Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FORMING A 3D MATRIX OF REINFORCED CARBON COMPOSITE MATERIAL
Document Type and Number:
WIPO Patent Application WO/2021/049969
Kind Code:
A1
Abstract:
Prefabricated carbon fibre rods are cut to a length equal to the height, in a Z direction, of a future product and are mounted vertically in a guide plate having holes of the required diameter arranged in mutually perpendicular rows. Future horizontal rods of the matrix are cut in the form of blanks having a length that is several times the length of a rod in an X direction and are laid horizontally, parallel to the X direction, in an amount equal to the required number of rods of the matrix in the X direction, at intervals along a Y axis that are equal to the intervals between the holes along the Y axis of the guide for mounting the Z direction rods, so that the axes of the blanks of the X direction rods are situated between the Z direction rods. Then, rods of a length required for forming the X direction are cut from the blanks and are moved along the X direction, with restriction of the movement thereof in other directions, into the region of their final position. All of the rods of a laid row are pushed by a single common pusher until they reach a predetermined position along the Z axis of a mechanical device capable of moving the pusher to a set position equal to the predetermined level of the rods of a subsequent laid row. Then, in the same sequence of actions, rods are laid in the Y direction. Horizontal rows are laid alternately in the X and Y directions in a number of cycles determined by the size, along the Z axis, of the matrix under assembly. The result is an improvement in the quality of the matrix and an increase in the production rate.

More Like This:
Inventors:
ALTUFYEV ALEKSANDR (RU)
BUKHNAEVA ULIYA (RU)
Application Number:
PCT/RU2020/000049
Publication Date:
March 18, 2021
Filing Date:
January 31, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NIIGRAPHITE RES AND DEVELOPMENT INSTITUTE OF GRAPHITE BASED STRUCTURAL MATERIALS JOINT STOCK COMPANY (RU)
International Classes:
B25B11/02; B25B29/00
Foreign References:
RU2568725C12015-11-20
RU2090497C11997-09-20
RU2422407C22011-06-27
SU435888A11974-07-15
US4257835A1981-03-24
CN105503227A2016-04-20
Download PDF:
Claims:
Формула изобретения

1. Способ формирования 3D каркаса многомерно армированного углеродного композиционного материала путем набора и выкладки стержней из углеродного волокна, отличающимся тем что предварительно изготовленные из углеродного волокна стержни нарезаются длиной равной высоте направления Z будущего изделия, устанавливаются вертикально в плиту-кондуктор с отверстиями необходимого диаметра, расположенные взаимно перпендикулярными рядами, будущие горизонтальные стержни каркаса нарезаются в виде заготовок длиной, кратной нескольким длинам стержней направления X, раскладываются горизонтально параллельно направлению X в количестве, равном необходимому количеству стержней каркаса направления X, с шагом по оси Y, равном шагу расположения отверстий по оси Y кондуктора для установки стержней направления Z таким образом, чтобы оси заготовок стержней направления X располагались между стержнями направления Z, затем от заготовок отрезаются стержни необходимой для формирования направления X длины и перемещают их вдоль направления X с ограничением возможности их перемещения по другим направлениям в зону их окончательного расположения, все стержни уложенного ряда поджимаются единым для всех стержней прижимом до их расчетного положения по оси Z механического устройства, имеющего возможность перемещения прижима до заданного положения, равного расчетному уровню стержней очередного уложенного ряда, затем в той же последовательности действий проводится укладка стержней в направления Y, поочередно укладываются в каркас горизонтальные стержни направлений X и Y в количестве циклов определяемых размером собираемого каркаса по оси Z.

2. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала, включающее два одинаковых взаимно перпендикулярных узла подачи стержней с направлениями X и Y каркаса и узел поджатая горизонтальных стержней с тремя плитами-кондукторами вертикальных стержней направления Z.

3. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2, отличающиеся тем что каждый узел подачи состоит из неподвижного и подвижного горизонтальных кондукторов, прижимов, позволяющих заготовкам стержней свободно перемещаться по пазам, но не позволяющих им при движении выйти из паза, толкателей заготовок и стержней, резака.

4. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2,3 отличающиеся тем что неподвижный горизонтальный кондуктор представляет собой прямоугольную планку длиной не менее длины заготовки горизонтальных стержней соответствующего направления, шириной, достаточной для размещения заготовок стержней в количестве, равном количеству стержней соответствующего направления в каркасе, разложенных вдоль соответствующего направления с шагом, равном шагу каркаса, верхняя плоскость планки имеет продольные пазы, расположенные равномерно, с шагом, равном шагу каркаса, во всю длину в количестве, равном количеству горизонтальных стержней соответствующего направления шириной, достаточной для свободного перемещения по ним горизонтальных стержней, глубиной не менее диаметра стержня.

5. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2,3,4 отличающиеся тем, что подвижный горизонтальный кондуктор, имеет возможность перемещаться по направляющим вдоль направления перемещения заготовок, представляет собой прямоугольную планку длиной не менее рабочей длины стержня, в поперечном сечении повторяющую профиль неподвижного горизонтального кондуктора.

6. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2,3,4,5 отличающиеся тем, что прижим представляет собой прямоугольную планку, позволяющую заготовкам стержней свободно перемещаться по пазам, но не позволяющую им при движении выйти из паза.

7. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2,3,4,5,6 отличающиеся тем, что толкатель представляет собой планку с плоской толкающей поверхностью, перпендикулярной направлению перемещения заготовок горизонтальных стержней или самих стержней, имеющую на нижней поверхности выступы в количестве и с размерами, равными количеству и размерам пазов в неподвижном горизонтальном кондукторе, при этом при опускании выступов толкателя в пазы кондуктора должно обеспечиваться свободное перемещение толкателя вдоль направления перемещения заготовок или стержней.

8. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2, 3,4, 5, 6, 7 отличающиеся тем, что резак представляет собой режущее устройство для отделения рабочей длины стержней от заготовки, выполненное таким образом, чтобы минимально деформировать стержни при резке.

9. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2, отличающиеся тем, что узел поджатия горизонтальных стержней включает в себя три плиты-кондуктора толщиной равной 3-5 диаметрам вертикальных стержней направления Z, нижнюю и верхнюю для позиционирования и фиксации вертикальных стержней каркаса по горизонтали, среднюю для поджатия каждого уложенного ряда горизонтальных стержней, подвижную станину с основанием, направляющими и фиксатором стержней, неподвижную станину с местом установки средней поджимающей плиты и приводом вертикального перемещения подвижной станины с возможностью программирования алгоритма движения подвижной станины.

10. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2,9 отличающиеся тем, что на неподвижной станине на высоте не более 30 диаметров горизонтальных стержней от ее основании установлена неподвижная средняя поджимающая горизонтальная плита-кондуктор с вертикальными отверстиями, расположение которых в горизонтальной плоскости повторяет расположение вертикальных стержней направления Z собираемого каркаса, а диаметр отверстий выполнен минимальным для выполнения условия свободного взаимного перемещения по ним стержней собираемого каркаса.

11. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2,9,10 отличающиеся тем, что на основании неподвижной станины имеются направляющие, обеспечивающие свободное перемещение по ним в вертикальном направлении подвижной станины при помощи привода вертикального перемещения, установленного также на основании неподвижной станины.

12. Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала по п.2,9,10,11 отличающиеся тем, что подвижная станина представляет собой жесткую конструкцию из вертикальных штанг, в верхней и нижней части скрепленных двумя горизонтальными конструктивными плитами, при чем на нижней конструктивной плите установлен стол с горизонтальной опорной поверхностью, на которой крепится горизонтальная нижняя плита-кондуктор с отверстиями, количество и расположение которых совпадает с количеством и расположением отверстий в неподвижной средней плите-кондукторе неподвижной станины, а под верхней конструктивной плитой располагается фиксатор, представляющий собой прижимную плиту, имеющий возможность плоскопараллельного перемещения по штангам и фиксации в определенном положении, к нижней поверхности которой прикреплен листовой мягкий материал с размерами по горизонтали не менее размеров перфорированных плит- кондукторов, и верхняя плита-кондуктор, повторяющая основные функциональные размеры нижней плиты-кондуктора, с возможностью плоскопараллельного перемещения по штангам и фиксации на них в определенном положении.

