Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HARDENING FIXTURE
Document Type and Number:
WIPO Patent Application WO/2002/046674
Kind Code:
A1
Abstract:
Hardening fixture for simultaneous hardening of a multitude of sawblades, comprising a bottom plate (13) against which the lower ends (12) of the sawblades are supported, vertical pillars (14) and side plates (15) with lateral openings, where guiding strips (16, 17) and distance elements (19) keep the sawblades parallel close to each other without compressive force, where the structural parts are made from graphite with a surface coating not containing carbon.

Inventors:
ALBINSSON GOERAN (SE)
Application Number:
PCT/SE2001/002696
Publication Date:
June 13, 2002
Filing Date:
December 06, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KAPMAN AB (SE)
ALBINSSON GOERAN (SE)
International Classes:
C21D9/00; C21D9/24; F27D5/00; (IPC1-7): F27D5/00; C21D9/24
Foreign References:
DE29721475U11998-02-19
DE3408944A11985-09-19
DE3124252C11983-03-31
EP0213333A21987-03-11
DE19651408A11998-06-18
DE19737212A11999-03-04
Attorney, Agent or Firm:
Axelsson, Nils Åke (GROTH & CO. KB Box 6107 Stockholm, SE)
Download PDF:
Claims:
CLAIMS
1. Hardening fixture for simultaneous hardening of a multitude of sawblades, characterized by comprising a bottom plate (13) on which the sawblades are standing vertically supported by their lower ends (12), and side plates (15) which by means of distance elements (19) hold the sawblades close to one another without compressive force.
2. Hardening fixture according to claim 1, characterized by its structural parts being made from graphite.
3. Hardening fixture according to claim 2, characterized by the graphite be ing reinforced with carbon fibres.
4. Hardening fixture according to claim 1,2 or 3, characterized by the sur faces of the hardening fixture which might contact the sawblades being surface coated with a material (21) which does not contain carbon.
5. Hardening fixture according to claim 4, characterized by the surface coat ing being made from ceramic nitrides or oxides or combinations of these materi als.
6. Hardening fixture according to claim 4, characterized by the surface coat ing being made from a high temperature resistant metal such as molybdenum or chromium alloys.
Description:
HARDENING FIXTURE Background Sawblades for metal are commonly made with teeth from high-speed steel, or sometimes wholly from high-speed steel, which refers to steel alloys con- taining tungsten and chromium. To get the desired wear resistance, the saw blades must be hardened at a very high temperature, normally by heating to a temperature around 1200 degrees C during a few minutes, followed by rapid cool- ing with gas or liquid, and thereafter annealing during up to 60 minutes at around 550 degrees C.

The hardening temperature of 1200 degrees C is so high, that any other steel alloy would be deformed even during such a short heating period, and tradi- tionally sawblades for metal have been hardened while suspended vertically from a chain conveyor, and then being heated by radiation or salt bath, followed by cooling by cold gas or oil immersion. Important disadvantages of handling sus- pended saw blades is the time needed for mounting and dismounting, and the relatively great distance between the hanging blades which gives the hardening oven a low production capacity unless it is made very spacious. Hardening ovens are also known where the sawblades are tightly packed in fixtures as in the patent US 6,147,328, but that makes it difficult to get a sufficiently fast and even cooling.

Another traditional known hardening method involves local heating only of the teeth of the sawblade such as by electric induction, but this method also re- quires a spacious hardening plant to get the required time at high temperature.

The present invention concerns a fixture which allows rapid uniform heating and cooling of a large number of sawblades within a limited space, and which is constructed in such a way that deformation of the sawblades and fixture at the high temperature is prevented.

Description Figure 1 shows a hardening fixture with sawblades standing therein, Figure 2 shows a part of an opened hardening fixture with sawblades.

One purpose of the hardening fixture is that it should confine a large num- ber of sawblades with such reduced mobility that they will not be deformed at the high temperature, but yet with enough mobility to allow uniform cooling thereafter

by a gas flow. Another purpose is that the hardening fixture should be made from such a material that will not itself be deformed or affected by repeated heating and cooling, and that will not cause chemical alterations of the sawblades at the points where they contact the hardening fixture. A third purpose is that the hardening fix- ture should confine the sawblades without contact forces between the blades, be- cause contact forces can make the sawblades stick to each other by diffusion welding.

