Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLUORESCENT MOLECULAR ROTORS
Document Type and Number:
WIPO Patent Application WO/2014/051521
Kind Code:
A1
Abstract:
The present invention relates to methods and compositions for detecting an interaction between a protein and a ligand, comprising: (i) binding at least one fluorescent molecular rotor to said ligand or protein; and (ii) detecting a change in fluorescence emitted by said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said ligand or protein, thereby detecting an interaction between the ligand and the protein, wherein the fluorescent molecular rotor comprises: a rotating ?-bond; an electron-donating moiety; an electron-accepting moiety; and a ?-conjugated linker.

Inventors:
BRENNER SYDNEY (SG)
TEO YIN NAH (SG)
GHADESSY FARID (SG)
GOH LENG PENG WALTER (SG)
LEE MIN YEN (SG)
Application Number:
PCT/SG2013/000420
Publication Date:
April 03, 2014
Filing Date:
September 26, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AGENCY SCIENCE TECH & RES (SG)
International Classes:
G01N33/48; C07C255/41; C07D213/24; C07D219/08; C07D277/64; C07D495/04
Domestic Patent References:
WO2007041241A22007-04-12
Foreign References:
JPH07287405A1995-10-31
Other References:
TSAI, Y-L. ET AL.: "Effect of different electronic properties on 9-aryl-substituted BMVC derivatives for new fluorescence probes", JOURNAL OF LUMINESCENCE, vol. 127, 2007, pages 41 - 47
DUMAT, B. ET AL.: "Vinyl-triphenylamine dyes, a new family of switchable fluorescent probes for targeted two-photon cellular imaging: from DNA to protein labeling", ORGANIC AND BIOMOLECULAR CHEMISTRY, vol. 10, 21 May 2012 (2012-05-21), pages 6054 - 6061
AKER, W. J. ET AL.: "Interaction of fluorescent molecular rotors with blood plasma proteins", BIORHEOLOGY, vol. 42, 2005, pages 335 - 344
LIO, T. ET AL.: "Fluorescent Molecular Rotor Binding to Actin", JOURNAL OF BIOCHEMISTRY, vol. 113, 1993, pages 196 - 199
VIRIOT, M.L.: "Molecular rotors as fluorescent probes for biological studies", CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, vol. 19, 1998, pages 151 - 160
Attorney, Agent or Firm:
SPRUSON & FERGUSON (ASIA) PTE LTD (Robinson Road Post Office, Singapore 1, SG)
Download PDF:
Claims:
Claims

l.A method for detecting an interaction between a protein and a ligand, comprising:

(i) binding at least one fluorescent molecular rotor to said ligand or protein; and

(ii) detecting a change in fluorescence emitted by- said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said ligand or protein, thereby detecting an interaction between the ligand and the protein,

wherein the fluorescent molecular rotor comprises: a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker,

with the proviso that the fluorescent molecular rotor is not a compound selected from the following table :

2. The method of claim 1, wherein the fluorescent molecular rotor (s) is a molecule that exhibits a change in fluorescence when the ligand binds to the protein.

3. The method of claims 1 or 2, wherein the fluorescent molecular rotor (s) is bound to the ligand via a linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups . 4. The method of any one of claims 1 to 3, wherein a change in fluorescence occurs when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the ligand or perturbs the fluorescent molecular rotor (s) .

5. The method of claims 1 or 2 , wherein the fluorescent molecular rotor (s) is bound to the protein via a linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups . 6. The method of any one of claims 1 to 2 and 5, wherein a change in fluorescence occurs when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the protein or perturbs the fluorescent molecular rotor (s)

7. The method of claims 3 or 5 , wherein the linking moiety comprises 1 to 20 main chain atoms.

8. The method of any one of claims 3, 5 and 7 wherein the linking moiety is selected from the group consisting Of:

9. The method of any one of claims 1 to 8, wherein the ligand is selected from the group consisting of peptide, small molecule or DNA. 10. The method of claim 9, wherein the ligand is peptide and said peptide has an amino acid sequence identical to the sequence of a native peptide that binds to the protein, or a portion thereof. 11. The method of claims 10, wherein the peptide is derived from p53 protein.

12. The method of claim 11, wherein the peptide is selected from the group consisting of :

JP1: MPRFMDYWEGLSK; and

JP2 : MPRFMDY EGLNK.

13. The method of any one of claims 1 to 12, wherein the protein is MDM2 protein.

'

The method of claim 9, wherein the ligand is DNA

15. The method of any one of claims 1 to 9 and 14, wherein the protein is a DNA transacting protein.

16. The method of claim 15, wherein the DNA transacting protein is a transcription factor, polymerase, telomerase or recombinase .

17. The method of any one of claims 1 to 10 and 14 to 16, wherein the protein is p53 protein.

18. The method of any one of claims 1 to 17, wherein the unbound or bound fluorescent molecular rotor is selected from the roup consisting of:

wherein at least one of Rl, R2 or R3 is f~

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally, substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl optionally substituted heterocyclyl;

R5 is a OH or a linking moiety as defined in any one claims 3, 7 and 8; and

R6 is absent or a ligand.

19. The method of claim 18, wherein the unbound or bound fluorescent molecular rotor is selected from the group

20. A composition comprising a fluorescent molecular rotor, wherein the fluorescent molecular rotor comprises: a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n -conjugated linker,

with the proviso that the fluorescent molecular rotor is not a compound selected from the following table:

21. The composition of claim 20, further comprising a ligand and a protein, wherein at least one fluorescent molecular rotor is bound to the ligand or the protein.

22. The composition of claim 21, wherein the fluorescent molecular rotor (s) is a molecule that exhibits a change in fluorescence when the ligand binds to the protein.

23. The composition of claims 21 or 22, wherein the fluorescent molecular rotor (s) is bound to the ligand via a linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups. 24. The composition of claim 21 to 23, wherein a change in fluorescence occurs when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the ligand or perturbs the fluorescent molecular rotor (s) .

25. The composition of claims 21 or 22, wherein the fluorescent molecular rotor (s) is bound to the protein via a linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups. 26. The composition of claim 21 to 22 and 25, wherein a change in fluorescence occurs when the binding of protein to ligand displaces the fluorescent molecular rotor from the protein or perturbs the fluorescent molecular rotor (s) .

27. The composition of claims 23 or 25, wherein the linking moiety comprises 1 to 20 main chain atoms .

28. The composition of any one of claims 23, 25 and 27, wherein the linking moiety is selected from the group consisting of:

29. The composition of any one of claims 21 to, 28, wherein the ligand is selected from the group consisting of a peptide, small molecule or DNA.

30. The composition of claim 29, wherein the ligand is peptide and said peptide has an amino acid sequence identical to the sequence of a native peptide that binds to the protein, or a portion thereof.

31. The composition of claim 30, wherein the peptide is derived from p53 protein.

32. The composition of any one of claims 30 to 31, wherein the peptide is selected from the group consisting

Of :

JP1: MPRFMDYWEGLSK; and

JP2: MPRFMDYWEGLNK.

33. The composition of any one of claims 21 to 32, wherein the protein is MDM2 protein.

34. The composition of claim 29, wherein the ligand is DNA.

35. The composition of claim 21 to 30 and 34, wherein the protein is a DNA transacting protein. 36. The composition of claim 35, wherein the DNA transacting protein is a transcription factor, polymerase, telomerase or recombinase.

37. The composition of any one of claims 21 to 30 and 34 to 36, wherein the protein is p53 protein.

38. The composition of any one of claims' 21 to 37, wherein the unbound or bound fluorescent molecular rotor

wherein at least one of Rl, R2 or R3

wherein Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl;

R5 is a OH or a linking moiety as defined in any one of claims 24 and 28 to 29; and

R6 is absent or a ligand.

39. The unbound or bound fluorescent molecular rotor of claim 38, wherein the compound is selected from the group consisting of:

40. A screening assay for identifying an interaction between protein and ligand, the assay comprising:

(i) providing a protein to be tested for binding affinity with a candidate ligand;

(ii) providing candidate ligands bound to at least one fluorescent molecular rotor;

(iii) testing the candidate ligands for binding affinity by contacting said protein with said candidate ligands bound to at least one fluorescent molecular rotor;- and

(iv) identifying a relevant interactions by measuring a change in fluorescence emitted by the fluorescent molecular rotor (s) , wherein the fluorescent molecular rotor (s) comprises: a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker,

with the proviso that the fluorescent molecular rotor (s)

41. The screening assay of claim 40, wherein the unbound or bound fluorescent molecular rotor is chosen from the group consisting of :

wherein Rl, R2 , R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl;

R5 is a linking moiety selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups; and

R6 is a ligand or OH. 42. The screening assay of claim 41, wherein the unbound or bound fluorescent molecular rotor is selected from the group consisting of :

43. A kit for carrying out a method of any one of claims 1 to 19 or the screening assay claims 40 to 42 comprising the ligand, protein and fluorescent molecular rotor (s) as defined in any one of claims 1 to 19 or 40 to 42, and a means to detect a change in fluorescence.

44. A method for detecting an interaction between a protein and a ligand, comprising:

(i) binding at least one fluorescent molecular rotor to said ligand or protein; and

(ii) detecting a change in fluorescence emitted by said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said ligand or protein, thereby detecting an interaction between the ligand and the protein,

wherein the fluorescent molecular rotor is selected from the group consisting of:

substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl.

45. The method of claim 44, wherein the fluorescent

46. The method of claims 44 or 45, wherein the fluorescent molecular rotor (s) is a molecule that exhibits a change in fluorescence when the ligand binds to the protein.

47. The method of any one of claims 44 to 46, wherein the fluorescent molecular rotor (s) is bound to the ligand via a. linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups .

48. The method of any one of claims 44 to 47, wherein a change in fluorescence occurs when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the ligand or perturbs the fluorescent molecular rotor (s) .

49. The method of any one of claims 44 to 47, wherein the fluorescent molecular rotor (s) is bound to the protein via a linking moiety, wherein said linking moiety is_ selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the .main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups.

50. The method of any one of claims 44 to 46 and 49, wherein a change in fluorescence occurs when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the protein or perturbs the fluorescent molecular rotor (s) .

51. The method of claims 47 or 49, wherein the linking moiety comprises 1 to 20 main chain atoms.

52. The method of any one of claims 47, 49 and 51 wherein the linking moiety is selected from the group consisting of:

53. The method of any one of claims 44 to 48 and 50 to 52, wherein an unbound or bound fluorescent molecular rotor is selected from the grou consisting of:

54. The method of any one of claims 44 to 53, wherein the ligand is selected from the grou consisting of peptide, small molecule or DNA.

55. The method of claim 54, wherein the ligand is peptide and said peptide has an amino · acid sequence identical to the sequence of a native peptide that binds to the protein, or a portion thereof,

56. The method of claim 55, wherein the peptide is derived from p53 protein.

57. The method of claim 56, wherein the peptide is selected from the group consisting of:

JP1: MPRFMDYWEGLSK; and

JP2: MPRFMDYWEGLNK.

58. The method of any one of claims 44 to 57, wherein the protein is MDM2 protein.

59. The method of claim 53, wherein the ligand is DNA.

60. The method of any one of claims 44 to 55 and 59, wherein the protein is a DNA transacting protein.

61. The method of claim 60, wherein the DNA transacting protein is a transcription factor, polymerase, telomerase or recombinase .

62. The method of any one of claims 44 to 55 and 59 to 61, wherein the protein p53 protein.

63. A composition comprising a fluorescent molecular rotor, wherein the fluorescent molecular rotor is selected from the group consisting of :

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl .

The composition of claim 63, wherein the fluorescent cular rotor is selected from the group consisting of:

65. The composition of claims 63 or 64, further comprising a ligand and a protein, wherein at least one fluorescent molecular rotor is bound to the ligand or the protein.

66. The composition of claim 65, wherein the fluorescent molecular rotor (s) is a molecule that exhibits a change in fluorescence when the ligand binds to the protein.

67. The composition of claims 65 or 66, wherein the fluorescent molecular rotor (s) is bound to the ligand via a linking moiety, wherein said linking moiety is selected from the group consisting of a single, bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups . 68. The composition of claim 65 to 67, wherein a change in fluorescence occurs when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the ligand or perturbs the fluorescent molecular rotor (s) .

69. The composition of claims 65 or 66, wherein the fluorescent molecular rotor (s) is bound to the protein via a linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups . 70. The composition of claim 65 to 66 and 69, wherein a change in fluorescence occurs when the binding of protein to ligand displaces the fluorescent molecular rotor from the protei or perturbs the fluorescent molecular rotor (s) .

71. The composition of claims 67 or 69, wherein the linking moiety comprises 1 to 20 main chain atoms.

72. The composition of any one of claims 67, 69 and 71, wherein the linking moiety is selected from the group consisting of:

73. The composition of any one of claims 65 to 67 and 71 to 72, wherein an unbound or bound fluorescent molecular rotor bound to a ligand is selected from the group consisting of:

74. The composition of any one of claims 65 to 73, wherein the ligand is selected from the group consisting of a peptide, small molecule or DNA.

75. The composition of claim 74, wherein the ligand is peptide and said peptide has an amino acid sequence identical to the sequence of a native peptide that binds to the protein, or a portion thereof.

76. The composition of claims 74 or 75, wherein the peptide is derived from p53 protein.

77. The composition of any one of claims 75 to 76, wherein the peptide is selected from the group consisting of:

JP1: MPRFMDYWEGLSK; and

JP2: MPRFMDYWEGLNK. 78. The composition of any one of - claims 65 to 77, wherein the protein is MDM2 protein.

79. The composition of claim 75, wherein the ligand is DNA.

80. The composition of claim 65 to 75 and 79, wherein the protein is a DNA transacting protein.

81. The composition of claim 80, wherein the DNA transacting protein is a transcription factor, polymerase, telomerase or recombinase.

82. The composition of any one of claims 65 to 75 and 79 to 81, wherein the protein is p53 protein.

83. A screening assay for identifying an interaction between a protein and ligand, the assay comprising:

a) providing a protein to be tested for binding affinity with a candidate ligand;

b) providing candidate ligands bound to at least one fluorescent molecular rotor;

c) testing the candidate ligands for binding affinity by contacting said protein with said candidate ligands bound to at least one fluorescent molecular rotor; and

d) identifying a relevant interaction by measuring a change in fluorescence emitted by the fluorescent molecular rotor (s),

wherein the fluorescent molecular rotor is selected from the group consisting of:

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl.

84. The screening assay of claim 83, wherein the fluorescent molecular rotor is selected from the group consisting of :

85. A kit for carrying out a method of any one of claims 44 to 62 or the screening assay claims 83 to 84 comprising the ligand, protein and fluorescent molecular rotor (s) as defined in any one of claims 44 to 62 or 83 to 84, and a means to detect a change in fluorescence.

86. A method for detecting an interaction between (a) DNA and protein, (b) DM2 protein and a peptide, or (c) biotin and streptavidin, the method comprising:

(i) binding at least one fluorescent molecular rotor to DNA or protein of (a) , peptide or DM2 protein of (b) , or biotin or streptavidin of (c) ; and

(ii) detecting a change in fluorescence emitted by said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said DNA or protein of (a) , peptide or MDM2 protein of (b) , or biotin or streptavidin of (c) , thereby detecting an interaction between DNA and protein of (a) , peptide and MDM2 protein of (b) , or biotin or streptavidin of (c) ;

wherein the fluorescent molecular rotor is selected from the group consisting of:

a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker.

87. The method of claim 86, wherein the fluorescent molecular rotor (s) is a molecule that exhibits a change in fluorescence when DNA of (a) binds to a protein, peptide of (b) binds to MDM2 protein, or biotin of (c) binds to streptavidin.

88. The method of any one of claims 86 to 87, wherein the fluorescent molecular rotor (s) is bound to DNA of (a), peptide of (b) , or biotin of (c) , via a linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups .

89. The method of any one of claims 86 to 88, wherein a change in fluorescence occurs when the binding of protein to DNA of (a) , binding of MDM2 protein to peptide of (b) , or the binding of streptavidin to biotin of (c) displaces the fluorescent molecular rotor (s) from the DNA or peptide, or perturbs the fluorescent molecular rotor (s) .

90. The method of any one of claims 86 to 89, wherein the fluorescent molecular rotor (s) is bound to the protein of (a) , the MDM2 protein of (b) , or streptavidin of (c) via a linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups.

91. The method of any one of claims 86 to 87 and 90, wherein a change in fluorescence occurs when the binding of protein to DNA of (a) , binding of DM2 protein to peptide of (b) , or the binding of streptavidin of (c) , displaces the fluorescent molecular rotor (s) from the protein or perturbs the fluorescent molecular rotor (s) .

92. The method of claims 90 or 91, wherein the linking moiety comprises 1 to 20 main chain atoms.

93. The method of any one of claims 88, 90 and 92 wherein the linking moiety is selected from the group consisting of:

94. The method of any one of claims 86 to 93, wherein the protein of (a) is a DNA transacting protein.

95. The method of claim 94, wherein the DNA transacting protein is a transcription factor, polymerase, telomerase or recombinase.

96. The method of claims 86 to 95, wherein the protein is p53 protein.

97. The method of any one of claims 86 to 93, wherein the MDM2 protein of (b) is wild-type or mutant MDM2 protein.

98. The method of claim 97, wherein the protein is wild- type or mutant MDM2.

99. The method of any one of claim 86 to 93 and 97 to 98, wherein the peptide of (b) has an amino acid sequence identical to the sequence of a native peptide that binds to the protein, or a portion thereof.

100. The method of claim 86 to 93 and 97 to 99, wherein the peptide of (b) is derived from p53 protein.

101. The method of any one of claims 86 to 93 and 97 to 100, wherein the peptide of (b) is selected from the group consisting of:

JP1: MPRFMDYWEGLSK; and

JP2: MPRFMDYWEGLNK .

102. The method of any one of claims 86 to 101, wherein the unbound or bound fluorescent molecular rotor is selected from the group consisting of:

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl optionally substituted heterocyclyl;

R5 is a OH or a linking moiety as defined in any one claims 90, 92, 94 or 95; and

R6 is absent or a peptide.

