Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLOOR COVERING AND LOCKING SYSTEM AND AN EQUIPEMENT FOR PRODUCTION OF E.G FLOORBOARDS.
Document Type and Number:
WIPO Patent Application WO/2005/068747
Kind Code:
A1
Abstract:
Floorboards with a mechanical locking system that allows movement between the floorboards when they are joined to form a floating floor.

Inventors:
PERVAN DARKO (SE)
Application Number:
PCT/SE2005/000030
Publication Date:
July 28, 2005
Filing Date:
January 13, 2005
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VAELINGE INNOVATION AB (SE)
PERVAN DARKO (SE)
International Classes:
B27M3/04; E04F15/02; E04F15/04; (IPC1-7): E04F15/02; B27M3/04
Domestic Patent References:
WO2003083234A12003-10-09
WO2003089736A12003-10-30
WO2003083234A12003-10-09
WO2003089736A12003-10-30
Foreign References:
GB2256023A1992-11-25
DE20307580U12003-07-10
US6497079B12002-12-24
US20030079820A12003-05-01
EP1317983A22003-06-11
AT218725B1961-12-27
GB2256023A1992-11-25
DE20307580U12003-07-10
US20030049820A12003-03-13
JPH08109734A1996-04-30
US6497079B12002-12-24
Other References:
PATENT ABSTRACTS OF JAPAN
Attorney, Agent or Firm:
AWAPATENT AB (Malmö, SE)
Download PDF:
Claims:
CLAIMS
1. A semifloating floor which consists of rec tangular floorboards (1, 1') joined with a mechanical locking system and in which locking system the joined floorboards have a horizontal plane (HP) which is parallel to the floor surface (31) and a vertical plane (VP) which is perpendicular to the horizontal plane, said locking system having mechanically cooperating locking means for vertical joining parallel to the vertical plane and for horizontal joining parallel to the horizontal plane of a first and a second joint edge (4a and 4b respectively) and in which locking system the vertical locking means consist of a tongue (10) which cooperates with a tongue groove (9) and the horizontal locking means consist of a locking element (8) with a locking surface (15) which cooperates with a locking groove (12), c h a r a c t e r i s e d in that the format, installation pattern and locking system of the floorboards are desig ned in such a manner that a floor surface of 1 * 1 meter can change in length (A TL) in at least one direction at least 1 mm when the floorboards are subjected to a comp ressive or a tensile load in a horizontal plane HP, and that this change in length (A TL) can occur without visible joint gaps (21).
2. A semifloating floor as claimed in claim 1, c h a r a c t e r i s e d in that the width of the floor boards does not exceed about 120 mm.
3. A semifloating floor as claimed in claim 1 or 2, c h a r a c t e r i s e d in that there is an average play AP in the locking system) of at least about 0.1 mm when the boards are subjected to a compressive and a tensile load in a horizontal plane (HP).
4. A semifloating floor as claimed in any one of claims 13, c h a r a c t e r i s e d in that the floor boards are joined long side against short side.
5. A semifloating floor as claimed in any one of claims 14, character s e d in that the floor boards have a surface layer (31) of laminate, and that parts of the surface layer (31) on at least one joint edge have been removed.
6. A semifloating floor as claimed in any one of claims 15 c h a r a c t e r i s e d in that a surface layer is laminate or wood veneer, the core of the floor board is a wood based board such as MDF or HDF, the change in floor length (A TL) is at least 1,0 mm when a force (F) of 100 kg/m of the joint edge is used, the change in floor length (A TL) is at least 1,5 mm when a force F of 200 kg/m of the joint edge is used, the average joint gaps do not exceed 0, 15 mm when the force (F) is 100 kg/m of joint edge and they do not exceed 0,20 mm when the force (F) is 200 kg/m of joint edge.
7. A locking system for mechanical joining of floor boards (1, 1'), in which locking system the joined floor boards have a horizontal plane (HP) which is parallel to the floor surface and a vertical plane (VP) which is perpendicular to the horizontal plane, which locking system has mechanically cooperating locking means for vertical joining parallel to the vertical plane and for horizontal joining parallel to the horizontal plane of a first and a second joint edge (4a, 4b), and in which locking system the vertical locking means consist of a tongue (10) which cooperates with a tongue groove (9) and the horizontal locking means consist of a locking element (8) with a locking surface (15) which cooperates with a locking groove (12), c h a r a c t e r i s e d in that the first (4a) and the second (4b) joint edge have upper (18,19) and lower (16,17) joint edge portions positio ned between the tongue (10) and the floor surface (31), the upper joint edge portions being closer to the floor surface (31) than the lower, and in which locking system, when the floorboards (1, 1') are joined and pressed towards each other the upper joint edge portion (18) in the first joint edge (4a) overlaps a lower joint edge portion (16) in the second joint edge (4b).
8. A locking system as claimed in claim 7, c h a r a c t e r i s e d in that when the floorboards (1, 1') are joined and pressed towards each other, the two upper joint edge portions (18,19) are spaced from each other.
9. A locking system as claimed in claim 7 or 8, c h a r a c t e r i s e d in that there is an overlapping (OL) when the floorboards (1, 1') are subjected to a tensile load (F).
10. A locking system as claimed in claim 9, c h a r a c t e r i s e d in that there is an overlapping (OL) when the tensile load (F) is 100 kg/m of joint edge.
11. A locking system as claimed in any one of claims 710, characterised in that there is a average play (AP) of at least 0,1 mm when the floorboards are subjected to a compressive and a tensile load of 200 kg/m. a horizontal plane (HP).
12. A locking system as claimed in any one of claims 711, c h a r a c t e r i s e d in that the upper over lapping joint edge portion (18) is formed close to the floor surface (31) and has a lowest part, which is posi tioned closer to the floor surface (31) than to the upper part of the tongue (10).
13. A locking system as claimed in claim 12, c h a r a c t e r i s e d in that the minimum joint open ing (JO 2) is greater than half the maximum joint opening (JO 1).
14. A locking system as claimed in any one of claims 713, character s e d in that the surface layer (31) is made of wood, and that the upper overlapping joint edge portion (18) is formed in this wear layer.
15. A locking system as claimed in any one of claims 811, character s e d in that the floorboards have a surface layer (31) of laminate and a core (30) of fibreboardbased material, and that the upper overlapping joint edge portion (18) is formed in this surface layer and in the upper portions of the core next to the surface layer, and that the vertical extent (GD) of the over lapping portion is less than 0.1 times the floor thick ness (T).
16. An equipment for production of building panels, especially floorboards, having a horizontal plane HP which is parallel with the panel surface, such equipment comprising a chain (40), a belt (41), a pressure shoe (42) and a tool set (5155), the chain and the belt are arranged to displace the floorboard (1) relative the tool set and the pressure shoe, in a feeding direction (FD), the pressure shoe is arranged to press towards the rear side (32) of the floorboard, the tool set is arranged to form an edge portion of the floorboard when the floor board is displaced relative the tool set, c h a r a c t e r i s e d in that one of the tools of the tool set forms a guiding surface (12) in the floor board, that the pressure shoe has a guiding device (43) which cooperates with the guiding surface (12) and prevents deviations in a direction perpendicular to the feeding direction (FD) and parallel to the horizontal plane (HP).
17. An equipment as claimed in claim 16, c h a r a c t e r i s e d in that the building panel is a floor board, with a mechanical locking system, such locking system comprising a locking element (8) which cooperates with a locking groove (12) and locks the floorboards horizontally parallel to the horizontal plane (HP), that the guiding surface (12) consist of a groove open towards the rear side and that the groove is in an edge portion of the floor board where some parts of the locking system are formed.
18. A semifloating floor which consists of rectan gular floorboards (1, 1') joined by a mechanical locking system and in which the joined floorboards have a hori zontal plane (HP) which is parallel to the floor surface (31) and a vertical plane (VP) which is perpendicular to the horizontal plane, said locking system having mechani cally cooperating locking means for vertical joining parallel to the vertical plane (VP) and for horizontal joining parallel to the horizontal plane HP of a first and a second joint edge (4a and 4b respectively) and in which locking system the vertical locking means consist of a tongue (10) which cooperates with a tongue groove (9) and the horizontal of a locking element (8) with a locking surface (15) which cooperates with a locking groove (12), character s e d in that the format, installation pattern and locking system of the floorboards are designed and combined in such a manner that a large semifloating continuous surface, with length or width exceeding 12 m, could be installed with out expansion joints.
19. A semifloating floor as claimed in claim 18, character s e d in that the floor surface is a very large continuous floor surface with a length or width exceeding 20 m.
20. A semifloating floor as claimed in claims 18 or 19, c h a r a c t e r i s e d in that the floorboards have a width, which do not exceed 120 mm.
21. A semifloating floor as claimed in claims 18 or 19, c h a r a c t e r i s e d in that the floorboards have a width which do not exceed 100 mm.
Description:
Floor covering and locking system and an equipment for production of e. g. floorboards.

