Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HERBICIDAL BENZENE COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/1994/005153
Kind Code:
A1
Abstract:
Herbicidal compositions and method of use involving effective amounts of substituted benzene compounds to control the growth of undesired vegetation.

Inventors:
PATEL KANU MAGANBHAI (US)
Application Number:
PCT/US1993/008096
Publication Date:
March 17, 1994
Filing Date:
September 02, 1993
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DU PONT (US)
PATEL KANU MAGANBHAI (US)
International Classes:
A01N31/14; A01N35/04; A01N35/10; A01N37/10; A01N37/18; A01N37/26; A01N37/34; A01N37/36; A01N37/40; A01N37/42; A01N37/48; A01N37/50; A01N37/52; A01N39/04; A01N43/08; A01N43/20; A01N43/28; A01N43/40; A01N43/50; A01N43/56; A01N43/653; A01N43/76; A01N43/78; A01N43/836; A01N43/84; A01N55/00; C07C69/88; C07C69/92; C07C233/65; C07C235/34; C07C235/46; C07C243/38; C07C251/48; C07C255/37; C07C255/50; C07C255/54; C07C255/56; C07C255/57; C07C255/62; C07C259/02; C07C259/10; C07C259/18; C07D213/56; C07D213/57; C07D213/643; C07D233/54; C07D249/08; C07D249/12; C07D263/22; C07D271/06; C07D277/30; C07D277/34; C07D303/22; C07D317/22; C07D521/00; C07F7/08; C07D213/64; (IPC1-7): A01N37/40; A01N31/14; A01N35/04; A01N35/10; A01N37/10; A01N37/18; A01N37/34
Foreign References:
US3776715A1973-12-04
GB900561A1962-07-11
GB901553A1962-07-18
FR1216998A1960-04-29
US3169849A1965-02-16
US3982931A1976-09-28
Download PDF:
Claims:
What is claimed is:
1. A composition for controlling the growth of undesired vegetation comprising an effective amount of a compound of Formula I or IIIIwherein R1 is Cl, Br, I, OCH3, OCHF2, OCF3 or N02;R2 is CN, C02R4, CHO, C(X)NR17R18, C(S)OR6, C≡CH,CHR19OR20, CH=NOR7, CH=CR21R22, C (halogen)=NOR7, C (NH2)=NOR7, C (CN)=NOR7, CHR19 (halogen) , CHR19CN, CHR19C(=0)NH2, CHR19C02H, or a five- membered heterocyclic ring containing one or more nitrogen, sulfur, or oxygen atoms and optionally substituted with one or more CH3, CF3, 0CH3, SCH3, or halogen; R3 is n-propyl; C4-C10 alkyl; n-propyl or C -C7 alkyl each substituted with one or more halogen, OR8, SR9 or NR10R1:L; ^-^ alkyl substituted with OR16, SR9, NR1 R15, C02 (C1-C2 alkyl) or phenyl optionally substituted with one or more CH3, CF3, OCH3, SCH3 or halogen; C3-C6 cycloalkyl; CH2(C3-C6 cycloalkyl); phenyl, pyridyl, thienyl, furyl, pyrazolyl or thiazolyl, each optionally substituted with one or more CH3, CF3, OCH3, SCH3 or halogen; C2-C6 alkenyl optionally substituted with one or more halogen or C02(C1-C2 alkyl);OR12; SR13; NR14R15; C(=X)R12; lkyl )or O-N=CR30R31;R4 is H, CJ-L-C2 alkyl ,R6, R7, R8, R9, R10 and R11 are independently H orC1-C2 alkyl; R12 and R13 are independently C^C^ alkyl optionally substituted with one or more halogen, OR8, SR9, C02R23, C(0)NR2 R25, CN, Si(CH3)3, C(R26) (OR27) (OR28) or NR10Rn; Cλ-C3 alkyl substituted with a five- or six-membered heterocyclic ring containing 1-2 heteroatoms selected from the group 1-2 nitrogens, 1 oxygen and 1 sulfur, each ring optionally substituted with 1-2 substituents selected from F, Cl, Br, CH3, CF3, OCH3 and CN; C3-C6 alkenyl; or phenyl or benzyl, each ring optionally substituted with one or more CH3, CF3, OCH3, OR29, SCH3 or halogen; R14 and R15 are independently H or C1-C2 alkyl, or may be taken together along with the nitrogen to which they are attached to form a pyrrolyl, piperidinyl, morpholinyl, pyrazolyl, or imidazolyl ring, each optionally substituted with one or more CH3, CF3, OCH3, SCH3, or halogen; R16 is H, ±-CQ alkyl; benzyl optionally substituted with one or more CH3, CF3, OCH3, SCH3 or halogen; or phenyl optionally substituted with one or more CH3, CF3, OCH3, SCH3 or halogen;R17 is H, C1-C alkyl or phenyl optionally substituted with one or more CH3, CF3, OCH3, SCH3 or halogen; R18 is H, C1-C2 alkyl, C3-C6 cycloalkyl, CH2 (C3-C6 cycloalkyl), 0(C1-C4 alkyl), O-allyl or may be taken together with R17 as -(CH2)4-, -(CH2)5- or -(CH2CH2OCH2CH2)-; R19 is H or C1-C2 alkyl; R20 is H or C(0)CH3; R21 and R22 are independently H, CN, C02R4, C(X)NR17R18 or halogen; R23, R24, R25 and R26 are independently H; Cx-C3 alkyl; or phenyl optionally substituted with one or more CH3, CF3, OCH3, SCH3, or halogen; R27 and R28 are independently C1-C3 alkyl or may be taken together as -(CH2)2- or -(CH2)3- optionally substituted with 1-2 CH3\'s; X is 0 or S;R29 is phenyl, pyridyl, thiazolyl, pyrazolyl or pyrrolyl each optionally substituted with one or more CH3, CF3, OCH3, SCH3, or halogen; and R30 and R31 are each independently H; C^C-^ alkyl; or phenyl optionally substituted with one or more CH3, CF3, OCH3, SCH3, or halogen; and agriculturally suitable salts thereof and at least one of the following: surfactant, solid or liquid diluent.
2. The composition of Claim 1 wherein R1 is Cl, Br or I; R2 is CN, C02H, C02CH3, C02CH2CH3, CHO, C(0)NH2, C(0)NHCH3, C(0)N(CH3)2, CH2OH or CH=NOR7;R3 is n-propyl; C4-C7 alkyl; C2 alkyl substituted with phenyl optionally substituted with one or more CH3, CF3, OCH3, SCH3 or halogen; CH2(C3-C6 cycloalkyl); phenyl optionally substituted with one or more CH3, CF3, OCH3, SCH3 or halogen; or OR12;R12 is C2-C alkyl;.
3. The compositions of Claim 2 whereinR1 is Cl or Br;R2 is CN, C02H or C(0)NH2;R3 is C4-C7 alkyl, CH2 (C3-C6 cycloalkyl) or OR12.
4. The composition of Claim 1 where the compound is 2-chloro-4- (2-methylpropoxy)benzamide.
5. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 1. 6.
6. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 2.
7. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 3.
8. 8 A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 4.
9. 9 A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 4.
Description:
TITLE HERBICIDAL BENZENE COMPOUNDS.

