Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLUE GAS CLEANING INSTALLATION FOR A CEMENT CLINKER PRODUCTION INSTALLATION
Document Type and Number:
WIPO Patent Application WO/2012/013383
Kind Code:
A1
Abstract:
The flue-gas cleaning installation according to the invention for a cement clinker production installation consists essentially of an electrostatic filter for reducing the dust content of an off-gas from the cement clinker production installation, and a catalytic converter, connected thereto, for cleaning the off-gas of hazardous substances, wherein the electrostatic filter and the catalytic converter are arranged in a housing, the catalytic converter is arranged at the side alongside the electrostatic filter, the electrostatic filter and the catalytic converter are separated from one another for flow purposes by at least one common boundary wall which is arranged in the housing, in that a flow direction turn through 180° is provided between the electrostatic filter and the catalytic converter and the catalytic converter is designed for the off-gas to be cleaned to flow vertically through it.

Inventors:
KEEL HANSPETER (CH)
ZURHOVE FRANZ-JOSEF (DE)
Application Number:
PCT/EP2011/058255
Publication Date:
February 02, 2012
Filing Date:
May 20, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ELEX CEMCAT AG (CH)
KEEL HANSPETER (CH)
ZURHOVE FRANZ-JOSEF (DE)
International Classes:
B03C3/019; B03C3/017; B03C3/08
Domestic Patent References:
WO2009089559A12009-07-23
WO2010015009A12010-02-11
WO2009089559A12009-07-23
WO2010015009A12010-02-11
Foreign References:
CA2145111A11995-09-24
DE3435953A11986-04-10
DE19705663A11998-04-23
DE20122251U12005-02-10
CA2145111A11995-09-24
DE3435953A11986-04-10
DE19705663A11998-04-23
DE20122251U12005-02-10
DE19705663A11998-04-23
Attorney, Agent or Firm:
TETZNER, Michael et al. (DE)
Download PDF:
Claims:
Patentansprüche

Rauchgasreinigungsanlage einer Zementklinkerproduktionsanlage mit einem elektrostatischen Filter (1) zur Reduzierung des Staubgehalts eines Abgases (2) der Zementklinkerproduktionsanlage und einem sich daran anschließenden Katalysator zur Reinigung des Abgases von Schadstoffen, wobei der elektrostatische Filter (1) und der Katalysator (3, 3') in einem Gehäuse (10) angeordnet sind, dadurch gekennzeichnet, dass der Katalysator (3, 3') seitlich neben dem elektrostatischen Filter angeordnet ist,

- das elektrostatische Filter (1) und der Katalysator (3, 3') durch wenigstens eine im Gehäuse (10) angeordnete gemeinsame Begrenzungswand (10a, 10b) strömungstechnisch von einander getrennt sind, dass zwischen dem elektrostatischen Filter (1) und dem Katalysator (3, 3') eine Strömungsumlenkung (7) von wenigstens 180° vorgesehen ist und der Katalysator (3, 3') für eine vertikale Durchströmung mit dem zu reinigenden Abgas (2) ausgerichtet ist.

Rauchgasreinigungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass das elektrostatische Filter (1) für eine Reduzierung des Staubgehaltes des Abgases auf 0,1 bis 30 g/Nm3 , vorzugsweise auf 1 bis 10 g/Nm3, ausgelegt ist.

Rauchgasreinigungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysator (3, 3') durch einen SCR-Katalysator gebildet wird.

4. Rauchgasreinigungsanlage nach Anspruch 1 , dadurch gekennzeichnet, dass in der Strömungsumlenkung (7) Strömungsleitelemente zur Erzeugung einer homogenen Anströmung des Katalysators (3, 3') eingebaut sind.

5. Rauchgasreinigungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysator (3, 3') in der Symmetrieebene des elektrostatischen Filters (1) angeordnet ist.

6. Rauchgasreinigungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass das elektrostatische Filter (1) ein oder mehrere sequenziell durchströmbare Felder aufweist und sich der Katalysator (3, 3') über eine oder ein ganzzahliges Vielfaches der Länge eines Feldes des elektrostatischen Filters (1) erstreckt.

7. Rauchgasreinigungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass eine Stützkonstruktion (9) zur Abstützung der Rauchgasreinigungsanlage mit mehreren Stützen vorgesehen ist, wobei ein Teil der Stützen (9a) sowohl das elektrostatische Filter (1) als auch den Katalysator (3, 3') abstützen.

8. Rauchgasreinigungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysator (3') in wenigstens zwei nebeneinander angeordnete, jeweils wenigstens eine Lage aufweisende Gruppen (3 a, 3b) unterteilt ist und die Strömungsführung so ausgebildet ist, dass die beiden Gruppen alternierend von unten und von oben anströmbar sind.

Description:
Rauchgasreinigungsanlage einer Zementklinkerproduktionsanlage

Die Erfindung betrifft eine Rauchgasreinigungsanlage einer Zementklinkerproduktionsanlage mit einem elektrostatischen Filter zur Reduzierung des Staubgehaltes eines Abgases der Zementklinkerproduktionsanlage und einem sich anschließenden Katalysator zur Reinigung des Abgases von Schadstoffen.

Die Reinigung von Abgasen der Zementklinkerherstellung von Stickoxiden, Kohlenwasserstoffen, Furanen und Dioxinen und weiteren gasförmigen Schadstoffen durch eine katalytische Reaktion ist als selektive katalytische Reduktion (SCR) eine allgemein bekannte Technik.

Die Abgase aus der Herstellung von Zementklinker sind bei Anlagen mit Schwebegasvorwärmern mit Staubgehalten von 30 -180 g/Nm 3 belastet. Dieser Staub hat in der Regel hohe Feinheiten mit typischen Korngrößen von d95 < 20 μιη und weist zusätzlich stark variierende Gehalte an Calcit-, Ton- und Sulfatmineralien auf. Besonders die beiden letztgenannten Spezies neigen zum verstärkten Anhaften auf den katalytischen Oberflächen. Das Anhaften des Staubs wirkt sich negativ auf den Druckabfall über den katalytischen Bauteilen und auf die chemische Aktivität aus und wird durch eine Reihe von Abreinigungstechniken verringert.

Zur Abreinigung wird insbesondere Druckluft oder Dampf verwendet. Die Häufigkeit der Abreinigungsvorgänge sowie der benötigte Druck und Volumenstrom des Abreinigungsmediums und der damit einhergehende Energiebedarf der Druckluft- bzw. Dampferzeugung hängt vom Staubgehalt, den Staubeigenschaften und der Temperatur des jeweiligen Rauchgases ab. Unter Häufigkeit wird hier der prozentuale Anteil der Betriebszeit der Abreinigungsvorrichtung je Stunde verstanden.

In der WO 2009/89559 AI wird ein Verfahren beschrieben, welches die Entstaubung des Rauchgases vor dem Katalysator mit einem Elektrofilter nutzt, um den Staubgehalt in Bereiche kleiner 30 g/Nm 3 bzw. kleiner 3 g/Nm 3 zu senken. Durch die Vorentstaubung kann die Abreinigungshäufigkeit stark reduziert werden, allerdings wirkt sich negativ der große Platzbedarf, insbesondere die Aufstandsfläche, des Elektrofilters aus.

In vielen Anlagen, in denen diese Technik nachzurösten ist, sind die örtlichen Platzverhältnisse stark begrenzt. Die vorhandenen Saugzuggebläse sind für die zusätzlich einzubauenden Anlagenteile Elektrofilter, Katalysator und Rohrleitungen mit Rauchgasklappen und Absperrschiebern in der Regel nicht ausgelegt. Der Katalysator umfasst dabei die katalytischen Elemente, die in mehreren Lagen angeordnet sind und Bühnen für den Ein- und Ausbau der Elemente. Weiterhin umfasst er Vorrichtungen zum Aufheizen dieser Elemente vor dem Anfahren und Vorrichtungen zu ihrer Staubabreinigung.

