Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FUEL-CELL SYSTEM
Document Type and Number:
WIPO Patent Application WO/2005/029615
Kind Code:
A2
Abstract:
The invention relates to a fuel-cell system (1), in particular for a vehicle, comprising a fuel cell (3), a reformer (15) and a water-supply device (25) for supplying the reformer (15) with water. Said system is characterised in that the water-supply device (25) comprises a separate water-production unit (27).

Inventors:
KUIPERS JAN-KASPER (DE)
MAUME CHRISTOPH (DE)
KLEIN OLAF (DE)
ALMKERMANN JENS ARIK (DE)
Application Number:
PCT/EP2004/004877
Publication Date:
March 31, 2005
Filing Date:
May 07, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VOLKSWAGEN AG (DE)
KUIPERS JAN-KASPER (DE)
MAUME CHRISTOPH (DE)
KLEIN OLAF (DE)
ALMKERMANN JENS ARIK (DE)
International Classes:
H01M8/04; H01M8/06; (IPC1-7): H01M8/00
Foreign References:
US6416891B12002-07-09
EP1083617A22001-03-14
EP1060942A22000-12-20
Attorney, Agent or Firm:
VOLKSWAGEN AKTIENGESELLSCHAFT (Wolfsburg, DE)
Download PDF:
Claims:
PATENTANSPRüCHE 1. Brennstoffzellensystem, insbesondere für ein Fahrzeug, mit einer Brennstoffzelle, einem Reformer und einer Wasserversorgungseinrichtung zur Versorgung des Reformers mit Wasser, dadurch gekennzeichnet, dass die Wasserversorgungseinrichtung (25) eine separate Wassererzeugungseinrichtung (27) aufweist.
2. Brennstoffzellensystem nach Anspruch 1, dadurch gekennzeichnet, dass die Wassererzeugungseinrichtung (27) eine Totaloxidationseinheit (31) aufweist.
3. Brennstoffzellensystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Totaloxidationseinheit (31) eine erste Gemischbildungsei nheit (29) vorgeschaltet ist.
4. Brennstoffzellensystem nach nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Totaloxidationseinheit (31) eine zweite Gemischbildungseinheit (39) nachgeschaltet ist.
5. Brennstoffzellensystem nach nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Gemischbildungseinheit (39) zur Versorgung des Reformers (15) diesem vorgeschaltet ist.
6. Brennstoffzellensystem nach nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wasserversorgungseinrichtung (25) eine Wasserrückführeinrichtung aufweist.
7. Verfahren zum Betreiben eines Brennstoffzellensystems, insbesondere eines Brennstoffzellensystems nach einem der Ansprüche 1 bis 6, gekennzeichnet durch folgenden Schritt : - zumindest teilweises Versorgen des Reformers (15) mit Produktwasser durch eine Totaloxidation eines wasserstoffhaltigen Brennstoffs.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die bei der Totaloxidation anfallende Reaktionswärme dem Reformer (15) zugeführt wird. 9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Totaloxidation im wesentlichen adiabat durchgeführt wird.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Endprodukte der Totaloxidation dem Reformer (15) zugeführt werden.
11. Verwendung einer Totaloxidationseinheit (31) zur Versorgung eines Brennstoffzellensystems (1), insbesondere eines Reformers (15) eines Brennstoffzellensystems (1), mit Wasser.
Description:

Brennstoffzellensystem Die Erfindung betrifft ein Brennstoffzellensystem, insbesondere für ein Fahrzeug, mit einer Brennstoffzelle, einem Reformer und einer Wasserversorgungseinrichtung zur Versorgung des Reformers mit Wasser.

Außerdem bezieht sich die Erfindung auf ein Verfahren zur Versorgung eines Brennstoffzellesystems mit Wasser gemäß des Oberbegriffs des Anspruchs 7.

Weiter betrifft die Erfindung eine Verwendung einer Totaloxidationseinheit nach Anspruch 11.