BACKGROUND OF THE INVENTION This invention relates to agriculturally suitable compositions of certain herbicidal benzene compounds and a method for their use as selective preemergent or postemergent herbicides for controlling the growth of undesired vegetation in crops such as rice. New compounds effective for controlling the growth of undesired vegetation are in constant demand. In the most common situation, such compounds are sought to selectively control the growth of weeds in useful crops such as cotton, rice, corn, wheat and soybeans, to name a few. Unchecked weed growth in such crops can cause significant losses, reducing profit to the farmer and increasing costs to the consumer. In other situations, herbicides are desired which will control all plant growth. There are many products commercially available for these purposes, but the search continues for products which are more effective, less costly and environmentally safe.

SUMMARY OF THE INVENTION This invention comprises agriculturally suitable compositions wherein the active compounds are the compounds of Formulas I and II, and their method-of-use as preemergent and/or postemergent herbicides or plant growth regulants. Accordingly, the compositions of the invention comprise compounds of the formula

II

wherein

R 1 is Cl, Br, I, OCH 3 , OCHF 2 , OCF 3 or N0 2 ; R 2 is CN, C0 2 R 4 , CHO, C(X)NR 17 R 18 , C(S)OR 6 , C≡CH, CHR 19 OR 20 , CH=NOR 7 , CH=CR 21 R 22 , C (halogen)=NOR 7 ,

C(NH 2 )=NOR 7 , C(CN)=NOR 7 , CHR 19 (halogen) , CHR 19 CN, CHR 19 C(=0)NH 2 , CHR 19 C0 2 H, or a five- membered heterocyclic ring containing one or more nitrogen, sulfur, or oxygen atoms and optionally substituted with one or more CH 3 ,

CF 3 , OCH 3 , SCH 3 , or halogen; R 3 is n-propyl; C 4 -C 10 alkyl; n-propyl or C -C 7 alkyl each substituted with one or more halogen, OR 8 , SR 9 or NR 10 R 1:1 ; 0^ 2 alkyl substituted with OR 16 , SR 9 , NR 14 R 15 , C0 2 (C^Cg alkyl) or phenyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH or halogen; C 3 -C 6 cycloalkyl; CH 2 (C 3 -C 6 cycloalkyl); phenyl, pyridyl, thienyl, furyl, pyrazolyl or thiazolyl, each optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 or halogen; C -C 6 alkenyl optionally substituted with one or more halogen or C0 2 (C 1 -C 2 alkyl); OR 12 ; SR 13 ; NR 14 R 15 ;

O-N=CR 30 R 31 ;

R 4 is H, C 1 -C 2 alkyl,

R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are independently H or c l ~ c 2 alkyl; R 12 and R 13 are independently C^C- j ^ alkyl optionally substituted with one or more halogen, OR 8 , SR 9 , C0 2 R 23 , C(0)NR 24 R 25 , CN,

Si(CH 3 ) 3 , C(R 26 ) (OR 27 ) (OR 28 ) or NR 10 R ; C__-C 3 alkyl substituted with a five- or six-membered heterocyclic ring containing 1-2 heteroatoms selected from the group 1-2 nitrogens, 1 oxygen and 1 sulfur, each ring optionally substituted with 1-2 substituents selected from F, Cl, Br, CH 3 , CF 3 , OCH 3 and CN; C 3 -C 6 alkenyl; or phenyl or benzyl, each ring optionally substituted with one or more CH 3 , CF 3 , 0CH 3 , OR 29 , SCH 3 or halogen;

R 14 and R 15 are independently H or C 1 -C 2 alkyl, or may be taken together along with the nitrogen to which they are attached to form a pyrrolyl, piperidinyl, morpholinyl, pyrazolyl, or imidazolyl ring, each optionally substituted with one or more CH 3 , CF 3 , 0CH 3 , SCH 3 , or halogen; R 16 is H, Ci-C β alkyl; benzyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 or halogen; or phenyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 or halogen; R 17 is H, C 2 -C 2 alkyl or phenyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 or halogen;

R 18 is H, C 1 -C 2 alkyl, C 3 -C 6 cycloalkyl, CH 2 (C 3 -C 6 cycloalkyl), 0(^-0 4 alkyl), O-allyl or may be taken together with R 17 as -(CH 2 ) -, -(CH 2 ) 5 - or - (CH 2 CH2OCH 2 CH 2 ) -1 R 19 is H or C x -Z 2 alkyl;

R 20 is H or C(0)CH 3 ;

R 21 and R 22 are independently H, CN, C0 2 R 4 ,

C(X)NR 17 R 18 or halogen; R 23 , R 24 , R 25 and R 26 are independently H; ^-0 3 alkyl; or phenyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 , or halogen; R 27 and R 28 are independently C 2 -C 3 alkyl or may be taken together as -(CH 2 ) 2 ~ or -(CH ) 3 - optionally substituted with 1-2 CH 3 \'s; X is 0 or S;

R 29 is phenyl, pyridyl, thiazolyl, pyrazolyl or pyrrolyl each optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 , or halogen; and R 30 and R 31 are each independently H; C 1 -C 10 alkyl; or phenyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 , or halogen; and agriculturally suitable salts thereof.