Field of the Invention The invention relates generally to the technical field of locking systems for floorboards. The invention concerns on the one hand a locking system for floorboards which can be joined mechanically and, on the other hand, floorboards and floor systems provided with such a lock- ing system and a production method to produce such floor- boards. More specifically, the invention relates above all to locking systems, which enable laying of mainly, floating floors in large continuous surfaces and laying with floorboards that exhibit considerable changes in shape after installation.

Field of Application The present invention is particularly suited for use in floating wooden floors and laminate floors, such as massive wooden floors, parquet floors, floors with a sur- face of veneer, laminate floors with a surface layer of high pressure laminate or direct laminate and the like.

The following description of prior-art technique, problems of known systems as well as objects and features of the invention will therefore as non-limiting examples be aimed mainly at this field of application. However, it should be emphasised that the invention can be used in any floorboards, which are intended to be joined in different patterns by means of a mechanical locking system. The invention may thus also be applicable to floors which are glued or nailed to the sub floor or floors with a core and with a surface of plastic, lino- leum, cork, varnished fibreboard surface and the like.

Definition of Some Terms In the following text, the visible surface of the installed floorboard is called"front side", while the opposite side of the floorboard facing the subfloor is called"rear side". By"floor surface"is meant the major

outer flat part of the floorboard, which is opposite to the rear side and which is located in one single plane.

Bevels, grooves and similar decorative features are parts of the front side but they are not parts of the floor surface. By"laminate floor"is meant a floor having a surface, which consists of melamine impregnated paper, which has been compressed under pressure and heat."Hori- zontal plane"relates to a plane, which is extended parallel to the outer part of the floor surface."Verti- cal plane"relates to a plane perpendicular to the hori- zontal plane.

The outer parts of the floorboard at the edge of the floorboard between the front side and the rear side are called"joint edge". By"joint edge portion"is meant a part of the joint edge of the floorboard. By"joint"or "locking system"are meant cooperating connecting means, which interconnect the floorboards vertically and/or horizontally. By"mechanical locking system"is meant that joining can take place without glue. Mechanical locking systems can in many cases also be joined by glue.

By"vertical locking"is meant locking parallel to the vertical plane. As a rule, vertical locking consists of a tongue, which cooperates with a tongue groove. By "horizontal locking"is meant locking parallel to the horizontal plane. By"joint opening"is meant a groove which is defined by two joint edges of two joined floor- boards and which is open to the front side. By"joint gap"is meant the minimum distance between two joint edge portions of two joined floorboards within an area, which is defined by the front side and the upper part of the tongue next to the front side. By"open joint gap"is meant a joint gap, which is open towards the front side.

By"visible joint gap"is meant a joint gap, which is visible to the naked eye from the front side for a person walking on the floor, or a joint gap, which is larger than the general requirements on joint gaps established by the industry for various floor types. With"continuous

floating floor surfaces meant a floor surface, which is installed in one piece without expansion joints.

Background of the Invention Traditional laminate and parquet floors are usually installed floating on an existing subfloor. The joint edges of the floorboards are joined to form a floor sur- face, and the entire floor surface can move relative to the subfloor. As the floorboards shrink or swell in con- nection with the relative humidity RH varying during the year, the entire floor surface will change in shape.

Floating floors of this kind are usually joined by means of glued tongue and groove joints. In laying, the boards are brought together horizontally, a projecting tongue along the joint edge of one board being inserted into a tongue groove along the joint edge of an adjoining board. The tongue and groove joint positions and locks the floorboards vertically and the glue locks the boards horizontally. The same method is used on both long side and short side, and the boards are usually laid in paral- lel rows long side against long side and short side against short side.

In addition to such traditional floating floors, which are joined by means of glued tongue and groove joints, floorboards have been developed in recent years, which do not require the use of glue but which are instead joined mechanically by means of so-called mecha- nical locking systems. These systems comprise locking means, which lock the boards mechanically horizontally and vertically without glue. The vertical locking means are generally formed as a tongue, which cooperates with a tongue grove. The horizontal locking means consist of a locking element, which cooperates with a locking groove.

The locking element could be formed on a strip extending from the lower part of the tongue groove or it could be formed on the tongue. The mechanical locking systems can be formed by machining the core of the board. Alterna- tively, parts of the locking system such as the tongue

and/or the strip can be made of a separate material, which is integrated with the floorboard, i. e. already joined with the floorboard in connection with the manu- facture thereof at the factory.

The floorboards can be joined mechanically by various combinations of angling, snapping-in, vertical change of position such as the so-called vertical folding and insertion along the joint edge. All of these instal- lation methods, except vertical folding, require that one side of the floorboard, the long or short side, could be displaced in locked position. A lot of locking systems on the market are produced with a small play between the locking element and the locking grove in order to facili- tate displacement. The intention is to produce floor- boards, which are possible to displace, and which at the same time are connected to each other with a fit, which is as tight as possible. A very small displacement play of for instance 0,01-0, 05 mm is often sufficient to reduce the friction between wood fibres considerably.