Description:
ФОРМИРОВАНИЕ 3D КАРКАСА АРМИРОВАННОГО УГЛЕРОДНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

Изобретение относится к области углерод-углеродных композиционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, а также к области создания и производства углеродных материалов на основе объемно-армированных каркасов из углеродного волокна. Способ формирования 3D каркаса многомерно армированного композиционного материала используется для изготовления изделий авиации и изделий в химической, нефтяной и металлургической промышленности, а также в авиакосмической технике для создания изделий и элементов конструкций, подвергающихся воздействию агрессивных сред.

Известен способ создания армирующих каркасов углерод-углеродного материала в виде ортогональной структуры, методом плетения углеродной нитью (1) патент РФ No 2498962. Изобретение относится к эрозионностойким теплозащитным композиционным материалам и может быть использовано для создания деталей защиты поверхностей гиперзвуковых спускаемых аппаратов (ГС А). Армирующий каркас углерод-углеродного композиционного материала (УУКМ) выполнен в виде четырехнаправленной пространственной структуры с гексагональной трансверсально-изотропной укладкой армирующих элементов. В качестве армирующих элементов использованы нити углеродные трощеные. Укладка трансверсальных слоев выполнена нитью (7) линейной плотностью yt=(30(Ь-420) текс, а гексагональная укладка выполнена нитью (8) линейной плотностью yg=(3-^4) Yt. Расстояние между ближайшими армирующими элементами в каждом трансверсальном слое составляет величину, равную толщине нити линейной плотностью yg, а расстояние между трансверсальными слоями одинакового направления составляет величину, равную 26, где 6 - толщина нити линейной плотностью gί. Технический результат заключается в повышении плотности армирующего каркаса и улучшении эксплуатационных характеристик УУКМ.

Недостатком данного каркаса является трудоемкий процесс его изготовления.

Известна также композитная конструкция (2) патент РФ N° 2444438. Группа изобретений относится к способу формирования композитной конструкции, композитной трехмерной заготовке, полученной указанным способом, а также к вязаной трехмерной заготовке и композитной конструкции, включающей указанную заготовку. Способ заключается в том, что вяжут трехмерную заготовку с использованием трехмерной вязальной машины и одного или более выбранных волокон. Причем заготовка имеет форму, соответствующую форме формируемой конструкции. Затем придают вязаной заготовке трехмерную форму путем раздува или расширения и фиксируют форму. После используют фиксированную форму для образования композитной конструкции. Волокна выбирают из группы природных волокон, представляющих собой коноплю, хлопок, лен, джут, и синтетических волокон, таких как борные волокна, арамидные волокна, углеродные волокна, стекловолокна, базальтовые волокна и волокна на основе полимеров. Достигаемый при этом технический результат заключается в обеспечении устойчиво однородной конструкции.

Недостатком известного способа является сложность технологии, повышенная трудоемкость и энергоемкость процесса.

Известен способ получения углерод-углеродного композита, стойкого к окислению. (3) патент РФ N° 2090497. Использование: для получения неметаллических композиционных материалов, стойких к окислению на воздухе и обладающих высокой прочностью при повышенных температурах. Сущность изобретения: изготавливают каркас путем набора стержней из углеродного волокна в пучок цилиндрической формы, армируют его углеродным волокном. Из готовых углеродных стержней набирали пучки цилиндрической формы диаметром 6-12 мм и закрепляли липкой лентой. Полученную заготовку устанавливали в патрон намоточной машины и плотно обматывали углеродным волокном, которое также закрепляли липкой лентой. Затем осуществляют нагрев до 900- 950°С прямым пропусканием электрического тока в среде природного газа с выдержкой при этой температуре не более 24 ч.

Предлагаемая аналогом заготовка имеет явный недостаток - анизотропия свойств. В то время как материал, получаемый по предложенному решению, проявляет одинаковые механические свойства при нагружении по осям симметрии, то есть является квазиизотропным (изотропным в макрообъеме).