In the above definitions, the term "alkyl" includes straight chain or branched alkyl, e.g., methyl, ethyl, n-propyl, isopropyl or the different butyl isomers, etc. Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "halogen" means fluorine, chlorine, bromine or iodine.

The agriculturally suitable composition of the invention for controlling the growth of undesired vegetation comprises an effective amount of a compound of Formula I or II as defined above and at least one of the following: surfactant, solid or liquid diluent. The preferred compositions of the invention for reasons including ease of synthesis and/or greater herbicidal efficacy involve:

1. A compound of Formula I or II wherein R 1 is Cl, Br or I;

R 2 is CN, C0 2 H, C0 2 CH 3 , C0 2 CH 2 CH 3 , CHO,

C(0)NH 2 , C(0)NHCH 3 , C(0)N(CH 3 ) 2 , CH 2 OH or CH=NOR 7 or C(NH 2 )=NOR 7 ; R 3 is n-propyl; C 4 -C 7 alkyl; C 2 alkyl substituted with phenyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 or halogen; CH 2 (C 3 -C 6 cycloalkyl); phenyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 or halogen; or OR 12 ;

R 12 is C 2 -C 4 alkyl; 2. A compound of Preferred 1 wherein R 1 is Cl or Br; R 2 is CN, C0 2 H or C(0)NH 2 ; R 3 is C 4 -C 7 alkyl, CH 2 (C 3 -C 6 cycloalkyl) or

OR 12 . Specifically preferred is the compound 2-chloro-4- (2-methylpropoxy)benzamide.

Another embodiment of the invention is a method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a composition comprising a compound of Formula I or II as defined above.

The preferred method of use involves the compositions wherein the above preferred compounds are utilized.

DETAILED DESCRIPTION OF THE INVENTION The compounds of Formulae I and II can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 1 to 17 below. Many of the compounds disclosed herein are known in the art or can be prepared by well known literature procedures.

In some of the schemes, compounds of Formulae I and II are represented by formulae with a floating R 3

substituent wherein R 3 is attached at the 4- and 5-position, respectively (see Formula A below) . The definitions of R 1 -R 31 and X are the same as defined for Formulae I and II above.

4-R 3 = Formula I 5-R 3 = Formula II

In cases where the substituent of a starting material is not compatible with the reaction conditions described for any of the reaction schemes, it can be assumed that the substituent is converted to a protected form prior to the described reaction scheme and then deprotected after the reaction using commonly accepted protecting/ deprotecting techniques (as an example, see T. W. Greene and P. G. M. Wuts,

"Protective Groups in Organic Synthesis", 2nd Edition, John Wiley and Sons, Inc., New York, 1991) . Otherwise alternative approaches known to one skilled in the art are available. The compounds of this invention are made by the following processes. Introduction of R 1

Scheme 1 illustrates the preparation of compound 1, a compound of Formula I or II wherein R 1 =N0 2 . Many nitrobenzenes are commercially available or can be prepared by literature methods . A variety of methods are known in the literature, for example, see J. March, Advanced Organic Chemistry, 3rd Ed., John Wiley and Sons, New York (1985) and references cited therein.

Scheme 1

nitration

Anilines of Formula 2 can be prepared from nitro compounds of Formula 1 by reduction with tin II chloride (Scheme 2) . Processes of this type are well known in the literature. For example, see T. Ho and C. M. Hong, Synthesis 1974 45. The aniline of Formula 2 can be converted to the halobenzene of Formula 3 (W=C1, Br, or I) using the Sandmeyer reaction. Alternatively, the phenol of Formula 4 can be obtained from the aniline by preparation of the diazonium salt followed by hydrolysis. Methods of these types are described in Sandier S. R.; Karo W., Organic Functional Group Preparations, Academic: New York, (1983); Chapters 13 and 17.

Scheme 2

Compounds of Formulae I and II wherein R 1 is OCH 3 , OCHF 2 or 0CF 3 can be prepared by the methods illustrated in Scheme 3. h m

Phenols of Formula 4 can be treated with a methylating agent, such as iodomethane or methyl- sulfate, and a base such as potassium carbonate, potassium hydroxide, potassium hydride, potassium t-butoxide, sodium hydride, sodium hydroxide or sodium carbonate in an inert solvent such as N, N-dimethyl- formamide, benzene, toluene, xylene or tetrahydrofuran. The reaction temperature ranges from 0-140°C and reaction time is between 30 minutes and 200 hours.

Upon completion of the reaction, the reaction mixture is concentrated under reduced pressure. Water is then added to the residue and extracted with organic solvent. The organic extract is dried over sodium sulfate or magnesium sulfate and concentrated to provide the crude anisole of Formula 5.

The crude product can be further purified by crystallization, distillation and flash column- chromatography if needed.

Compounds of Formula 6 and 7 are prepared by treating the phenol of Formula 4 with chlorodi- fluoromethane or chlorotrifluoromethane, respectively,

under literature conditions (K. Morimoto, K. Makino, S. Yamamoto and G. Sakata, J. Heterocycl . Chem . , 1990, 27, 807 and Fuss A.; Koch v., Synthesis, 1990, 604 and 681-685) . Introduction of R 2

Benzonitriles of Formula 9 can be prepared from the corresponding halobenzenes of Formula 8 by treatment with potassium cyanide or cuprous cyanide (Scheme 4) . The halobenzene is dissolved or dispersed in a solvent such as N, N-dimethylformamide or N-methyl-2-pyrrolidone and treated with the cyanide salt at temperatures of 120-180°C for 1 to 24 hours. Aqueous work-up followed by purification by distillation, recrystallization, or column chromatography affords the desired material .

