached to the first side 108a, 108b of the fire resistant center panels 102a, 102b using glue, fasteners or a bonding process. The second stile 404 (right) is attached to the second side 110a, 1 10b of the fire resistant center panels 102a, 102b using glue, fasteners or a bonding process. The first rail 406 (top) is attached to the first end 112 of the first fire resistant center panel 102a using glue, fasteners or a bonding process. The second rail 408 (bottom) is attached to the second end 1 14 of the second fire resistant center panel 102b using glue, fasteners or a bonding process. The third rail or insert 502 (center) is attached to the second end 202 of the first fire resistant center panel 102a and the first end 204 of the second fire resistant panel 102b using glue, fasteners or a bonding process. Several examples of the interface between the stiles 402, 404, the rails 406, 408, and the fire resistant center panels 102a, 102b are shown in FIGURES 3A-3D. These interfaces can also be used between the fire resistant center panels 102a, 102b and the third rail or insert 502 (center).

Referring now to FIGURE 6, a perspective view of a door core 600 for a fire rated door in accordance with another embodiment of the present invention is shown. The core 600 includes a fire resistant center panel 102, an extruded fire resistant border 104 and a lock block 602. The fire resistant center panel 102 has a bottom (not shown), a top 106, a first side 108, a second side 1 10, a first end 112, a second end 1 14 and a cutout or notch 604 disposed in the first side 108. The fire resistant center panel 102 is made of the first fire resistant material that is either pourable or extrudable. The lock block 602 is disposed within the cutout or notch 604 of the fire resistant center panel 102. The lock block 602 is made of the second fire resistant material and is sized to accommodate a door handle, lockset or other door hardware. The extruded fire resistant border 104 is made up of a first stile 402 (left), a second stile 404 (right), a first rail 406 (top) and a second rail 408 (bottom). The first stile 402 (left), second stile 404 (right), first rail 406 (top) and second rail 408 (bottom) are made of the second fire resistant material having a higher density than the first fire resistant material so that second fire resistant material has holding capacity (e.g., fasteners will adhere to the second fire resistant material and remain fixed once installed) and can be shaped using an extrusion process. The first stile 402 (left), second stile 404 (right), first rail 406 (top) and second rail 408 (bottom) are glued or fastened together and to the fire resistant center panel 102 and lock block 602. The first stile 402 (left) is attached to the first side 108 of the fire resistant center panel 102 and the lock block 602 using glue, fasteners or a bonding process. The second stile 404 (right) is attached to the second side 110 of the fire resistant center panel 102 using glue, fasteners or a bonding process. The first rail 406 (top) is attached to the first end 112 of the fire resistant center panel 102 using glue, fasteners or a bonding process. The second rail 408 (top) is attached to the second end 114 of the fire resistant center panel 102 using glue, fasteners or a bonding process. Several examples of the interface between the stiles 402, 404, the rails 406, 408, and the fire resistant center panel 102 are shown in FIGURES 3A-3D. These interfaces can also be used between the lock block 602, the fire resistant center panel 102 and the first stile 402 (left).