Brennstoffzellensysteme und Verfahren der gattungsgemäßen Art sind bekannt.

Diesen Systemen, insbesondere falls diese mobil eingesetzt werden sollen, liegt der Gedanke einer zumindest ausgeglichenen Wasserbilanz zu Grunde. Ein solches System soll also während seiner Betriebs-beziehungsweise Startphase ohne Zugabe zusätzlichen Prozesswassers (externe Betankung) auskommen.

Bevorzugt kommen dabei Membran-oder Festoxidbrennstoffzellen zum Einsatz. Als Sekundärbrennstoff dient bei diesen Typen hauptsächlich Wasserstoff. Je nach Einsatzgebiet wird jedoch kein Reinstwasserstoff, sondern bevorzugt ein konventioneller Energieträger als Primärkraftstoff zugeführt (Beispielsweise Methanol, Benzin, Erdgas, <BR> <BR> etc. ). In einem solchen Fall muss der Kraftstoff über einen Reformierungsprozess in ein wasserstoffreiches Gas umgesetzt werden.

Bekannt sind insbesondere solche Systeme, die diese Anforderungen durch eine Wasserversorgungseinrichtung erfüllen. Insbesondere sind Systeme bekannt, bei denen anfallendes Produktwasser zurückgewonnen und vorzugsweise als Wasserdampf dem Reformierungsprozess zugeführt wird. Es hat sich jedoch herausgestellt, das solche Systeme einen recht komplizierten Aufbau aufweisen und auch in kalten Umgebungen auf Grund eventuell zurückgebliebenem, gefrorenem Kondensat Schwierigkeiten in der Startphase bereiten beziehungsweise die Versorgung des Reformierungsprozesses mit Wasser nicht in allen Betriebsphasen des Systems zu 100% zufriedenstellend war.

Aus der DE 199 43 248 A1 ist ein Brennstoffzellensystem bekannt, bei dem der Wasserbedarf der Reformierungsreaktion direkt an eine Oxidationsrate einer teilweisen Verbrennung eines wasserstoffhaltigen Brennstoffs in einer Oxidationseinheit stromauf des Reformierungsreaktors gekoppelt wird. Dies birgt jedoch die mit einer unterstöchiometrischen Verbrennung einhergehenden Nachteile. So entstehen beispielsweise bei der Verbrennung eines Kohlenstoff und Wasserstoff enthaltenden Brennstoffs neben dem erwünschten Wasser auch verstärkt weitere dem nachfolgenden Prozess hinderliche Reaktionsendprodukte, insbesondere Kohlenmonoxid und Ruß.

Außerdem hat sich herausgestellt, dass sich dieses System nicht in jedem Betriebszustand optimal regeln beziehungsweise Steuern lässt.

Aufgabe der Erfindung ist es daher, ein Brennstoffzellensystem zu schaffen, das diese Nachteile verringert beziehungsweise vermeidet.

Zur Lösung dieser Aufgabe wird ein Brennstoffzellensystem mit den Merkmalen des Anspruchs 1 vorgeschlagen. Dieses zeichnet sich dadurch aus, dass die Wasserversorgung eine separate Wassererzeugungseinrichtung aufweist. Die Wassererzeugungseinrichtung stellt das von dem Reformer benötigte Wasser zur Verfügung und ermöglicht so einen wasserautarken Betrieb des Brennstoffzellensystems. Dies erlaubt also einen von äußeren Betriebsstoffen möglichst unabhängigen Betrieb des Systems, weil eine aufwändige und bei Temperaturen unter dem Gefrierpunkt nachteilige externe Betankung, insbesondere bei einem mobilen Einsatz des Systems, entfallen kann. Außerdem kann so die Rückführungsrate einer möglicherweise zusätzlich vorhandenen Wasserrückführungseinrichtung für das in dem Brennstoffzellensystem geführte Wasser verringert werden. Weil die Wassererzeugungseinrichtung nicht mit anderen Bauteilen kombiniert ist, kann diese vorteilhafterweise separat gesteuert beziehungsweise geregelt werden, was eine sichere Versorgung des Reformers mit Wasser in den unterschiedlichsten Betriebszuständen des Brennstoffzellensystems ermöglicht.