Известен способ изготовления объемно армированного композиционного материала (4) патент РФ N° 2568725., выбранный за прототип. Способ изготовления объемно армированного композиционного материала включает изготовление армирующего каркаса путем набора стержней из углеродного волокна, помещение армирующего каркаса в форму, пропитку его под давлением термореактивной смолой, а затем полимеризацию смолы. Армирующий каркас выполнен трехмерным и составлен из стержней диаметром 0,8-0, 9 мм. Используемое в изделиях волокно - Т700 Тогоуса имеет характеристику по числу углеродных нитей - 12К (то есть 12000 углеродных филаментов образуют единую нить волокна). Для 12К оптимальный размер отверстия фильеры 0,9, который гарантированно позволяет получить круглое сечение стержня. Пропитка термореактивной смолой осуществляется методом инфузии в три этапа: вакуумирование до подачи связующего от 20 до 30 мин, подача связующего под вакуумом от 30 до 40 мин со скоростью 0,35 л/мин, промежуточная выдержка под вакуумом от 20 до 40 мин.

По прототипу сборка каркаса осуществляется вручную без какой-либо механизации. Процесс сборки трудоемок и не гарантирует необходимого качества сборки.

Задачей, на решение которой направлено предложенное изобретение является механизация и автоматизация способа формирования объемно армирующих каркасов 3D структуры уз углеродных стержней.

Технический результат: увеличение производительности за счет автоматизации процесса сборки, улучшение качества за счет гарантированной параллельности горизонтальных слоев каркаса и точности расположения в пространстве стержней каркаса.

Поставленные задачи решаются следующим образом:

Предлагаемый способ формирования 3D каркаса многомерно армированного углеродного композиционного материала осуществляется путем набора и выкладки стержней из углеродного волокна и отличается тем что предварительно изготовленные из углеродного волокна стержни нарезаются длиной равной высоте направления Z будущего изделия, устанавливаются вертикально в плиту-кондуктор с отверстиями необходимого диаметра, расположенные взаимно перпендикулярными рядами, будущие горизонтальные стержни каркаса нарезаются в виде заготовок длиной, кратной нескольким длинам стержней направления X, раскладываются горизонтально параллельно направлению X в количестве, равном необходимому количеству стержней каркаса направления X, с шагом по оси Y, равном шагу расположения отверстий по оси Y кондуктора для установки стержней направления Z таким образом, чтобы оси заготовок стержней направления X располагались между стержнями направления Z, затем от заготовок отрезаются стержни необходимой для формирования направления X длины и перемещают их вдоль направления X с ограничением возможности их перемещения по другим направлениям в зону их окончательного расположения, все стержни уложенного ряда поджимаются единым для всех стержней прижимом до их расчетного положения по оси Z механического устройства, имеющего возможность перемещения прижима до заданного положения, равного расчетному уровню стержней очередного уложенного ряда, затем в той же последовательности действий проводится укладка стержней в направления Y, поочередно укладываются в каркас горизонтальные стержни направлений X и Y в количестве циклов определяемых размером собираемого каркаса по оси Z. - Армированные композиционные материалы в настоящее время находят все более широкое применение в разных областях рынка, однако производство их в промышленных масштабах ограниченно из-за использования немеханизированных операций или дорогостоящего оборудования. Промышленность при использовании композитов во многих областях, и в особенности в элитной части рынка, сталкивается с серьезными ограничениями, которые накладывают на применение большинства высококачественных композитов длительность производственного цикла и высокие затраты на рабочую силу, на инструмент и оснастку. Высококачественные и совершенные композиты типа углерод- углеродных композитов, применяемые в аэрокосмической промышленности, в автомобилестроении, требуют дорогостоящей предварительной подготовки армирующих материалов. Изготовление композитных конструкций с использованием этих материалов требует применения трудоемких процессов раскладки с целью получения нужной ориентации волокон по направлениям и оптимальной прочности при сложной геометрической форме. Это является наиболее ограничивающей и требующей больших затрат времени отличительной чертой процесса изготовления высококачественных композитов. Некоторые из более успешных попыток направлены на применение блочных сборочных компонентов, которые могут иметь однородную форму и, таким образом, более пригодны для массового производства. Эти сборочные компоненты, однако, все же требуют значительных трудозатрат для окончательной сборки и должны сочетать гибкость конструкции с ограничениями в отношении конечной геометрической формы. Поэтому необходимо минимизировать и по возможности механизировать изготовление, сборку и производство армирующих компонентов.