Now referring to FIGURE 7, a perspective view of a door core 700 for a fire rated door in accordance with another embodiment of the present invention is shown. The core 700 includes a first fire resistant center panel 102a, a second fire resistant panel 102b and an extruded fire resistant border 104. The first fire resistant center panel 102a has a bottom (not shown), a top 106a, a first side 108a, a second side 1 10a, a first end 1 12 and a second end 202. The second fire resistant center panel 102b has a bottom (not shown), a top 106b, a first side 108b, a second side 1 10b, a first end 204 and a second end 114. The first fire resistant center panel 102a and second fire resistant center panel 102b are made of the first fire resistant material that is either pourable or extrudable. The extruded fire resistant border 104 is made up of a first stile 402 (left), a second stile 404 (right), a first rail 406 (top), a second rail 408 (bottom) and a third rail or insert 702 (middle). The first stile 402 (left), second stile 404 (right), first rail 406 (top), second rail 408 (bottom) and third rail or insert 702 (middle) are made of the second fire resistant material having a higher density than the first fire resistant material so that second fire resistant material has holding capacity (e.g., fasteners will adhere to the second fire resistant material and remain fixed once installed) and can be shaped using an extrusion process. The first stile 402 (left), second stile 404 (right), first rail 406 (top), second rail 408 (bottom), third rail or insert 702 (middle) are glued or fastened together and to the fire resistant center panels 102a and 102b. The first stile 402 (left) is attached to the first side 108a, 108b of the fire resistant center panels 102a, 102b using glue, fasteners or a bonding process. The second stile 404 (right) is attached to the second side 110a, 110b of the fire resistant center panels 102a, 102b using glue, fasteners or a bonding process. The first rail 406 (top) is attached to the first end 112 of the first fire resistant center panel 102a using glue, fasteners or a bonding process. The second rail 408 (bottom) is attached to the second end 1 14 of the second fire resistant center panel 102b using glue, fasteners or a bonding process. The third rail or insert 702 (middle) is attached to the second end 202 of the first fire resistant center panel 102a and the first end 204 of the second fire resistant panel 102b using glue, fasteners or a bonding process. The third rail or insert 702 (middle) is positioned and sized (e.g., 5" to 10" wide) to accept various attachments, such as a crash bar. Several examples of the interface between the stiles 402, 404, the rails 406, 408, and the fire resistant center panels 102a, 102b are shown in FIGURES 3A-3D. These interfaces can also be used between the fire resistant center panels 102a, 102b and the third rail or insert 702 (middle).

Referring now to FIGURE 8, a perspective view of a door core 800 for a fire rated door in accordance with another embodiment of the present invention is shown. The core 800 includes a first fire resistant center panel 102a, a second fire resistant center panel 102b, an extruded fire resistant border 104 and a lock block 602. The first fire resistant center panel 102a has a bottom (not shown), a top 106a, a first side 108a, a second side 1 10a, a first end 112, a second end 202 and a cutout or notch 604 disposed in the first side 108a. The second fire resistant center panel 102b has a bottom (not shown), a top 106b, a first side 108b, a second side 1 10b, a first end 204 and a second end 114. The first fire resistant center panel 102a and second fire resistant center panel 102b are made of the first fire resistant material that is either pourable or extrudable. The lock block 602 is disposed within the cutout or notch 604 of the first fire resistant center panel 102a. The lock block 602 is made of the second fire resistant material and is sized to accommodate a door handle, lockset or other door hardware. The extruded fire resistant border 104 is made up of a first stile 402 (left), a second stile 404 (right), a first rail 406 (top), a second rail 408 (bottom) and a third rail or insert 702 (middle). The first stile 402 (left), second stile 404 (right), first rail 406 (top), second rail 408 (bottom) and third rail or insert 702 (middle) are made of the second fire resistant material having a higher density than the first fire resistant material so that second fire resistant material has holding capacity (e.g., fasteners will adhere to the second fire resistant material and remain fixed once installed) and can be shaped using an extrusion process. The first stile 402 (left), second stile 404 (right), first rail 406 (top), second rail 408 (bottom), third rail or insert 702 (middle) are glued or fastened together and to the fire resistant center panels 102a, 102b and lock block 602. The first stile 402 (left) is attached to the first side 108a, 108b of the fire resistant center panels 102a, 102b and the lock block 602 using glue, fasteners or a bonding process. The second stile 404 (right) is attached to the second side 1 10a, 110b of the fire resistant center panels 102a, 102b using glue, fasteners or a bonding process. The first rail 406 (top) is attached to the first end 112 of the first fire resistant center panel 102a using glue, fasteners or a bonding process. The second rail 408 (bottom) is attached to the second end 1 14 of the second fire resistant center panel 102b using glue, fasteners or a bonding process. The third rail or insert 702 (middle) is attached to the second end 202 of the first fire resistant center panel 102a, the first end 204 of the second fire resistant panel 102b and the lock block 602 using glue, fasteners or a bonding process. The third rail or insert 702 (middle) is positioned and sized (e.g., 5" to 10" wide) to accept various attachments, such as a crash bar. Several examples of the interface between the stiles 402, 404, the rails 406, 408, and the fire resistant center panels 102a, 102b are shown in FIGURES 3A-3D. These interfaces can also be used between the lock block 602, the fire resistant center panel 102a, the first stile 402 (left) and the third rail or insert 702 (middle).