According to The European Standard EN 13329 for laminate floorings joint openings between floorboards should be on an average < 0, 15 mm and the maximum level in a floor should be < 0, 20 mm. The aim of all producers of floating floors is to reduce the joint openings as much as pos- sible. Some floors are even produced with a pre-tension where the strip with the locking element in locked posi- tion is bended backwards towards the sub floor and where the locking element and the locking groove press the panels tightly against each other. Such a floor is diffi- cult to install.

Wooden and laminate floors are also joined by'gluing or nailing to the subfloor. Such gluing/nailing counter- acts movements due to moisture and keeps the floorboards joined. The movement of the floorboards occurs about a centre in each floorboard. Swelling and shrinking can occur by merely the respective floorboards, and thus not the entire floor surface, changing in shape.

Floorboards that are joined by gluing/nailing to the subfloor do not require any locking systems at all. How- ever, they can have traditional tongue and groove joints, which facilitate vertical positioning. They can also have mechanical locking systems, which lock and position the floorboards vertically and/or horizontally in connection with laying.

Prior-Art Technique and Problems thereof The advantage of floating flooring is that a change in shape due to different degrees of relative humidity RH can occur concealed under baseboards and the floorboards can, although they swell and shrink, be joined without visible joint gaps. Installation can, especially by using mechanical locking systems, take place quickly and easily and the floor can be taken up and be laid once more in a different place. The drawback is that the continuous floor surface must as a rule be limited even in the cases where the floor consists of relatively dimensionally stable floorboards, such as laminate floor with a fibre- board core or wooden floors composed of several layers with different fibre directions. The reason is that such dimensionally stable floors as a rule have a change in dimension, which is about 0. 1% corresponding to about 1 mm per meter when the RH varies between 25% in winter and 85% in summer. Such a floor will, for example, over a distance of ten meters shrink and swell about 10 mm. A large floor surface must be divided into smaller sur- faces with expansion strips, for example, every tenth or fifteenth meter. Without such a division, it is a risk that the floor when shrinking will change in shape so that it will no longer be covered by baseboards. Also the load on the locking system will be great since great loads must be transferred when a large continuous surface is moving. The load will be particularly great in pas- sages between different rooms.

According to the code of practice established by the European Producers of Laminate Flooring (EPLF), expansion

joint profiles should be installed on surfaces greater than 12 m in the direction of the length of the indivi- dual flooring planks and on surfaces greater than 8 m in the width direction. Such profiles should also be in- stalled in doorways between rooms. Similar installation guidelines are used by producers of floating floors with a surface of wood. Expansion joint profiles are generally aluminium or plastic section fixed on the floor surface between two separate floor units. They collect dirt, give an unwanted appearance and are rather expensive. Due to these limitations on maximum floor surfaces, laminate floorings have only reached a small market share in com- mercial applications such as hotels, airports, and large shopping areas.

Unstable floors, such as homogenous wooden floors, may exhibit still greater changes in shape. The factors that above all affect the change in shape of homogenous wooden floors are fibre direction and kind of wood. A homogenous oak floor is very stable along the fibre direction, i. e. in the longitudinal direction of the floorboard. In the transverse direction, the movement can be 3% corresponding to 30 mm per meter or more as the RH varies during the year. Other kinds of wood exhibit still greater changes in shape. Floorboards exhibiting great changes in shape can as a rule not be installed floating.

Even if such an installation would be possible, the con- tinuous floor surface must be restricted significantly.

The advantage of gluing/nailing to the subfloor is that large continuous floor surfaces can be provided without expansion joint profiles and the floor can take up great loads. A further advantage is that the floor- boards do not require any vertical and horizontal locking systems, and they can be installed in advanced patterns with, for example, long sides joined to short sides. This method of installation involving attachment to the sub- floor has, however, a number of considerable drawbacks.

The main drawback is that as the floorboards shrink, a

visible joint gap arises between the boards. The joint gap can be relatively large, especially when the floor- boards are made of moisture sensitive wood materials.

Homogenous wooden floors that are nailed to a subfloor can have joint gaps of 3-5 mm. The distance between the boards can be irregularly distributed with several small and some large gaps, and these gaps are not always parallel. Thus, the joint gap can vary over the length of the floorboard. The large joint gaps contain a great deal of dirt, which penetrates down to the tongue and prevents the floorboards from taking their original position in swelling. The installation methods are time-consuming, and in many cases the subfloor must be adjusted to allow gluing/nailing to the subfloor.

It would therefore be a great advantage if it were possible to provide a floating floor without the above drawbacks, in particular a floating floor which a) May consist of a large continuous surface without expansion joint profiles, b) May consist of moisture sensitive floorboards, which exhibit great dimensional changes as the RH varies during the year.

Summary of the Invention The present invention relates to locking systems, floorboards and floors which make it possible to install floating floors in large continuous surfaces and with floorboards that exhibit great dimensional changes as the relative humidity (RH) changes. The invention also rela- tes to production methods and production equipment to produce such floors.

A first object of the present invention is to pro- vide a floating floor of rectangular floorboards with mechanical locking systems, in which floor the size, pattern of laying and locking system of the floorboards cooperate and allow movements between the floorboards.

According to the invention, the individual floorboards can change in shape after installation, i. e. shrink and

swell due to changes in the relative humidity. This can occur in such a manner that the change in shape of the entire floor surface can be reduced or preferably be eliminated while at the same time the floorboards remain locked to each other without large visible joint gaps.

A second object is to provide locking systems, which allow a considerable movement between floorboards without large and deep dirt-collecting joint gaps and/or where open joint gaps could be excluded. Such locking systems are particularly suited for moisture sensitive materials, such as wood, but also when large floating floors are installed using wide and/or long floorboards.

The terms long side and short side are used in the description to facilitate understanding. The boards can according to the invention also be square or alternately square and rectangular, and optionally also exhibit dif- ferent patterns and angles between opposite sides.

It should be particularly emphasised that the combi- nations of floorboards, locking systems and laying pat- terns that appear in this description are only examples of suitable embodiments. A large number of alternatives are conceivable. All the embodiments that are suitable for the first object of the invention can be combined with the embodiments that describe the second object of the invention. All locking systems can be used separately in long sides and/or short sides and also in various com- binations on long sides and short sides. The locking sys- tems having horizontal and vertical locking means can be joined by angling and/or snapping-in. The geometries of the locking systems and the active horizontal and verti- cal locking means can be formed by machining the edges of the floorboard or by separate materials being formed or alternatively machined before or after joining to the joint edge portion of the floorboard.

These objects are achieved wholly or partly accord- ing to the appended claims.

According to a first aspect, the present invention comprises a floating floor, which consists of rectangular floorboards, which are joined by a mechanical locking system. The joined floorboards have a horizontal plane, which is parallel to the floor surface, and a vertical plane, which is perpendicular to the horizontal plane.

The locking system has mechanically cooperating locking means for vertical joining parallel to the vertical plane and for horizontal joining parallel to the horizontal plane of a first and a second joint edge. The vertical locking means consist of a tongue, which cooperates with a groove, and the horizontal consist of a locking element with a locking surface cooperating with a locking groove.