Bevorzugt wird ein Ausführungsbeispiel der Erfindung, das sich dadurch auszeichnet, dass die Wassererzeugungseinrichtung eine Totaloxidationseinheit aufweist. Die Totaloxidationseinheit verbrennt einen Brennstoff, insbesondere CxHy und/oder CxHyOH und/oder H2, vollständig beziehungsweise stöchiometrisch. Als Endprodukte fallen im wesentlichen nur Wasser und Kohlendioxid beziehungsweise Wasser an. Das in der Totaloxidationseinheit entstehende Wasser kann zur Versorgung des Reformers diesem zugeführt werden. Darüber hinaus kann die entstehende Reaktionswärme vorteilhaft zum Aufheizen des Systems in der Startphase und/oder zur Versorgung des im Reformer ablaufenden Reformierungsprozesses mit Energie verwendet werden.

Insbesondere kann die Wasserversorgung in der Startphase selbst dann gewährleistet werden, wenn bei der Abschaltphase des Systems alles Wasser beziehungsweise Kondensat aus Frostschutzgründen aus diesem entfernt wird. Die Totaloxidationseinheit dient in diesem Zusammenhang also als wasserunabhängige Starteinheit des Brennstoffzellensystems.

Ein bevorzugtes Ausführungsbeispiel der Erfindung zeichnet sich dadurch aus, dass der Totaloxidationseinheit eine erste Gemischbildungseinheit vorgeschaltet ist. In der ersten Gemischbildungseinheit kann der Brennstoff mit einem sauerstoffhaltigen Gasgemisch, vorzugsweise Luft, vermengt und so für die nachfolgende Verbrennung bzw.

Totaloxidation aufbereitet werden.

Ein bevorzugtes Ausführungsbeispiel der Erfindung zeichnet sich dadurch aus, dass der Totaloxidationseinheit eine zweite Gemischbildungseinheit nachgeschaltet ist. In der zweiten Gemischbildungseinheit können die in der Totaloxidationseinheit entstehenden Reaktionsprodukte mit weiteren Komponenten, insbesondere einem sauerstoffhaltigen Gasgemisch, vorzugsweise Luft, sowie Brennstoff vermengt werden.

Ein bevorzugtes Ausführungsbeispiel der Erfindung zeichnet sich dadurch aus, dass die zweite Gemischbildungseinheit zur Versorgung des Reformers diesem vorgeschaltet ist.

Der Reformer kann also mit einem in der zweiten Gemischbildungseinheit herstellbaren, reaktionsfähigen Gemenge versorgt werden. Dieses kann beispielsweise im Wesentlichen die Edukte CxHy und/oder CxHyOH und/oder H2, H20 und 02 sowie die Inertgasanteile C02 und N2 aufweisen.

Ein bevorzugtes Ausführungsbeispiel der Erfindung zeichnet sich dadurch aus, dass die Wasserversorgungseinrichtung eine Wasserrückführeinrichtung aufweist. Die Wasserrückführeinrichtung dient zur Rückführung von in der Kathodenseite der Brennstoffzelle entstehenden Produktwassers und kann vorteilhaft mit der Wassererzeugungseinrichtung kombiniert werden. Im Betrieb der Brennstoffzelle wird also das für den Reformierungsprozess benötigte Prozesswasser teilweise durch die Wassererzeugungseinrichtung und teilweise durch die Wasserrückführeinrichtung bereitgestellt. Folglich reduziert sich im Vergleich zu herkömmlichen Systemen ohne Wassererzeugungseinrichtung der Aufwand, der für die Wasserrückführung getrieben werden muss. Denkbar ist es auch, in bestimmten Betriebszuständen eine der Einrichtungen ganz oder teilweise abzuschalten, insbesondere in der Startphase nur die Wassererzeugungseinrichtung und in der Betriebsphase nur die Wasserrückführeinrichtung zu verwenden.