Now referring to FIGURE 9, a perspective view of a door core 900 for a fire rated door in accordance with another embodiment of the present invention is shown. The core 900 includes a center panel 902 and an extruded fire resistant border 104. The center panel 902 has a bottom (not shown), a top 106, a first side 108, a second side 1 10, a first end 112 and a second end 1 14. The center panel 902 is made of a corrugated filler (e.g., cardboard, etc.) having a plurality of voids (e.g., honeycomb shaped, hexagon shaped, triangular shaped, etc.) and may be filled with an acoustical insulating material (e.g., fiberglass, foam, etc.). The extruded fire resistant border 104 is made up of a first stile 402 (left), a second stile 404 (right), a first rail 406 (top) and a second rail 408 (bottom). The first stile 402 (left), second stile 404 (right), first rail 406 (top) and second rail 408 (bottom) are made of the second fire resistant material having a higher density than the first fire resistant material so that second fire resistant material has holding capacity (e.g., fasteners will adhere to the second fire resistant material and remain fixed once installed) and can be shaped using an extrusion process. The first stile 402 (left), second stile 404 (right), first rail 406 (top) and second rail 408 (bottom) are glued or fastened together and to the center panel 902. The first stile 402 (left) is attached to the first side 108 of the center panel 902 using glue, fasteners or a bonding process. The second stile 404 (right) is attached to the second side 110 of the center panel 902 using glue, fasteners or a bonding process. The first rail 406 (top) is attached to the first end 1 12 of the center panel 902 using glue, fasteners or a bonding process. The second rail 408 (top) is attached to the second end 114 of the center panel 902 using glue, fasteners or a bonding process. Several examples of the interface between the stiles 402, 404, the rails 406, 408, and the fire resistant center panel 902 are shown in FIGURES 3A-3D. Note that the center panel 902 is not suitable for forming a fire resistant door alone. Fire resistant materials or panels must be installed on the top 106 and bottom (not shown) of the center panel 902 in order to make a fire resistant door. For example, the center panel 902 can be used in the doors 1100 (FIGURE 1 1A), 1200 (FIGURE 12A) and 1300 (FIGURE 13A) if panels 1102, 1102 and 1302, respectively, are made of a fire resistant material (e.g., the second fire resistant material, etc.).

Referring now to FIGURE 10A, an exploded perspective view of door core 1000 for a fire rated door in accordance with another embodiment of the present invention is shown. The core 1000 includes a fire resistant center panel 102 or 1002 disposed between a top insulating panel 902a and a bottom insulating panel 902b, and an extruded fire resistant border 104 around the three panels 902a, 102 (or 1002) and 902b. The fire resistant center panel 102 is made of the first fire resistant material that is either pourable or extrudable. The fire resistant center panel 1002 is made of the second fire resistant material that is either pourable or extrudable. The top insulating panel 902a and bottom insulating panel 902b are made of a corrugated filler (e.g., cardboard, etc.) having a plurality of voids (e.g., honeycomb shaped, hexagon shaped, triangular shaped, etc.) and may be filled with an acoustical insulating material (e.g., fiberglass, foam, etc.). The three panels 902a, 102 (or 1002) and 902b are typically glued together. The fire resistant center panel 102 or 1002 has a bottom (not shown), a top 106, a first side 108, a second side 110, a first end 112 and a second end 1 14. The extruded fire resistant border 104 is made up of a first stile 402 (left), a second stile 404 (right), a first rail 406 (top) and a second rail 408 (bottom). The first stile 402 (left), second stile 404 (right), first rail 406 (top) and second rail 408 (bottom) are made of the second fire resistant material having a higher density than the first fire resistant material so that second fire resistant material has holding capacity (e.g., fasteners will adhere to the second fire resistant material and remain fixed once installed) and can be shaped using an extrusion process. The first stile 402 (left), second stile 404 (right), first rail 406 (top) and second rail 408 (bottom) are glued or fastened together and to the three panels 902a, 102 (or 1002) and 902b. The first stile 402 (left) is attached to the first side 108 of the three panels 902a, 102 (or 1002) and 902b using glue, fasteners or a bonding process. The second stile 404 (right) is attached to the second side 110 of the three panels 902a, 102 (or 1002) and 902b using glue, fasteners or a bonding process. The first rail 406 (top) is attached to the first end 112 of the three panels 902a, 102 (or 1002) and 902b using glue, fasteners or a bonding process. The second rail 408 (top) is attached to the second end 1 14 of the three panels 902a, 102 (or 1002) and 902b using glue, fasteners or a bonding process. Several examples of the interface between the stiles 402, 404, the rails 406, 408, and the fire resistant center panel 102 are shown in FIGURES 3A-3D. FIGURE 10B is a cross-sectional view of the door core of FIGURE 10A. Note that the cores shown in FIGURES 1-10 and described above may also include a top panel attached to the top of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000, or a bottom panel attached to the bottom of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000, or both the top panel and the bottom panel attached to the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000. Example of such a configuration is shown in FIGURE 13A and 14A. The top panel or the bottom panel can be a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, a fire resistant panel, one or more protective layers or a combination thereof. The one or more protective layers can be a fire resistant material, a blast resistant material, a ballistic resistant material, a shielding material, a chemical resistant material, a biohazard resistant material, a radiation resistant material, a dampening material, a grounding material, insulating material or a combination thereof. For example, the one or more protective layers can be one or more gypsum boards, one or more metallic sheets, one or more lead sheets, one or more Kevlar sheets, one or more ceramic sheets, a layer of urethane foam, a layer of graphite, a wire mesh or a combination thereof. Moreover, the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 and/or top or bottom panels can be coated with an intumescent or fire resistant material.