The floor is characterized in that the format, installa- tion pattern and locking system of the floorboards are designed in such a manner that a floor surface of 1 * 1 meter can change in shape in at least one direction at least 1 mm when the floorboards are pressed together or pulled apart. This change in shape can occur without visible joint gaps.

According to a second aspect, the present invention comprises a locking system for mechanical joining of floorboards, in which locking system the joined floor- boards have a horizontal plane which is parallel to the floor surface and a vertical plane which is perpendicular to the horizontal plane. The locking system has mechani- cally cooperating locking means for vertical joining parallel to the vertical plane and for horizontal joining parallel to the horizontal plane of a first and a second joint edge. The vertical locking means consist of a tongue, which cooperates with a groove and the horizontal of a locking element with a locking surface, which coope- rates with a locking groove. The first and the second joint edge have upper and lower joint edge portions located between the tongue and the floor surface. The upper joint edge portions are closer to the floor surface than the lower. The locking system is characterised in

that, when the floorboards are joined and pressed against each other, the two upper joint edge portions are spaced from each other and one of the upper joint edge portions in the first joint edge overlaps a lower joint edge por- tion in the second joint edge.

According to several preferred embodiments of this invention, it is an advantage if the floor consists of rather small floorboards and many joints, which could compensate swelling and shrinking. The production tole- rances should be rather small since well-defined plays and joint openings are generally required to produce a high quality floor according to the invention.

Small floorboards are however difficult to produce with the required tolerance since they have a tendency to turn in an uncontrolled manner during machining. The main reason why small floorboards are more difficult to pro- duce than large floorboards is that large floorboard has a much large area, which is in contact with a chain and a belt during the machining of the edges of the floor- boards. This large contact area keeps the floorboards fixed by the belt to the chain in such a way that they cannot move or turn in relation to the feeding direction, which may be the case when the contact area is small.

Production of floorboards is essentially carried out in such manner that a set of tools and a floorboard blank are displaced relative to each other. A set of tools consists preferably of one or more milling tools which are arranged and dimensioned to machine a locking system in a manner known to those skilled in the art.

The most used equipment is an end tenor, double or single, where a chain and a belt are used to move the floorboard with great accuracy along a well defined feeding direction. Pressure shoes and support unites are used in many applications together with the chain and the belt mainly to prevent vertical deviations. Horizontal deviation of the floorboard is only prevented by the chain and the belt.

The problem is that in many applications this is not sufficient, especially when panels are small.

A third object of the present invention is to pro- vide equipment and production methods which make it possible to produce floorboards and mechanical locking systems with an end tenor but with better precision than what is possible to accomplish with known technology.

The present invention therefore also comprises equipment for production of building panels especially floorboards.

The equipment consists of a chain, a belt, a pressure shoe and a tool set. The chain and the belt are arranged to displace the floorboard relative the tool set and the pressure shoe, in a feeding direction. The pressure shoe is arranged to press towards the rear side of the floor- board. The tool set is arranged to form an edge portion of the floorboard when the floorboard is displaced relative the tool set. One of the tools of the tool set forms a guiding surface in the floorboard. The pressure shoe has a guiding device, which cooperates with the guiding surface and prevents deviations in a direction perpendicular to the feeding direction and parallel to the rear side of the floorboard.

It is known that a grove could be formed on the rear side of a floorboard and that a ruler could be inserted into the groove to guide the floorboards when they are displaced by a belt that moves the boards on a table. It is not known that special guiding surfaces and guiding devices could be used in an end tenor where a pressure shoe cooperates with a chain.

A fourth object of the present invention is to pro- vide a large semi-floating floor of rectangular floor- boards with mechanical locking systems, in which floor the format, installation pattern and locking system of the floorboards are designed in such a manner that a large semi-floating continuous surface, with length or width exceeding 12 m, could be installed without expan- sion joints.

Brief Description of the Drawings Figs la-b show floorboards with locking system.

Figs 2a-2f show locking systems and laying patterns.

Figs 3a-3e show locking systems.

Figs 4a-4c show locking systems.

Figs 5a-5d show joined floorboards and testing methods.

Figs 6a-6e show locking systems.

Figs 7a-7e show locking systems.

Figs 8a-8f show locking systems.

Figs 9a-9d show locking systems.

Figs lOa-lOd show production equipment Figs lla-lld show production equipment Figs 12a-12c show locking system.

Figs la-b illustrate floorboards which are of a first type A and a second type B according to the inven- tion and whose long sides 4a and 4b in this embodiment have a length which is 3 times the length of the short sides 5a, 5b. The long sides 4a, 4b of the floorboards have vertical and horizontal connecting means, and the short sides 5a, 5b of the floorboards have horizontal connecting means. In this embodiment, the two types are identical except that the location of the locking means is mirror-inverted. The locking means allow joining of long side 4a to long side 4b by at least inward angling and long side 4a to short side 5a by inward angling, and also short side 5b to long side 4b by a vertical motion.

Joining of both long sides 4a, 4b and short sides 5a, 5b in a herringbone pattern or in parallel rows can in this embodiment take place merely by an angular motion along the long sides 4a, 4b. The long sides 4a, 4b of the floorboards have connecting means, which in this embodi- ment consist of a strip 6, a tongue groove 9 and a tongue 10. The short sides 5a also have a strip 6 and a tongue groove 9 whereas the short sides 5b have no tongue 10.

There may be a plurality of variants. The two types of floorboards need not be of the same format and the

locking means can also have different shapes, provided that as stated above they can be joined long side against short side. The connecting means can be made of the same material, or of different materials, or be made of the same material but with different material properties. For instance, the connecting means can be made of plastic or metal. They can also be made of the same material as the floorboard, but be subjected to a treatment modifying their properties, such as impregnation or the like. The short sides 5b can have a tongue and the floorboards can then be joined in prior-art manner in a diamond pattern by different combinations of angular motion and snap motions. Short sides could also have a separate flexible tongue, which during locking could be displaced horizon- tally.

Fig. 2a shows the connecting means of two floor- boards 1,1'that are joined to each other. In this embodiment, the floorboards have a surface layer 31 of laminate, a core 30 of, for instance, HDF, which is softer and more compressible than the surface layer 31, and a balancing layer 32. The vertical locking D1 con- sists of a tongue groove 9, which cooperates with a tongue 10. The horizontal locking D2 consists of a strip 6 with a locking element 8, which cooperates with a locking groove 12. This locking system can be joined by inward angling along upper joint edges. It could also be modified in such a way that it could be locked by hori- zontal snapping. The locking element 8 and the locking groove 12 have cooperating locking surfaces 15, 14. The floorboards can, when joined and pressed against each other in the horizontal direction D2, assume a position where there is a play 20 between the locking surfaces 14, 15. Figure 2 b show that when the floorboards are pulled apart in the opposite direction, and when the locking surfaces 14,15 are in complete contact and pressed against each other, a joint gap 21 arises in the front side between the upper joint edges. The play between the

locking surfaces 14,15 are according to the invention defined as equal to the displacement of the upper joint edges when these edges are pressed together and pulled apart as described above. This play in the locking system is the maximum floor movement that takes place when the floorboards are pressed together and pulled apart with a pressure and pulling force adapted to the strength of the edge portions and the locking system. Floorboards with hard surface layers or edges, which when pressed together are only compressed marginally, will according to this definition have a play, which is essentially equal or slightly larger than the join gap. Floorboards with softer edges will have a play which is considerable larger than the joint gap. According to this definition, the play is always larger or equal to the joint gap. The play and joint gap can be, for example, 0.05-0. 10 mm.