Die der Erfindung zugrunde liegende Aufgabe wird außerdem durch ein Verfahren nach Anspruch 7 gelöst. Kennzeichnend wird der Reformer zumindest teilweise mit Produktwasser, das durch eine Totaloxidation eines wasserstoffhaltigen Brennstoffs erzeugt wird, versorgt. Bei der Totaloxidation des Brennstoffs entstehen im wesentlichen Kohlendioxid und Wasser. Unerwünschte Reaktionsprodukte, wie beispielsweise Ruß oder Kohlenmonoxid, entstehen nur in verhältnismäßig geringem Maße. Das Wasser wird vorteilhafterweise dem Reformer zugeführt. Eine Wasserrückführungseinrichtung wird verzichtbar oder kann zumindest kleiner ausgelegt werden. Insbesondere kann das Brennstoffzellensystem wasserunabhängig, also ohne jegliche Speicherung und/oder externe Zuführung von Wasser, gestartet werden.

Eine bevorzugte Ausführungsform des Verfahrens zeichnet sich dadurch aus, dass die bei der Totaloxidation anfallende Reaktionswärme dem Reformer zugeführt wird.

Hierdurch kann ein eigentlich endotherm verlaufender Reformierungsprozess zusammen mit der Totaloxidation zu einem autothermen Gesamtprozess kombiniert werden.

Eine bevorzugte Ausführungsform des Verfahrens zeichnet sich dadurch aus, dass die Totaloxidation im wesentlichen adiabat durchgeführt wird. Etwaige Vorrichtungen zur Wärmekopplung und/oder Kühlung werden bei diesem Prozessschritt nicht benötigt.

Eine bevorzugte Ausführungsform des Verfahrens zeichnet sich dadurch aus, dass die Endprodukte der Totaloxidation dem Reformer zugeführt werden. Mit den Endprodukten kann dem Reformer gleichzeitig das benötigte Reaktionswasser und die bei der Totaloxidation entstehende Wärme zugeführt werden.

Schließlich wird die der Erfindung zu Grunde liegende Aufgabe auch durch die Verwendung einer Totaloxidationseinheit zur Versorgung eines Brennstoffzellensystems, insbesondere eines Reformers des Brennstoffzellensystems, mit Wasser gelöst. In der Totaloxidationseinheit kann ein wasserstoffhaltiger Brennstoff verbrannt werden. Das dabei entstehende Wasser kann vorteilhaft zur Deckung des Wasserhaushalts des Reformers genutzt werden.

Weitere vorteilhafte Ausbildungen der Erfindung ergeben sich aus den Kombinationsmöglichkeiten der Unteransprüche und aus der Beschreibung.

Die Erfindung wird im Folgenden anhand der Zeichnung beispielhaft näher erläutert. In der einzigen Figur ist ein erfindungsgemäßes Brennstoffzellensystem anhand eines Blockschaltbilds, aus dem auch das erfindungsgemäße Verfahren und die erfindungsgemäße Verwendung hervorgehen, dargestellt. Volumenströme, die in hier nicht dargestellten Pfaden, insbesondere Rohrleitungen, Schläuchen etc., geführt werden, sowie die dazugehörigen Strömungsrichtungen sind durch Pfeile und Linien symbolisiert.

Die einzige Figur zeigt ein Blockschaltbild eines Brennstoffzellensystems 1, dass insbesondere zum Einsatz in einem hier nicht dargestellten Fahrzeug vorgesehen ist.

Des Brennstoffzellensystem 1 weist eine Brennstoffzelle 3, beziehungsweise einen Brennstoffzellenstapel, mit einer Anodenseite 5 und einer Kathodenseite 7 auf. Bei der Brennstoffzelle 3 handelt es sich vorzugsweise um eine Membranbrennstoffzelle, insbesondere Polymer-Elektrolyt-Membran-Brennstoffzelle (PEM-Brennstoffzelle), oder Festoxidbrennstoffzelle.