Um den Stillstand der Zementklinkerproduktionsanlage für die Errichtung einer SCR-Anlage aus wirtschaftlichen Gründen möglichst gering zu halten, wird üblicherweise ein zusätzlicher S CR- Ventilator installiert, der den Druckverlust der SCR-Anlage ausgleicht. Grundsätzlich ist aber auch die Einbindung von Elektrofilter und Katalysator stromaufwärts eines ausreichend zu dimensionierenden Ofenventilators möglich. Die serielle Anordnung von Ofenventilator, Elektrofilter, Katalysator und SCR- Ventilator benötigt aber sehr viel Raum, wobei das Elektrofilter das größte Anlagenteil darstellt, gefolgt vom Katalysator und seinen Bühnen für den Ein- und Ausbau der katalytischen Elemente. Dieser Platzbedarf ist häufig nicht vorhanden.

In der CA 2 145 11 1 AI und auch der DE 34 35 953 AI wird die Nutzung von katalytisch beschichteten Niederschlagselektroden eines Elektrofilters zur Funktionsintegration vorgeschlagen. Nachteilig ist hierbei, dass die Abstände der Niederschlagselektroden sehr viel größer sind als die Strukturen der katalytischen Elemente. Der Transport der abzubauenden Schadstoffe durch Diffusion und Konvektion zu den katalytisch wirkenden Zentren auf den Elektroden ist somit nicht ausreichend gewährleistet. Weiterhin bildet sich durch die Primärfunktion Staubabscheidung eine Staubschicht auf den Niederschlagselektroden, die den Schadstofftransport zu den katalytisch wirkenden Zentren nochmals verschlechtert. Diese beiden Effekte bewirken eine starke Verringerung der katalytischen Wirkung.

In der DE 197 05 663 AI ist eine Schaltung aus nichtkatalytischer Reaktionszone (SNCR) gefolgt von einem Staubfilter und einem nachgeschalteten Katalysator offenbart, wobei Filter und Katalysator in einem gemeinsamen Gehäuse untergebracht sind. Diese zielt darauf, dass bei hohen Stickoxidreduktionsraten in der SNCR ein nicht tolerierbarer Ammoniakschlupf entsteht, welcher im Katalysator zur weiteren Entstickung genutzt wird. In der Zeichnung ist eine horizontale Gasströmung sowohl durch das Staubfilter als auch durch den Katalysator offenbart. Eine horizontale Durchströmung von Katalysatoren, die entweder als Waben- oder Plattenkatalysatoren ausgeführt werden und in beiden Ausführungsformen Kanäle mit Querschnitten im Bereich von 10-400 mm 2 aufweisen, ist nur bei sehr geringen Reststaubmengen nach dem Staubfilter möglich. Hierbei sind lange Kanäle noch wesentlich kritischer als kurze. Versuche mit einem kurzen, horizontalen Wabenkatalysator zur Quecksilberoxidation in amerikanischen Kraftwerken haben gezeigt, dass sich die Kanäle bereits bei Reststaubgehalten von etwa 50 mg/Nm 3 mit Staubablagerungen füllen und die katalytische Wirkung stark infolge dessen abfüllt.

Bei Anwendungen in der Zementherstellung ist es daher aus mehreren Gründen weder technisch noch wirtschaftlich sinnvoll, diese Anordnung zu nutzen. Zum einen ist immer ein weiteres Filter vor dem Kamin erforderlich, welches die in der Rohmahlanlage zur Trocknung genutzten, entstickten Rauchgase aus der Zementklinkerherstellung entstauben, so dass eine Entstaubung bis zum zulässigen Staubemissionswert zu aufwändig und teuer ist. Die Staubgehalte werden daher nur auf werte im Bereich von üblicherweise 0,1-30 g/Nm 3 gesenkt, was die erforderliche Filtergröße stark reduziert.

Weiterhin nimmt der Ammoniakwasserverbrauch in der SNCR mit steigenden Entstickungsraten überproportional stark zu, da immer mehr Ammoniak nicht zur Stickoxidreduktion genutzt wird, sondern verbrennt und dabei sogar noch zusätzliches Stickoxid produziert wird. Daher ist es wirtschaftlich nicht sinnvoll, nur eine SCR-Anlage mit kleinem, d.h. kurzem Katalysator zur Nutzung des Ammoniakschlupfes aus der SNCR-Anlage zu bauen. Stattdessen ist es wirtschaftlich sinnvoller einen größeren Teil der Entstickung in der SCR-Anlage zu realisieren, da sowohl die Investitionskosten als auch die Betriebskosten für Filter, Katalysator, Rohrleitungen mit Klappen, Saugzugventilator, Elektrik und Automation, Stahlbau, Montage und Inbetriebnahme durch größere katalytische Elemente nur geringfügig gesteigert werden. Die SNCR-Anlage wird dann aus den genannten Gründen sinnvollerweise mit geringerer Stickungsleistung betrieben.