Scheme 4

Alternatively, benzonitriles of Formula 9 can be prepared from nitrobenzenes of Formula 10 as illustrated in Scheme 4. The nitrobenzene is reduced to the aniline of Formula 11 by hydrogenation or methods described above. The aniline of Formula 11 can then be converted to the benzonitrile by formation of the diazonium salt followed by treatment with cuprous cyanide (see Sandier S. R.; Karo W., Organic Functional

Group Preparations, Academic: New York, (1983); Chapters 13 and 17) .

The benzonitriles of Formula 9 can be converted to compounds of the present invention wherein R 2 =C0 2 R 4 , C(X)NR 17 R 18 , C (halogen) =NOR 7 and C(S)OR 6 as illustrated in Scheme 5.

Scheme 5

La esson\' s reagent 16

The cyano compound can be converted to the amide of Formula 10 according to Youngdale G. A.; Oglia T. F., J. Med. Chem . 1985, 28, 1790-96 using 30% aqueous hydrogen peroxide, methanol and sodium hydroxide or A. Katritzky; B. Pilarski and L. ϋrogdi, Synthesis 1989, 950 using 30% aqueous hydrogen peroxide, potassium carbonate and dimethylsulfoxide. In addition, the cyano group in compounds of Formula 9 can be converted to carboxylic acids of Formula 11 using about 5-20% aqueous base such as sodium hydroxide or potassium hydroxide (preferably 5%) at about 25 to 100°C for 1 to 24 hours. The carboxylic acid can be converted to the acid chloride of Formula 12 using thionylchloride or phosphorus oxychloride. The acid chloride may be treated with R 4 OH to provide the corresponding ester of Formula 13 under conditions well known to those versed in the art. In an analogous fashion the acid chloride may be treated with NHR 17 R 18 to provide the corresponding amide of Formula 14. The thioesters of Formula 15 and the thioamides of Formula 16 can be synthesized by treatment of the aforementioned esters and amides, respectively, with Lawesson\'s reagent (see Pedersen, B. S., Lawesson, S. O., Tetrahedron 1979, 2433-2437 and references cited therein) .

The compounds of Formula 17 can be prepared from the amides of Formula 14 (Scheme 6) . The amide is treated with a tetrahalomethane/triphenylphosphine reagent as described in the art (T. Sakamoto et al. , Synthesis, 1991, 9, 950-952 and E. C. Taylor et al. , J. Org. Chem . , 1971, 36, 253) .

Scheme 6

\'

The anilines of Formula 11 can be converted to the benzaldehydes of Formula 18 by following the methods taught in H . E . Baumgarten, Ed . Organic Syntheses V, John Wiley, New York ( 1973 ) 139-142 or using obvious modifications thereof (Scheme 7 ) . Scheme 7

The benzaldehyde can be oxidized to the corresponding carboxylic acid of Formula 19 using the methods disclosed in Dalcandle, E.; Montanari, F. J.

Org. Chem . 1986, 51 , 567-569 and Srivastava R. G.,

Venkataramani Synth. Commun . 1988, 18, 2193-2200. The carboxylic acid functionality can in turn be converted into the R 2 groups of the present invention as described above and illustrated in Scheme 5.

The benzaldehydes of Formula 18 can also be used to prepare other compounds of the present invention as illustrated in Scheme 8.

Scheme 8

1 ) n-BuLi

The benzaldehyde of Formula 18 can be converted to the oxime of Formula 20 by reacting it with NH 2 OR 7 . The aldehyde of Formula 18 can also be reacted with active methylene compounds of the type CH 2 R 1 R 22 and a base such as pyridine and potassium carbonate to provide the olefin of Formula 21. The secondary alcohol of Formula 22 (R 2 =CH(C 1 -C 2 alkyl)OH) can be prepared by treatment of the benzaldehyde with (C 1 -C 2 alkyl)MgBr. Alcohols of Formulae I and II wherein R 2 =CH 2 OH can be prepared by conventional

reduction of benzaldehydes of Formula 18. These benzylic alcohols and the alcohols of Formula 22 can be treated with acetyl chloride or acetic anhydride under standard conditions to prepare compounds wherein R 20 is C(0)CH 3 .

The terminal alkyne of Formula 24 can be synthesized from the benzaldehyde of Formula 18 by the Corey-Fuchs homologation by treating the aldehyde first with carbon tetrabromide/triphenylphosphine to form the dibromoolefin of Formula 23, followed by treatment with n-butyllithium, rearrangement and quench with aqueous acid according to Corey, E. J., Fuchs, P. L., Tetrahedron Lett . 1972, 3769-3772 and references cited therein. Cyanooximes of Formula 26 wherein R 2 = C(CN)=NOR 7 can be prepared as illustrated in Scheme 9. The phenylacetonitrile of Formula 25 is treated with an alkylnitrite under basic conditions using the procedures described in Noland, W. E., ed., Organic Syntheses VI, John Wiley: New York (1988), pp 199-203.

Scheme 9

Compounds of Formula I and II wherein

R 2 = CHR 19 (halogen) , CHR 19 CN, CHR 19 C (=0)NH 2 , and CHR 19 C0 2 H can be prepared using the methods illustrated in Scheme 10. The alcohol of Formula 27 can be prepared using the method described in Scheme 8

(R 19 = C 1 -C alkyl ) or by conventional reduction of the benzaldehyde as described previously (R 19 = H) .