Referring now to FIGURE 11A, an exploded perspective view of a fire rated door 1100 in accordance with one embodiment of the present invention is shown. The fire rated door 1100 includes a core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 (see FIGURES 1-10 and associated description for details), a first decorative panel 1102 and a second decorative panel 1104. The first and second decorative panel 1102 and 1104 can be a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, a fire resistant material or a combination thereof. The first decorative panel 1102 is attached to the top of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 using glue. The second decorative panel 1104 is attached to the bottom of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 using glue. Note that the glue may have fire resistant properties or contain an intumescent material. The first and second decorative panels 1102 and 1104 have a slightly larger length and width to accommodate an exterior banding 1106 attached to each side and end of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000. The exterior banding 1106 can be a first banding 1106a, a second banding 1106b, a third banding 1106c and a fourth banding 1106d. FIGURE 1 IB shows a cross-sectional view of the fire rated door 1100. FIGURE 11C shows a cross-sectional view of an alternative version of the fire rated door 1100 in which an intumescent banding material 1108 can also be disposed between the exterior banding 1106 and the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000.

Now referring to FIGURE 12A, an exploded perspective view of a fire rated door 1200 in accordance with another embodiment of the present invention is shown. The fire rated door 1200 includes a core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 (see FIGURES 1-10 and associated description for details), a first decorative panel 1102 and a second decorative panel 1104. The first and second decorative panel 1102 and 1104 can be a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, a fire resistant material or a combination thereof. Note that the first and second decorative panels 1102 and 1104 may also have fire resistant properties. The first decorative panel 1102 is attached to the top of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 using glue. The second decorative panel 1104 is attached to the bottom of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 using glue. Note that the glue may have fire resistant properties or contain an intumescent material. The first and second decorative panels 1102 and 1104 have the same length and width as the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000. As a result, additional banding, rails and stiles are not needed. FIGURE 12B shows a cross-sectional view of the fire rated door 1200.