На фиг.1 показан полученный предлагаемым способом 3D каркас многомерно армированного углеродного композиционного материала.

Данный способ формирования 3D каркаса многомерно армированного композиционного материала осуществляется на предлагаемом устройстве для формирования 3D каркаса многомерно армированного углеродного композиционного материала. Для формирования 3D каркаса многомерно армированного углеродного композиционного материала применены элементы механизации процесса ручной сборки.

Устройство для формирования 3D каркаса многомерно армированного углеродного композиционного материала (фиг.2) включает в себя два одинаковых взаимно перпендикулярных узла подачи стержней (поз. 1, 2) с направлениями X и Y каркаса и узел поджатая горизонтальных стержней (поз. 3) с тремя плитами-кондукторами вертикальных стержней направления Z. Каждый из узлов подачи (фиг. 3) состоит из неподвижного горизонтального кондуктора (поз. 4), прижимов (поз. 5), толкателя заготовок (поз. 6), резака (поз. 7), подвижного горизонтального кондуктора (поз. 8), толкателя стержней (поз. 9). Неподвижный горизонтальный кондуктор представляет собой прямоугольную планку длиной не менее длины заготовки горизонтальных стержней соответствующего направления, шириной, достаточной для размещения заготовок стержней в количестве, равном количеству стержней соответствующего направления в каркасе, разложенных вдоль соответствующего направления с шагом, равном шагу каркаса. Верхняя плоскость планки имеет продольные пазы во всю длину в количестве, равном количеству горизонтальных стержней соответствующего направления шириной, достаточной для свободного перемещения по ним горизонтальных стержней, глубиной не менее диаметра стержня. Пазы расположены равномерно, с шагом, равном шагу каркаса. Прижим представляет собой прямоугольную планку, позволяющую заготовкам стержней свободно перемещаться по пазам, но не позволяющую им при движении выйти из паза. Резак - устройство для отделения рабочей длины стержней от заготовки, выполненное таким образом, чтобы минимально деформировать стержни при резке. Толкатель представляет собой планку с плоской толкающей поверхностью, перпендикулярной направлению перемещения заготовок горизонтальных стержней, имеющую на нижней поверхности выступы в количестве и с размерами, равными количеству и размерам пазов в неподвижном горизонтальном кондукторе. При этом при опускании выступов толкателя в пазы кондуктора должно обеспечиваться свободное перемещение толкателя вдоль направления перемещения заготовок. Подвижный горизонтальный кондуктор представляет собой прямоугольную планку длиной не менее рабочей длины стержня, в поперечном сечении повторяющую профиль неподвижного горизонтального кондуктора. Кондуктор имеет возможность перемещаться по направляющим вдоль направления перемещения заготовок. Толкатель стержней аналогичен толкателю заготовок.

Два узла подачи стержней располагаются взаимно перпендикулярно. Направление пазов кондукторов совпадает с направлениями X и Y каркаса.

Узел поджатая горизонтальных стержней (фиг. 4) включает в себя 3 плиты- кондуктора вертикальных стержней (стержней направления Z) - нижнюю (поз. 10) и верхнюю (поз. И) для позиционирования и фиксации вертикальных стержней каркаса по горизонтали, и среднюю (поз. 12) для поджатая каждого уложенного ряда горизонтальных стержней, подвижную станину (поз. 13) с основанием, направляющими и фиксатором стержней (поз. 14), неподвижную станину (поз. 15) с приводом вертикального перемещения подвижной станины с возможностью программирования алгоритма движения подвижной станины (привод на фиг.4 не показан). Три плиты-кондуктора выполнены толщиной равной 3-5 диаметрам вертикальных стержней направления Z. На неподвижной станине на высоте не более 30 диаметров горизонтальных стержней от ее основания установлена неподвижная средняя (поджимающая) горизонтальная плита-кондуктор с вертикальными отверстиями, расположение которых в горизонтальной плоскости повторяет расположение вертикальных стержней направления Z собираемого каркаса. Диаметр отверстий выполнен минимальным для выполнения условия свободного взаимного перемещения по ним стержней собираемого каркаса. На неподвижной станине имеются направляющие, обеспечивающие свободное перемещение по ним в вертикальном направлении подвижной станины при помощи привода вертикального перемещения, установленного также на неподвижной станине.