103. The method of claim 102, wherein the unbound or bound fluorescent molecular rotor is selected from the

104. A method for detecting an interaction between DNA and protein according to claim 86, wherein the protein is p53... protein, and the fluorescent molecular rotor is selected from the group consisting of:

105. A method for detecting an interaction between MDM2 protein and a peptide according to claim 86, wherein the peptide is selected from the group consisting of JP1 : MPRFMDYWEGLSK and JP2 : MPRFMDYWEGLNK; and the fluorescent molecular rotor is selected from the group

106. The method for detecting an interaction between biotin and streptavidin according to claim 86, wherein the fluorescent molecular rotor is selected from the group consisting of:

107. A composition comprising:

a) fluorescent molecular rotor, DNA and protein;

b) fluorescent molecular rotor, peptide and

MDM2 protein; or

c) fluorescent molecular rotor, biotin and streptavidin,

wherein said fluorescent' molecular rotor is bound to one of DNA or protein in (a), one of peptide or DM2 protein in (b) , or one of biotin or streptavidin in (c) ,

and wherein the fluorescent molecular rotor (s) comprises: a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker.

108. The composition of claim 107, wherein the fluorescent molecular roto (s) exhibits a change in fluorescence when the DNA of (a) , peptide of (b) , or biotin of (c) , binds to the protein of (a) , MDM2 protein of (b) , or streptavidin of (c) , respectively.

109. The composition of claims 107 or 108, wherein the fluorescent molecular rotor (s) is bound to DNA of (a), peptide of (b) , or biotin of (c) , via a linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups.

110. The composition ,,pf claim 107 to 109, wherein a change in fluorescence occurs when the binding of protein to DNA, MDM2 protein to peptide, or biotin to streptavidin, displaces the fluorescent molecular rotor (s) from DNA or perturbs the fluorescent molecular rotor (s) .

111. The composition of claims 107 or 108 wherein the fluorescent molecular rotor (s) is bound to the protein of (a) , MDM2 protein of (b) , or streptavidin of (c) , via a linking moiety, wherein said linking moiety is selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups . .

112. The composition of claim 107 to 108 and 111, wherein a change in fluorescence occurs when the binding of protein to DNA, MDM2 protein to peptide, or biotin to streptavidin, displaces the fluorescent molecular rotor from the protein or perturbs the fluorescent molecular rotor (s) . 113. The composition of any one of claims 109 to 112, wherein the linking moiety comprises 1 to 20 main chain atoms .

114. The composition of any one of claims 109 to 113, wherein the linking moiety is selected from the group consisting of: 115. The composition of any one of claims 107 to 114, wherein the protein of (a) is a DNA transacting protein.

116. The composition of claim 115, wherein the DNA transacting protein is a transcription factor, polymerase, telomerase or recombinase.

117. The composition of any one of claims 107 to 114, wherein the MDM2 protein of (b) is a wild-type or mutant MDM2 protein.

118. The composition of any one of claims 107 to 114 and 117, wherein the MDM2 protein is wild-type or mutant DM2 protein. 119. The composition of any one of claims 107 to 114 and 117 to 118-, wherein the peptide of (b) has an amino acid sequence identical to the sequence of a native peptide that binds to the protein, or a portion thereof. 120. The composition of any one of claims 107 to 114 and 117 to 119, wherein the peptide of (b) is derived from p53 protein.

121. The composition of any one of claims 107 to 114 or 117 to 120, wherein the peptide of (b) is derived from p53 protein.

12,2. The composition of any one of claims 107 to 114 or 117 to 121, wherein the peptide of (b) is selected .from the group consisting of:

JP1: MPRFMDYWEGLSK; and

JP2: MPRFMDYWEGLNK.

123. A composition of any one of claims 107 to 122, wherein the unbound or bound fluorescent molecular rotor is selected from the group:

wherein at least one of Rl, R2 or R3 is ;

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl;

R5 is a OH or a linking moiety as defined in any one of claims 90, 92, 94 or 95; and

R6 is absent or a peptide.

124. The composition of any one of claims 107 to 123, wherein the unbound or bound fluorescent molecular rotor is selected from the group consisting of :

125. The composition of claim 107 comprising a fluorescent molecular rotor, DNA and protein of (a) , said fluorescent molecular rotor bound to DNA, wherein said protein is p53 protein and said fluorescent molecular

126. The composition of claim 107 comprising a fluorescent molecular rotor, peptide and MDM2 protein of (b) , said fluorescent molecular rotor bound to peptide, wherein said peptide is selected from the group consisting of JP1: MPRFMDYWEGLSK and JP2 : PRFMDYWEGLNK; and the fluorescent molecular rotor is selected from the group consisting of:

127. The composition of claim 107 comprising a fluorescent molecular rotor, biotin and streptavidin of

(c) , said fluorescent molecular rotor bound to biotin, wherein said fluorescent molecular rotor is selected from the group consisting of:

128. A screening assay for identifying an interaction between DNA and protein, or peptide and MDM2 protein, the assay comprising:

a) providing a protein to be tested for binding affinity with candidate DNA or peptide;

b) providing candidate DNA or peptide bound to at least one fluorescent molecular rotor; c) testing the candidate DNA or peptide for binding affinity by contacting said protein with said candidate DNA or peptide bound to at least one fluorescent molecular rotor; and

d) identifying a relevant interactions by measuring a change in fluorescence emitted by the fluorescent molecular rotor(s),

wherein the fluorescent molecular rotor (s) comprises:

a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and a n-conjugated linker.

129. The screening assay of claim 128 to 131, wherein the unbound or bound fluorescent molecular rotor is selected from the group consisting of:

R4 wherein at least one of Rl, R2 or R3 is

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl; R5 is a OH or a linking moiety as defined in any one of claims 88, 90, 92 or 93; and

R6 is absent or a peptide. 130. The screening assay of claim 128 or 129, wherein the unbound or bound fluorescent molecular rotor is selected from the group consisting of:

131. A screening assay for identifying a candidate compound, comprising:

(a) providing a candidate compound to be tested for binding affinity with protein;

(b) providing a complex comprising a probe bound to protein, wherein said probe comprises at least one fluorescent molecular rotor bound to peptide;

(c) testing the candidate compound for binding

affinity with said protein by contacting said candidate compound with said complex; and

(d) identifying a relevant candidate compound by measuring the change in fluorescence emitted when said complex is disrupted, wherein the fluorescent molecular rotor (s) comprises:

a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker.

132. The screening assay of claim 131, wherein a change in fluorescence occurs when the probe is displaced from the complex.

133. The screening assay of any one of claims 131 or 132, wherein the probe comprises peptide selected from the group consisting of JP1: MPRFMDYWEGLSK and JP2 : MPRFMDY EGLNK; and the protein is MDM2 protein.

134. The screening assay of any one of claims 131 to 133, wherein the fluorescent molecular rotor, in its unbound state, is selected from the group consisting of:

135. A kit for carrying out a method of any one of claims 86 to 106 or the screening assay claims 128 to 134 comprising:

(i) fluorescent molecular rotor, DNA and protein;

(ii) fluorescent molecular rotor, peptide and MDM2 protein; or

(iii) fluorescent molecular rotor, biotin and streptavidin, ,

as defined in any one of claims 86 to 106 or 128 to 134, and a means to detect a change in fluorescence.

136. A chemical compound selected from the group consisting of:

wherein at least one of Rl, R2 or R3' is

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl;

R5 is a OH or a linking moiety selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups; and

R6 is absent or a ligand,

with the proviso that R5 is not OH in formula (v) .

137. A chemical compound of claim 136, selected from the

Description:
FLUORESCENT MOLECULAR ROTORS

TECHNICAL FIELD

[0001] The present invention generally relates to fluorescent molecular rotors and compositions comprising the same. The present invention also relates to the use of fluorescent molecular rotors in detecting protein-ligand interactions. BACKGROUND

FLUORESCENT MOLECULAR ROTORS

[0002] Molecular rotors are a collective group of fluorescent compounds that possess the ability to undergo twisted intramolecular charge transfer (TICT) and are typically used as viscosity sensor probes. They typically consist of three parts: an electron-donating unit, an electron-accepting unit and a n-conjugated linking moiety which allows electron transfer to occur in the planar conformation. However, electrostatic forces upon irradiation result in the molecule adopting a twisted conformation around the σ-bond in the linker region. This non-planar, twisted conformation has a lower excited state energy and thus is associated with either a red-shifted fluorescence emission or can undergo a non-radiative torsional relaxation pathway, depending on the molecular structure of the rotor. If the intramolecular rotation is hindered, the non-radiative pathway is prevented and the molecule adopts a planar configuration, thus restoring fluorescence.

PROTEIN LABELLING TECHNIQUES

[0003] Progress in understanding complex biological systems depends on characterizing the underlying interactions of biomolecules , in particular proteins. The interaction of proteins with ligands, such as peptides, DNA or small molecules, offers biologists powerful tools for visualizing protein dynamics.

[ 0004 ] For example, the investigation of protein- peptide interactions. The p53 tumour suppressor protein is the key determinant of cell fate. It is mutated in 50% of all cancers. It is primarily regulated by the ubiquitin ligase MDM2 which targets it for proteosomal degradation. The interaction between MDM2 and p53 has been mapped to the N-terminal of p53 (residues 18-26) and the N-terminal domain of MDM2 (residues 1-110) . In 50% of cancers with wild-type p53, inhibition of MDM2 leading to increased p53 levels and cell death represents an attractive therapeutic modality. Several compounds that bind to the N-terminal domain of MDM2 and abrogate p53 binding have shown promise in preclinical development. Both the further development of these pre-existing compounds and high- throughput screens for novel compounds will benefit greatly from robust, facile and sensitive methods enabling detection of the p53-MDM2 interaction.

[ 0005 ] Additionally, the interactions of proteins with

DNA are essential cellular processes. Compromised protein- DNA interactions can give rise to severe disease phenotypes, notably cancer. There exists therefore, a requirement for robust assays enabling both fundamental understanding of interactions at the molecular level, and high ^ throughput screening of compound libraries for drugs capable of "reactivating" a mutant protein with diminished or absent DNA-binding.

[ 0006 ] One way to determine protein-DNA binding is through electrophoretic mobility shift assay (EMSA) . EMSA identifies protein-DNA binding by the shift in the electrophoretic migration of DNA through a gel when it is bound by a protein. Another way is through and DNA footprinting. DNA footprinting identifies protein-DNA complexes through resistance of DNA to nucleolytic degradation when it is bound by a protein. However, these methods are technically demanding, semi -quantitative, not- easily reproduced, low-throughput and typically require the use of radioisotopes for optimal results .

[0007] Another way is based on the ELISA format involving the use of biotinylated DNA to capture protein- DNA (p53 protein bound to target DNA) complexes on streptavidin plates. The complexes are subsequently detected through the use of an anti-p53 monoclonal antibody that does do not disrupt the complex. A variation of this technique has also been described using microspheres and flow analysis. Other techniques include surface plasmon resonance (SPR) , and fluorescence anisotropy. Whilst powerful and insightful, these methods require expensive instrumentation, are laborious, and are not suited for high-throughput applications.

[0008] One way of detecting protein-DNA binding occurs through a combination of immunoprecipitation and real-time PCR. However, this method is not optimal for high- throughput screening as it requires multiple washing steps and real-time PCR which can be costly.

[0009] There is therefore a need to provide a quantitative, label-free, homogenous, non-radioactive, reproducible and high- throughput method to measure protein- ligand binding.

[0010] There is also a need to provide a high- throughput screening method for measuring protein- ligand interactions which is non- laborious and does not require the use of expensive instrumentation.

[0011] There is also a need to provide a high- throughput screening method for measuring protein- ligand interactions which lessens the requirement for multiple washing steps .

[0012] Therefore, there is a need for methods for detecting interactions between a protein and ligands that ameliorate the above problems. The present invention seeks to fulfill these needs and provides further related advantages .

SUMMARY

[0013] According to a first aspect, there is provided a method for detecting an interaction between a protein and a ligand, comprising:

(i) binding at least one fluorescent molecular rotor to said ligand or protein; and

(ii) detecting a change in fluorescence emitted by said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said ligand or protein, thereby detecting an interaction between the ligand and the protein.

with the proviso that the fluorescent molecular rotor is not a compound selected from the following table:

[0014] In a second aspect, there is provided a method for detecting an interaction between a protein and a ligand, comprising:

(i) binding at least one fluorescent molecular rotor to said ligand or protein; and

(ii) detecting a change in fluorescence emitted by. said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said ligand or protein, thereby detecting an interaction between the ligand and the protein, wherein the fluorescent molecular rotor is selected from

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl.

[0015] In a third aspect, there is provided a method for detecting an interaction between (a) DNA and protein, (b) MDM2 protein and a peptide, or (c) biotin and streptavidin, the method comprising:

(i) binding at least one fluorescent molecular rotor to said ligand or protein; and

(ii) detecting a change in fluorescence emitted by said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said ligand or protein, thereby detecting an interaction between the ligand and the protein, wherein the fluorescent molecular rotor is selected from the group consisting of:

a rotating σ-bond;

an electron-donating moiety,- an electron-accepting moiety; and

a n-conjugated linker.

[0016] Advantageously, the fluorescent molecular rotors may be useful as fluorescent probes for determining protein- ligand interactions. The fluorescent molecular rotors may be useful as a fluorescent probe due to the restriction of intramolecular rotation within the molecular rotor through binding to a ligand.

[0017] The fluorescent molecular rotors may display a change in fluorescence upon being displaced from the ligand, perturbed by protein binding or from greater restriction of their intramolecular rotation.

[0018] Advantageously, the ' fluorescent molecular rotors may be used to investigate protein-DNA interactions . The fluorescent molecular rotors may be engineered such that the intercalating moiety of the rotor encompasses the entire base pair region of DNA, so that the rotating bond will be protruding out of the DNA duplex.

[0019] The fluorescent molecular rotors capable of intercalating DNA can first be bound to DNA then incubated with a protein. Interaction of the protein with the DNA could displace the fluorescent molecular rotor from DNA, or result in a greater restriction of its intramolecular rotation. In both cases, a change in fluorescence may be measured.

[0020] Advantageously, the fluorescent molecular rotors may be used to investigate protein-peptide interactions. The peptide may be a protein-binding peptide which is conjugated to fluorescent molecular rotor (s) . The peptide binding site on the protein may restrict the motion of the fluorescent molecular rotor (s) attached to the peptide sufficiently to bring about a detectable fluorescence turn-on signal.

[0021] In a fourth aspect, there is provided a composition comprising a fluorescent molecular rotor. The composition may further comprise a ligand and a protein, wherein at least one fluorescent molecular rotor is bound to the ligand or the protein, with the proviso that the fluorescent molecular rotor is not a compound selected

[0022] In a fifth aspect, there is provided a composition comprising a fluorescent molecular rotor, wherein the fluorescent molecular rotor is selected from the group consisting of:

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl .

[0023] In a sixth aspect, there is provided a composition comprising:

(i) fluorescent molecular rotor, DNA and protein;

(ii) fluorescent molecular rotor, peptide and MDM2 ; or

(iii) fluorescent molecular rotor, biotin and streptavidin, wherein said fluorescent molecular rotor is bound to one of DNA or protein in (a) , one of peptide or MDM2 in (b) , or one of biotin or streptavidin in (c) , and wherein the fluorescent molecular rotor (s) comprises: a rotating σ-bond;

an electron-donating moiety; an electron-accepting moiety; and

a n-conjugated linker.

[0024] In a seventh aspect, there is provided a screening assay for identifying a ligand, the assay comprising:

(i) providing a protein to be tested for binding affinity with a candidate ligand;

(ii) providing candidate ligands bound to at least one fluorescent molecular rotor;

(iii) testing the candidate ligands for binding affinity by contacting said protein with said candidate ligands bound to at least one fluorescent molecular rotor; and

identifying relevant candidate ligands by measuring a change in fluorescence emitted by the fluorescent molecular rotor (s), with the proviso that the fluorescent molecular rotor is not a compound selected from the following table:

[0025] In an eighth aspect, there is provided a screening assay for identifying an interaction between a protein and ligand, the assay comprising:

a) providing a protein to be tested for binding affinity with a candidate ligand;

b) providing candidate ligands bound to at least one fluorescent molecular rotor;

c) testing the candidate ligands for binding affinity by contacting said protein with said candidate ligands bound to at least one fluorescent molecular rotor; and d) identifying a relevant interaction by measuring a change in fluorescence emitted by the fluorescent molecular rotor (s) ,

wherein the fluorescent molecular rotor is selected from the group consisting of :

Rl, R2, R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl .

[0026] In a ninth aspect, there is provided a screening assay for identifying an interaction between DNA and protein, or peptide and MDM2, the assay comprising:

a) providing a protein to be tested for binding affinity with candidate DNA or peptide;

b) providing candidate DNA or peptide bound to at least one fluorescent molecular rotor;

c) testing the candidate DNA or peptide for binding affinity by contacting said protein with said candidate DNA or peptide bound to at least one fluorescent molecular rotor; and

d) identifying a relevant interactions by measuring a change in fluorescence emitted by the fluorescent molecular rotor (s),

wherein the fluorescent molecular rotor (s) comprises:

a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker.

[0027] In a tenth aspect, there is provided a screening assay for identifying a candidate compound, comprising:

(a) providing a candidate compound to be tested for

binding affinity with protein;

(b) providing a complex comprising a probe bound to

protein, wherein said probe comprises at least one fluorescent molecular rotor bound to peptide;

(c) testing the candidate compound for binding affinity with said protein by contacting said candidate compound With said complex; and

(d) identifying a relevant candidate compound by measuring the change in fluorescence emitted when said complex is disrupted, wherein the fluorescent molecular rotor (s) comprises:

a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker.

[0028] Advantageously, the screening assay may be high- throughput, quantitative, label-free, homogenous, nonradioactive .and a reproducible method to measure protein- ligand binding. [0029] Advantageously, the screening assay may be non- laborious and may not require the use of expensive instrumentation.