Die Kathodenseite 7 der Brennstoffzelle 3 wird durch einen Kathodeniuftvolumenstrom 9 gespeist. Zuvor wird der Kathodenluftvolumenstrom 9 durch einen Kathodeniuftkompressor 11 verdichtet. Bei dem Kathodeniuftvolumenstrom 9 handelt es sich um ein sauerstoffreiches Gasgemisch, vorzugsweise um aus der Umgebung angesaugte Frischluft. Der Kathodenluftkompressor 11 ist also stromaufwärts an eine hier nicht näher dargestellte Ansaugöffnung und stromabwärts an die Kathodenseite 7 der Brennstoffzelle 3 angeschlossen.

In der Kathodenseite 7 der Brennstoffzelle 3 wird der Kathodenluftvolumenstrom 9 unter Verbrauch von Sauerstoff mit dort anfallendem Produktwasser angereichert, also in einen Brennstoffzellenabgasvolumenstrom 13 umgewandelt. Bei dem hier dargestellten Ausführungsbeispiel verlässt der Brennstoffzellenabgasvolumenstrom 13 das Brennstoffzellensystem 1 durch eine nicht näher dargestellte Abgasöffnung.

Die Anodenseite 5 der Brennstoffzelle 3 wird durch einen von einem Reformer 15 erzeugten wasserstoffreichen Prozessgasvolumenstrom 17 gespeist. Der Reformer 15 ist also stromabwärts direkt an die Anodenseite 5 der Brennstoffzelle 3 angeschlossen.

Es ist auch möglich, in den Prozessgasvolumenstrom 17 weitere, hier nicht dargestellte Prozessschritte zu schalten. Denkbar sind insbesondere Maßnahmen zur Prozessgasreinigung, wie beispielsweise eine Shiftreaktion, eine Wasserstoffabtrennung durch eine selektiv durchlässige Membran oder eine Kohlenmonoxidnachverbrennung.

Bevorzugt ist in den Reformer 15 eine hier nicht dargestellte Vorrichtung zur Prozessgasreinigung bereits integriert, sodass der Prozessgasvolumenstrom 17 möglichst wenige Verunreinigungen, insbesondere Kohlenmonoxid und Schwefelverbindungen, enthält. Der Prozessgasvolumenstrom 17 besteht dann quasi aus reinem Wasserstoff oder aus einem Gemisch aus Wasserstoff und anderen für die Brennstoffzelle 3 unschädlichen Bestandteilen.

Denkbar ist es auch, auf eine wie oben beschriebene Prozessgasreinigung zu verzichten oder zumindest den hierfür notwendigen Aufwand deutlich zu reduzieren, also beispielsweise höhere Verunreinigungen durch Kohlenmonoxid zuzulassen. Dies ist insbesondere dann sinnvoll, wenn es sich bei der Brennstoffzelle 3 um eine oxidkeramische oder eine Schmelzkarbonat-Brennstoffzelle handelt.

In der Anodenseite 5 der Brennstoffzelle 3 wird der Prozessgasvolumenstrom 17, insbesondere unter Verbrauch des darin enthaltenen Wasserstoffs in einen Anodengasrückführvolumenstrom 19 umgewandelt. Der Anodengasrückführ- volumenstrom 19 wird in den Reformer 15 zurückgeführt. Die Anodenseite 5 der Brennstoffzelle 3 ist also ausgangsseitig stromabwärts an den Reformer 15 angeschlossen. Es ist denkbar, dem Anodengasrückführvolumenstrom 19 andere Prozessschritte, insbesondere eine Restgasverbrennung, nachzuschalten und/oder diesen vorzugsweise direkt oder teilweise abzuleiten.