A hardening fixture according to the invention is made such that it can si- multaneously confine and support a large number of sawblades 10, preferably up to 300 pieces depending on their thickness. They are standing vertically supported on their lower ends 12 and have upper ends 11 that are free but oriented by the hardening fixture. The flat lateral surfaces of the sawblades are close to each other without any compressive force. The number of saw blades in the hardening fixture may vary depending on the thickness of the sawblades. Since the saw- blades are standing vertically, the same fixture can be used for sawblades with dif- ferent lengths within some limits, and for sawblades with different shapes of their ends, also without holes.

The hardening fixture comprises a bottom plate 13 rigidly connected to two vertical pillars 14 an two separate side plates 15. Each vertical pillar can be made with a uniform U-shaped section, or assembled from flat components. Each side plate is provided with an upper guiding strip 16, a lower guiding strip 17 and at least two vertical strips 18, and has lateral openings between the strips. The vertical strips are provided with distance elements 19. The bottom plate can be provided with guiding elements 20.

When sawbiades are to be confined in the hardening fixture, the saw- blades are placed parallel to each other on a first side plate 15 until they fill the space between the distance elements 19 without contact forces between the saw- blades. The second side plate is then placed on the first side plate, and both side plates with the sawblades between them are inserted between the vertical pillars 14 until the lower ends 12 of the sawblades touch the bottom plate 13. Alterna- tively, the side plates can at first be inserted between the vertical pillars, and bun- dles of sawblades can later be inserted between the distance elements, and if this method is used, the side plates can be connected to each other by the distance elements. If the side plates 15 have more than two vertical strips 18 there are

spaces for more than one bundle of sawblades, but all spaces need not be filled.

To start the heating to the hardening temperature, the hardening fixture with the sawblades standing in it is carried by a conveyor into a heating zone be- tween two radiating heater plates which may be electrically heated to a predeter- mined temperature. The heater plates are located so close to the hardening fixture that the sawblades and the hardening fixture are rapidly heated through the lateral openings. The side plates 15 keep the sawblades parallel at a desired uniform dis- tance from the heater plates. The ends 11,12 of the sawblades are hidden by the guiding strips 16,17 and will not be heated as much, which will give them a desir- able greater toughness and lower hardness.

By means of the conveyor the hardening fixture and the sawblades are thereafter carried to a cooling zone where gas of a predetermined temperature is blown against the edges of the sawblades through a multitude of nozzles located very close to the lateral openings. Since the sawblades are not pressed together, and by gradual motion of the hardening fixture relative to the nozzles, the saw- blades will vibrate relative to each other and allow the gas to penetrate between them to cause an even cooling.

When the sawblades 10 have been cooled and after that annealed long enough in a second heating zone, they may be removed from the hardening fix- ture if it is taken apart or turned upside down. If it is desired to use the same heat- ing zone and cooling zone for sawblades of different width without adjusting the position of the heating plates or coolant nozzles, the hardening fixture may be made to allow placing of the wider sawblades in another angle than perpendicular to the side plates 15, which may also be simplified if the sides of the distance elements 19 facing the sawblades each one is formed with that angle.

In order to avoid deformation at the high temperature, the hardening fix- ture is made from graphite, preferably reinforced with carbon fibres. Direct contact of graphite or carbon fibres with steel at those high temperatures would cause carbon diffusion into the steel and a corresponding increase of brittleness, which is not allowed. The surfaces of the hardening fixture, especially the side plates 15, the distance elements 19 and the bottom plate 13, which might get in contact with the steel of the sawblades must therefore be covered with a thin layer of a wear resistant material 21 not containing carbon or other substances which might diffuse into the steel to deteriorate its properties, but still stable at high tempera-

tures. Examples of such materials are ceramics as boron nitride, silicon nitride, silicon dioxide, zirconium oxide are aluminium oxide. Certain high temperature re- sistant metals such as molybdenum or chromium alloys may be used.

Within the concept of the invention, the design of the hardening fixture may to some extent be varied and adapted to special shapes of the sawblades or the conveyor used for carrying the hardening fixture through the hardening plant.

The number of vertical strips may be varied, and if desired the bottom plate may be made to accommodate several parallel pairs of side plates. The vertical pillars 14 might also be integrated with the side plates 15 or the distance elements 19.