Подвижная станина представляет собой жесткую конструкцию из вертикальных штанг, в верхней и нижней части скрепленных двумя горизонтальными конструктивными плитами. На нижней конструктивной плите установлен стол с горизонтальной опорной поверхностью. На столе крепится горизонтальная нижняя плита-кондуктор с отверстиями, количество и расположение которых совпадает с количеством и расположением отверстий в неподвижной средней плите-кондукторе неподвижной станины. В верхней части подвижной станины под верхней конструктивной плитой располагается фиксатор, представляющий собой прижимную плиту, имеющий возможность плоскопараллельного перемещения по штангам и фиксации в определенном положении. К нижней поверхности фиксатора прикреплен листовой мягкий материал (например, поролон) с размерами по горизонтали не менее размеров перфорированных плит-кондукторов. Под фиксатором располагается верхняя плита-кондуктор, повторяющая основные функциональные размеры нижней плиты-кондуктора, с возможностью плоскопараллельного перемещения по штангам и фиксации на них в определенном положении.

Пример конкретного исполнения:

Углеродные стержни диаметром 1,2 мм получали из углеродного волокна УКН- 5000 на стержневой машине. Связующим был выбран водный раствор поливинилового спирта (ПВС), соотношение ПВС: вода 1:6, температура отверждения была равной 200°С, длина готовых стержней составляла 1 ,5 м.

Установку вертикальных стержней каркаса производили следующим образом: Готовые углеродные стержни устанавливали в направлении Z в узел поджатая стержней. Для этого необходимо совместить три плиты кондуктора вертикальных стержней, затем в пазы вставить вертикальные стержни, опустить и закрепить фиксатор вертикальных стержней, выставить исходное положение узла поджатая с помощью привода вертикального перемещения подвижной станины. Установку горизонтальных стержней направления X и Y в каркас производили следующим образом:

Заготовки готовых углеродных стержней укладывали в неподвижные кондукторы направлений X и Y. Устанавливали прижимы, исключающие выпадение заготовок стержней из пазов неподвижных кондукторов. Толкателем заготовок стержней направления X передвигали заготовки на подвижный кондуктор направления X на расстояние, равное длине стержней направления X. Резаком отрезали стержни данной длины. Передвигали подвижный кондуктор до упора с каркасом, затем толкателем стержней направления X перемещали стержни в тело каркаса. После этого подвижный кондуктор направления X возвращали в исходное положение. Затем средней плитой узла поджатая поджимали уложенный ряд горизонтальных стержней X до занятия ими расчетного положения в каркасе.

Горизонтальные стержни направления Y в каркас устанавливали и поджимали аналогично горизонтальным стержням направления X.

Горизонтальные стержни направления X и Y устанавливали в каркас попеременно рядами до полного расходования заготовок стержней направления X и Y в неподвижных кондукторах X и Y. Затем операции повторяли до полной сборки каркаса.

Выводы: Предложенный способ формирования 3D каркаса многомерно армированного углеродного композиционного материала и устройство для его осуществления увеличивает производительность труда на 30% за счет механизации и автоматизации процесса сборки. Повышает качество изготовления каркаса за счет увеличения точности окончательного расположения стержней в каркасе и их прямолинейности, что в свою очередь позволяет снизить разброс свойств изделия (образца композитного материала) и в дальнейшем позволяет получить более оптимальную конструкцию изделия из композитной заготовки.

Источники информации: 8962 МПК С04В 35/52 опубл. 20.11.2013 года 4438 МПК В29С70/24 опубл. 10.03.2012 года 0497 МПК СО 1 В 31 /02 опубл. 20.09.1997 года 8725 МПК В29В11/16 опубл. 20.11.2015 года