Erfindungsgemäß weist das Brennstoffzellensystem 1 eine Wasserversorgungseinrichtung 25 mit einer separaten Wassererzeugungseinrichtung 27 auf. Die Wassererzeugungseinrichtung 27 ist hier als getrennte Baueinheit ausgeführt und folglich durch hier nicht näher dargestellte Mittel, insbesondere Luftklappen, Sensoren, Einspritzdüsen, etc., separat steuerbar beziehungsweise regelbar.

Die Wassererzeugungseinrichtung 27 weist eine erste Gemischbildungseinheit 29 und eine stromabwärts daran angeschlossenen Totaloxidationseinheit 31 auf. Stromaufwärts wird die erste Gemischbildungseinheit 29 durch einen Brennstoffvolumenstrom 33 und einen Zuluftvolumenstrom 35 gespeist. Der Brennstoffvolumenstrom 33 enthält einen flüssigen oder gasförmigen wasserstoffhaltigen, insbesondere Methan, Methanol, Benzin, Diesel, Erdgas, etc., Brennstoff. Bei dem Zuluftvolumenstrom 35 handelt es sich um ein sauerstoffhaltiges Gasgemisch, insbesondere Luft.

Der Brennstoffvoiumenstrom 33 und der Zuluftvolumenstrom 35 werden in der ersten Gemischbildungseinheit 29 vermengt, sodass ein reaktionsfähiges Gemisch entsteht.

Das reaktionsfähige Gemisch wird als Gemischvolumenstrom 37 der Totaloxidationseinheit 31 zugeführt. In der Totaloxidationseinheit 31 wird der Gemischvolumenstrom 37 stöchiometrisch verbrannt. Der Brennstoffvolumenstrom 33 und der Zuluftvolumenstrom 35 werden also in der Gemischbildungseinheit 29 mit einer Luftzahl größer gleich 1 aufbereitet.

Stromabwärts ist die Totaloxidationseinheit 31 an eine zweite Gemischbildungseinheit 39 angeschlossen. Durch die Verbrennung des Brennstoffs wird der Gemischvolumenstrom 37 in einen hauptsächlich die Reaktionsendprodukte Wasser und Kohlendioxid sowie Inertgas enthaltenen Wasserversorgungsvolumenstrom 41 umgewandelt. Je nach Brennstoff können auch Schwefelverbindungen enthalten sein.

Der zweiten Gemischbildungseinheit 39 werden der Wasserversorgungsvolumenstrom 41 und ebenfalls der Zuluftvolumenstrom 35 sowie der Brennstoffvolumenstrom 33 zugeführt und dort zu einem Reformergasvolumenstrom 43, der den Reformer 15 speist, vermengt. Die zweite Gemischbildungseinheit 39 ist also stromabwärts an den Reformer 15 angeschlossen. Der Reformergasvolumenstrom 43 enthält also zumindest Brennstoff, für den Reformationsprozess notwendiges, von der Totaloxidationseinheit 31 herrührendes Wasser und Sauerstoff sowie gegebenenfalls Inertgase. Außerdem ist der Reformergasvolumenstrom 43 durch die in der Totaloxidationseinheit 31 entstehende Verbrennungswärme vorgewärmt. In dem hier dargestellten Ausführungsbeispiel verläuft die Verbrennung des Brennstoffs im wesentlichen adiabat. Die Totaloxidationseinheit 31 ist also nicht gekühlt, sodass quasi die gesamte Verbrennungsenergie über den Reformergasvolumenstrom 43 dem Reformer 15 zugeführt werden kann, um den eigentlich endotherm verlaufenden Reformierungsprozess ausreichend mit Energie zu versorgen. So können die Totaloxidation und der Reformierungsprozess zu einem autothermen Gesamtprozess kombiniert werden. Hierzu ist der Gesamtprozess entsprechend zu regeln. Dies kann durch hier nicht näher dargestellte Steuer-und Regelelemente der Gemischbildungseinheiten 29,39 erfolgen. Insbesondere einzustellen sind die relative produzierte Wasser-und Wärmemenge, also der Anteil des in der Totaloxidationseinheit 31 verbrannten Brennstoffs zu dem im Reformer 15 umgesetzten Brennstoff, sowie die Luftzahlen der Verbrennung und des Reformierungsprozesses.