Joint gaps, which are about 0.1 mm, are considered acceptable. They are difficult to see and normal dirt particles are too big to penetrate into the locking system through such small joint gaps. In some applica- tions joint gaps up to 0,20 mm, with a play of for example 0,25 mm could be accepted, especially if play and joint gaps are measured when a considerable pressure and pulling force is used. This maximum joint gap will occur in extreme conditions only when the humidity is very low, for example below 20% and when the load on the floor is very high. In normal condition and applications the joint gap in such a floor could be 0, 10 mm or less.

Fig. 2b shows an ordinary laminate floor with floor- boards in the size of 1.2 * 0.2 m, which are installed in parallel rows. Such a laminate floor shrinks and swells about 1 mm per meter. If the locking system has a play of about 0.1 mm, the five joints in the transverse direction D2 B will allow swelling and shrinking of 5 * 0.1 = 0.5 mm per meter. This compensates for only half the maximum swelling or shrinking of 1 mm. In the longitudinal direction D2 A, there is only one joint per

1.2 m, which allows a movement of 0. 1 mm. The play 20 and the joint gap 21 in the locking system thus contribute only marginally to reduce shrinking and swelling of the floor in the direction D2 parallel to the long sides. To reduce the movement of the floor to half of the movement that usually occurs in a floor without play 20 and joint gap 21, it is necessary to increase the play 20 to 0.6 mm, and this results in too big a joint gap 21 on the short side.

Fig. 2c shows floorboards with, for instance, a core 30 of fibreboard, such as HDF, and a surface layer of laminate or veneer, which has a maximum dimensional change of about 0.1%, i. e. 1 mm per meter. The floor- boards are installed in parallel rows. In this embodi- ment, they are narrow and short with a size of, for exam- ple, 0.5 * 0.08 m. If the play is 0.1 mm, 12 floorboards with their 12 joints over a floor length of one meter will allow a movement in the transverse direction D2 B of 1.2 mm, which is more than the maximum dimensional change of the floor. Thus the entire movement may occur by the floorboards moving relative to each other, and the outer dimensions of the floor can be unchanged. In the longitu- dinal direction D2 A, the two short side joints can only compensate for a movement of 0.2 mm per meter. In a room which is, for example, 10 m wide and 40 m long, installa- tion can suitably occur, contrary to the present recom- mended installation principles, with the long sides of the floorboards parallel to the width direction of the room and perpendicular to the length direction thereof.

According to this preferred embodiment, a large contin- uous floating floor surface without large visible joint gaps can thus be provided with narrow floorboards which have a locking system with play and which are joined in parallel rows perpendicular to the length direction of the floor surface. The locking system, the floorboards and the installation pattern according to the invention should thus be adjusted so that a floor surface of

1 * 1 m can expand and be pressed together about 1 mm or more in at least one direction without damaging the locking system or the floorboards. A mechanical locking system in a floating floor which is installed in home settings should have a mechanical locking system that withstands tensile load and compression corresponding to at least 200 kg per meter of floor length. More speci- fically, it should preferably be possible to achieve the above change in shape without visible joint gaps when the floor surface above is subjected to a compressive or ten- sile load of 200 kg in any direction and when the floor- boards are conditioned in normal relative humidity of about 45%.

The strength of a mechanical locking system is of great importance in large continuous floating floor sur- faces. Such large continuous surfaces are defined as a floor surface with length and/or width exceeding 12 m.

Very large continuous surfaces are defined as floor sur- faces with length and/or width exceeding 20 m. There is a risk that unacceptable joint gaps will occur or that the floorboards will slide apart, if the mechanical locking system is not sufficiently strong in a large floating floor. Dimensionally stable floorboards, such as laminate floors, which show average joint gaps exceeding 0,2 mm, when a tensile load of 200 kg/m is applied, are generally not suitable to use in a large high quality floating floor. The invention could be used to install continuous floating floors with a length and/or width exceeding 20 m or even 40 m. In principle there are no limitations.

Continuous floating floors with a surface of 10.000 m2 or more could be installed according to invention.

Such new types of floating floors where the major part of the floating movement, in at least one direction, takes place between the floorboards and in the mechanical locking system are hereafter referred to as Semi-floating Floors.

Fig. 5d illustrates a suitable testing method in order to ensure that the floorboards are sufficiently mobile in the joined state and that the locking system is strong enough to be used in a large continuous floating floor surface where the floor is a Semi Floating Floor.

In this example, 9 samples with 10 joints and with a length L of 100 mm (10% of 1 meter) have been joined along their respective long sides so as to correspond to a floor length TL of about 1 meter. The amount of joints, in this example 10 joints, is referred to as Nj. The boards are subjected to compressive and tensile load using a force F corresponding to 20 kg (200 N), which is 10% of 200 kg. The change in length of the floor length TL, hereafter referred to as A TL, should be measured.

The average play, hereafter referred to as AP or floor movement per joint is defined as AP = A TL/Nj. If for example A TL = 1,5 mm, than the average play AP = 1, 5/10 = 0,15 mm. This testing method will also measure dimen- sional changes of the floorboard. Such dimensional changes are in most floorboards extremely small compared to the play. As mentioned before, due to compression of top edges and eventually some very small dimensional changes of the floor board itself, the average joint gap will always be smaller than the average play AP. This means that in order to make sure that the floor movement is sufficient (A TL) and that the average joint gaps 21 do not exceed the stipulated maximum levels, only A TL has to be measured and controlled, since A TL/Nj is always larger or equal to the average joint gap 21. The size of the actual average joint gap 21 in the floor, when the tensile force F is applied, could however be measured directly for example with a set of thickness gauges or a microscope and the actual average joint gap = AAJG could be calculated. The difference between AP and AAJG is defined as floorboard flexibility = FF (FF=AP- AAJG). In a laminate floor ATL should preferably exceed 1 mm. Lower or higher force F could be used to design

floorboards, installation patterns and locking systems which could be used as Semi Floating Floors. In some applications for example in home environment with normal moisture conditions a force F of 100 kg (1000 N) per meter could be sufficient. In very large floating floors a force F of 250-300 kg or more could be used. Mecha- nical locking systems could be designed with a locking force of 1000 kg or more. The joint gap in such locking systems could be limited to 0, 2 mm even when a force F of 400-500 kg is applied. The pushback effect caused by the locking element 8, the locking surfaces 15,14 and the locking strip 6 could be measured by increasing and decreasing the force F in steps of for example 100 kg.