Die Betriebskosten werden dominiert durch Wartung, Stromverbrauch des Saugzugventilators, Ammoniakwasserverbrauch und Kosten der katalytischen Elemente. Ein größerer Katalysator ermöglicht eine Verschiebung der Ammoniakdosierung vom SNCR-Teil zum SCR-Teil, wodurch der gesamte Ammoniakverbrauch, wie oben ausgeführt, signifikant abnimmt. Dies bedingt aber entweder die Erhöhung der Zahl der Elementlagen oder die Nutzung langer Elemente. Die Erhöhung der Elementlagen erfordert wiederum einen signifikant höheren Abreinigungsaufwand und längere katalytische Elemente sind mit den bei der Zementklinkerherstellung vorherrschenden Staubgehalten nicht mehr abzureinigen.

Aus der WO 2010/015009 AI und der DE 201 22 251 Ul ist ferner die vertikale Durchströmung von Katalysatoren bei Abgasen der Zementherstellung bekannt.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Rauchgasreinigungsanlage anzugeben, die sich durch eine kompakte Bauweise auszeichnet und einen kostengünstigen und sicheren Betrieb in einer Zementklinkerproduktionsanlage gewährleistet.

Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Anspruches 1 gelöst.

Die erfindungsgemäße Rauchgasreinigungsanlage einer Zementklinkerproduktionsanlage besteht im Wesentlichen aus einem elektrostatischen Filter zur Reduzierung des Staubgehaltes eines Abgases der Zementklinkerproduktionsanlage und einem sich anschließenden Katalysator zur Reinigung des Abgases von Schadstoffen, wobei das elektrostatische Filter und der Katalysator in einem Gehäuse angeordnet sind, der Katalysator seitlich neben dem elektrostatischen Filter angeordnet ist, das elektrostatische Filter und der Katalysator durch wenigstens eine im Gehäuse angeordnete gemeinsame Begrenzungswand strömungstechnisch von einander getrennt sind, dass zwischen dem elektrostatischen Filter und dem Katalysator eine Strömungsumlenkung von wenigstens 180° vorgesehen ist und der Katalysator für eine vertikale Durchströmung mit dem zu reinigenden Abgas ausgerichtet ist.

Die Integration der beiden Bauteile in einem Gehäuse und die strömungstechnische Trennung durch eine gemeinsame Begrenzungswand ermöglicht eine kompakte Bauform und verhindert zudem den Wärme verlust durch die Reduzierung der äußeren Oberflächen. Auch ist der Aufwand für Rohrleitungen und für die thermische Kompensation signifikant geringer. Mit einer Ausrichtung des Katalysators für eine vertikale Durchströmung kann der Abreinigungsaufwand gegenüber der in der DE 197 05 663 offenbarten horizontalen Anordnung deutlich reduziert werden. Darüber hinaus nimmt der Stromverbrauch eines Saugzugsventilators durch einen größeren Katalysator nur geringfügig zu, da die Rohrleitung und das Elektrofilter diesen dominieren.

Weitere Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.

Bei den der Erfindung zugrundeliegenden Versuchen ergeben sich minimale Kosten und ein zuverlässiger Betrieb des Katalysators, wenn das elektrostatische Filter für eine Reduzierung des Staubgehaltes auf 0,1 bis 30 g/Nm 3 , vorzugsweise auch 1 bis 10 g/Nm 3 , ausgelegt ist. Bei dem Katalysator handelt es sich vorzugsweise um einen SCR-Katalysator (Katalysator für eine selektive katalytische Reduktion). Die Rauchgasreinigungsanlage wird ferner über eine Stützkonstruktion abgestützt, wobei ein Raster aus mehreren Stützen vorgesehen ist. An der Verbindungsstelle des Katalysators und des Elektrofilters tragen die Stützen Lasten beider Aggregate.