Referring now to FIGURE 13 A, an exploded perspective view of a fire rated door 1300 in accordance with another embodiment of the present invention is shown. The fire rated door 1300 includes a core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 (see FIGURES 1-10 and associated description for details), a first protective panel or layer 1302 (also referred to as a top panel), a first decorative panel 1102, a second protective panel or layer 1304 (also referred to as a bottom panel) and a second decorative panel 1104. The first protective panel or layer 1302 and the second protective panel or layer 1304 can be a fire resistant material, a blast resistant material, a ballistic resistant material, a shielding material, a chemical resistant material, a biohazard resistant material, a radiation resistant material, a dampening material, a grounding material, insulating material or a combination thereof. For example, the first protective panel or layer 1302 and the second protective panel or layer 1304 can be one or more gypsum boards, one or more metallic sheets, one or more lead sheets, one or more Kevlar sheets, one or more ceramic sheets, a layer of urethane foam, a layer of graphite, a wire mesh or a combination thereof. A 120 minute fire rated door can be obtained by using a dense fire resistant material, such as StarStone, as the first and second protective panels or layers 1302 and 1304. The first and second decorative panel 1102 and 1104 can be a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, a fire resistant material or a combination thereof. The first decorative panel 1102 is attached to the top of the first protective panel or layer 1302 using glue. The first protective panel or layer 1302 is attached to the top of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 using glue. The second decorative panel 1104 is attached to the bottom of the second protective panel or layer 1304 using glue. The second protective panel or layer 1304 is attached to the bottom of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 using glue. Note that the glue may have fire resistant properties or contain an intumescent material. The first and second decorative panels 1102, 1104 and first and second protective panels or layers 1302, 1304 have the same length and width as the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000. As a result, additional banding, rails and stiles are not needed. FIGURE 13B shows a cross-sectional view of the fire rated door 1300. FIGURE 13C shows a cross-sectional view of an alternative version of the fire rated door 1300 in which the first and second decorative panels 1102 and 1104 have a slightly larger length and width to accommodate an exterior banding 1106 attached to each side and end of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000. As shown in FIGURE 11A, the exterior banding 1106 can be a first banding 1106a, a second banding 1106b, a third banding 1106c and a fourth banding 1106d. In addition, an alternative version of the fire rated door 1300 can be fabricated in which an intumescent banding material 1108 is disposed between the exterior banding 1106 and the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 (see FIGURE 11C).

Now referring to FIGURE 14A, an exploded perspective view of a fire rated door 1400 in accordance with another embodiment of the present invention is shown. The fire rated door 1400 includes a core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 (see FIGURES 1-10 and associated description for details), a first insulating panel or layer 1402, a first decorative panel 1102, a second insulating panel or layer 1404 and a second decorative panel 1104. The first insulating panel or layer 1402 and the second protective panel or layer 1404 is made of a corrugated filler (e.g., cardboard, etc.) having a plurality of voids (e.g., honeycomb shaped, hexagon shaped, triangular shaped, etc.) filled with an insulating and/or fire resistant material (e.g., fiberglass, foam, etc.). The first and second decorative panel 1102 and 1104 can be a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, a fire resistant material or a combination thereof. The first decorative panel 1102 is attached to the top of the first insulating panel or layer 1402 using glue. The first insulating panel or layer 1402 is attached to the top of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 using glue. The second decorative panel 1104 is attached to the bottom of the second insulating panel or layer 1404 using glue. The second insulating panel or layer 1404 is attached to the bottom of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 using glue. Note that the glue may have fire resistant properties or contain an intumescent material. The first and second decorative panels 1102, 1104 and first and second insulating panels or layers 1402, 1404 have the same length and width as the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000. As a result, additional banding, rails and stiles are not needed. FIGURE 14B shows a cross-sectional view of the fire rated door 1400. FIGURE 14C shows a cross-sectional view of an alternative version of the fire rated door 1400 in which the first and second decorative panels 1102 and 1104 have a slightly larger length and width to accommodate an exterior banding 1106 attached to each side and end of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000. As shown in FIGURE 11A, the exterior banding 1106 can be a first banding 1106a, a second banding 1106b, a third banding 1106c and a fourth banding 1106d. In addition, an alternative version of the fire rated door 1400 can be fabricated in which an intumescent banding material 1108 is disposed between the exterior banding 1106 and the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 (see FIGURE 11C).

Referring now to FIGURE 15A, an exploded perspective view of a fire rated door 1500 in accordance with another embodiment of the present invention is shown. The fire rated door 1500 includes a core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 (see FIGURES 1-10 and associated description for details), a first decorative panel 1102, a second decorative panel 1104 and four rails 1502. Alternatively, the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 can be a single sheet of fire resistant material, including, but not limited to the first fire resistant material. The back side of first and second decorative panel 1102 and 1104 include a notch or cutout 1504 along the left and right sides that is sized to fit each rail 1502. Each rail 1502 is made of the second fire resistant material or other suitable material. In one example, the rails have a height of 11/16" and width of 1". The first and second decorative panel 1102 and 1104 can be a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, a fire resistant material or a combination thereof. Note that the first and second decorative panels 1 102 and 1 104 may also have fire resistant properties. The first decorative panel 1 102 is attached to the top of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 or single sheet of fire resistant material using glue. The second decorative panel 1104 is attached to the bottom of the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 or single sheet of fire resistant material using glue. Note that the glue may have fire resistant properties or contain an intumescent material. The first and second decorative panels 1102 and 1 104 have the same length and width as the core 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 or single sheet of fire resistant material. As a result, additional banding, rails and stiles are not needed. FIGURE 15B shows a cross-sectional view of the fire rated door 1400.