The pushback effect is high If A TL is essentially the same when F is increased from 0 to 100 kg (=A TL1) as when F is increased from 0 to 200kg and than decreased back to 100 kg (=A TL2). A mechanical locking system with a high pushback effect is an advantage in a semi-floating floor. Preferably A TL1 should be at least 75% of A TL2.

In some applications even 50% could be sufficient.

Fig. 2d shows floorboards according to Fig. 2c which are installed in a diamond pattern. This method of installation results in 7 joints per running meter in both directions D2 A and D2 B of the floor. A play of 0.14 mm can then completely eliminate a swelling and shrinking of 0. 1% since 7 joints result in a total mobi- lity of 7 * 0.14 = 1.0 mm.

Fig. 2e shows a m2 floor surface which consists of the above-described floorboards installed in a herring- bone pattern long side against short side and shows the position of the floorboards when, for instance, in summer they have swelled to their maximum dimension. Fig. 2f shows the position of the floorboards when, for instance, in winter, they have shrunk. The locking system with the inherent play then results in a joint gap 21 between all joint edges of the floorboards. Since the floorboards are installed in a herringbone pattern, the play of the long

sides will help to reduce the dimensional changes of the floor in all directions. Fig. 2f also shows that the cri- tical direction is the diagonal directions D2 C and D2 D of the floor where 7 joint gaps must be adjusted so as to withstand a shrinkage over a distance of 1.4 m. This can be used to determine the optimal direction of laying in a large floor. In this example, a joint gap of 0.2 mm will completely eliminate the movement of the floor in all directions. This allows the outer portions of a floating floor to be attached to the subfloor, for example, by gluing, which prevents the floor, when shrinking, to be moved outside the baseboards. The invention also allows partition walls to be attached to an installed floating floor, which can reduce the installation time.

Practical experiments demonstrate that a floor with a surface of veneer or laminate and with a core of a fibreboard-based panel, for instance a dimensionally stable high quality HDF, can be manufactured so as to be highly dimensionally stable and have a maximum dimen- sional change in home settings of about 0.5-1. 0 mm per meter. Such semi-floating floors can be installed in spaces of unlimited size, and the maximum play can be limited to about 0.1 mm also in the cases where the floorboards have a width of preferably about 120 mm. It goes without saying that still smaller floorboards, for instance 0.4 * 0.06 m, are still more favourable and can manage large surfaces also when they are made of mate- rials that are less stable in shape. According to a first embodiment, the invention thus suggests a new type of semi-floating floor where the individual floorboards are capable of moving and where the outer dimensions of the floor need not be changed. This can be achieved by opti- mal utilisation of the size of the boards, the mobility of the locking system using a small play and a small joint gap, and the installation pattern of the floor- boards. According to the invention, a suitable combina- tion of play, joint gap, size of the floorboard, instal-

lation pattern and direction of laying of the floorboards can thus be used in order to wholly or partly eliminate movements in a floating floor. Much larger continuous floating floors can be installed than is possible today, and the maximum movement of the floor can be reduced to the about 10 mm that apply to current technology, or be completely eliminated. All this can occur with a joint gap which in practice is not visible and which is not different, regarding moisture and dirt penetration, from traditional 0,2 m wide floating floorboards which are joined in parallel rows by pretension or with a very small displacement play which does not give sufficient mobility. As a non-limiting example, it can be mentioned that the play 20 and the joint gap 21 in dimensionally stable floors should preferably be about 0.1-0. 2 mm.

An especially preferred embodiment according to the invention is a semi-floating floor with the following characteristics: The surface layer is laminate or wood veneer, the core of the floorboard is a wood based board such as MDF or HDF, the change in floor length A TL is at least 1, 0 mm when a force F of 100 kg/m is used, the change in floor length A TL is at least 1,5 mm when a force F of 200 kg/m is used, average joint gaps do not exceed 0,15 mm when the force F is 100 kg/m and they do not exceed 0,20 mm when the force F is 200 kg/m.

The function and joint quality of such semi-floating floorboards will be similar to traditional floating floorboards when humidity conditions are normal and the size of the floor surface is within the generally recom- mended limits. In extreme climate conditions or when installed in a much larger continuous floor surface, such semi-floating floorboard will be superior to the tradi- tional floorboards. Other combinations of force F, change in floor length A TL and joint gap 21 could be used in order to design a semi-floating floor for various appli- cation

Fig. 3a shows a second embodiment, which can be used to counteract the problems caused by movements due to moisture in floating floors. In this embodiment, the floorboard has a surface 31 of direct laminate and a core of HDF. Under the laminate surface, there is a layer 33, which consists of melamine impregnated wood fibres. This layer forms, when the surface layer is laminated to HDF and when melamine penetrates into the core and joins the surface layer to the HDF core. The HDF core 30 is softer and more compressible than the laminate surface 31 and the melamine layer 33. According to the invention, the surface layer 31 of laminate and, where appropriate, also parts of, or the entire, melamine layer 33 under the sur- face layer can be removed so that a decorative groove 133 forms in the shape of a shallow joint opening JO 1. This joint opening resembles a large joint gap in homogeneous wooden floors. The groove 133 can be made on one joint edge only, and it can be coloured, coated or impregnated in such a manner that the joint gap becomes less visible.

Such decorative grooves or joint openings can have, for example, a width JO 1 of, for example, 1-3 mm and a depth of 0.2-0. 5 mm. In some application the width of JO 1 could preferably be rather small about 0,5-1, 0 mm When the floorboards 1, 1'are pressed towards each other, the upper joint edges 16,17 can be compressed.

Such compression can be 0.1 mm in HDF. Such a possibility of compression can replace the above-mentioned play and can allow a movement without a joint gap. Chemical pro- cessing as mentioned above can also change the properties of the joint edge portion and help to improve the possi- bilities of compression. Of course, the first and second embodiment can be combined. With a play of 0.1 mm and a possibility of compression of 0.1 mm, a total movement of 0.2 mm can be provided with a visible joint gap of 0.1 mm only. Compression can also be used between the active locking surfaces 15,14 in the locking element 8 and in the locking groove 12. In normal climatic conditions the

separation of the floorboards is prevented when the locking surfaces 14,15 are in contact with each other and no substantial compression occurs. When subjected to additional tensile load in extreme climatic conditions, for instance when the RH falls below 25%, the locking surfaces will be compressed. This compression is facili- tated if the contact surface CS of the locking surfaces 14,15 are small. It is advantageous if this contact surface CS in normal floor thickness 8-15 mm is about 1 mm or less. With this technique, floorboards can be manufactured with a play and joint gap of about 0.1 mm.

In extreme climatic conditions, when the RH falls below 25% and exceeds 80%, compression of upper joint edges and locking surfaces can allow a movement of for instance 0.3 mm. The above technique can be applied to many diffe- rent types of floors, for instance floors with a surface of high pressure laminate, wood, veneer and plastic and like materials. The technique is particularly suitable in floorboards where it is possible to increase the compres- sion of the upper joint edges by removing part of the upper joint edge portion 16 and/or 17.