In einer bevorzugten Ausführung wird das Abgas nach dem Passieren des elektrostatischen Filters zur Staubabscheidung im vertikalen Längsschnitt durch das Elektrofilter um 270° umgelenkt und tritt von oben in den Katalysator ein. In einer anderen Ausführung kann die vertikale Umlenkung auch nach unten erfolgen, so dass der Katalysator von unten nach oben durchströmt wird. Dieses hat in einigen Anlagen den Vorteil, dass man den folgenden Anlagenteil besser anbinden kann.

Durch die Vorentstaubung des Abgases im Filter sind die Reststaubgehalte so gering, dass ein Ausfallen des Staubs infolge Überladung des Gasstroms nicht mehr erfolgt. Hierbei ist anzumerken, dass ohne Vorentstaubung in der so genannten High-Dust- Schaltung nicht der Rohgasstaubgehalt, sondern die Staubkonzentrationsspitzen während der Staubabreinigung der katalytischen Elemente kritisch sind. Das Ausfallen des Staubes hätte ein störendes„Pumpen" des Gasstroms zur Folge, der den Produktionsprozess empfindlich stört.

In einer vorteilhaften Ausführung wird das elektrostatische Filter in der Draufsicht in eine rechts und eine links zur Strömungsrichtung liegende Hälfte geteilt und der Katalysator zwischen den beiden Filterhälften angeordnet. In den Umlenkhauben zwischen Filter und Katalysator werden in einer weiteren Ausführung Strömungsleitelemente eingebaut, um eine homogene Anströmung des Katalysators zu gewährleisten.

In einer anderen Ausführung wird der Katalysator an einer Seite des elektrostatischen Filters angebaut, was zusätzlich zur vertikalen Umlenkung eine 180° Umlenkung in der Draufsicht erforderlich macht. Der elektrostatische Filter weist vorzugsweise ein oder mehrere sequentiell durchströmte Felder auf, die ein Stützenraster des Filters vorgeben. Der Katalysator wird dabei an dieses Stützenraster angepasst und überdeckt ein ganzzahliges Vielfaches dieses Stützenabstands.

In einer anderen Ausführung werden die katalytischen Lagen nicht alle übereinander, sondern gruppenweise übereinander und diese Gruppen dann nebeneinander angeordnet, wodurch die Anströmung der Lagen alternierend von unten und von oben erfolgt. Die Gehäuse der einzelnen Gruppen sind durch Zwischenwände voneinander getrennt, wobei zwischen ihnen untere und obere Umlenkhauben vorgesehen sind.

Weitere Vorteile und Ausgestaltungen der Erfindung werden im Folgenden anhand der Beschreibung und der Zeichnung näher erläutert.

In der Zeichnung zeigen

Fig. 1 eine schematische, dreidimensionale Darstellung einer

Rauchgasreinigungsanlage gemäß einem ersten Ausführungsbeispiel,

Fig. 2 eine schematische, dreidimensionale Darstellung in einer weiteren

Ansicht der Rauchgasreinigungsanlage gemäß Fig. 1,

Fig. 3 eine schematische Draufsicht einer Rauchgasreinigungsanlage gemäß einem zweiten Ausführungsbeispiel,

Fig. 4 eine schematische Seitenansicht der Rauchgasreinigungsanlage gemäß

Fig. 3 und

Fig. 5 eine schematische Seitenansicht eines Katalysators gemäß einem weiteren

Ausführungsbeispiel.

Die in den Fig. 1 und Fig. 2 dargestellte Rauchgasreinigungsanlage ist Bestandteil einer Zementklinkerproduktionsanlage und weist im Wesentlichen einen elektrostatischen Filter 1 zur Reduzierung des Staubgehaltes des Abgases 2 der Zementklinkerproduktionsanlage und einen sich daran anschließenden Katalysator 3 zur Reinigung des Abgases von Schadstoffen auf. An der Eintrittsseite des elektrostatischen Filters 1 ist eine Anströmhaube 4 vorgesehen, die das Abgas 2 gleichmäßig verteilt, bevor es den elektrostatischen Filter 1 durchströmt. Der elektrostatische Filter 1 ist so ausgelegt, dass er eine Reduzierung des Staubgehaltes des Abgases auf 0,1 bis 30 g/Nm 3 , vorzugsweise auf 1 bis 10 g/Nm 3 , bewirkt.