[0030] Advantageously, the screening method may not require multiple washing steps.

[0031] Advantageously, the assay is single-well, low volume and non-radioactive with minimal pipetting steps and fluorescent readout.

[0032] Advantageously, the screening assay may be a small molecule drug screening assay which may identify small molecules which may be missed in assays, such as fluorescence polarization.

[0033] In an eleventh aspect, there is provided a kit for carrying out the first or sixth aspects of the invention, comprising a ligand, protein and fluorescent molecular rotor (s), and a means to detect a change in fluorescence.

[0034] In a twelfth aspect, there is provided a kit for carrying out the second or seventh aspects of the invention comprising the ligand, protein and fluorescent molecular rotor (s) , and a means to detect a change in fluorescence.

[0035] In a thirteenth aspect, there is provided a kit for carrying out the third or eighth aspects of the invention comprising the ligand, protein and fluorescent molecular rotor (s), and a means to detect a change in fluorescence.

[0036] In a fourteenth aspect, there is provided a chemical compound selected from the group consisting of:

consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl;

R5 is a OH or a linking moiety selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups ; and

R6 is absent or a ligand, with the proviso that R5 is not OH in formula (v) . DEFINITIONS

[0037] Unless otherwise defined herein, scientific and technical terms used in this application shall have the meanings that are commonly understood by those of ordinary skill in the art. Generally, nomenclature used in connection with, and techniques of, chemistry, cell and tissue culture, molecular biology, cell and cancer biology, neurobiology, neurochemistry, virology, immunology, microbiology, pharmacology, genetics and protein and nucleic acid chemistry, described herein, are those well-known and commonly used in the art.

[0038] The following are some definitions that may be helpful in understanding the description of the present invention. These are intended as general definitions and should in no way limit the scope of the present invention to those terms alone, but are put forth for a better understanding of the following description.

[0039] Unless the context requires otherwise or specifically stated to the contrary, integers, steps, or elements of the invention recited herein as singular integers, steps or elements clearly encompass both singular and plural forms of the recited integers, steps or elements.

[0040] As used herein, unless otherwise specified, the following terms have the following meanings, and unless otherwise specified, the definitions of each term (i.e. moiety or substitutent) apply when that term is used individually or as a component of another term (e.g., the definition of aryl is the same for aryl and for the aryl portion of arylalkyl, alkylaryl, arylalkynyl, and the like) . [0041] As used herein, the term "alkyl" includes within its meaning monovalent ("alkyl") and divalent ("alkylene") straight chain or branched chain saturated aliphatic groups having from 1 to 6 carbon atoms, eg, 1, 2, 3, 4, 5 or 6 carbon atoms. For example, the term alkyl includes, but is not limited to, methyl, ethyl, 1-propyl, isopropyl, 1-butyl, 2 -butyl, isobutyl, tert-butyl, amyl, 1,2- dimethylpropyl , 1 , 1-dimethylpropyl , pentyl, isopentyl, hexyl, 4-methylpentyl, 1-methylpentyl , 2-methylpentyl, 3- methylpentyl , 2 , 2 -dimethylbutyl , 3 , 3 -dimethylbutyl , 1,2- dimethylbutyl , 1 , 3 -dimethylbutyl , 1 , 2 , 2 -1 imethylpropyl , 1, 1, 2-trimethylpropyl and the like. Alkyl groups may be optionally substituted.

[0042] As used, herein, the term "alkenyl" refers to divalent straight chain or branched chain unsaturated aliphatic groups containing at least one carbon-carbon double bond and having from 2 to 6 carbon atoms, eg, 2, 3, 4, 5 or 6 carbon atoms. For example, the term alkenyl includes, but is not limited to, ethenyl, propenyl, butenyl, 1-butehyl, 2-butenyl, 2 -methylpropenyl , 1- pentenyl, 2-pentenyl, 2-methylbut-l-enyl , 3-methylbut-l- enyl, 2-methylbut-2-enyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 2 , 2-dimethy1-2-butenyl, 2-methyl-2-hexenyl, 3-methyl-l- pentenyl , 1 , 5 -hexadienyl and the like. Alkenyl groups may be optionally substituted.

[0043] As used herein, the term "alkynyl" refers to trivalent straight chain or branched chain unsaturated aliphatic groups containing at least one carbon-carbon triple bond and having from 2 to 6 carbon atoms, eg, 2, 3, 4, 5 or 6 carbon atoms. For example, the term alkynyl includes, but is not limited to, ethynyl, propynyl, 1- butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 1-hexynyl, 2- hexynyl, 3-hexynyl, 3 -methyl-1-pentynyl, and the like., alkynyl groups may be optionally substituted. [0044] The term "aryl", or variants such as "aromatic group" or "arylene" as used herein refers to monovalent

("aryl") and divalent ("arylene") single, polynuclear, conjugated or fused residues of aromatic hydrocarbons having from 6 to 10 carbon atoms. Such groups include, for example, phenyl, biphenyl, naphthyl, phenanthrenyl , and the like. Aryl groups may be optionally substituted.

[0045] The term "cycloalkyl" as used herein refers to a non-aromatic mono- or multicyclic ring system comprising about 3 to about 10 carbon atoms. The cycloalkyl can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined herein. Non- limiting examples of suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Non- limiting examples of suitable multicyclic cycloalkyls include 1 - decalinyl, norbornyl, adamantyl and the like. Further non- limiting am les of cycloalkyl include the following:

[ 0046] The term "cycloalkenyl" as used herein refers to a non-aromatic mono or multicyclic ring system comprising about 3 to about 10 carbon atoms which contains at least one carbon-carbon double bond. Non- limiting examples of suitable monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl , cyclohepta-1 ,3-dienyl, and the like. Non-limiting example of a suitable multicyclic cycloalkenyl is norbornylenyl , as well as unsaturated moieties of the examples shown above for cycloalkyl. Cycloalkenyl groups may be optionally substituted.

[0047 ] The term "heteroalkyl" as used herein refers to an alkyl moiety as defined above, having one or more carbon atoms, for example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms, replaced with one or more heteroatoms, which may be the same or different, where the point of attachment to the remainder of the molecule is through a carbon atom of the heteroalkyl radical, or the heteroatom. Suitable heteroatoms include 0, S, and N. Non-limiting examples include ethers, thioethers, amines, hydroxymethyl , 3 -hydroxypropyl , 1 , 2-dihydroxyethyl , 2- methoxyethyl , 2 -aminoethyl , 2-dimethylaminoethyl, and the like. Heteroalkyl groups may be optionally substituted.

[0048] The term "heteroaryl" as used herein refers to an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. "Heteroaryl" may also include a heteroaryl as defined above, fused to an aryl as defined above. Non- limiting examples of suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, pyridone (including N-substituted pyridones) , isoxazolyl, isothiazolyl , oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1 , 2, 4-thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl , phthalazinyl , oxindolyl, imidazo[l , 2 -a] pyridinyl , imidazo[2,l b] thiazolyl , benzofurazanyl , indolyl, azaindolyl, benzimidazolyl , benzothienyl , quinolinyl-, imidazolyl, thienopyridyl, quinazolinyl , thienopyrimidyl , pyrrolopyridyl , imidazopyridyl , isoquinolinyl , benzoazaindolyl , 1 , 2 , 4 -triazinyl , benzothiazolyl and the like. The term "heteroaryl" also refers to partially saturated heteroaryl moieties such as, for example, tetrahydroisoquinolyl , tetrahydroquinolyl and the like. Heteroaryl groups may be optionally substituted.

[0049] The term "heterocycle" as used herein refers to a group comprising a covalently closed ring herein at least one atom forming the " ring is a carbon atom and at least one atom forming the ring is a heteroatom. Heterocyclic rings may be formed by three, four, five, six, seven, eight, nine, or more than nine atoms, any of which may be saturated, partially unsaturated, or aromatic. Any number of those atoms may be heteroatoms (i.e., a heterocyclic ring may comprise one, two, three, four, five, six, seven, eight, nine, or more than nine heteroatoms) . Herein, whenever the number of carbon atoms in a heterocycle is indicated (e.g., C1-C6 heterocycle), at least one other atom (the heteroatom) must be present in the ring. Designations such as "C1-C6 heterocycle" refer only to the number of carbon atoms in the ring and do not refer to the total number of atoms in the ring. It is understood that the heterocylic ring will have additional heteroatoms in the ring. In heterocycles comprising two or more heteroatoms, those two or more heteroatoms may be the same or different from one another. Heterocycles may be optionally substituted. Binding to a heterocycle can be at a heteroatom or via a carbon atom. Examples of heterocycles include heterocycloalkyls (where the ring contains fully saturated bonds) and heterocycloalkenyls (where the ring contains one or more unsaturated bonds) such as, but are not limited to the followin :

wherein D, E , F, and G independently represent a heteroatom. Each of D, E, F, and G may be the same or different from one another.

[0050] The term "cyclic group" as used herein refers to an -aryl, heteroaryl, cycloalkyl, cycloalkenyl or heterocycle as defined above. Cyclic groups may be optionally substituted.

[0051] The term "optionally substituted" as used herein means the group to which this term refers may be unsubstituted, or may be substituted with one or more groups other than hydrogen provided that the indicated atom' s normal valency is not exceeded, and that the substitution results in a stable compound.

[0052] The term "linking moiety" as used herein refers to a single bond or optionally substituted heteroalkyl as defined above, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups as defined above.

[0053] As used herein, the term "main chain atom" refers to only those atoms between the fluorescent molecular rotor and the ligand that are joined in a continuous lines. In one embodiment, main chain atoms are selected from the group consisting of: C, O, N, S, P and Si.

[0054] As used herein, the term "ligand" refers to molecules that bind to proteins. Accordingly, a ligand may be a small molecule as defined below, nucleic acid such as RNA or DNA, a polynucleoside or peptide.

[0055] "Peptide" as used herein includes a peptide, dipeptide or polypeptide.

[0056] A ligand variant peptide may be substantially identical to a native peptide sequence. The amino acid sequence of the variant at times is 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more identical to a native peptide sequence .

[0057] Naturally occurring amino acids in a native ligand or receptor protein polypeptide or protein may be are substituted with unnatural or non-classical amino acids, which include, but are not limited to, ornithine (hereinafter referred to as Z) , diaminobutyric acid (hereinafter referred to as B) , norleucine (hereinafter referred to as 0) , pyrylalanine , thienylalanine , naphthylalanine and phenylglycine . Other examples of -non-- naturally occurring amino acids and non-classical amino acid replacements are alpha* and alpha-disubstituted* amino acids, N-alkyl amino acids*, lactic acid*, halide derivatives of natural amino acids such as trifluorotyrosine* , p-Cl- phenylalanine*, p-Br- phenylalanine* , p-I-phenylalanine* , L-allyl-glycine* , beta- alanine*, L-arpha-amino butyric acid*, L-gamrna- amino butyric acid*, L-alpha-amino isobutyric acid*, L- epsilon-amino caproic acid#, 7-amino heptanoic acid*, L- methionine sulfone*, L-norleucine* , L-norvaline* , p-nitro- L-phenylalanine* , L-hydroxyproline#, L-thioproline* , methyl derivatives of phenylalanine (Phe) such as 4- methyl-Phe*, pentamethyl-Phe* , L-Phe (4-amino)#, L-Tyr (methyl)*, L-Phe (4- isopropyl)*, L-Tic (1,2,3,4- tetrahydroisoquinoline-3 -carboxyl acid)*, L- diaminopropionic acid, L-Phe (4-benzyl)*, 2,4- diaminobutyric acid, 4 -aminobutyric acid (gamma-Abu) , 2- amino butyric acid (alpha-Abu) , 6 -amino hexanoic acid (epsilon-Ahx) , 2 -amino isobutyric acid (Aib) , 3 -amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine , t-butylalanine , phenylglycine , cyclohexylalanine , fluoroamino acids, designer amino acids such as beta-methyl amino acids, Ca- mefhyl amino acids, Na-methyl amino acids, naphthyl alanine, and the like. The notation * indicates a derivative having hydrophobic characteristics, # indicates a derivative having hydrophilic characteristics, and #* indicates a derivative having amphipathic characteristics.

[0058] Variant amino acid sequences may include suitable spacer groups inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or [beta] -alanine residues. Also, peptides and polypeptides may comprise or consist of peptoids. The term "peptoids" refers to variant amino acid structures where the [alpha] -carbon substituent group is on the backbone nitrogen atom rather than the [alpha] - carbon.

[0059] Peptides may be prepared by known recombinant molecular biology procedures. A polypeptide also may be synthesized by peptide ligation methods . This method allows native backbone proteins to be assembled from fully unprotected polypeptide building blocks. To facilitate the ligation reactions, the alpha-carboxylate group of the N- terminal polypeptide fragment is mildly activated as an aryl thioester and the C- terminal polypeptide fragment contains an amino- terminal cysteine. The reaction often is carried out in aqueous buffer at about neutral pH. The initial step is a reversible transthioesterification reaction involving the thiol group of the N-terminal Cys- polypeptide (the C-terminal fragment) and the alpha- thioester moiety of the N- terminal polypeptide fragment. This intermediate undergoes a spontaneous rearrangement to form a natural peptide bond at the ligation site. An advantage of the chemical approach is the site-specific incorporation of unnatural amino acids, post-translational modifications, and biochemical/biophysical probes into the target molecule. Polypeptide fragments of about 50 amino acids or less, and mimetics and variants thereof, may be produced by standard chemical synthetic methods known in the art .

[0060] The ligands, variant polypeptides and proteins thereof may be isolated using standard purification procedures. An "isolated" or "purified" peptide, polypeptide or protein is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. "Substantially free" means preparation of a ligand, receptor, or peptide, polypeptide or protein variant thereof having less than about 30%, 20%, 10% and more preferably 5% (by dry weight) , of non-receptor or ligand polypeptides (also referred to herein as a "contaminating proteins"), or of chemical precursors or non-receptor or ligand chemicals. When the polypeptide or a biologically active portion thereof is produced recombinantly, it often is substantially free of culture medium, specifically, where culture medium represents less than about 20%, less than about 10%, and often less than about 5% of the volume of the polypeptide preparation. Isolated or purified polypeptide preparations may be 0.01 milligrams or more or 0.1 milligrams or more, and often 1.0 milligrams or more and 10 milligrams or more in dry weight.

[0061] As used herein, the term "small molecule" refers to peptides, peptidomimetics (e.g., peptoids) , amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heterorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.

[0062] As used herein, the term "about", in the context of concentrations of components of the formulations, typically means +/- 5% of the stated value, more typically +/- 4% of the stated value, more typically +/- 3% of the stated value, more typically, +/- 2% of the stated value, even more typically +/- 1% of the stated value, and even more typically +/- .0.5% of the stated value.

[ 0063 ] Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises'' or "comprising", will be understood to imply the inclusion of a stated step or element or integer or group of steps or elements or integers, but not to the exclusion of any other step ro element or integer or group of elements or integers. Thus, in the context of this specification, the term "comprising" means "including peripherally, but not necessarily solely"..

[ 0064 ] The word "substantially" does not exclude "completely" e.g. a composition which is "substantially free" from Y may be completely free from Y. Where necessary, the word "substantially" may be omitted from the definition of the invention.

[ 0065 ] When describing the compounds, compositions, methods and processes of the invention, the following terms have the following meanings unless otherwise indicated. Additionally, as used herein, the singular forms "a," "an" and "the" include the corresponding plural forms unless the context of use clearly dictates otherwise.

[ 0066 ] Certain embodiments may also be described broadly and generically herein. Each of the narrower species and subgeneric groupings falling within the generic disclosure also form part of the disclosure. This includes the generic description of the embodiments with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein. [0067] Throughout this disclosure, certain embodiments may be disclosed in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the disclosed ranges. Accordingly, the description of a range should be considered to have specifically disclosed all the possible sub-ranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed sub-ranges such as from 1 to 3, from 1 to 4 , from 1 to 5 , from 2 to 4 , from 2 to 6 , from 3 to 6 etc . , as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range .

[0068] Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations or any two or more of said steps or features.

DETAILED DISCLOSURE OF EMBODIMENTS

[0069] Exemplary, non-limiting embodiments of the invention will now be disclosed.

[0070] In a first aspect, there is a provided a method for detecting an interaction between a protein and a ligand, comprising:

(i) binding at least one fluorescent molecular rotor to - said ligand or protein; and (ii) detecting a change in fluorescence emitted by said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said ligand or protein, thereby detecting an interaction between the ligand and the protein, wherein the fluorescent molecular rotor comprises:

a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker,

with the proviso that the fluorescent molecular rotor is not a compound selected " from the following table:

between a protein and a ligand according to the first aspect, the fluorescent molecular rotor (s) may exhibit a change in fluorescence when the ligand binds to the protein.

[0072] There is also provided a composition according to a fourth aspect, comprising a fluorescent molecular rotor, wherein the fluorescent molecular rotor comprises:

a rotating σ-bond;

an electron-donating moiety; an electron- accepting moiety; and

a n- conjugated linker

with the proviso that the fluorescent molecular rotor is not a compound selected from the following table:

[ 0073 ] The fluorescent molecular rotor (s) of the first or fourth aspects may be bound to a ligand or a protein via a linking moiety. [0074] In one embodiment of the first or fourth aspects, the fluorescent molecular motor (s) may be bound via a linking moiety to the ligand.

[0075] In another embodiment of the first or fourth aspects, the fluorescent molecular motor (s) may be bound via a linking moiety to the protein.

[0076] The linking moiety of the first or fourth aspects may comprise 1 to 20 main chai atoms, 1 to 15 main chain atoms, 1 to 10 main chain atoms, or 1 to 5 main chain atoms.