Fig. 3b illustrates a third embodiment. Figure 3c and 3d are enlargements of the joint edges in figure 3b.

The floorboard 1'has, in an area in the joint edge which is defined by the upper parts of the tongue 10 and the groove 9 and the floor surface 31, an upper joint edge portion 18 and a lower joint edge portion 17, and the floorboard 1 has in a corresponding area an upper joint edge portion 19 and a lower joint edge portion 16. When the floorboards 1, 1'are pressed together, the lower joint edge portions 16,17 will come into contact with each other. This is shown in figure 3d. The upper joint edge portions 18,19 are spaced from each other, and one upper joint edge portion 18 of one floorboard 1'overlaps the lower joint edge portion 16 of the other floorboard 1. In this pressed-together position, the locking system has a play 20 of for instance 0.2 mm between the locking

surfaces 14,15. If the overlap in this pressed-together position is 0.2 mm, the boards can, when being pulled apart, separate from each other 0.2 mm without a visible joint gap being seen from the surface. This embodiment will not have an open joint gap because the joint gap will be covered by the overlapping joint edge portion 18.

This is shown in figure 3c. It is an advantage if the locking element 8 and the locking grove 12 are such that the possible separation i. e. the play is slightly smaller then the overlapping. Preferably a small overlapping, for example 0,05 mm should exist in the joint even when the floorboards are pulled apart and a pulling force F is applied to the joint. This overlapping will prevent moisture to penetrate into the joint. The joint edges will be stronger since the lower edge portion 16 will support the upper edge portion 18. The decorative groove 133 can be made very shallow and all dirt collecting in the groove can easily be removed by a vacuum cleaner in connection with normal cleaning. No dirt or moisture can penetrate into the locking system and down to the tongue 12. This technique involving overlapping joint edge portions can, of course, be combined with the two other embodiments on the same side or on long and short sides.

The long side could for instance have a locking system according to the first embodiment and the short side according to the second. For example, the visible and open joint gap can be 0.1 mm, the compression 0.1 mm and the overlap 0.1 mm. The floorboards'possibility of moving will then be 0.3 mm all together and this consi- derable movement can be combined with a small visible open joint gap and a limited horizontal extent of the overlapping joint edge portion 18 that does not have to constitute a weakening of the joint edge. This is due to the fact that the overlapping joint edge portion 18 is very small and also made in the strongest part of the floorboard, which consists of the laminate surface, and melamine impregnated wood fibres. Such a locking system,

which thus can provide a considerable possibility of movement without visible joint gaps, can be used in all the applications described above. Furthermore the locking system is especially suitable for use in broad floor- boards, on the short sides, when the floorboards are installed in parallel rows and the like, i. e. in all the applications that require great mobility in the locking system to counteract the dimensional change of the floor.

It can also be used in the short sides of floorboards, which constitute a frame FR, or frieze round a floor installed in a herringbone pattern according to Fig. 5c.

In this embodiment, shown in figures 3b-3d, the vertical extent of the overlapping joint edge portion, i. e. the depth GD of the joint opening, is less than 0.1 times the floor thickness T. An especially preferred embodiment according to the invention is a semi-floating floor with the following characteristics: The surface layer is laminate or wood veneer, the core of the floorboard is a wood based board such as MDF or HDF, the floor thickness T is 6-9 mm and the overlapping OL is smaller than the average play AP when a force F of 100 kg/m is used. As an example it could be mentioned that the depth GD of the joint opening could be 0,2-0, 5 mm (= 0,02*T-0, 08 T).

The overlapping OL could be 0,1-0, 3 mm (= 0, 01*T- 0, 05*T) on long sides. The overlapping OL on the short sides could be equal or larger than the overlapping on the long sides.

Figure 3e show an embodiment where the joint opening JO 1 is very small or nonexistent when the floorboards are pressed together. When the floorboards are pulled apart, a joint opening JO 1 will occur. This joint opening will be substantially of the same size as the average play AP. The decorative groove could for example be coloured in some suitable design matching the floor surface and a play will not cause an open joint gap. A very small overlapping OL of some 0,1 mm (0, 01*T-0, 02*T) only and slightly smaller average play AP could give

sufficient floor movement and this could be combined with a moisture resistant high quality joint. The play will also facilitate locking, unlocking and displacement in locked position. Such overlapping edge portions could be used in all known mechanical locking systems in order to improve the function of the mechanical locking system.

Figs 4a and 4b show how a locking system can be designed so as to allow a floating installation of floor-boards, which consist of a moisture sensitive material. In this embodiment, the floorboard is made of homogeneous wood.

Fig. 4a shows the locking system in a state subject- ed to tensile load, and Fig. 4b shows the locking system in the compressed state. For the floor to have an attrac- tive appearance, the relative size of the joint openings should not differ much from each other. To ensure that the visible joint openings do not differ much while the floor moves, the smallest joint opening JO 2 should be greater than half the greatest joint opening JO 1. More- over, the depth GD should preferably be less than 0.5 * TT, TT being the distance between the floor sur- face and the upper parts of the tongue/groove. In the case where there is no tongue, GD should be less than 0.2 times the floor thickness T. This facilitates clean- ing of the joint opening. It is also advantageous if JO 1 is about 1-5 mm, which corresponds to normal gaps in homogeneous wooden floors. According to the invention, the overlapping joint edge portion should preferably lie close to the floor surface. This allows a shallow joint opening while at the same time vertical locking can occur using a tongue 10 and a groove 9 which are placed essen- tially in the central parts of the floorboard between the front side and the rear side where the core 30 has good stability. An alternative way of providing a shallow joint opening, which allows movement, is illustrated in Fig. 4c. The upper part of the tongue 10 has been moved up towards the floor surface. The drawback of this solu-

tion is that the upper joint edge portion 18 above the tongue 10 will be far too weak. The joint edge portion 18 can easily crack or be deformed.

Figs 5a and 5b illustrate the long side joint of three floorboards 1, 1'and 1"with the width W. Fig. 5a shows the floorboards where the RH is low, and Fig. 5b shows them when the RH is high. To resemble homogeneous floors, broad floorboards should preferably have wider joint gaps than narrow ones. JO 2 should suitably be at least about 1% of the floor width W. 100 mm wide floor- boards will then have a smallest joint opening of at least 1 mm. Corresponding joint openings in, for example, 200 mm wide planks should be at least 2 mm. Other combi- nations can, of course, also be used especially in wooden floors where special requirements are made by different kinds of wood and different climatic conditions.

Fig. 6a shows a wooden floor, which consists of several layers of wood. The floorboard may consist of, for example, an upper layer of high-grade wood, such as oak, which constitutes the decorative surface layer 31.