Der abgeschiedene Staub wird in Trichtern 5 gesammelt und aus diesen abgezogen. Die Austrittshaube 6 des elektrostatischen Filters 1 leitet das Abgas zu einer Strömungsumlenkung 7, welche die Verbindung zwischen der Austrittshaube und einer Anströmhaube 8 des Katalysators 3 darstellt. Die eingezeichneten Pfeile deuten die Strömungsrichtungen des Abgases an, wobei die Austrittshaube 6 des elektrostatischen Filters 1, die Strömungsumlenkung 7 und die Anströmhaube 8 des Katalysators 3 das Gas in die vertikale Richtung umlenken, sodass der Katalysator 3 vertikal von oben nach unten durchströmt wird.

Der Katalysator 3 wird vorzugsweise durch einen SCR-Katalysator gebildet. Zusammen mit dem elektrostatischen Filter 1 ist er auf einer Stützkonstruktion 9 gelagert, die eine Vielzahl von rasterförmig angeordneten Stützen 9a umfasst. Der elektrostatische Filter 1 weist vorzugsweise ein oder mehrere sequentiell durchströmte Felder auf, die das Raster der Stützenkonstruktion vorgeben. Der Katalysator 3 wird dabei zweckmäßigerweise ebenfalls an dieses Stützenraster angepasst und überdeckt ein ganzzahliges Vielfaches dieses Stützenabstandes.

Darüber hinaus grenzen der elektrostatischer Filter 1 und der Katalysator 3 an wenigstens einer Seite unmittelbar aneinander, sodass sie eine gemeinsame innere Begrenzungswand 10a des Gehäuses 10 nutzen können und durch diese Begrenzungswand 10a strömungstechnisch voneinander getrennt sind.

Im Ausführungsbeispiel gemäß den Fig. 3 und Fig. 4 wurden für gleiche Bauteile dieselben Bezugszeichen verwendet, um das Verständnis zu erleichtern. Hierbei ist der Katalysator 3 in der Symmetrieebene zwischen zwei gleichen Filterhälften la, lb des elektrostatischen Filters 1 angeordnet und wird zu den beiden Filterhälften durch die Begrenzungswände 10a, 10b strömungstechnisch abgegrenzt. Die Anströmhaube 4 verteilt das Abgas gleichmäßig auf die beiden Filterhälften la, lb. Der abgeschiedene Staub wird wiederum in den Trichtern 5 gesammelt und aus diesen abgezogen. Die Austrittshaube 6 des elektrostatischen Filters 1, gebildet durch die beiden Filterhälften la und lb, leitet das Abgas 2 zur Anströmhaube 8 des Katalysators, die das Abgas in eine vertikale Richtung umlenkt, sodass der Katalysator 3 wiederum von oben nach unten durchströmt wird. Die eingezeichneten Pfeile deuten wiederum die Strömungsrichtung des Abgases an. Auch bei diesem Ausführungsbeispiel sind der Katalysator 3 und das elektrostatische Filter 1 in einem gemeinsamen Gehäuse 10 untergebracht, wobei beide Bauteile auf einer rasterförmigen Stützkonstruktion 9 gelagert sind.

Fig. 5 zeigt schließlich noch ein weiteres Ausführungsbeispiel eines Katalysators 3' der in wenigstens zwei nebeneinander angeordnete, jeweils wenigstens zwei Lagen aufweisende Gruppen 3 a, 3b unterteilt ist und die Strömungsrichtung des Abgases 2 so ausgebildet ist, dass die beiden Gruppen alternierend von unten und von oben anströmbar sind. Dabei sind die Gehäuse der beiden Gruppen 3 a und 3b durch Zwischenwände 3 c voneinander getrennt, wobei zwischen ihnen untere und obere Umlenkhauben 3d, 3e vorgesehen sind. Die Anström- und Abströmhaube 4, 6 des elektrostatischen Filters 1 sowie die Trichter 5 für den Staub deuten an, dass die Katalysatorgruppen sowohl in der Filtermitte als auch seitlich angeordnet sein können.