[0077] The linking moiety of the first or fourth aspects may be a single bond or optionally substituted heteroalkyl . Said heteroalkyl may be optionally substituted heteroalkyl selected from ethers, thioethers, amines, hydroxymethyl , 3 -hydroxypropyl , 1,2- dihydroxyethyl, 2 -methoxyethyl , 2 -aminoethyl , 2- dimethylaminoethyl , alkoxyalkylamines , alkoxyalkylamides, aminoheteroalkyl substituted with oxo or aminoalkyls. The linking moiety may be:

The optionally substituted heteroalkyl may be optionally interrupted by one or more optionally substituted cyclic groups. Said cyclic groups may be aryl, heteroaryl, cycloalkyl, cycloalkenyl or heterocycle. Cyclic groups may be selected from phenyl, biphenyl, naphthyl, phenanthrenyl , cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, 1-decalinyl, norbornyl, adamantyl, cyclopentenyl , cyclohexenyl , cyclohepta- 1 , 3 -dienyl , norbornylenyl, piperidyl, pyrrolidinyl , piperazinyl, morpholinyl, thiomorpholinyl , thiazolidinyl , 1 , 4 -dioxanyl , tetrahydrofuranyl , tetrahydrothiophenyl , lactam or lactone. Cyclic groups may be optionally substituted.

[0078] In one embodiment of the first or fourth aspects, the change in fluorescence may occur when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the ligand or perturbs the fluorescent molecular rotor (s).

[0079] In another embodiment of the first or fourth aspects, the change in fluorescence may occur when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the protein or perturbs the fluorescent molecular rotor (s).

[0080] The ligand of the first or fourth aspects may be a molecule that binds to protein. Accordingly, a ligand may be a small molecule, nucleic acid such as RNA or DNA,. a polynucleotide or peptide. "Peptide" may refer to a peptide, dipeptide or polypeptide. A ligand variant peptide may be substantially identical to a native peptide sequence. The amino acid sequence of the variant at times is 50%, 55%, 60%, 65%, 70%, 75%, .80%, 85%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more identical to a native peptide sequence. In one embodiment, the ligand may be a binding peptide derived from p53 protein. In another embodiment, the. ligand may be a peptide selected from JP1 : MPRFMDYWEGLSK or JP2 : MPRFMDYWEGLNK .

[0081] In another embodiment of the first or fourth aspects, the ligand may be DNA. [ 0082 ] In yet another embodiment of the first or fourth aspects, the ligand may be a small molecule. The small molecule may be peptidomimetics (e.g.,. peptoids) , amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heterorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds. The small molecule may be biotin.

[ 0083 ] The protein of the first or fourth aspects may contain a region that interacts with a ligand. The protein may be a DNA transacting protein that a DNA molecule having a particular sequence binds to. The DNA transacting protein may be a transcription factor, polymerase, telomerase or recombinase. The protein may be wild-type or mutant p53.

[0084 ] In another embodiment of the first or fourth aspects, the protein may be wild-type or mutant MDM2. The wild-type or mutant MDM2 may bind to a binding peptide derived from p53 protein. The interaction between DM2 and the binding peptide may be mapped to the N-terminal domain of MD 2 (residues 1-100) and the N-terminal domain of p53

(residues 18-26) .

[ 0085] In yet another embodiment of the first or fourth aspects, the protein may be streptavidin.

[ 0086 ] There is further provided a screening assay according to a seventh aspect for identifying an interaction between protein and ligand, the assay- comprising :

(i) providing a protein to be tested for binding affinity with a candidate ligand;

(ii) providing candidate ligands bound to at least one fluorescent molecular rotor;

(iii) testing the candidate ligands for binding affinity by contacting said protein with, said candidate ligands bound to at least one fluorescent molecular rotor; and

(iv) identifying relevant interactions by measuring 1 a change in fluorescence emitted by the fluorescent molequiar rotor (s) ,

wherein the fluorescent molecular rotor (s) comprises: a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker,

with the proviso that the fluorescent molecular rotor (s) is not a compound selected the following table :

eleventh aspect for carrying out a method for detecting an interaction between a protein and a ligand. The kit may comprise ligand, protein, fluorescent molecular rotor (s) and a means to detect a change in fluorescence.

[0088] There is further provided a method for detecting an interaction between a protein and a ligand according to a second aspect, comprising:

(i) binding at least one fluorescent molecular rotor to said ligand or protein; and (ii) detecting a change in fluorescence emitted by said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said ligand or protein, thereby detecting an interaction between the ligand and the protein,

wherein the fluorescent molecular rotor is selected

consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl , optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl.

[0089] In the method for detecting an interaction between a protein and a ligand according to a second aspect, the fluorescent molecular rotor (s) may exhibit a change in fluorescence when the ligand binds to the protein.

[0090] There is also provided a composition according to a fifth aspect comprising a fluorescent molecular rotor, wherein the fluorescent molecular rotor is selected

Rl, R2> R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl.

[0091] The fluorescent molecular rotor (s) of the second or fifth aspects may be bound to a ligand or a protein via a linking moiety.

[0092] In one embodiment of the second or fifth aspects, the fluorescent molecular motor(s) may be bound via a linking moiety to the ligand.

[0093]- In another embodiment of the second or fifth aspects, the fluorescent molecular motor (s) may be bound via a linking moiety to the protein.

[0094] The linking moiety of the second or fifth aspects may comprise 1 to 20 main chain atoms, 1 to 15 main chain atoms, 1 to 10 main chain atoms, or 1 to 5 main chain atoms .

[0095] The linking moiety of the second or fifth aspects may be a single bond or optionally substituted heteroalkyl. Said heteroalkyl may be optionally substituted heteroalkyl selected from ethers, thioethers, amines, hydroxymethyl , 3 -hydroxy ropyl , 1,2- dihydroxyethy1 , 2 -methoxyethy1 , 2 -aminoethy1 , 2 - dimethylaminoethyl , alkoxyalkylamines , alkoxyalkylamides , aminoheteroalkyl substituted with oxo or aminoalkyls. The linking moiety may be:

The optionally substituted heteroalkyl may be optionally interrupted by one or more optionally substituted cyclic groups. Said cyclic groups may be aryl, heteroaryl, cycloalkyl, cycloalkenyl or heterocycle. Cyclic groups may be selected from phenyl, biphenyl, naphthyl, phenanthrenyl , cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, 1-decalinyl, norbornyl, adamantyl, cyclopentenyl , cyclohexenyl , cyclohepta-1 , 3 -dienyl , norbornylenyl , piperidyl, pyrrolidinyl , piperazinyl, morpholinyl, thiomorpholinyl , thiazolidinyl , 1 , 4 -dioxanyl , tetrahydrofuranyl, tetrahydrothiophenyl, lactam or lactone. Cyclic groups may be optionally substituted. [0096] In one embodiment of the second or fifth aspects, the change in fluorescence may occur when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the ligand or perturbs the fluorescent molecular rotor (s) .

[0097] - In another embodiment of the second or fifth aspects, the change in fluorescence may occur when the binding of protein to ligand displaces the fluorescent molecular rotor (s) from the protein or perturbs the fluorescent molecular rotor (s) .

[0098] The ligand of the second or fifth aspects may be a molecule that binds to protein. Accordingly, a ligand may be a small molecule,, nucleic acid such as RNA or DNA, a polynucleoside or peptide. "Peptide" may refer to a peptide, dipeptide or polypeptide. A ligand variant peptide may be substantially identical to a native peptide sequence. The amino acid sequence of the variant at times is 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more identical to a native peptide sequence. In one embodiment, the ligand may be a binding peptide derived from p53 protein. In another embodiment, the ' ligand may be a peptide selected from JP1 : MPRFMDYWEGLSK or JP2 : MPRFMDYWEGLNK .

[0099] In another embodiment of the second or fifth aspects, the ligand may be DNA.

[0100] In yet another embodiment of the second or fifth aspects, the ligand may be a small molecule. The small molecule may be peptidomimetics (e.g., peptoids) , amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heterorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds. The small molecule may be biotin.

[0101] The protein of the second or fifth aspects may contain a region that interacts with a ligand. The protein may be a DNA transacting protein that a DNA molecule having a particular sequence binds to. The DNA transacting protein may be a transcription factor, polymerase, telomerase or recombinase. The protein may be wild-type or mutant p53.

[0102] In another embodiment of the second or fifth aspects, the protein may be wild-type or mutant MDM2. The wild-type or mutant DM2 may bind to a binding peptide .derived from p53 protein. The interaction between MDM2 and the binding peptide may be mapped to the N- terminal domain of MDM2 (residues 1-100) and the N-terminal domain of p53 (residues 18-26).

[0103] In yet another embodiment of the second or fifth aspects, the protein may be streptavidin.

[0104] There is further provided a screening assay according to an eight aspect for identifying an interaction between a protein and ligand, the assay comprising:

a) providing a protein to be tested for binding affinity with a candidate ligand;

b) providing candidate ligands bound to at least one fluorescent molecular rotor;

c) testing the candidate ligands for binding affinity by contacting said protein with said candidate ligands bound to at least one fluorescent molecular rotor; and d) identifying a relevant interaction by measuring a change in fluorescence emitted by the fluorescent molecular rotor (s),

wherein the fluorescent molecular rotor is selected from

wherein at least one of Rl, R2 or R3 is y ; and

Rl, R2 , R3 and R4 are independently chosen from the group consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl .

[0105] There is also provided a kit according to an twelfth aspect for carrying out the disclosed method or the disclosed screening assay comprising the ligand, protein and fluorescent molecular rotor (s) , and a means to detect a change in fluorescence.

[0106] There is further provided a method aceording to a third aspect for detecting an interaction between (a) DNA and protein, (b) MDM2 protein and a peptide, or (c) . biotin and streptavidin, the method comprising: (i) binding at least one fluorescent molecular rotor to DNA or protein of (a), peptide or MDM2 protein of (b) , or biotin or streptavidin of (c) ; and

(ii) detecting a change in fluorescence emitted by- said fluorescent molecular rotor after contact of the bound fluorescent molecular rotor with the other of said DNA or protein of (a) , peptide or MDM2 protein of (b) , or biotin and streptavidin of (c) , thereby detecting an interaction between DNA and protein- of (a), peptide and MDM2 protein of (b) , or biotin or streptavidin of (c) ;

wherein the fluorescent molecular rotor is selected from the group consisting of:

a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker.

[0107] In the method for detecting an interaction between (a) DNA and protein (b) DM2 protein and a peptide, or (c) biotin and streptavidin, according to a third aspect, the fluorescent molecular rotor (s) may exhibit a change in fluorescence when the DNA of (a), peptide of (b) , or biotin of (c) , binds to the protein of (a) , MDM2 protein of (b) or streptavidin of (c) , respectively.

[0108] There is also provided a composition comprising:

a) fluorescent molecular rotor, DNA and protein;

b) fluorescent molecular rotor, peptide and

MDM2 protein, or

c) fluorescent molecular rotor, biotin and streptavidin, wherein said fluorescent molecular rotor is bound to one of DNA or protein in (a) , one of peptide or MDM2 protein in (b) , or one of biotin or streptavidin in (c) ,

and wherein the fluorescent molecular rotor (s) comprises: a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker.

[0109] The fluorescent molecular rotor (s) of the third or sixth aspects may be bound to DNA or protein of (a), peptide or MDM2 protein of (b) , or biotin or streptavidin of (c) , via a linking moiety.

[0110] In one embodiment of the third or sixth aspects, the fluorescent molecular motor (s) may be bound via a linking moiety to the DNA of (a) , peptide of (b) , or biotin of (c) .

[0111] In another embodiment of the third or sixth aspects, the fluorescent molecular motor (s) may be bound via a linking moiety to the protein of (a) , MDM2 protein of (b) , or streptavidin of (c) .

[0112] The linking moiety of the third or sixth aspects may comprise 1 to 20 main chain atoms, 1 to 15 main chain atoms, 1 to 10 main chain atoms, or 1 to 5 main chain atoms .

[0113] The linking of the third or sixth aspects may be a single bond or optionally substituted heteroalkyl . Said heteroalkyl may be optionally substituted heteroalkyl selected from ethers, thioethers, amines, hydroxymethyl , 3-hydroxypropyl, 1 , 2 -dihydroxyethyl , 2 -methoxyethyl , 2- aminoethyl,. 2-dimethylaminoethyl , alkoxyalkylamines , alkoxyalkylamides, aminoheteroalkyl substituted with oxo or aminoalkyls. The linking moiety may be:

The optionally substituted heteroalkyl may be optionally interrupted by one or more optionally substituted cyclic groups. Said cyclic groups may be aryl, heteroaryl, cycloalkyl, cycloalkenyl or heterocycle. Cyclic groups may be selected from phenyl, biphenyl, naphthyl, phenanthrenyl , cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, 1-decalinyl, norbornyl, adamantyl , cyclopentenyl, cyclohexenyl cyclohepta-1, 3-dienyl, norbornylenyl , piperidyl, pyrrolidinyl , piperazinyl, morpholinyl, thiomorpholinyl , thiazolidinyl, 1, 4-dioxanyl, tetrahydrofuranyl , tetrahydrothiophenyl , lactam or lactone. Cyclic groups may be optionally substituted.

[0114] In one embodiment of the third or sixth aspects, the change in fluorescence may occur when the binding of protein to DNA of (a) , MDM2 protein to peptide of (b) , or streptavidin to biotin of (c) , displaces the fluorescent molecular rotor (s) from the DNA or (a), peptide of . (b) , or biotin of (c) , or perturbs the fluorescent molecular rotor (s) .

[0115] In another embodiment of the third or sixth aspects, the change in fluorescence may occur when the binding of protein to DNA of (a) , MDM2 protein to peptide of (b) , or biotin to streptavidin, displaces the fluorescent molecular rotor(s) from the protein of (a), MDM2 protein of (b) , or streptavidin of (c) , or perturbs the fluorescent molecular rotor (s) .

[0116] In one embodiment of the third or sixth aspects, the peptide of (b) may be a binding peptide derived from p53 protein. In another embodiment, the ligand may be a peptide selected from JP1: MPRFMDYWEGLSK or JP2 : MPRFMDYWEGLNK .

[0117] The protein of (a) of the third or sixth aspects may contain a region that interacts with DNA. The protein may be a DNA transacting protein that a DNA molecule having a particular sequence binds to. The DNA transacting protein may be a transcription factor, polymerase, telomerase or recombinase. The protein may be p53 protein. The protein may be wild-type or mutant p53 protein.

[0118] In another embodiment of the third or sixth aspects, the protein of (b) may be MDM2 protein. The protein may be wild-type or mutant MDM2. The MDM2 protein may bind to a binding peptide derived from p53 protein. The interaction between MDM2 and the binding peptide may be mapped to the N- terminal domain of MDM2 (residues 1- 100) and the N-terminal domain of p53 (residues 18-26) .

[0119] There is further provided a screening assay according to a ninth aspect for identifying an interaction between DNA and protein, or peptide and MDM2 , the assay comprising:

a) providing a protein to be tested for binding affinity with a candidate DNA or peptide;

b) providing DNA or peptide bound to at least one fluorescent molecular rotor;

c) testing the candidate DNA or peptide for binding affinity by contacting said protein with said candidate ligands bound to at least one fluorescent molecular rotor; and

d) identifying a relevant interaction by measuring a change in fluorescence emitted by the fluorescent molecular rotor (s),

wherein the fluorescent molecular rotor (s) comprises:

a rotating σ-bond;

an electron-donating moiety;

an electron-accepting moiety; and

a n-conjugated linker.

[0120] There is also provided a screening assay according to a tenth aspect for identifying a candidate compound, comprising:

(a) providing a candidate compound to be tested for

binding affinity with protein;

(b) providing a complex comprising a probe bound to

protein, wherein said probe comprises at least one fluorescent molecular rotor bound to peptide;

(c) testing the candidate compound for binding affinity with said protein by contacting said candidate compound with said complex; and

(d) identifying a relevant candidate compound by measuring the change in fluorescence emitted when said complex is disrupted,

wherein the fluorescent molecular rotor (s) comprises:

a rotating σ-bond;

an electron-donating moiety- an electron-accepting moiety; and

a n-conjugated linker.

[0121] In one embodiment, the change in fluorescence occurs when the probe is displaced from the complex.

[0122] In a further embodiment, the probe comprises peptide selected from the group consisting of JPl:

[0124] There is also provided a kit according to a twelfth aspect for carrying out the disclosed method according to a third aspect or the disclosed screening assay according to the ninth or tenth aspects, comprising the ligand, protein and fluorescent molecular rotor(s), and a means to detect a change in fluorescence.

[0125] There is further provided a chemical compound selected from the group consisting of:

consisting of: optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl;

R5 is a OH or a linking moiety selected from the group consisting of a single bond; or optionally substituted heteroalkyl, wherein the main chain atoms of said optionally substituted heteroalkyl are optionally interrupted by one or more optionally substituted cyclic groups; and

R6 is absent or a ligand,

with the proviso that R5 is not OH in formula (v) .

[0126] In a compound of formulas (i) or (ii) , R5 may be

OH or a linking moiety. R5 may be a linking moiety selected from optionally substituted heteroalkyl. Said heteroalkyl may be optionally substituted heteroalkyl selected from ethers, thioethers, amines, hydroxymethyl , 3-hydroxypropyl, 1, 2-dihydroxyethyl , 2-methoxyethyl, 2- aminoethyl, 2-dimethylaminoethyl, alkoxyalkylamines , alkoxyalkylamides, aminoheteroalkyl substituted with oxo or aminoalkyls. The optionally substituted aminoalkyl may be:

[0127] - In a compound of formulas (i) or (ii) , R6 may be H or absent. When R5 is OH, R6 may be absent. When R5 is a linking moiety, R6 may be a ligand.

[0128] A compound of formula (i) may be selected from: ted from:

[ 0130 ] In the compound of formula (iv) , R4 may be optionally substituted alkyl, optionally substituted alkenyl , optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl . R4 may be alkyl selected from Ci - C 6 alkyl, such as methyl, ethyl, propyl, butyl, pentyl or hexyl . R4 may be methyl .