The core 30 may consist of, for example, plywood, which is made up of other kinds of wood or by corresponding kinds of wood but of a different quality. Alternatively the core may consist of or wood lamellae. The upper layer 31 has as a rule a different fibre direction than a lower layer. In this embodiment, the overlapping joint edges 18 and 19 are made in the upper layer. The advantage is that the visible joint opening JO 1 will consist of the same kind of wood and fibre direction as the surface layer 31 and the appearance will be identical with that of a homogeneous wooden floor.

Figs 6b and 6c illustrate an embodiment where there is a small play 22 between the overlapping joint edge portions 16,18, which facilitate horizontal movement in the locking system. Fig. 6c shows joining by an angular motion and with the upper joint edge portions 18,19 in contact with each other. The play 20 between the lock-

ing surface 15 of the locking element 8 and the locking groove 12 significantly facilitates joining by inward angling, especially in wooden floors that are not always straight.

In the above-preferred embodiments, the overlapping joint portion 18 is made in the tongue side, i. e. in the joint edge having a tongue 10. This overlapping joint portion 18 can also be made in the groove side, i. e. in the joint edge having a groove 9. Figs 6d and 6e illu- strate such an embodiment. In Fig. 6d, the boards are pressed together in their inner position, and in Fig. 6e they are pulled out to their outer position.

Figs 7a-7b illustrate that it is advantageous if the upper joint edge 18, which overlaps the lower 16, is located on the tongue side 4a. The groove side 4b can then be joined by a vertical motion to a side 4a, which has no tongue, according to Fig. 7b. Such a locking system is especially suitable on the short side. Fig. 7c shows such a locking system in the joined and pressed- together state. Figs 7d and 7e illustrate how the hori- zontal locking means, for instance in the form of a strip 6 and a locking element 8 and also an upper and lower joint portion 19,16, can be made by merely one tool TO which has a horizontally operating tool shaft HT and which thus can form the entire joint edge. Such a tool can be mounted, for example, on a circular saw, and a high quality joint system can be made by means of a guide bar. The tool can also saw off the floorboard 1. In the preferred embodiment, only a partial dividing of the floorboard 1 is made at the outer portion 24 of the strip 6. The final dividing is made by the floorboard being broken off. This reduces the risk of the tool TO being damaged by contacting a subfloor of, for instance, concrete. This technique can be used to produce a frame or freize FR in a floor, which, for instance, is instal- led in a herringbone pattern according to Fig. 5c. The tool can also be used to manufacture a locking system of

a traditional type without overlapping joint edge por- tions.

Figs 8a-8f illustrate different embodiments.

Figs 8a-8c illustrate how the invention can be used in locking systems where the horizontal locking consists of a tongue 10 with a locking element 8 which cooperates with a locking groove 12 made in a groove 9 which is defined by an upper lip 23 and where the locking groove 12 is positioned in the upper lip 23. The groove also has a lower lip 24 which can be removed to allow joining by a vertical motion. Fig. 8d shows a locking system with a separate strip 6, which is made, for instance, of aluminium sheet. Fig. 8e illustrates a locking system that has a separate strip 6 which can be made of a fibreboard-based material or of plastic, metal and like materials.

Fig. 8f shows a locking system, which can be joined by horizontal snap action. The tongue 10 has a groove 9' which allows its upper and lower part with the locking elements 8, 8'to bend towards each other in connection with horizontally displacement of the joint edges 4a and 4b towards each other. In this embodiment, the upper and lower lip 23,24 in the groove 9 need not be resilient.

Of course, the invention can also be used in conventional snap systems where the lips 23,24 can be resilient.

Figs 9a-9d illustrate alternative embodiments of the invention. When the boards are pulled apart, separation of the cooperating locking surfaces 14 and 15 is prevent- ed. When boards are pressed together, several alternative parts in the locking system can be used to define the inner position. In Fig. 9a, the inner position of the outer part of the locking element 8 and the locking groove 10 is determined. According to Fig. 9b, the outer part of the tongue 10 and the groove 9 cooperate. Accor- ding to Fig. 9c the front and lower part of the tongue 10 cooperates with the groove 9. According to Fig. 9d, a locking element 10'on the lower part of the tongue 10

cooperates with a locking element 9'on the strip 6. It is obvious that several other parts in the locking system can be used according to these principles in order to define the inner position of the floorboards.

Figure 10a shows production equipments and produc- tion methods according to the invention. The end tenor ET has a chain 40 and a belt 41 which displace the floor- board 1 in a feeding direction FD relative a tool set, which in this embodiment has five tools 51,52, 53,54 and 55 and pressure shoes 42. The end tenor could also have two chins and two belts. Figure 10 b is an enlarge- ment of the first tooling station. The first tool 51 in the tool set makes a guiding surface 12 which in this embodiment is a groove and which is mainly formed as the locking groove 12 of the locking system. Of course other groves could be formed preferably in that part of the floorboard where the mechanical locking system will be formed. The pressure shoe 42'has a guiding device 43' which cooperates with the groove 12 and prevents devia- tions from the feeding direction FD and in a plane parallel to the horizontal plane. Figure 10 c shows the end tenor seen from the feeding direction when the floorboard has passed the first tool 51. In this embodi- ment the locking groove 12 is used as a guiding surface for the guiding device 43, which is attached to the pressing shoe 42. The figure 10 d shows that the same groove 12 could be used as a guiding surface in all tool stations. Figure 10 d shows how the tongue could be formed with a tool 54. The machining of a particular part of the floorboard 1 can take place when this part, at the same time, is guided by the guiding device 43. Figures 11 a shows another embodiment where the guiding device is attached inside the pressure shoe. The disadvantage is that the board will have a grove in the rear side. Figure 11 b shows another embodiment where one or both outer edges of the floorboard are used as a guiding surface for the guiding device 43, 43'. The end tenor has in this

embodiment support units 44, 44'which cooperate with the pressure shoes 42, 42'. The guiding device could alterna- tively be attached to this support unites 44, 44'.

Figures llc and lld show how a floorboard could be produced in two steps. The tongue side 10 is formed in step one. The same guiding groove 12 is used in step 2 (fig. lid) when the groove side 9 is formed. Such an end tenor will be very flexible. The advantage is that floorboards of different widths, smaller or larger than the chain width, could be produced.

Figures 12a-12c show a preferred embodiment which guarantees that a semi-floating floor will be installed in the normal position which preferably is a position where the actual joint gap is about 50% of the maximum joint gap. If for instance all floorboards are installed with edges 16,17 in contact, problems may occur around the walls when the floorboards swell to their maximum size. According to the invention, the locking element and the locking groove could be formed in such a way that the floorboards are automatically guided in the optimal posi- tion during installation. Figure 12c shows that the locking element 8 in this embodiment has a locking surface with a high locking angle LA close to 90 degree to the horizontal plane. This locking angle LA is higher than the angle of the tangent line TL to the circle C, which has a centre at the upper joint edges. Figure 12b shows that such a joint geometry will during angling push the floorboard 4a towards the floorboard 4b and bring it into the above-mentioned preferred position with a play between the locking element 8 and the locking groove 12 and a joint gap between the top edges 16, 17.