Scheme 10

31

Treatment of the benzylic alcohol with a thionyl- halide (e . g . , thionylchloride) at 25-100°C in an inert solvent such as benzene, toluene or dichloromethane for

2-12 hours produces the halide of Formula 28. Displacement of the halide with a cyanide salt, for example potassium cyanide, produces the nitrile of Formula 29. This method is described in Sandier, S. R., Karo, W. in Organic Functional Group Preparations, Academic: New York (1983); Chapter 17. The nitrile can be converted to the amide of Formula 30 or the carboxylic acid of Formula 31 using conditions described above for the coversion of nitriles to amides and acids (see Scheme 5) . Introduction of R 3

Scheme 11 illustrates the preparation of compounds of Formula II wherein R 3 = OR 12 or O-N=CR 30 R 31 . In order for the nucleophilic aromatic substitution to occur, R 2 must be a powerful electron-withdrawing substituent such as cyano or nitro. The halobenzenes of Formulae 23 and 24 are either commercially available or can be prepared by one skilled in the art using well known methods. h m

32

The halobenzene 32 is treated with R 12 OH or HO-N=CR 30 R 31 and one equivalent of a base such as sodium hydride, potassium hydride, potassium hydroxide, potassium t-butoxide and sodium hydroxide in an inert solvent such as N,N-dimethylformamide, benzene, toluene, xylene and tetrahydrofuran. The reaction

temperature ranges from 0 to 140°C and reaction time is between 30 minutes and 120 hours.

Upon completion of the reaction, the reaction mixture is concentrated under reduced pressure. Water is then added to the residue and extracted with organic solvent. The organic extract is dried and concentrated to provide crude product. The crude phenylether of Formula 33 or 34 can be further purified by flash column chromatography if needed. In a similar fashion, R 13 SH and R 1 R 15 NH can be used instead of R 12 0H or HO-N=CR 30 R 31 in the process illustrated in Scheme 11 to afford compounds of Formula II wherein R 3 =R 13 S and R 14 R 15 N, respectively.

Compounds of Formula I wherein R 3 =OR 12 can be synthesized as illustrated in Scheme 12. The anisoles of Formula 35 are commercially available or can be synthesized by one skilled in the art by following literature methods or slight modifications thereof. Alternatively, the phenols of Formula 36 can be prepared from the nitro compounds as described above (see Scheme 2) .

Scheme 12

35 36

The complete demethylation of the methylether can be accomplished using boron tribromide (BBr 3 ) or other

reagents described in a review by M. V. Bhatt and S. U. Kulkarni, Synthesis 1983, 248-282. The phenol then can be alkylated to produce the R 12 ether of Formula 37. The thiols can be prepared using the well-known methods four step procedure for converting anilines to thiols illustrated in Scheme 13. These synthetic steps are described in detail in Sandier, S. R.; Karo, W., Organic Functional Group Preparations, Academic: New York (1983), Chapters 16, 13, 4 and 18, respectively. Alkylation of the sulfur with R 13 L wherein L is a typical leaving group such as bromide, under standard conditions affords compounds of Formulae I and II wherein R 3 = SR 13 .

Scheme 13

Compounds of Formulae I and II wherein R 3 is a mono- or disubstituted amino group and R 14 and R 15 are separate substituents can be prepared as illustrated in Scheme 14. Treatment of the aniline of Formula 38 with acetic anhydride affords the monoacetyl compound of Formula 39. N-Alkylation with (^-0 2 alkyl) L, wherein L is a leaving group such as iodide, affords compounds of Formula 40. Hydrolysis of the acetyl group with base affords the monoalkyl compound. A second

alkylation with (C--C 2 alkyl) L affords the disubstituted compound of Formula 41.

Scheme 14

40

(C ! -C 2 alkyl) 2 N

41

Compounds of Formulae I and II wherein R 14 and R 15 are taken together to form a ring can be prepared by nucleophilic aromatic substitution as described above (Scheme 11) . Alternatively, the aniline of Formula 38 in Scheme 14 may be alkylated with L-(CH 2 ) 4 -L, L-(CH 2 ) 5 -L or L-(CH 2 ) 2 0(CH 2 ) 2 -L to form the pyrrolidinyl, piperidinyl, and morpholinyl compounds, respectively. Compounds of Formulae I and II wherein R 3 =CH 2 OR 16 , CH 2 SR 9 , and CH 2 NR 14 R 15 can be prepared starting from toluenes as illustrated in Scheme 15. The starting toluenes are commercially available or can be prepared

by one skilled in the art following literature methods or obvious modifications thereof.

Scheme 15

44

Toluenes of Formula 42 can be converted to bromo- methyl compounds of Formula 43 using one equivalent of N-bromosuccinimide (NBS) in a solvent such as dichloromethane or carbon tetrachloride at a temperature between 25-100°C for 1 to 48 hours. The bromo compound can be converted to ethers of Formula 44 using R 16 OH and a base such as triethylamine, pyridine or potassium carbonate in an inert solvent such as N, N-dimethylformamide, benzene, toluene, xylene or tetrahydrofuran. The reaction temperature ranges from 0 to 140°C and reaction time is between 1 hour and 120 hours.

The bromo compound of Formula 43 can be reacted with R 9 SH or R 1 R 15 NH instead of R 1 OH using the same procedure outlined in Scheme 15 to prepare compounds of Formulae I and II wherein R 3 =CH 2 SR 9 or CH 2 NR 14 R 15 .

Scheme 16 illustrates the synthesis of compounds of Formulae I and II wherein R 3 is n-propyl; C 4 -C 10 alkyl; n-propyl or C 4 -C 7 alkyl substituted with one or more halogen, OR 8 , SR 9 or NR 10 R 1:L ; ^-03 alkyl substituted

with OR 16 , SR 9 , NR 14 R 15 , C0 2 {C-_-C 2 alkyl), or phenyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 or halogen; CH 2 (C 3 -C 6 cycloalkyl), or C 3 -C 6 alkenyl optionally substituted with one or more halogen or C0 2 (C 1 -C 2 alkyl) .