[ 0131] In the compound of formula (iv) , Rl may be optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl.. Rl may be substituted alkenyl selected from substituted C 2- C 6 alkenyl, such as substituted ethenyl, substituted propenyl , substituted butenyl, substituted pentenyl or substituted hexenyl . Said substituted alkenyl may be alkenyl substituted with optionally substituted heteroaryl selected from optionally substituted pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, pyridone (including N- substituted pyridones) , isoxazolyl, isothiazolyl , oxazolyl, thiazolyl, pyrazolyl, ' furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1,2,4- thiadiazolyl , pyrazinyl, pyridazinylsubstituted quinoxalinyl, phthalazinyl , oxindolyl, imidazo [1,2- a]pyridinyl, imidazo [2 , 1-b] thiazolyl , benzofurazanyl , indolyl, azaindolyl, benzimidazolyl , benzothienyl, quinolinyl, imidazolyl , thienopyridyl , quinazolinyl, thienopyrimidyl , pyrrolopyridyl , imidazopyridyl , isoquinolinyl, benzoazaindolyl , 1 , 2 , 4 -triazinyl or

benzothiazolyl . Rl may be

[0132] In the compound of formula (iv) , R2 may be optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl . R2 may be substituted alkenyl selected from substituted C 2 -C 6 alkenyl, such as substituted ethenyl, substituted propenyl, substituted butenyl, substituted pentenyl or substituted hexenyl . Said substituted alkenyl may be alkenyl substituted with optionally substituted heteroaryl selected from optionally substituted pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, pyridone (including N-substituted pyridones) , isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1,2,4- thiadiazblyl , pyrazinyl, pyridazinylsubstituted quinoxalinyl, phthalazinyl, oxindolyl, imidazo [1,2 - a]pyridinyl, imidazo [2 , 1-b] thiazolyl , benzofurazanyl , indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl, pyrrolopyridyl, imidazopyridyl, soquinolinyl, benzoazaindolyl, 1, 2 , 4-triazinyl

benzothiazolyl . R2 may be

[0133] In the compound of formula (iv) , R3 may be optionally substituted alkyl , optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl or optionally substituted heterocyclyl . R3 may be phenyl. R3 may be substituted phenyl. Said substituted phenyl may be phenyl substituted with substituted alkenyl selected from substituted C 2 -C 6 alkenyl, such as substituted ethenyl, substituted propenyl, substituted butenyl, substituted pentenyl or substituted hexenyl . Said substituted alkenyl may be alkenyl substituted with optionally substituted heteroaryl selected from optionally substituted pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, pyridone (including N-substituted pyridones) , isoxazolyl, isothiazolyl , oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1 , 2 , 4 -thiadiazolyl , pyrazinyl, pyridazinylsubstituted quinoxalinyl , phthalazinyl , oxindolyl, imidazo [1 , 2 -a] pyridinyl , imidazo [2 , 1-b] thiazolyl , benzofurazanyl, indolyl, azaindolyl, benzimidazolyl , benzothienyl , quinolinyl, imidazolyl, thienopyridyl , quinazolinyl , thienopyrimidyl , pyrrolopyridyl, imidazopyridyl , isoquinolinyl , benzoazaindolyl, 1, 2 , 4-triazinyl or benzothiazolyl. R3 may

[0134] A compound of formula (iv) may be:

[0135] In a compound of formula (v) , R5 may be a linking moiety. R5 may be a linking moiety selected from optionally substituted heteroalkyl. Said heteroalkyl may be optionally substituted heteroalkyl selected from ethers, thioethers, amines, hydroxymethyl , 3- hydroxypropyl , 1, 2-dihydroxyethyl, 2-methoxyethyl , 2- aminoethyl, 2 -dimethylaminoethyl , alkoxyalkylamines , alkoxyalkylamides , aminoheteroalkyl substituted with oxo or aminoalkyls. The optionally substituted aminoalkyl may be:

[0136] In a compound of formula (v) , R6 may absent or a ligand. The ligand may be a molecule that binds to protein. Accordingly, a ligand may be a small molecule, nucleic acid such as RNA or DNA, a polynucleoside or peptide. "Peptide" may refer to a peptide, dipeptide or polypeptide. A ligand variant peptide may be substantially identical to a native peptide sequence. The amino acid sequence of the variant at times is 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more identical to a native peptide sequence. In one embodiment, the ligand may be a binding peptide derived from p53 protein. In another embodiment, the ligand may be a peptide selected from JP1: MPRFMDYWEGLSK or JP2 : MPRFMDYWEGLNK . The ligand may be DNA. The ligand may be a small molecule. The small molecule may be peptidomimetics (e.g., peptoids) , amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heterorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight -less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1, 000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds. The ligand may be biotin.

[0137] A compound of formula (v) may be:

fourteenth aspects, fluorescent molecular rotor (s) may be further modified to tune their electronic properties. An amino electron donor group may be replaced with a weaker electron donor results in a blue shift in both the excitation and emission maxima. The conjugation length of the linker moiety may be lengthened, resulting in longer the emission wavelength and a larger Stokes shift. The replacement of a nitrile electron acceptor moiety with methyl ester or phenyl sulfonyl will result in an increase in the emission quantum yield due to the stabilization of the excited state brought about by the change in dipole moment .

BRIEF DESCRIPTION OF DRAWINGS

[0139] The accompanying drawings illustrate a disclosed embodiment and serves to explain the principles of the disclosed embodiment. It is to be understood, however, that the drawings are designed for purposes of illustration only, and not as a definition of the limits of the invention.

[0140] Fig. la shows a julodine-based fluorescent molecular rotor, 9- (2-carboxy-2-cyanovinyl) julolidine (CCVJ) , corresponding to a disclosed formula (v) , .

[0141] Fig. lb shows an acridine-based fluorescent molecular rotor corresponding to a disclosed formula (i) .

[0142] Fig. lc shows a pyrene-based fluorescent molecular rotor corresponding to a disclosed formula (ii) .

[0143] Fig. Id shows a thiazole-based fluorescent molecular rotor corresponding to a disclosed formula (iii) ·

[0144] Fig. le shows a carbazole-based (2-arm) fluorescent molecular rotor corresponding to a disclosed formula (iv) .

[0145] Fig. If shows a carbazole-based (3-arm) fluorescent molecular rotor corresponding to a disclosed formula (iv) . [0146] Fig. 2 shows a schematic diagram for the synthesis of fluorescent molecular rotors conjugated with biotin.

[0147] Figs. 3a to 3c show that fluorescent molecular rotors of the present invention display an increase in fluorescence upon increase in viscosity. % indicate % of glycerol in ethylene glycol. Viscosity of glycerol > ethylene glycol. Experiments were performed with rotors at a concentration of 100 μ.Μ.

[0148] Fig. 3a depicts a viscosity experiment with a julolidine-based molecular rotor.

[0149] Fig. 3b depicts a viscosity experiment with a pyrene-based fluorescent molecular rotor.

[0150] Fig. 3c depicts a viscosity experiment with acridine-based, thiazole orange-based and carbazole-based fluorescent molecular rotors.

[0151] Figs. 4a and 4b show that fluorescent molecular rotors of the present invention display an increase in fluorescence upon binding to Streptavidin protein.

[0152] Fig. 4a depicts the emission spectra of a CCVJ molecular rotor bound to biotin with Streptavidin. Fluorescence increase upon addition of streptavidin to biotin conjugated with CCVJ. 40 μΜ of rotor-biotin conjugate was incubated for 15 min with 50 μς of streptavidin. Fluorescence emission spectrum was measured using an excitation wavelength (λ εχ ) of 433nm.

[0153] Fig. 4b depicts the emission spectra of a pyrene-based fluorescent molecular rotor bound to biotin with Streptavidin.

[0154] Fig. 5 shows a fluorescence displacement assay using a fluorescent molecular rotor of formula (ii) upon binding of p53 protein to DNA. A decrease in fluorescence signal can be observed upon protein binding. DNA - 0.44 μΜ (0.11 x of rotor) ; p53 - 6.17 μΜ (14x of DNA) ; Fluorescent molecular rotor - 4 μΜ.

[0155] Fig. 6 shows the emission and excitation spectrums of CCVJ-Biotin with Streptavidin, DNA and both Streptavidin and DNA.

[0156] Fig. 7 shows the emission spectras of selected rotors with p53 binding sequence duplex DNA ( a) rotor concentration constant at 8uM with varying DNA ratios, b- d) DNA constant at 4uM, 0.04uM, 0. luM for b, c and d respectively with varying rotor concentration.)

[0157] Fig. 8 shows the emission spectras of acridine- based rotor with p53 and its binding sequence duplex DNA.

[0158] Fig. 9 shows the emission and excitation spectras of thiazole-based rotor with p53 and its binding sequence duplex DNA.

[0159] Fig. 10 shows the emission and excitation spectras of Carbazole -based (2-arm) rotor with p53 and its binding sequence duplex DNA.

[0160] Fig. 11 shows that nutlin dependent inhibition of binding between MDM2 (500 nM) and JP1 (250 nM) results in a concentration dependent decrease in fluorescence activity. Error shows S.D. +/- triplicate readings from duplicate binding reactions. Black and red hashed lines denote maximum fluorescence and background fluorescence from rotor-peptide conjugate, respectively.

[0161] Fig. 12 shows the fluorescence of Sybr green rotor, CCVJ rotor and pyrene -based rotor. IOOUM of Sybr green, Pyrene or CCVJ rotors were each added to either 5ug plasmid DNA, 5ug DNA with 500mM NaOH, or PBS buffer only. Resulting fluorescence for each reaction mixture were then compared across the respective filters (Sybr 497/520, Pyrene 376/530, Julolidine 433/505) . A weak signal was observed for julolidine and was dropped for further experiments .

[0162] Fig. 13 shows the time course measurement of lOuM (top) or lOOuM (bottom) of a pyrene-based rotor with 5ug plasmid DNA under various conditions, (A) DNA only (B) DNA + 40m NaOH (C) DNA + 120mM (D) DNA + 200mM NaOH (E)- rotor in buffer only (black trace) .

[0163] Fig. 14 shows the fluorescence of acrydine- based rotor with DNA and with or without NaOH. Measurements at 480/520 using 50uM Acrydine with increasing concentration of a 450bp DNA fragment (PetF and R) . Red bars show fluorescence after addition of NaOH to reaction mix.

[0164] Fig. 15 shows a fluorescent molecular rotor displacement assay. Reference readings for reaction mixes consisting of 50 uM Acrydine with 150nM of either control or response element DNA was first taken in the absence of p53 protein. p53 protein was then added at varying concentrations (0, 200 or 500 nM) and incubated at r.t. for 60 minutes before a second measurement was taken. Data is presented as percentage change in fluorescence after the addition of p53 protein (Grey and blue bars) normalized to respective reference measurements (100%, Black bars) . Inset shows relative sizes of control- and 5xRE-DNA at 125 and 130 bp, respectively. Error bar shows S.D. of_ 2 separate binding reactions. Red hashed-line indicates reference signal before p53 addition at 100%. 30 uL reaction sample contains 5uL DNA or buffer blank (75ng/uL in lOmM Tris pH 8.0), 4uL of p53 protein or buffer blank (23uM in lOOmM ' Tris pH8.0, 7mM DTT, 20m NaCl) in p53 binding buffer (25mM phosphate pH7.2 , 150mM KC1, 4mM DTT) . [0165] Fig. 16 shows a biotinylated-rotor DNA pulldown.

Commercial streptavidin coated plates were incubated with 50ul of each biotinylated rotor or free-biotin (20uM in PBS) for 20 mins at r.t., washed (2x PBST, 2xPBS) and blocked with 3%BSA/PBS for 30 mins before adding DNA (450bp PCR fragment in PBS) across a concentratio range (30, 300, or 3000 pg) for a further 20 rains at r.t. Wells are then washed again (3xPBST, 3xPBS) before DNA was eluted with 150mM NaOH. Eluate was then netralized (with 150mM HC1 and 50mM Tris-Cl, pH 7.4) and used for real-time PCR quantification of template DNA. Data shows fold- increase of rotor captured DNA over background binding in free-biotin control wells. Error depicts S.D. of 2 separate binding reactions.

[0166] Fig. 17 sschematically depicts p53 function in cells. p53 transcribes target proteins to suppress cancer/cellular transformation. (a) Diagram showing p53 peptide (shaded ribbon) binding to MDM3 N-terminal hyrdophobic pocket, (b) Ribbon diagram showing amino acid side-chain projections important for critical contacts in MDM2 binding pocket .

[0167] Fig. 18 depicts (top left) Nutlin binding to

MDM2 pocket. (top right) Western blot showing cellular levels of p53 target proteins (p21, MDM2) in response to Nutlin treatment.

[0168] Fig. 19 schematically shows the design rationale of model system. The box · I interaction domain between MDM2 and p53 is used and involves the N-terminal domains of both proteins. MD 2 N-term (18-125) is purified and used for binding with rotor conjugated to either JPl or JP2 peptide sequences.- Pis append table below if figure stays .

[0169] Fig. 20a shows that the fluorescence of JP1-R increases when bound specifically to recombinant Mdm2 (residues 18-125) (Top) Rotor-peptide conjugates, JPl-R and JP2-R were added individually to indicated concentrations of Mdm2. (Bot) Fluorescence from binding between Mdm2 and JPl-R was ablated with the addition of Nutlin (50 μΜ) . Black hashed-line shows the background fluorescence from 50 nM JPl-R only. Error shows average ± S.D. (n=2) . (C) JPl-R (50 nM) was added to increasing amounts of Mdm2 (residues 18-125), eiF4e, BSA and IgG. Black hashed-line shows background fluorescence from JPl-R only (50nM) . Error shows average ± S.D. (n=2)

[0170] Fig. 20b shows that the fluorescence of JPl-R increases when bound specifically to recombinant Mdm2 (residues 18-125) JPl-R (50 nM) was added to increasing amounts of Mdm2 (residues 18-125) , eiF4e, BSA and IgG. Black hashed-line shows background fluorescence from JPl-R only (50nM) . Error shows average ± S.D. (n=2) .

[0171] Fig. 21 shows the non-linear fit and calculated apparent S of rotor-peptide conjugates to Mdm2. Fluorescence measurements were taken by titrating either JPl-R (top) or JP2-R (bottom), across a concentration range into solutions containing 100 nM of Mdm2 (18-125). Apparent ¾ was calculated using a 1:1 non- linear binding fit model described above. Calculated apparent ]¾ of Mdm2 to JPl-R or JP2-R, was 16.01+7.52 nM and 3365±640.6. nM, respectively.

[0172] Fig. 22 shows an increase in non-specific background fluorescence (JPl-R only) when 0.1% Tween-20 detergent (typical concentration used) was added to PBS binding buffer. However because Tween was needed to give a more consistent measurement, it was subsequently used at 0.005%. .7

[0173] Fig. 23 shows that JPl-R is sensitive to known inhibitors of Mdm2-p53 interaction, as shown in displacement assay using inhibitors. Four different inhibitors of p53-Mdm2: Nutlin-3b (K d ~1.5μΜ), Nutlin racemic ( d = 201.6±61 nM) , sMTide-02 (K d = 34.4±2 nM) and sMTide-02a (K d = 6.76+2 nM) , were added to reaction mixtures containing 200 nM of Mdm2 and 80 nM of JP1-R, at concentrations up to 800 nM. Values indicate average + S.D. (n=3) .

[0174] Fig. 24 shows that the JP1-R reporter is sensitive to several known inhibitors of p53-Mdm2 interaction. (A) Titration of known p53-Mdm2 inhibitors onto pre-bound Mdm2-JPl-R reactions (B) Calculated K d s using JP1-R of compound inhibitors correlated well with previous reports of ¾.

[0175] Fig. 25a shows a synthetic scheme for rotor- peptide conjugates.

[0176] Fig. 25b depicts the structure of CCVJ rotor conjugated with JP1 peptide (JP1-R) .

[0177] Fig. 25c depicts the structure of CCVJ rotor conjugated with JP2 peptide (JP2-R) .

[0178] Fig. 26a shows a fragment library screen and lead validation for p53-MDM2 inhibition.

[0179] Fig. 26b shows that ten out of fifteen hits were validated by fluorescence polarization assay, showing ligand-dependent (100 μΜ, 500 μΜ or 1 mM) displacement. Black bars depict control measurements of FAM- labeled 12.1 peptide, DMSO negative control and 1 μΜ Nutlin positive control. Inactive compound 4A1, used at same concentrations, shows negative displacement control. Error shows S.D. of triplicate measurements.

[0180] Fig. 26c shows that weaker inhibitor fragments were further assessed through their ability to displace in vitro translated full-length p53 protein bound to recombinant Mdm2- immobilised on cobalt beads. Western blot shows levels of p53 (upper panel) captured in the presence of indicated compounds (500uM) . Control lanes 1 and 2 show negative control (inactive 4A1 fragment) and positive (100 μΜ Nutlin) displacement events, respectively. Lower panel indicates input Mdm2 levels eluted off beads.

[0181] Fig. 26d shows the chemical structures of positive lead compounds.

[0182] Fig. 27 shows the in-silico model of rotor- peptide conjugates, (A) JP1-R and (B) JP2-R bound to DM2 pocket. Hydrogen bond interactions of W8 backbone with S12 backbone and side chain are shown in red-dashed lines. Rotor moiety depicted in green.

EXAMPLES

[0183] Non- limiting examples of the invention will be further described in greater detail by reference to specific Examples, which should not be construed as in any way limiting the scope of the invention.

Materials and Methods HPLC purificatio

All HPLC runs were carried out using an Agilent 1260 infinity and C18 semi-prep column. Solvent eluant systems are of water ( +0.065% TFA) and acetonitrile ( +0.05% TFA) , from 5%-65% in 35 mins . Fractions were then dried and dissolved in water/ACN (1:1). Concentration of samples was obtained through NanoDrop 2000C spectrophotometer absorbance .

Expression and purification of MDM2

Hexahistidine-MDM2 recombinant protein (residues 18-125) was purified. Briefly, cDNA encoding residues 18-125 of DM2 was cloned into pET19b (Novagen) , transformed into E.coli BL21 (DE3) and induced with ImM IPTG. Bacterial cells were then disrupted and first purified using a Ni- nitrilotriacetic acid (NTA) column (eluted with a 1M imidazole gradient) , followed by cation-exchange chromatography (eluted using a 1M NaCl gradient) .