In dem Reformer 15 wird der Reformergasvolumenstrom 43 in einen im wesentlichen Kohlendioxid, Wasser und Inertgas enthaltenen Reformerabgasvolumenstrom 44 umgesetzt. Reformierungsprozesse sind bekannt, sodass hier nicht weiter darauf eingegangen wird.

Der Zuluftvolumenstrom 35 wird durch einen Reformerkompressor 45 verdichtet und durch ein erstes Dreiwegeventil 47 so aufgeteilt, dass dieser beide Gemischbildungseinheiten 29 und 39 speist. Der Reformerkompressor 45 ist also stromabwärts an das Dreiwegeventil 47 und dieses mit jeweils einem Ausgang an die Gemischbildungseinheiten 29,39 angeschlossen.

Der Brennstoffvolumenstrom 33 wird durch einen Tank 49 gespeist, durch eine Pumpe 51 gefördert und durch ein zweites Dreiwegeventil 53 so aufgeteilt, dass dieser beide Gemischbildungseinheiten 29 und 39 speist. Der Tank 49 ist also stromabwärts über die Pumpe 51 und über jeweils einen Ausgang des zweiten Dreiwegeventils 53 an die Gemischbildungseinheiten 29,39 angeschlossen.

Die Dreiwegeventile 47,53 können steuerbar ausgelegt werden, also Einzelteile der oben angesprochenen Steuer-und Regelelemente der Gemischbildungseinheiten 29,39 sein.

Bei einem hier nicht dargestellten Ausführungsbeispiel weist die Wasserversorgungseinrichtung 25 zusätzlich eine zumindest teilweise Rückführung des feuchten Brennstoffzellenabgasvolumenstroms 13 auf. Hierzu ist die Kathodenseite 7 der Brennstoffzelle 3, vorzugsweise über steuerbare Dreiwegeventile, an eine der Gemischbildungseinheiten 29,39, die Totaloxidationseinheit 31 und/oder den Reformer 15 und/oder die nicht dargestellte Abgasöffnung angeschlossen.

Außerdem ist es möglich, Wasserstoff aus dem Prozessgasvolumenstrom 17 der Totaloxidationseinheit 31 zuzuführen, um so Wasser und für den Reformierungsprozess benötigte Energie zu erzeugen. Ferner ist es denkbar, an Stelle der Totaloxidationseinheit 31 einen Verbrennungsmotor vorzusehen.

Schließlich ist es denkbar, die Wassererzeugungseinrichtung 27, also die erste Gemischbildungseinheit 29 und die Totaloxidationseinheit 31, in einem Bauteil zu integrieren und/oder hierfür marktübliche Brenner, vorzugsweise Zuheizsysteme, zu verwenden.

BEZUGSZEICHENLISTE 1 Brennstoffzellensystem 2 Brennstoffzelle 5 Anodenseite 7 Kathodenseite 9 Kathodenluftvolumenstrom 11 Kathodenluftkompressor 13 Brennstoffzellenabgasvolumenstrom 15 Reformer 17 Prozessgasvolumenstrom 19 Anodengasrückführvolumenstrom 21 Reformergasvolumenstrom 25 Wasserversorgungseinrichtung 27 Wassererzeugungseinrichtung 29 erste Gemischbildungseinheit 31 Totaloxidationseinheit 33 Brennstoffvolumenstrom 35 Zuluftvolumenstrom 37 Gemischvolumenstrom 39 zweite Gemischbildungseinheit 41 Wasserversorgungsvolumenstrom 43 Reformergasvolumenstrom 44 Reformerabgasvolumenstrom 45 Reformerkompressor 47 erstes Dreiwegeventil 49 Tank 51 Pumpe 53 zweites Dreiwegeventil