The R 32 group in the Formulae of Scheme 16 can be n-ethyl; C 3 -C 9 alkyl; n-ethyl or C 3 -C 6 alkyl substituted with one or more halogen, OR 8 , SR 9 or NRIORII. C 1 -C 2 alkyl substituted with OR 16 , SR 9 , NR 1 R 15 , C0 2 (C 1 -C 2 alkyl), or phenyl optionally substituted with one or more CH 3 , CF 3 , OCH 3 , SCH 3 or halogen; C 3 -C 6 cycloalkyl; or C -C 5 alkenyl optionally substituted with one or more halogen or 00 2 (0 3^ -0 2 alkyl) .

The acid chlorides of Formula 45 are commercially available or can be prepared using the methods disclosed herein or commonly known to one skilled in the art.

Scheme 16

47

The acid chlorides of Formula 45 can be converted to ketones of Formula 46 using the methods described in Sandier S.R.; Karo W.; Organic Functional Group Preparation; Academic; New York, (1983); Chapter 8. The ketones of Formula 46 can be reduced to the

methylene compounds of Formula 47 using a variety of reducing agents, for example sodium borohydride/ aluminum chloride, as described in Hudlicky, M., Reductions in Organic Chemistry, Eillis Horwood: New York; (1984) 107-132.

Compounds of Formulae I and II wherein R 3 = alkyl or optionally substituted phenyl, pyridyl, thienyl, furyl, pyrazolyl, or thiazolyl can be prepared using a palladium-catalyzed cross-coupling reaction as illustrated in Scheme 17.

Scheme 17

Treatment of a phenyl bromide with an organozinc reagent of Formula R 3 Zn (halide) in the presence of tetrakis (triphenylphosphine)palladium (0) affords the R 3 substituted compounds of Formulae I and II. Examples of this well-known procedure can be found in: Y. Okamoto et al. , J. Organomet . Chem. 1989, 369,

285-290; E. Erdik, Tetrahedron, 1992, 48, 9577-9648; Heathcock, C. H., ed. Organic Syntheses, Vol. 66, John Wiley: New York (1987), pp 67-74; and E. Negishi et al., J. Org. Chem. , 1977, 42, 1821-1823. Compounds of Formulae I and II wherein R 3 is optionally substituted phenyl, furyl, thienyl or pyridyl can also be prepared by palladium-catalyzed cross-coupling with arylboronates using the procedures described in N. Miyaura et al. , Synth. Commun . , 1981, 11, 513, M. A. Siddiqui, V. Snieckus, Tetrahedron

Lett . , 1988, 5463, and W. J. Thompson et al. , J. Org. Chem . , 1988, 53, 2052.

In addition, compounds of Formulae I and II wherein R 3 is optionally substituted pyridyl, thiazolyl, pyrrolyl, thienyl or furyl can be prepared by palladium-catalyzed cross-coupling with heteroaryl trialkylstannanes . Examples of the this procedure are also known in the literature. For example, see T. R. Bailey, Tetrahedron Lett . , 1986, 4407 and A. Minato et al. , Tetrahedron Lett . , 1981, 5319.

EXAMPLE 1 Step A: Preparation of methyl 2-chloro-4-hydroxy benzpate Under nitrogen, 6 g of thionyl chloride was added dropwise to ice cold (0°C) methanol (50 mL) . The mixture was stirred at ambient temperature for 30 minutes. To this solution was then added 8.6 g of

2-chloro-4-hydroxy benzoic acid. The resulting mixture was heated at reflux for ~12 hours and then concentrated under reduced pressure. The residual solid was suspended in 100 mL of a mixture of hexane: diethyl ether (90:10) and the solid precipitate was collected by filtration, washed with hexane, air dried and then dried in a vacuum oven to provide 6 g of the title product of Step A as a solid, m.p. 126-129°C; NMR (CDC1 3 ) : ppm δ 7.84 (d, IH) ; 6.96 (s, IH) ; 6.78 (d of d, IH) ; 6.35 (b, s, IH) ; 3.9 (s, 3H) ; IR (Nujol) : 3300 cm" 1 , 1700 cm\' 1 (0=0) .

Step B: Preparation of Methyl 2-chloro-4- ■,2-methyl- propyloxy)benzoate To 3 g of methyl 2-chloro-4-hydroxy benzoate in N, N-dimethyl formamide (25 mL) , a solution of 3 g of 2-methyl-l-bromo propane in N,iV-dimethylformamide (5 mL) and 3 g of potassium carbonate was added. The mixture was then heated at 90-95°C for 2 hours. After heating the mixture was cooled to room temperature and poured into water (100 mL) . The mixture was then

extracted with diethylether (2 times with 50 mL) . The diethylether extracts were combined, dried over magnesium sulfate and concentrated under reduced pressure to provide crude product. The isolated crude product was purified by silica gel flash column chromatography (Hexane: ethyl-acetate 8:2) to provide after evaporation of eluant 3 g of the title compound of Step B as a clear oil; NMR (CDC1 3 ) : ppm δ 7.88 (d, IH); 7.0 (s, IH); 6.8 (d, IH) ; 3.89 (s, 3H) ; 3.74 (d, 2H) ; 2.0 (m, IH) ; 1.035 (d, 6H) ; IR (Neat) : 1730 cm" 1 (C=0) .

EXAMPLE 2 Preparation of 2-chloro-4- (2-methyl- propyloxy)benzoic acid A mixture of 5 g of methyl 2-chloro-4-hydroxy benzoate, and 1.6 g potassium hydroxide in methanol (30 mL) was heated at reflux for ~3 hours and allowed to stir at ambient temperature for 12 hours. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in water (50 mL) and extracted with diethyl ether (25 mL) and the diethyl ether extracts were discarded. The aqueous extract was acidified with concentrated hydrochloric acid to pH ~4 and the resulting solids were collected by filtration, washed with water (50 mL) , hexane

(50 mL) and dried under vacuum overnight to provide 4.5 g of title compound as a white solid, m.p. 82-84°C; NMR (CDC1 3 ) : ppm δ 8.0 (d, IH) ; 7.0 (s, IH) ; 6.8 (d, IH); 3.78 (d, 2H) ; 2.1 (m, IH) ; 1.02 (d, 6H) ; IR (Nujol) : 1700 cm -1 (C=0) .