Determination of dissociation constant

The dissociation constants for rotor-peptide conjugates binding to MDM2 (18-125) were determined by titrating JPl- R, or JP2-R, against 100 nM of recombinant MDM2 protein, and fitting experimental data (after subtracting background fluorescence of unbound rotor-peptide conjugates) to the following 1:1 binding model (equation l) 2 where [P] is the MDM2 protein concentration, [L R ] is the concentration of the reporter ligand (rotor-peptide conjugate) , Κ < ¾ is the dissociation constant. f is the fluorescence signal measured, f 0 is the fluorescence of free unbound rotor-peptide conjugate, f b is the fluorescence of bound JP-R/MDM2 complex. Equation 1 : f = f 0 +

The determined apparent dissociation constant of JP1-R binding to MDM2 (KdR = 16.01 ± 7.52) was later used to determine the apparent K d s, using competitive binding experiments, of several known MDM2-p53 inhibitor molecules (Racemic Nutlin, Nutlin-3b and sMTide-02) . Inhibitor molecules were titrated against a fixed concentration of JP1-R (80 nM) and MDM2 (200 nM) in triplicates and the resulting data points were fitted to equations 2-6 2, 3 where [L c ] and [L R ] denote concentrations of competitive ligand (inhibitor molecules) and reporter ligand (JP1-R) , respectively, and K d c is the dissociation constant of the competitive molecule.

Equation 2: f = f 0 + (f b - f Q ) X

Equation 3 : d K dR +K dc + [L c ] + [L R ]-[P] Equation 4: e (iL R ] - [P])K dR + ([L C ] - [P))K dc + K d Equation 5 : g -K dR K dc [P]

Equation 6 : Θ cos

Curve fitting and calculations for respective K d values were performed using the software Prism 5.03 (Graphpad) .

Fragment library screen with rotor-peptide probe, JP1-R

Unless otherwise stated, binding reactions involving rotor-peptide conjugates were all performed using black 96 -well polypropylene plates (Corning) , in a PBS reaction buffer solution containing 0.005% Tween-20 (v/v) . For reactions involving Zenobia fragment library compounds, 10% DMSO was added to increase solubility of compounds. Fluorescence activity was measured using the Envision Multilabel reader (Perkin Elmer) at 435/505 (ex/em) nm.

A small- fragment library (Zenobia Therapeutics) was sampled in our compound screen using JPl-R. The library consists of 352 fragment molecules with decorated-ring structures and an average molecular weight of 154.2 Da. The screen was performed by first aliquoting a pre-made mixture containing 80 nM JPl-R and.200 nM MDM2 (18-125) onto a 96-well plate, and allowing it to equilibrate to room temperature (15 min) before a first reference reading was measured. Next, 500 μ of each fragment compound was added into the JP1-R/MDM2 reaction mixture, and incubated for another 30 min before a second measurement was taken. The final result was interpreted as a percentage change of the second measurement from the first reference measurement, ' of which a decrease in fluorescence would indicate a positive hit (from displacing JP1-R off MDM2) . The displacement threshold was set, for this study, at 20% reduction from the reference fluorescence value.

Fluorescence polarization assay

Fluorescence polarization was performed as previously described, except in a reaction buffer containing PBS, 10% DMSO (v/v) , 0.005% Tween-20 (v/v) . Briefly, a mixture containing 50 nM of FAM-labeled 12.1 peptide (RFMDY EGLNK) and 250 nM of recombinant MDM2 was constituted before adding 500 μΜ of respective fragment library compound. The reactions were then incubated at room temperature for 30 min before measuring on the Envision plate reader (Perkin Elmer) .

Pull -down assay and western blotting

650 ng of MDM2 (18-125) recombinant protein was first incubated with either 500 μΜ of the respective fragment compound, 100 μΜ Nutlin, or DMSO (in a reaction buffer containing PBS, 10% DMSO (v/v), 0.005% Tween-20 (v/v), 0.2% BSA (w/v) for. 15 min at room temperature before adding to 5 μΐ, of IVT- translated p53 protein for another 30 min. p53 protein was synthesized using the PURESYSTEM (NEB) in-vitro transcription/translation kit as previously described, but reconstituted with 6X binding buffer (150 mM NaPi, pH 7.2, 600 mM NaCl, 24 mM DTT) upon completion of IVT reaction. To capture the MDM2/p53 complex, pre- blocked (2% BSA/PBS for 2 hours at room temperature) Dynabeads ® His -Tag Isolation & Pulldown (Life Technologies) beads were added to the compound/MDM2/IVTp53 mixture and rotated at room temperature for 15 min. After which, beads were washed 4x with wash buffer (PBS, 0.1% BSA (w/v) , 0.1% Tween-20 (v/v) , 5 mM imidazole), once with PBS (15s vortex at 1600 r.p.m. on MS2 minishaker, IKA) and eluted with 25 L LDS at 95°C for 7 min. Western blotting of the pull-down eluates were performed as previously described, and probed with either DO-1 (anti-p53) or 4B1 (anti-MDM2) primary antibodies.

Molecular modeling studies

a) Molecular dynamics simulations

The initial structure of MDM2 -peptide complex was taken from the crystal structure of high affinity peptide bound to MDM2 (PDB code 3EQS, resolved at 1.7A) . Peptides were modeled using Modeller 7 was used to model the peptides using PMI peptide as template. The structure used included residues 25-109 of the N-terminal domain of human MDM2 and residues 1-13 of the peptides JP1-R ^MPRFMDYWEGLSK 13 - rotor) and JP2-R ( 1 MPRFMDYWEGLNK 13 -rotor) . Rotor was modeled in the Xleap module in AMBER; RESP atomic charges for the peptides were derived using the RED server. To keep the ends capped and neutral, the N- and C- termini of MDM2 were capped with acetyl (ACE) and N-methyl ( ME) moieties respectively, while the N- and C-termini of the peptide were capped with acetyl (ACE) and amidate (NH 2 ) respectively. Molecular dynamics simulations were performed with the SANDER module of the AMBERll package employing the all-atom ff99SB force field. Each system was simulated for 100 ns at constant temperature (300 K) and pressure (1 atm) , and structures were stored every 10 ps . Simulations were carried out for the complexes of MDM2 with the rotor analogs JP1-R and JP2-R. DSSP was used to calculate the secondary structures of the peptides . The simulation protocol was the same as reported earlier. b) Replica Exchange Molecular Dynamics simulations

We used Replica Exchange Molecular Dynamics (REMD) to investigate the stability of the helicity of the peptides . This REMD approach involves evolving a number of copies of the system in parallel at different temperatures and periodically exchanging the configurations between trajectories. This insures proper canonical sampling at all temperatures, with high-temperature simulations facilitating barrier crossings and low temperature simulations to explore local free energy minima. The systems were prepared and relaxed as described earlier. In each case, 24 replicas of the system were evolved in parallel for 20 ns at constant NVT, with temperatures evenly spaced between 300 and 400K in approximately 4-K intervals. After the first 100 ps, replica exchanges between each pair of nearest neighbor trajectories were attempted every 12 ps to equilibrate the system. The configurations were saved in 1-ps intervals over 20 ns of each simulation, providing an aggregate 480 ns of sampling for reach system with the exchange acceptance range of 36% to 45%.

Viscosity Experiment General Procedure

The rotors were dissolved in spectroscopy-grade DMSO to obtain a concentrated stock solution of lOOmM. The solution was vortexed to ensure complete dissolution.

For each rotor, 6uL of the lOOmM stock was dissolved in 1200uL of ethylene glycol in each 1.5 mL tube.

3 mL of glycerol was then heated in a boiling bath to reduce viscosity and improve pipetting.

In 5 separate tubes, add 200uL of stained ethylene glycol to 800uL of unstained ethylene glycol; 200uL of stained ethylene glycol, 600uL of unstained ethylene glycol to 200uL glycerol; 200uL of stained ethylene glycol, 400uL of unstained ethylene glycol to 400uL of glycerol; 200uL of stained ethylene glycol, 200uL of unstained ethylene glycol to 600uL glycerol; and 200uL of stained ethylene glycol to 800uL glycerol. The fluids will then have a glycerol content of 0%, 20%, 40%, 60%, 80% respectively.

The five tubes were then placed on an inverting mixer and allowed to mix for at least 2 hours while the temperature equilibrate to room temperature. Measurements were taken using 96-well Corning Flat-bottom Black plate and Tecan Infinite M-1000 Spectrophotometer.

Experiment with DNA/p53/ rotors. General procedure.

For the -first set with DNA only, IX PBS buffer and p53 6X binding buffer were first added to the wells. Subsequently, rotor was added. Lastly, DNA was added. The combined solutions were mixed in each well and allowed to incubate in the dark at room temperature for half an hour before data on fluorescence intensity was ' gathered.

For the second set with p53 only, IX PBS buffer and p53 6X binding buffer were first added to the wells. Subsequently, rotor was added. Lastly, p53 was added. The combined solutions were mixed in each well and allowed to incubate in the dark at room temperature for half an hour before data on fluorescence intensity was gathered.

For the third set with DNA and p53, IX PBS buffer and p53 5 6X binding buffer were first added to the wells.

Subsequently, rotor was added and DNA was added. The combined solutions were mixed in each well and allowed to incubate in the dark at room temperature for half an hour before p53 was added. The combined solutions were then 10 allowed to incubate in the dark at room temperature for another half an hour before data on fluorescence intensity was gathered.

6X binding buffer consists: 150mM sodium phosphate buffer, 15 600uM KC1, 24mM DTT.

Measurements were taken using Greiner 384 black flat- clear-bottom for 18uL mixtures, Corning 96 flat-black half -area for 80uL and lOOuL mixtures, and Tecan Infinite 20 M-1000 Spectrophotometer.

Table 1: Experimental data for Rotor/DNA/P53

Final p53 16.64 9.98 3.66 0.17 0.17 4.99 1.12 0.42 concentration

(uM) - 4.16X

of DNA

Total volume 18 100 18 80

(uL)

Table 2 : Experimental data for Rotor/DNA

Table 3: Experimental data for Rotor viscosit test

5 Modeling results

Table 4: Helical propensity of JPl-R and JP2-R probes in their unbound conformations

o, %

JPl-R Helicity JP2-R Helicity

M 0 M 0

. P 5. P ' 1

R , 26 "■ · ■■ R 20

44 F 45

M 51 M 52

D 54 D 59

Y 44 Y 49

W 49 50

E 42 E 44

G 43 G 35

L 34 L 22

S 12 N 5

K 0 K 0

Table 5: Components of binding free energy (in kcal/mol) of MD 2 with JPl-R and JP2-R peptides

MDM2- JPl-R MDM2 JP1 -R Delta

ELE -2910. .6 65. 2 -2400.8 64. .3 -355 .1 20. 8 -154.7

VDW -410. .6 16. 4 -304.9 14. .7 -11 .8 5. 5 -94.0

GAS -1015. .6 69. 3 -761.5 66. .9 -4 .0 23. 4 -250.2

GBSOL -1348. .9 60. 5 -1249.2 60. .4 -279 .7 20. ' 1 180.1

GBTOT -2364. .5 32. 6 -2010.7 29. .1 -283 .7 12. 0 -70.1

TSTOT 1244. .1 6. 5 1056.6 3. .8 228 .3 5. 2 -40.8

AGbind -29.3

. DM2- JP2-R MDM2 JP2 -R Delta

ELE . -2822. .7 68. 3 -2383.4 59. .7 -288 .0 30. 0 -151.3

VDW -409. .4 17. 3 -304.9 14. .9 -14 .9 6. 6 -89.6

GAS -933. .8 72. 9 -742.8 64. .3 51 .2 33. 1 -242.2

GBSOL -1356. .1 . 61. 6 -1265.3 53. .0 -266 .9 29. 6 176.2

GBTOT -2289. .9 31. 9 -2008.2 29. .1 -215 .7 12. 0 -66.0

TSTOT 1240. .5 5. 6 1058.3 5. .1 225 .8 6. 2 -43.5

AG binc j -22.5

Table 6: Residue wise energy contributions (in kcal/mol) of JPl-R peptides for their interactions with MDM2

Residue; TVDW TELE TGAS TGB TGBSUR TGBSOL TGBTOT M -0..8 -0.1 -0..9 0..6 -0..1 0..5 -0.4

P -0. .9 0.5 -0. .4 0. , 2 -0. .1 0 , .2 -0.2

R -1. .4 28.9 27. .5. -27. .9 -0. .1 -27. .9 -0.5

F -7. .1 -3.9 -10. .9 4 , .8 -0. .8 4 , .0 -6.9

M -3. .1 -1.8 -4. .8 2. .6 -0. .4 2. .1 -2.7

D -0. .3 -38.7 -39. .0 39. .2 0. .0 39. .2 0.3

Y -4. .0 -1.9 -5. .9 3. .7 -0. .4 3. .3 -2.6

W -6. .9 -4.3 -11. .2 5. .9 -0. .7 . 5. .2 -6.0

E -0. .6 -45.4 -46. .0 46. .4 -0. .1 46. .4 0.4

G -0. .4 -1.1 -1. .5 1. .6 0. .0 1. .6 0.1

L -4. .6 -3.8 -8. .3 4. .1 -0. .5 3. .6 -4.7

S -3. .0 -1.6 -4. .6 3. .8 -0. .3 3. .5 -1.0 '

K -2. .6 -1.0 -3. .6 1. .4 -0. .2 1. .2 -2.4 or -4. .2 -0.6 -6. .1 0. .9 -0. .5 0. .4 -5.7

Table 7: Residue wise energy contributions (in kcal/mol) of JP2-R peptides for their interactions with MDM2

:idue TVDW TELE TGAS TGB TGBSUR TGBSOL TGBTOT

M -0. .7 -0. .3 -1. .0 0. .9 -0. .1 0, .8 -0.2

P -0. .6 -0. .1 -0. .8 0 , .6 -0. .1 0 , .5 -0.3

R -1. .2 27. .5 26. .3 -26. .9 -0. .1 -27. .0 -0.7

F -6. .8 -3. .7 -10. .4 4 , .8 -0. .8 4. .0 -6.4

M -2. .9 -1. .6 -4. .5 2. .4 -0. .4 2. .0 -2.5

D -0. .2 -37. .1 -37. .3 37. .5 0. .0 37. .5 0.2

Y -3. .7 -3. .0 -6. .6 5. .0 -0. .4 4. .6 -2.1

W -6. .7 -4. .1 -10. .8 5. .7 -0. .7 4. .9 -5.8

E -0. .6 -44. .0 -44. .5 45. .0 0. .0 44. .9 0.4

G -0. .3 -1. .0 -1. .3 1. .5 0. .0 1. .5 0.2

L -4. .5 -1. .4 -5. .9 2. .9 -0. .5 2. .4 -3.5

N -3. .1 -3. .8 -6. , 9 6. .8 -0. .3 6. .5 -0.3

K -2. .7 -0. .8 -3. .5 1. .3 -0. .2 1. .0 -2.5

.or -2. .9 -0. .7 -4. ,8 1. .4 -0. .5 1. .8 ^3.0

Table 8: Calculated K d s using JPl-R of compound inhibitors correlated well with previous reports of K d (Fig. 24) .

Compound Previous reported K Apparent K d using JPi-R (nM) i Racemic N tlin 201.61 + 60.85 (ITC) 164.8 ± 29.43

sMTide-02 34.35 + 2.03 (FP) 13.01 + 4.29

Nutlin-3b N.A'. 2461 + 687.3

Table 9: Amino acid sequence and dissociation constants disclosed peptide variants

Peptide Ami oacid

ID " , sequence JP1 MPRFMDYWEGLSK 18.83 ± 5.03

JP2 MPRFMDYWEGLNK 239.81 + 53.79

# Without lysine residue at C-terminus

EXAMPLE la: SYNTHESIS OF ACRIDINE-BASED FLUORESCENT

OR

[0184] Acridine Orange Aldehyde (0.12 g, 0.42 mmol, 1 eq.) and cyanoacetic acid (0.053 g, 0.63 mmol, 1.5 eq.) was weighed into a 25mL round-bottom flask flushed with argon. Triethylamine (0.29 mL, 2.09 mmol) was then added to the reaction mixture after solvating in anhydrous DMF. The reaction mixture was heated to 55 °C overnight, then evaporated to dryness and purified via column chromatography to- yield orange solids (1.69 mg, 1%) . XH NMR (CDC1 3 , 400 MHz) δ 1.26 (s, 3H) , 3.05 (s, 3H) , 3.24 (s, 6H) , 7.06 (dd, 1H, .7=2.4, 9.3 Hz), 7.31 (s, 1H) , 7.47 (s, 1H) , 7.60 (d, 1H, J=9.0 Hz), 7.69 (d, 1H, J=9.4 Hz), 8.36 (s, 1H) . 13 C NMR (100 MHz, CDC1 3 ) δ 154.8, 154.6, 143.7, 142.8, 141.5, 130.4, 130.3 . , 117.8, 117.2, 115.2, 95.4, 93 ~ .8, 40.6, 30.4, 29.9. EXAMPLE lb: SYNTHESIS OF ACRIDINE ROTOR-BIOTIN

Acridine Orange aldehyde (0.0190 g, 0.065 mmol, 1.0 eq. ) and Biotin-CN (0.023 g, 0.065 mmol, 1.0 eq.) was weighed into a 25mL round-bottom flask flushed with argon. Triethylamine (0.065 mL, 0.47 mmol, 7.0 eq.) was then added to the reaction mixture after solvating in anhydrous THF. The reaction mixture was then heated to 55 °C overnight, then evaporated to dryness and purified via column chromatography to yield pale orange solids.