Now referring to FIGURE 16, a flow chart of a method 1600 of manufacturing a door core for a fire rated door in accordance with one embodiment of the present invention is shown. A fire resistant center panel having a bottom, a top, a first side, a second side, a first end and a second end is provided in block 1602, wherein the fire resistant center panel is made of a first fire resistant material. A first stile of an extruded fire resistant border is attached to the first side of the fire resistant center panel in block 1604, wherein the extruded fire resistant border is made of a second fire resistant material having a higher density than the first fire resistant material. A second stile of the extruded fire resistant border is attached to the second side of the fire resistant center panel in block 1606. A first rail of the extruded fire resistant border is attached to the first end of the fire resistant center panel and the first stile and the second stile of the extruded fire resistant border in block 1608. A second rail of the extruded fire resistant border is attached to the second end of the fire resistant center panel and the first stile and the second stile of the extruded fire resistant border in block 1610. An optional step may include forming a fire rated door by attaching a first decorative and a second decorative panel to the top and bottom, respectively, of the fire resistant center panel, the first stile, the second stile, the first rail and the second rail of the extruded border in block 1612. Additional elements can be added as described in reference to FIGURES 1 1-15. Another optional step may include coating the fire resistant center panel and the extruded fire resistant border with an intumescent or fire resistant material. Note that the method 1600 can be performed as part of a continuous manufacturing process.

In one embodiment, a notch is formed in the first side of the fire resistant center panel, a fire resistant lock block is inserted within the notch and the fire resistant lock block is attached to the fire resistant center panel and the extruded fire resistant border, wherein the fire resistant lock block is made of the second fire resistant material. In another embodiment, the fire resistant center panel includes: (a) a first fire resistant center panel disposed between the first side and the second side proximate to the first end, wherein the first fire resistant center panel is made of the first fire resistant material; (b) a second fire resistant center panel disposed between the first side and the second side proximate to the second end, wherein the second fire resistant center panel is made of the first fire resistant material; and (c) a fire resistant insert disposed between and attached to the first fire resistant center panel and the second fire resistant center panel, and extending between and attached to the extruded fire resistant border at the first side and the second side, wherein the fire resistant material is made of the second fire resistant material. In yet another embodiment, a set of male-female connectors are formed in the extruded fire resistant border and the fire resistant center panel. The male-female connectors can be triangular-shaped, curved-shaped, rectangular-shaped, angled, tongue-and-groove, or a combination thereof. In another embodiment, the first fire resistant material is extruded or molded to form the fire resistant center panel, and the second fire resistant material is extruded or molded to form the first stile, the second stile, the first rail and the second rail of the extruded fire resistant border. In yet another embodiment, the first fire resistant material is extruded or molded to form the fire resistant center panel, and the second fire resistant material is extruded or molded to form a sheet that is then gang ripped to form one or more of the first stile, the second stile, the first rail and the second rail of the extruded fire resistant border. In either embodiment the panels, stiles and rails may undergo one or more finishing steps (e.g., sanding, trimming, cutting, denibbing, etc.) so that the pieces have the proper smoothness, size and shape.

Furthermore, a top panel can be attached to the top of the fire resistant center panel and the extruded fire resistant border, or a bottom panel can be attached to the bottom of the fire resistant center panel, or both the top panel and the bottom panel can be attached to the fire resistant center panel. The top panel or the bottom panel can be a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, one or more protective layers or a combination thereof. The one or more protective layers can be a fire resistant material, a blast resistant material, a ballistic resistant material, a shielding material, a chemical resistant material, a biohazard resistant material, a radiation resistant material, a dampening material, a grounding material, insulating material or a combination thereof. For example, the one or more protective layers can be one or more gypsum boards, one or more metallic sheets, one or more lead sheets, one or more Kevlar sheets, one or more ceramic sheets, a layer of urethane foam, a layer of graphite, a wire mesh or a combination thereof.