EXAMPLE 3 Preparation of 2-chloro-4- (2-methylpropyl- oxy)benzamide Under nitrogen, 2.6 g of 2-chloro-4- (2-methyl- propyloxy)benzoic acid was dissolved in benzene (25 mL)

and thionyl chloride (5 L) was added. The resulting solution was heated at reflux for 3 hours and concentrated under reduced pressure to provide an oil. The oil was dissolved in tetrahydrofuran (20 mL) and cooled to 0°C (ice bath) and 4 mL of aqueous ammonium hydroxide (30%) was added and stirred for 30 minutes. The mixture was concentrated under reduced pressure. To the residue, water (100 mL) was added and the resulting precipitate was collected by filtration, washed with water and dried under vacuum to provide 1.4 g of the title compound as a white solid, m.p. 129-130°C; NMR (CDC1 3 ) : ppm δ 7.85 (d, IH) ; 6.92 (s, IH); 6.86 (d, IH) ; 6.6 (b,s, IH) ; 6.5 (b,s, IH) ; 3.74 (d, 2H); 2.2 (m, IH) ; 1.03 (d, 6H) ; IR (Nujol) : 3360, 3170 cm -1 (NH 2 ) , 1635 cm -1 (C=0) .

EXAMPLE 4 Step A: Preparation of 2-bromo-5-hydroxy-benzoic acid

Under nitrogen, 4.62 g of 2-bromo-5-methoxy benzoic acid was suspended in dichloromethane (50 mL) . The mixture was cooled to 0°C and boron tribromide (60 mL, 1M solution in dichloromethane) was added dropwise. The clear solution was stirred at ambient temperature for 12 hours, cooled to 5°C. Water (25 mL) was subsequently added dropwise, the mixture stirred for 30 minutes and extracted with diethylether (2 times with 50 mL) . The diethylether extracts were dried over magnesium sulfate and concentrated under reduced pressure to provide 2.2 g of the title compound of Step A as a solid, m.p. 179-181°C; NMR (Me 2 SO-d 6 ) : ppm δ 10.0 (b,s, IH); 7.48 (d, IH) ; 7.13 (s, IH) ; 6.8 (m, IH) ; IR (Nujol) : 1705 cm -1 (C=0) .

Step B: Preparation of methyl 2-bromo-5-hydroxy- benzoate By the procedure of Example 1, Step A, 1.67 g of 2-bromo-5-hydroxy-benzoic acid was reacted with 5 mL

thionyl chloride in methanol (20 L) . The isolated crude product was washed with hexane and dried under vacuum to provide 1.8 g of title compound of Step B as a white solid, m.p. 92-95°C; NMR (CDC1 3 ) : ppm δ 7.5 (d, IH); 7.3 (m, IH) ; 6.8 (m, IH) ; 3.94 (s, 3H) ; IR (Nujol) : 3400 cm -1 (OH); 1700 cm -1 (C=0) . Step C: Preparation of Methyl 2-bromo-5- (2-methyl- propyloxy)benzoate By the procedure of Example 1, Step B, 1.2 g of methyl 2-bromo-5-hydroxy-benzoate was reacted with

0.816 g potassium carbonate and 0.816 g of 2-methyl-l- bromopropane in N,N-dimethylformamide (20 mL) . The isolated crude product was purified by silica gel flash column chromatography (hexane: ethylacetate 8:2) to provide after evaporation of eluant 1 g of the title compound of Step C as an oil. NMR (CDC1 3 ) : ppm δ 7.53 (d, IH) ; 7.31 (m, IH) ; 6.8 (d of d, IH) ; 3.92 (s, 3H) ; 3.7 (d, 2H); 2.0 ( , IH) ; 1.03 (d, 6H) ; IR (neat) : 1740 cm -1 (C=0) . EXAMPLE 5

Preparation of Methyl 2-bromo-5- (2-methyl- propyloxy)benzoic acid By the procedure of Example 2, 5.5 g of methyl 2-bromo-5- (2-methylpropyloxy) -benzoate was reacted with 1.7 g of potassium-hydroxide in methanol (50 mL) to provide 5 g of title compound as a white solid mp 105-109°C. NMR (CDC1 3 ) : ppm δ 7.57 (d, IH) ; 7.52 (s, IH); 6.95 (m, IH) ; 3.74 (d, 2H) ; 2.1 (m, IH) ; 1.04 (d, 6H) ; IR (Nujol) : 1665 cm -1 (C=0) . EXAMPLE 6

Preparation of 2-Bromo-5- (2-methyl- propyloxy)benzamide By the procedure of Example 3, 1.36 g of product of Example 5 was reacted first with thionylchloride 5 mL, and then 1.7 mL of aqueous ammonium hydroxide to

provide 1 g title compound as a white solid mp 135-137°C. NMR (CDC1 3 ) : ppm δ 7.47 (d, IH) ; 7.21 (s, IH); 6.8 (d of d, IH) ; 6.2 (b,s, IH) ; 6.0 (b,s, IH) ; 3.72 (d, 2H) ; 2.0 (m, IH) ; 1.02 (d, 6H) ; IR (Nujol) : 3350 cm" 1 (NH 2 ) 1640 cm" 1 (C=0) .