X H R (CDCI 3 , 400 MHz) δ 0.87 (m, 1H), 1.24 (m, 3H) , 1.54 (m, 2H) , 2.70 (m, 2H) , 2.91 (s, 6H) , 2.98 (s, 6H) , 3.02 (d, 2H, J " =5.0 Hz), 3.23 (d, 3H, J = 3.4 Hz) , 3.29 (m, 1H) , 4.26 (t, 1H, J = 6.8 Hz), 6.77 (d, 1H, J = 2.4 Hz), 7.01 (d, 1H, J = 8.3 Hz), 7.18 (d, 1H, J = 2.4 Hz), 7.34 (d, 1H, J = 8.6 Hz), 7.49 (d, 1H, J = 8.3 Hz), 8.06 (dd, 1H, J = 9.5, -1.4 Hz), 8.26 (d, 1H, J = 9.6 Hz). 13 C MR (100 MHz, CDCI 3 ) δ 171.8, 155.1, 152.3, 151.0, 139.4, 136.8, 134.5, 131.4, 130.8, 120.2, 117.5, 117.2, 115.4, 115.3, 114.9, 113.7, 101.9, 95.3, 77.4, 56.8, 46.0, 45.4, 40.6, 38.4, 36.7, 29.8, 27.9, 24.9, 20.4, 16.2. HRMS (TOF MS ES+) : calcd for CsaHagKI^S [M+K] + 668.2421, found 668.9434. EXAMPLE SYNTHESIS OF THIAZOLE-BASED FLUORESCENT

MOLECULAR ROTOR

[0185] Preparation of 3-methyl-2- (methylthio) benzo [d] thiazol-3-ium 4 -methylbenzenesulfonate .

2-methylthiobenzothiazole (5.00 g, 27.62 mmol, 1 eq.) was weighed into a 25mL round bottom flask under argon. Methyl p-toluenesulfonate (4.58 mL, 30.39 mmol, 1.1 eq.) was then added and the reaction mixture was allowed to stir at 130°C for 1 hour. Acetone was then added after cooling to 70°C until white precipitate appeared. The mixture was then refluxed for another 30 minutes before cooling to -room temperature. Precipitate was collected by filtration and dried to yield pale yellow solids (10.02 g, 99 %) .

X H MR (CH 3 OD, 400 MHz) δ 2.35 (s, 3H) , 3.12 (s, 3H) , 4.15 (s, 3H) , 7.19 (d, 2H, J=4.0Hz), 7.67 (d, 2H, J=8.0Hz), 7.73 (t, 1H, J-=8.0Hz), 7.85 (t, lH, J=8.0Hz), 8.07 (d, 1H,

J=8.0Hz), 8.22 (d, 1H, J " =8.0Hz; 13 C NMR (CH 3 OD, 100 MHz) δ

183.3, 144.2, 143.7, 141.6, 130.8, 130.0, 129.8, 128.6, 127.0, 124.7, 116.5, 36.9, 21.3, 18.5.

[0186] Preparation (3 -aminopropyl) methylquinolin-l-ium bromide. 3-bromopropylamine hydrobromide (6.06 g, 27.68 mmol, 1.46 eq.) was weighed into an argon-flushed 25mL round-bottom flask. Ethanol (5mL) was then added to dissolve. Upon addition of Lepidine (2.5 mL, 18.91 mmol, 1 eq.), the reaction mixture was heated to 40°C overnight. Pale pink precipitate (1.67 g, 32 %) formed was filtered, washed and dried.

X H NMR (D 2 0, 400 MHz) δ 2.55 (quin, 2H, J=8.0 Hz), 3.10 (s, 3H) , 3.29 (t, 2H, J=8.0 Hz), 5.16 (t, 2H, J=8.0 Hz), 7.98 (d, 1H, J=4.0 Hz), 8.11 (t, 1H, J=4.0 Hz), 8.32 (t, 1H, J=8.0 Hz), 8.46 (d, 1H, J=8.0 Hz), 8.60 (d, 1H, J=8.0 Hz) . 13 C NMR (100 MHz, D 2 0) δ 160.6, 147.3, 137.2, 135.6, 129.8, 127.3, 122.6, 118.2, 54.3, 36.5, 27.0 19.6.

[0187] Preparation of thiazole orange scaffold. 3- methyl-2- (methylthio) benzo [d] thiazol-3 -ium 4 - methylbenzenesulfonate (1.05 g, 2.86 mmol, 1 eq. ) and 1- (3-aminopropyl) -4-methylquinolin-l-ium bromide (0.8 g, 2.86 mmol, 1 eq.) was weighed into 25mL round-bottom flask under argon. 30mL of ethanol was added to dissolve. Triethylamine (0.8 mL) was then added and the reaction was stirred at room temperature for 1 hour. Red precipitate (0.16 g, 11 %) formed upon addition of ether was filtered, washed and dried. ¾ NMR (CH 3 OD, 400 MHz) δ 1.21 (t, 1H, J=8.0 Hz), 2.31 (td, 2H, J= Hz) , 3.00 (s, 3H) , 3.18 (m, 3H) , 3.88 (s, 3H), 6.70 (t, lH, J=8.0 Hz)., 6.74 (s, 1H) , 6.77 (d, 1H, .7=8.0 Hz), 6.90 (td, 1H, J= 4.0, 8.0 Hz), 7.14 (d, 1H, J= 8.0 Hz), 7.23 (dd, 1H, J=4.0, 8.0 Hz), 7.32 (t, 1H, J=8.0 Hz), 7.50-7.71 (m, 4H) , 7.88 (t, 1H, J=8.0 Hz), 8.08 (d, 1Ή, J= 8.0 Hz), 8.29 (d, 1H, .7=8.0 Hz), 8.54 (d, 1H, J=8.0 Hz). 13 C NMR (100 MHz, CH 3 OD) δ 162.1, 158.4, 150.8, 145.3, 142.2, 141.9, 139.1, 134.3, 129.4, 128.1, 127.5, 126.5, 123.7, 123.3, 122.1, 119.4, 113.6, 110.0, 109.5, 89.1, 55.2, 52.3, 34.0, 30.5, 30.2.

EXAMPLE 3: SYNTHESIS OF CARBOZOLE-BASED (2 -ARM) FLUORESCENT MOLECULAR ROTOR

[0188] Preparation of 3, 6-dibromo- 9- henyl -9H- carbazole. 9 -phenyl -9H-carbazole (0.3 g, 1.23 mmol , 1 eq. ) was dissolved in DMF. N-Bromosuccinimide (0.44 g, 2.47 mmol, 2 eq.) was then added slowly and the resultant mixture was allowed to stir at room temperature overnight .

The reaction mixture was then poured into brine and extracted with DCM. The organic extracts were then dried with Na 2 S0 4 and concentrated. Crude product was then re- precipitated with methanol and THF gave white solids as

3 , 6-dibromo-9 -phenyl-9H-carbazole (0.32 g, 64 %) .

X H NMR (CDCI 3 , 4Ό0 MHz) δ 7.24 (s, 1H) , 7.48-7.52 (m, 5H) , 7.59-7.64 (m, 2H) , 8.20 (d, 2H, J=2.0 Hz). 13 C NMR (100 MHz, CDCI 3 ) δ 140.1, 137.0, 130.3, 129.5, 128.3, 127.2, 124.1, 123.4, 113.2, 111.7.

[0189] Preparation of 9-pb.en.yl-3, 6 -bis ( {E) -2- (pyridin-

4-yl) vinyl) -9ff-carbazole. 3 , 6-dibromo-9 -phenyl-9H- carbazole (96.4 mg, 0.24 mmol, 1 eq.), palladium diacetate (5 mg, 22.5 μπΐΌΐ, 0.09 eq.), tris-o-tolylphosphine (12.2 mg, 0.04 mmol, 0.16 eq.) and 4 -vinylpyridine (0,17 mL, 1.55 mmol, 6.2 eq.) were added to triethylamine dissolved in degased THF. The reaction mixture was then heated for 4 days at 110 °C in a sealed tube, and subsequently, diluted in DCM and filtered over celite after cooling to room temperature. The filtrate was washed with brine, dried over Na 2 S0 4 and evaporated to dryness to afford a brown paste that was purified by column chromatography to yield yellow solids (80.8 mg, 72 %) . λ Η NMR (CDC1 3/ 400 MHz) δ 7.10 (d, 2H, J=16.0 Hz), 7.39 (s, 1H), 7.42 (d, 5H, J=4.0 Hz), 7.51-7.59 (m, 6H) , 7.63-7.67 (m, 4H) , 8.34 (s, 2H), 8.59 (d, 4H, J=4.0 Hz) . 13 C NMR (100 MHz, CDC1 3 ) <5 150.3, 145.3, 141.9, 134.7, 134.0, 130.3, 129.1, -127.2, 125.7, 124.1, 123.9, 123.7, 120.8, 119.5, 110.7. HRMS (TOF MS ES+) : calcd for C 3 2H 2 3 3 Na [M+Na] + 472.1784, found 472.1779.

[0190] Preparation of 4, 1 - ( (IE, l'B- (9 -phenyl -9JJ- carbazole-3, 6-diyl)bis (ethene-2, 1-diyl) )bis (1- methylpyridin-l-ium) . 9 -phenyl-3 , 6-bis ( (E) -2- (pyridin-4- yl) vinyl) -9H-carbazole (80.8 mg, 0.18 mmol) was weighed into round bottom flask and dissolved in a DCM/MeOH (1:1 v:v) mixture. Methyl iodide (2mL, 32.13 mmol) was then added. The solution was heated at reflux for 3 days and cooled to room temperature. The red precipitate (111.3 mg, 84 %)was filtered and dried.

X H MR (DMSO, 400 MHz) δ 4.27 (s, 6H) , 7.50 (d, 2H, J=8.0 Hz), 7.57-7.64 (m, 3H) , 7.65-7.78 (m, 4H) , 7.93 (d, 2H, .7=8.0 Hz), 8.23 (d, 5H, J " =8.0 Hz), 8.27 (s, 1H) , 8.72 (s, 2H) , 8.84 (D, 4H, J=4.0 Hz). 13 C NMR (100 MHz, DMSO) δ 152.8, 144.9, 142.0, 141.5, 135.8, 130.4, 128.5, 128.2, 127.2, 126.8, 123.2, 123.1, 121.2, 110.9, 46.8. EXAMPLE 4; SYNTHESIS OF CARBOZOLE-BASED (3 -ARM)

CENT MOLECULAR ROTOR

Preparation of 9- (4-bromophenyl) -9H-carbazole. Copper (II) sulphate (1.35 g, 8.48 mmol, 0.8 eq.), potassium carbonate (2.93 g, 21.20 mmol, 2 eq.), dibromobenzene (5.00 g, 21.20 mmol, 2 eq.) and carbazole (1.77 g, 10.60 mmol, 1 eq. ) were heated in a round-bottom flask at 210°C overnight under argon. After cooling to room temperature, water was added to stop the reaction and the mixture was extracted with DCM. The organic layer was dried with Na 2 S0 4 , concentrated in vacuo and purified via column chromatography to yield white crystals (1.05 g, 31%) . Η NMR (CDC1 3 , 400 MHz) δ 7.28-7.59 (m, 9H) , 7.74 (d, 1H, .7=8.6 Hz), 8.14 (d, 1H, J= 7.8 Hz), 8.19 (d, 1H, J=7.8 Hz). 13 C NMR (100 MHz, CDC1 3 ) δ 140.8, 137.0, 133.3, 128.9, 126.2, 123.7, 121.1,120.5, 120.4, 109.7. HRMS (TOF MS ES+) : calcd for C 18 Hi 2 BrNK [M+K] + 359.9790, found 359.2444.

Preparation of 3, 6-dibromo-9- (4-bromophenyl) -9ff-carbazole.

To a solution of 9- (4-bromophenyl) -9H-carbazole (0.1 g, 0.31 mmol, 1 eq.) in DMF (3.5 mL) , N-Bromosuccinimide (0.12 g, 0.69 mmol, 2.2 eq.) in DMF (3.5 mL) was added dropwise and the mixture was allowed to stir at room temperature for 3 hours . Water was then added to give white precipitate which was recrystallized with hexane to yield white solids (0.082 g, 55%). lK NMR (CDC1 3 , 400 MHz) δ 7.20 (d, 2H, J=8.5 Hz), 7.37 (d, 2H, J " =8.6 Hz), 7.50 (dd, 2H, J=1.9, 8.7 Hz), 7.73 (d, 2H, J " =8.5 Hz). 13 C NMR (100 MHz, CDC1 3 ) δ 139.8, 136.0, 133.5, 129.7, 128.7, 124.2, 123.5, 121.9, 113.5, 111.4. HRMS (TOF MS ES+) : calcd for Ci 8 H 10 Br 3 N [M] + 478.8338, found 478.8349.

Preparation of 3, 6-bis ( (E) -2- (pyridin-4 -yl) vinyl) -9- (4-

( (E) -2- (pyridin-4 -yl) vinyl) phenyl) - 9H-carbazole . 3,6- dibromo-9- (4-bromophenyl) - 9H-carbazole (0.082 g, 0.17 mmol, 1 eq.), palladium diacetate (4.8 mg, 21.4 μmol, 0.13 eq.), tris-o-tolylphosphine (14.2 mg, 21.4 μπιοΐ, 0.27 eq.) ' and 4-vinylpyridine (0.17mL,- 1.59 mmol, 9.3 eq. ) were added to triethylamine dissolved in degased THF. The reaction mixture was then heated for 4 days at 110°C in a sealed tube, and subsequently, diluted in DCM and filtered over celite after cooling to room temperature. The filtrate was washed with brine, dried over Na 2 S0 and evaporated to dryness to afford a brown paste that was purified by column chromatography to yield orange solids.

X H NMR (CDC1 3 , 400 MHz) δ 7.08 (t, 5H, .7=16.1 Hz), 7.36- 7.41 (m, 15H) , 7.77 (d, 2H, J=8.4 Hz), 8.31 (s, 2H) , 8.54 (d, 6H, J=6.1 Hz) .

Preparation of 4,4 ' - ( (IE, 1 ' E) - (9- (4- ( (E) -2- ilmethylpyridin-1-ium-4 -yl) inyl) phenyl) -9ff-carbazole-3 , 6- diyl) bis (ethene-2, 1-diyl) ) bis (1-methylpyridin- 1-ium) . 3,6- bis ((E) - 2- (pyridin-4-yl) vinyl) -9-(4-((E)-2- (pyridin-4- yl) vinyl) phenyl) - 9H-carbazole (176.5 mg, 0.32 mmol) was weighed into round bottom flask and dissolved in a DCM/MeOH (1:1 v:v) mixture. Methyl iodide (6mL, 96.39 mmol) was then added. The solution was heated at reflux for 3 days and cooled to room temperature. The red precipitate (108.3 mg, 35 %)was filtered and dried. X H NMR (DMSO, 400 MHz) δ 4.28 (s, 6H) , 4.31 (s, 3H) , 7.59- 7.71 (m, 5H) , 7.87 (d, 2H, J=8.0 Hz), 7.96 (d, 2H, J=2 , 9.2 Hz), 8.11 (d, 1H, J=8.0 Hz), 8'.17-8.21 (m, 2H) , 8.25 (d, 4H, J=8.0 Hz), 8.28 (s, 1H) , 8.30 (d, 2H, .7=4.0 Hz), 8.69 (s, 1H) , 8.76 (s, 1H) , 8.86 (d, 5H, .7=8.0 Hz), 8.93 (d, 2H, J=8,0 Hz). 13 C N R (100 MHz, DMSO) δ 152.7, 145.3, 145.0, 141.7, 139.3, 135.0, 130.0, 128.6, 127.2, 124.4, 123.7, 123.5, 123.1, 121.4, 111.1, 47.0, 46.8.

EXAMPLE 5a; SYNTHESIS OF PYRENE-BASED FLUORESCENT MOLECULAR ROTOR

Pyrenecarboxaldehyde (0.5 g, 2.17 mmol, 1.0 eq. ) and cyanoacetic acid (0.277 g, 3.26 mmol, 1.5 eq.) was weighed into a 25mL round-bottom flask flushed with argon. Triethylamine (0.60 mL, 4.34 mmol, 2.0 eq.) was then added to the reaction mixture after solvating in anhydrous THF. The reaction mixture was then heated to 55 °C overnight, then evaporated to dryness and purified via column chromatography to yield pale orange solids (0.2 g, 31%) .

X H NMR (DMSO, 400 MHz) δ8.14 (t, J = 7.6 Hz, 1H) , 8.23 (d, lH, J = 8.9 Hz), 8.30 (d, 1H, J " = 8.7 Hz), 8.34 (d, 1H, J " = 7.5 Hz), 8.39 (m, 3H) , 8.57 (d, lH, J = 8.1 Hz), 9.00 (s, 1H) . 13 C NMR (100 MHz, -DMSO) δ 162.8, 145.8, 132.2, 130.7, 130.1, 129.1, 128.8, 127.9, 127.1, 126.7, 126.3, 126.1, 125.8, 124.9, 123.8, 123.6, 122.6, 120.4, 118.9. EXAMPLE 5b: SYNTHESIS OF PYRENE ROTOR-BIOTIN

Preparation of Pyrene Biotin. Pyrenecarboxaldehyde (21.7 mg, 0.094 mmol, 1.0 eq.) and Biotin-CN (0.05 g, 0.141 mmol, 1.5 eq.) was weighed into a 25mL round-bottom flask flushed with argon. Triethylamine (0.065 mL, 0.47 mmol, 5 eq.) was then added to the reaction mixture after solvating in anhydrous THF. The reaction mixture was then heated to 55 °C overnight, then evaporated to dryness and purified via column chromatography to yield pale orange solids (29.2 mg, 55%) . H NMR (MeOD, 400 MHz) δ 0.85 (m, 2H) , 1.24 (s, 4H) , 2.00 (m, 4H) , 2.55 (m, 2H) , 3.05 (m, 2H) , 5.33 (t, 1H, J = 4.8 Hz), 8.14 (t, J = 7,6 Hz, 1H) , 8.23 (d, 1H, J = 8.9 Hz), 8.30 (d, 1H, J = 8.7 Hz), 8.34 (d, 1H, J = 7.5 Hz), 8.39 (m, 3H) , 8.56 (d, 1H, J = 8.3 Hz), 8.95 (s, 1H) . HRMS (TOF MS ES+) : calcd for C 32 H 3 o N 4 0 4 S [M+ ] + 605.1988, found 604.9648.