Referring now to FIGURE 17, a flow chart of a method 1700 of manufacturing a door core for a fire rated door in accordance with another embodiment of the present invention is shown. An extruded fire resistant border is provided in block 1702. The extruded fire resistant border has a central void and is manufactured by providing a first stile of the extruded fire resistant border, attaching a first rail of the extruded fire resistant border to the first stile of the extruded fire resistant border, attaching a second rail of the extruded fire resistant border to the first stile and attaching a second stile of the extruded fire resistant border to the first rail and the second rail of the extruded fire resistant border, wherein the extruded fire resistant border is made of a second fire resistant material. The void within the extruded fire resistant border is filled with a first fire resistant material that has a lower density than the second fire resistant material to form a fire resistant center panel in block 1704. The extruded fire resistant border and first fire resistant material are baked or cured to set and fix the material in block 1706. Sanding or other finishing steps may be performed thereafter. An optional step may include forming a fire rated door by attaching a first decorative and a second decorative panel to the top and bottom, respectively, of the extruded fire resistant border and fire resistant center panel in block 1708. Additional elements can be added as described in reference to FIGURES 11-15. An optional step may include coating the fire resistant center panel and the extruded fire resistant border with an intumescent or fire resistant material. Note that the method 1700 can be performed as part of a continuous manufacturing process.

In one embodiment, a notch is formed in the first side of the fire resistant center panel, a fire resistant lock block is inserted within the notch and the fire resistant lock block is attached to the fire resistant center panel and the extruded fire resistant border, wherein the fire resistant lock block is made of the second fire resistant material. In another embodiment, the fire resistant center panel includes: (a) a first fire resistant center panel disposed between the first side and the second side proximate to the first end, wherein the first fire resistant center panel is made of the first fire resistant material; (b) a second fire resistant center panel disposed between the first side and the second side proximate to the second end, wherein the second fire resistant center panel is made of the first fire resistant material; and (c) a fire resistant insert disposed between and attached to the first fire resistant center panel and the second fire resistant center panel, and extending between and attached to the extruded fire resistant border at the first side and the second side, wherein the fire resistant material is made of the second fire resistant material. In yet another embodiment, a set of male-female connectors are formed in the extruded fire resistant border and the fire resistant center panel. The male-female connectors can be triangular-shaped, curved-shaped, rectangular-shaped, angled, tongue-and-groove, or a combination thereof.

In another embodiment, the first fire resistant material is extruded or molded to form the fire resistant center panel, and the second fire resistant material is extruded or molded to form the first stile, the second stile, the first rail and the second rail of the extruded fire resistant border. In yet another embodiment, the first fire resistant material is extruded or molded to form the fire resistant center panel, and the second fire resistant material is extruded or molded to form a sheet that is then gang ripped to form one or more of the first stile, the second stile, the first rail and the second rail of the extruded fire resistant border.

Furthermore, a top panel can be attached to the top of the fire resistant center panel and the extruded fire resistant border, or a bottom panel can be attached to the bottom of the fire resistant center panel, or both the top panel and the bottom panel can be attached to the fire resistant center panel. The top panel or the bottom panel can be a lignocellulosic substrate, a wood, a wood composite, a medium density fiberboard, a high density fiberboard, a particleboard, a masonite, a fiberglass, a metal, a plastic, one or more protective layers or a combination thereof. The one or more protective layers can be a fire resistant material, a blast resistant material, a ballistic resistant material, a shielding material, a chemical resistant material, a biohazard resistant material, a radiation resistant material, a dampening material, a grounding material, insulating material or a combination thereof. For example, the one or more protective layers can be one or more gypsum boards, one or more metallic sheets, one or more lead sheets, one or more Kevlar sheets, one or more ceramic sheets, a layer of urethane foam, a layer of graphite, a wire mesh or a combination thereof.

Now referring to FIGURE 18, a flow chart of a method 1800 of manufacturing a fire rated door in accordance with one embodiment of the present invention is shown. A door core as shown in FIGURES 1-10 is provided in block 1802. A first decorative panel is attached to a top of the door core in block 1804, and a second decorative panel is attached to a bottom of the door core in block 1806. Additional elements can be added as described in reference to FIGURES 11-14.