EXAMPLE 6a; SYNTHESIS OF JULODINE-BASED FLUORESCENT MOLECULAR ROTOR (CCVJ)

Julolidine-carboxaldehyde (0.5 g, 2.48 mmol, 1.0 eq.) and cyanoacetic acid (0.3170 g, 3.73 mmol, 1.5 eq. ) was weighed into a 25mL round-bottom flask flushed with argon. Triethylamine (0.69 mL, 4.97 mmol, 2.0 eq. ) was then added to the reaction mixture after solvating in anhydrous THF. The reaction mixture was then heated to 55 °C overnight, then evaporated to dryness and purified via column chromatography to reddish-brown solids (0.18g, 27%). λ Ε NMR (DMSO, 400 MHz) 51.87 (m, 3H) , 2.67 (t, J " = 6.3 Hz,

1H) , 3.31 (t, J = 5.9 Hz, 1H) , 7.48 (s, 2H) , 7.84 (s, 2H) .

13 C NMR (100 MHz, DMSO) <5 165.1, 152.8, 147.1, 130.7,

120.4, 119.5, 118.5, 117.5, 104.5, 49.4, 27.0, 20.6. EXAMPLE 6b: SYNTHESIS OF JULODINE ROTOR-BIOTIN

Julolidine-carboxaldehyde (0.05 g, 0.25 mmol, 1.0 eq. ) and Biotin-CN (0.1 g, 0.28 mmol, 1.13 eq.) was weighed into a 25mL round-bottom flask flushed with argon. Triethylamine (0.07 mL, 0.5 mmol, 2.0 eq. ) was then added to the reaction- mixture after solvating in anhydrous THF. The reaction mixture was then heated to 50 °C overnight, then evaporated to dryness and purified via column chromatography to yield yellowish orange solids (27.8 mg, 18%) .

X H NMR (CDC1 3 , 400 MHz ) δ 1.42 (m, 2H) , 1.59 (m, 4H) , 1.98 (m, 2H) , 2.25 (m, 1H) , 2.31 (m, 1H) , 2.75 (t, 2H, J=6.3 Hz), 2.97 (dd, 1H, J=13.8, 5.4 Hz), 3.19 (m, 1H) , 3.36 (m, 4H) , 3.56 (m, 1H) , 3.68 (m, 1H) , 4.13 (d, 1H, J=8.0 Hz), 4.22 (t, 1H, J=5.9 Hz), 4.27 (m, 1H) , 4.35 (dd, 2H, J=5.7, 4.3 Hz), 5.98 (s, 1H), 6.78 (s, 1H), 7.52 (m, 2H) , 7.70 (dd, 1H, .7=5.7, 3.3 Hz), 7.94 (s, 1H) . 13 C NMR (100 MHz, CDC1 3 ) δ 173.6, 165.1, 162.1, 155.0, 148.4, 132.0, 121.1, 118.3, 114.0, 90.0, 64.4, 62.2, 57.5, 54.9, 50.4, 39.1, 37.9, 36.6, 34.0, 27.7, 27.2, 25.4, 25.1, 21.1. HRMS (TOF MS ES+) : calcd for C 28 H 3 5N 5 a0 4 S [M+Na] + 560.2302, found 560.2321.

EXAMPLE 7 : FLUORESCENT MOLECULAR ROTORS BOUND TO LIGANDS

[0191] Molecular rotors can be modified to incorporate a targeting molecule or short targeting peptides . For example, biotin was attached to the molecular rotors and an increase in fluorescence was observed upon binding to the streptavidin protein.

[0192] Molecular rotors may be conjugated to targeting peptides via a 3 -carbon linker. Amide linkage may be used to conjugate the rotors via a lysine residue at the carboxy-terminus of targeting peptides.

EXAMPLE 8; VISCOSITY EXPERIMENTS WITH FLUORESCENT MOLECULAR ROTORS

[0193] Figs. 3a to 10 illustrate the emission spectras of fluorescent molecular rotors. It is shown that these fluorescent molecular rotors display an increase in fluorescence upon increase in viscosity. For all the rotors synthesized (julodine-based, aciridine-based, pyrene-based, thiazole-based and carbozole-based (2-arm and 3 -arm) ) , the viscosity tests showed good sensitivity and trend. EXAMPLE 9: BINDING OF ROTOR-SMALL MOLECULE WITH PROTEIN

[0194] A fluorescent julodine-based molecular rotor, 9- (2-carboxy-2-cyanovinyl) julolidine (CCVJ) was conjugated to biotin and changes in fluorescence was measured upon binding to streptavidin. A 2-fold fluorescence increase was measured upon the addition of streptavidin, demonstrating the utility of the biotin-rotor probe (Fig. 4a) .

[0195] A pyrene-based molecular rotor was also tested and displayed fluorescence increase upon binding to streptavidin (Fig. 4b) .

EXAMPLE 10; BINDING OF ROTOR-DNA WITH PROTEIN

DNA intercalation of molecular rotors

[0196] Intercalation of DNA with fluorescent molecular rotors displayed a strong increase in fluorescence signal. The intercalating interaction with DNA was further exemplified through a pull-down assay with biotin- conjugated rotors and streptavidin beads (figs. 6, 7 and 16) .

[0197] Figs. 4a and 4b illustrate that julodine-based and pyrene-based molecular rotors display an increase in fluorescence upon binding to Streptavidin protein demonstrating the usefulness of fluorescent molecular rotors as a probe for streptavidin protein.

Molecular rotors in detection of p53-DNA binding

[0198] An acridine-based rotor was used in a fluorescence displacement assay to report on the binding of p53 protein to DNA. A decreased fluorescence signal was observed upon protein binding (fig. 5) . Protein-DNA interactions

[0199] The intercalating activity of fluorescent molecular rotors was tested on the binding sequence of p53 protein. It was shown that the fluorescence intensity of the rotors increase steadily until they reached saturation at 0.5X rotor for acridine-based rotor, and 15X rotor for thiazole-based and carbazole-based (2 -arm and 3 -arm) rotors (fig. 7) .

[0200] From the trend given by the emission spectras of rotor with DNA, it can be concluded that the rotors do intercalate or bind to the DNA shown by the increase in fluorescence intensity due to the restriction of rotor motion upon intercalating or binding.

[0201] The use of rotors in protein-DNA interactions was then tested.

[0202] When a significant portion of p53 protein was added to acridine-based rotor bound to DNA, the fluorescence intensity dropped. It is hypothesized that upon interaction and binding of p53 with the DNA, the bulky acridine-based rotor intercalator was freed from the intercalating site, resulting in the reduction of fluorescence intensity (fig. 8) .

[0203] p53 protein was added to carbazole-based (2-arm) rotor bound to DNA. A turn-off effect was observed when p53 was added, with effect most significant when the DNA was saturated with the 15X compound (fig. 10) .

[0204] The behavior of rotors when incubated with DNA was also examined (fig. 12) . [0205] Whether the binding of a protein (p53) to DNA

(with rotor bound) resulting in any fluorescence change due to displacement of the rotor by the protein was also examined. P53 protein was added to either control DNA (not containing a p53 binding motif) or DNA containing the p21 response element which p53 is known to bind. The data indicates that ■ p53 binding to p21 can result in displacement of the rotor with concomitant reduction in fluorescence (fig. 15) .

[0206] Whether biotin modification would affect binding to DNA was examined. It was also examined whether the addition of biotin would make rotors useful for affinity- purification of DNA. Biotinylated versions of the rotors were incubated with DNA and complexes captured on streptavidin plates. Captured DNA was then quantified by real-time PCR. The results in fig. 16 indicate that these rotors can be used as reagent for affinity purification of DNA. The fluorescent properties of the biotinylated rotor changed upon binding to streptavidin (fig. 6) , presumably due to steric constraints imposed upon binding of the biotin.

EXAMPLE 11; BINDING OF ROTOR-PEPTIDE WITH PROTEIN

Synthesis of rotor-peptide probes, JP1-R and JP2-R

[0207] A julodine-based rotor, CCVJ, was conjugated to two peptides derived from a phage display screen, JP1 and JP2, which differ by only a single amino acid but have a 10 fold difference in binding affinities (Table 9) . An additional lysine residue was added to the C-termini of both peptide sequences, then reacted with the N- hydroxysuccinimidyl -activated ester of CCVJ to make the rotor-peptide probes (Fig. 25a) .

[0208] Unmodified peptides JP1 and JP2 were synthesized by Genscript USA Inc. Chemicals and solvents were purchased from Sigma Aldrich and TCI Chemicals Japan.

[0209] JP1 (2 mg) was weighed into a 1.5 mL vial and dissolved in 0.3 mL of 0.1M NaHC0 3 buffer. NHS -protected CCVJ (4 equiv.) was also weighed into another 1.5 mL vial and dissolved in 0. lmL dry DMF, before being added to the JP1 that was dissolved in buffer. The reaction mixture was allowed to stir at room temperature for 2 hours before HPLC purification to obtain the pure rotor-peptide, JP1-R (9%). MALDI-TOF MS [M] + Calculated 1949.8957. Obtained 1946.6082.

[0210] JP2 (2 mg) was weighed into a 1.5 mL vial and dissolved in 0.3mL of 0.1M NaHC0 3 buffer. NHS -protected CCVJ (4 equiv.) was also weighed into another 1.5 mL vial and dissolved in 0.1 mL dry DMF, before being added to the JP2 that was dissolved in buffer. The reaction mixture was allowed to stir at room temperature for 2 hours before HPLC purification to obtain the pure rotor-peptide, JP2-R (4%). MALDI-TOF MS [M+K] + Calculated 2015.8703. Obtained 2017.6360.

[0211] JP2 (2 mg) was weighed into a 1.5 mL vial and dissolved in 0.3mL of 0.1M NaHC0 3 buffer. NHS-protected CCVJ rotor (4 equiv.) was also weighed into another 1.5 mL vial and dissolved in 0.1 mL dry DMF, before being added to the JP2 that was dissolved in buffer. The reaction mixture was allowed to stir at room temperature for 2 hours before HPLC purification to obtain the pure rotor- peptide, JP2-R (4%). MALDI-TOF MS [M+K] + Calculated 2015.8703. Obtained 2017.6360.

[0212] Rotor-peptide probes, JP1-R and JP2-R, are shown in Fig. 25b and 25c.

Binding of rotor-peptide conjugates to a protein

[0213] Affinity purified recombinant MDM2 protein

(residues 18-125) was used to test the functionality of the rotor-peptide conjugates. Co-incubation of JPl-rotor conjugate, JP1-R, with MDM2 protein, led to a concentration dependent increase in fluorescence activity (Fig. 20a (top) ) .

[0214] Nutlin-3, an DM2 agonist, binds MDM2 at the N- terminal hydrophobic cleft and abrogates this interaction by occluding p53-MDM2. Addition of 50 uM of Nutlin to the JP1-R-MDM2 complex MDM2 completely abrogated the florescence signal seen before (Fig. 20a, Bottom), presumably due to the displacement of JP1 from MDM2. JP2-R did not display any significant changes in fluorescence intensity upon adding MDM2. This lack of signal may be ascribed to the non-constrained orientation of the rotor upon binding of the peptide to MDM2.

[0215] To further demonstrate that fluorescence activation was due to a concomitant steric restriction of the appended rotor during protein- specific interaction, JP1-R was added to non-specific proteins, eIF4E, BSA and IgG. No fluorescence increase was observed with all 3 proteins across the same concentrations range (Fig. 20b) .

[0216] Based on the JP1-R fluorescence measurements, an apparent K d of 16.01±7.52 nM for MDM2 binding was calculated (Fig. 21a) , correlating well to a previously reported value of 18.83±5.03 nM (Table ¾)l determined using ITC. The calculated apparent K d of JP2-R, was 3365+640.6 nM, approximately 14 -fold lower than the previously reported value of 239.81+53.79 nM.

[0217] To further understand the fluorescence-derived apparent dissociation constants of JP1-R and JP2-R, an in- silico modeling of their respective interactions with the MDM2 protein was performed. Molecular dynamics simulations suggest that the C-terminal end of JPl-R adopts a helical turn due to the constraints from the hydrogen bonds between the hydroxyl sidechain and backbone of S12 and the backbone carbonyl of W8. A similar feature was also seen in prior experimental and computational studies for a similar peptide. The replacement of S12 by N12 in JP2-R does not afford this constraint. The Asn sidechain is longer and is unable to form hydrogen bonds with the backbone, resulting in an extended C-terminus (Fig. 27). Replica exchange simulations exploring the conformational space of the unbound rotor-peptides (Table 4) show that JPl-R is more helical than JP2-R. The constrained JPl-R (Fig. 27) also embeds deeper into MDM2 and interacts stronger than JP2-R (by ~7kT, Table 5). The major contribution arises from improved packing of S12 (by 1.2kT, Tables 6, 7), Lll (embeds deeper into MDM2 by ~2kT) and the rotor, (~2kT) . The rotor packs between H96 of MDM2 and the peptide in JPl-R while JP2-R packs into a recently characterized second binding site in MDM2. This tighter association of JPl-R restricts the rotational freedom of the rotor sufficiently to bring about a detectable fluorescence turn-on signal. EXAMPLE 12; DRUG SCREENING APPLICATIONS

[0218] Rotor-peptide may have potential use in drug- screening applications. Small molecule inhibitor nutlin was titrated and a disruption of the rotor-peptide-MDM2 complex at concentrations as low as 10 nM was observed (Fig. 11) . The results indicate highly sensitive detection of nutlin binding to MDM2, suggesting the rotor-peptide assay may have use in primary drug screens for disruption of a peptide-protein interaction. Rotor-peptide conjugate as a biosensor for small molecules that inhibit p53-MD 2 interaction

[0219] A concentration-dependent drop in fluorescence was seen when nutlin was titred into a pre-incubated mix containing 500 nM of MDM2 and 250 nM of JP1 (Fig. 11) . Complete ablation of JP1- DM2 dependent fluorescence was observed at 2 uM of Nutlin treatment, but a significant decrease can be seen at 50 nM. The sensitivity and specificity of such peptide-rotor conjugates make them ideal for development into screening platforms for identifying molecules that inhibit p53-MDM2 binding.

Application of rotor-peptide in small molecule drug screening (E.G. inhibitors of MDM2)

[0220] The inhibition of p53-MDM2 interaction is a common strategy for cancer treatment. A rotor is attached to the JP1 peptide (a sequence that binds the MDM2 protein at the same site as p53) to investigate if the JP1 peptide-rotor conjugate will act as a reporter for compounds that displace it from MDM2. Fig. 23 shows that such a displacement can be seen when various known p53- MDM2 inhibitors are added to the JP1/ MDM2 complex. Calculated K d from MDM2 against JP1 titration indicates that rotor-moeity does not obstruct peptide-protein interaction (Fig. 21a) .

[0221] To demonstrate the utility of the rotor-peptide probe in small molecule drug screening, the sensitivity of the rotor-peptide to known small molecule and stapled- peptide inhibitors of the p53-MDM2 interaction was explored. These inhibitors target the same hydrophobic cleft in MDM2 as JP1-R, and were able to disrupt the MDM2- probe complex in the expected manner, resulting in a decrease in fluorescence as the probe was displaced (Fig. 24 and Table 8). [0222] Given the high sensitivity and specificity of the JPl-R conjugate, it was used to screen a small molecule fragment library (n=352) for candidates that potentially disrupt p53-MDM2 binding. Based on the results, fifteen hits were selected for further validation and ten compounds were further confirmed as genuine inhibitors (Fig. 26b) . The seven disparate compounds showing no activity in the FP assay were therefore assessed in a pull -down assay which measured the direct interaction levels of p53 and MDM2. All seven compounds inhibited p53-MDM2 interaction, further validating these as genuine hits not identified by the FP assay (Fig. 26c) . As subtle intermolecular twisting of the rotor profoundly effects signal generation, it is possible that partial displacement of the peptide by the weak inhibitors led to their identification. In the FP assay, these would have been missed, as the anisotropy measurement is largely attendent on full displacement of peptide from MDM2.

[0223] Together, these results demonstrate the utility of molecular rotors in binding assays for detecting peptide-protein interactions and for drug screening applications. Using the TICT property of the molecular rotor, its free volume is decreased upon binding interaction to a protein. This simple fluorescence turn-on signal upon protein binding allows the development of highly sensitive and facile assays to measure protein- ligand binding in a high-throughput fashion. More importantly, it is shown that a molecular rotor-based screening assay identified validated hits that were missed by fluorescence polarization assay in a fragment -based screen, suggesting its utility in identifying lower affinity hits in fragment based screening. APPLICATIONS

[ 0224 ] The disclosed fluorescent molecular rotors may be used to detect protein-ligand interactions, such as protein-DNA, protein-peptide and protein-small molecule interactions, for example, to investigate the interaction of p53 protein with DNA, interaction of MDM2 with peptides. The disclosed fluorescent molecular rotors may also be conjugated to biotin to give a streptavidin detection reagent.

[0225] The disclosed fluorescent molecular rotors may be used as viscosity probes, displaying an increase in fluorescence when viscosity of the solution is increased.

[0226] The disclosed fluorescent molecular rotors may be used in drug screening applications. The disclosed fluorescent molecular rotors may be used to screen for active compounds that bind to a target protein, for example, inhibitors of MDM2.

[0227 ] The disclosed screening applications may not require the use of expensive instrumentation. Thus, the disclosed screening applications may serve as a cost- effective means for drug screening.

[0228] The disclosed screening applications may be single-well, low volume with minimal pipetting steps and may not require multiple washing steps. Thus, the disclosed screening applications may be non- laborious and optimal for high-throughput screening.

[ 0229] The disclosed screening applications may not require the use of radioisotopes for labelling. Thus, the disclosed screening applications may be non-radioactive .

[0230] The disclosed screening applications may be used in small molecule drug screening and may be used to identify small molecules which may be missed in traditional assays, such as fluorescence polarization. [0231] It will be apparent that various other modifications and adaptations of the invention will be apparent to the person skilled in the art after reading the foregoing disclosure without departing from the spirit and scope of the invention and it is intended that all such modifications and adaptations come within the scope of the appended claims.