EXAMPLE 7 Preparation of 2-Chloro-4- (3-trifluoro- methylphenyl)benzonitrile To 5.4 g of 2-chloro-4-bromo-benzonitrile in 8 mL of ethylene glycol dimethyl ether, 0.01 g of (Ph 3 P) 2 PdCl 2 was added and stirred at ambient temperature for 15 minutes. To this mixture 5.23 g of 3-trifluoromethylbenzeneboronic acid and 6.38 g of sodium bicarbonate in 40 mL water were added and heated at reflux for 2.5 h. The mixture was then cooled to ambient temperature and extracted two times with 50 mL ethyl acetate. The combined ethyl acetate extracts were washed with 150 mL of 0.5 N aqueous sodium hydroxide and 50 mL of brine. The ethyl acetate extracts were dried over magnesium sulfate and concentrated under reduced pressure to provide the title compound as a white solid, m.p. 92-98°C. 1 H-NMR (CDCI 3 ) : ppm δ 7.73 ( , 5H) ; 7.58 (m, 2H) ; 7.59 (m, IH) . IR (Nujol) : 2227 (C≡N) cm" 1 . EXAMPLE 8

Preparation of 2-Chloro-4- (3-trifluoro- methylphenyl)benzamide To a solution of 1.41 g of the compound of Example 7 in dimethylsulfoxide (8 mL) , 1.12 mL of 30% aqueous hydrogen peroxide and 0.28 g of potassium carbonate were added. The mixture exothermed to ~35°C; and was then heated to 60°C for 1 h. The mixture was allowed to come to room temperature and poured into water (50 mL) . The resulting solid was collected, washed with 50 mL of water and hexanes and dried under

vacuum overnight to provide the title compound as a white solid, m.p. 138-145°C. 1 H NMR (CDC1 3 ) : ppm δ 7.95 (d, IH) ; 7.75 (m, 2H) ; 7.66 (m, 4H) ; 6.5 (bs, IH) ; 6.0 (bs, IH) . IR (Nujol) : 3367 (NH 2 ) cm" 1 , 1649 (C-O) cm -1 .

EXAMPLE 9 Preparation of 2-Chloro-4- (2-methyl- propyl)benzonitrile Under nitrogen, isobutylmagnesium chloride (8.6 mL, 2.0 M solution in diethyl ether) was added to a suspension of 2.3 g of zinc chloride in 40 mL of tetrahydrofuran. The mixture was stirred at ambient temperature for 45 minutes. To this mixture was then added 3.6 g of 2-chloro-4-bromo benzonitrile and 0.4 g of tetrakis (triphenylphosphine) palladium (O) . The resulting mixture was stirred at ambient temperature for 12 h, and then heated at reflux for 2 h. The mixture was then cooled to room temperature and acidified with 1 N aqueous hydrochloric acid. The mixture was then extracted two times with 50 mL of diethyl ether. The organic layer was washed each with 20 mL of saturated aqueous NaHC0 3 , water and brine. The diethyl ether extract was dried over magnesium sulfate and concentrated under reduced pressure to provide crude product. The isolated crude product was purified by silica gel flash column chromatography (hexane:ethyl acetate 9:1) to provide after evaporation of eluant 2.12 g of the title compound as a clear oil; -H NMR (CDCI 3 ) : ppm δ 7.57 (d, IH) ; 7.3 (s, IH) ; 7.15 (d, IH) ; 2.51 (d, 2H) ; 1.9 (m, IH) ; 0.91 (d, 6H) ; IR (Neat) : 2210 (C≡N) cm -1 .

EXAMPLE 10 Preparation of 2-Chloro-4- (2-methyl- propyl)benzamide Using the same procedure described in Example 8, 0.97 g of product of Example 9 was reacted with 1.12 mL 30% aqueous hydrogen peroxide and 0.28 g potassium carbonate in dimethylsulfoxide (8 mL) . The isolated crude product was washed with hexanes and dried under vacuum to provide 0.8 g of the title compound as a white solid, m.p. 97-107°C. 1 H NMR (CDC1 3 ) : ppm δ 7.74 (d, IH); 7.2 (s, IH) ; 7.125 (d, IH) ; 6.43 (bs, IH) ; 6.05 (bs, IH) ; 2.48 (d, 2H) ; 1.9 (m, IH) ; 0.91 (d, 6H) . IR (Neat) : 3375 (NH 2 ) cm "1 , 1647 (C=0) cm -1 .

Using the general procedures described in Schemes 1-17 and Examples 1-10 or by obvious modifications thereof, one skilled in the art can prepare the compounds of Tables 1-2.

TABLE 1

(CH 2 ) 8 CH 3 CH 2 0(4CF 3 -C H 4 ) OCH 2 C(CgH 5 )

(CH 2 ) 9 CH 3 CH 2 0(2Cl-CgH 4 ) OCH 2 (3CF 3 -CgH 4 ) CH 2 CH(CH 3 ) 2 CH 2 0(3SCH 3 -CgH 4 ) OCH 2 (2Cl-CgH 4 ) CH 2 CH 2 CH(CH 3 ) 2 CH 2 0(2CH 3 -CgH 4 ) OCH 2 CH(CH 3 ) 2 CH 2 CH 2 CH 2 CH(CH 3 ) 2 CH 2 0(4Cl-CgH 4 ) 0(CgH 5 ) CH 2 CH 2 CH(CH 3 )CH 2 CH 2 CH 3 CH 2 0(2,4Cl-CgH 3 ) 0(3CF 3 -CgH 4 ) CH 2 CH(CH3)CH 2 CH 2 CH 3 CH 2 SCH 2 CH 3 0(2Cl-CgH 4 ) CH 2 CH(CH 2 CH 3 )CH 2 CH 3 CH 2 SCH 2 CH 2 CH 3 0(4SCH 3 -CgH 4 ) CH 2 CH 2 CH 2 OCH 2 CH 3 CH 2 SCH 2 CH(CH 3 )2 0(2,4Cl-CgH 3 ) CH 2 CH 2 CH 2 CH 2 OCH 3 CH 2 SCH 2 (CgH 5 ) SCH 2 CH 2 CH 3 CH 2 CH 2 CH 2 -S-CH 2 CH 3 CH 2 SCH 2 (3CF 3 -CgH 4 ) SCH 2 (CH 2 ) 2 CH 3 CH 2 CH 2 CH 2 CH SCH 3 CH 2 S(2Cl-CgH 4 ) SCH 2 (CH 2 )3CH3 CH 2 CH 2 CH 2 NHCH 2 CH 3 CH 2 S(4CH 3 -CgH 4 ) SCH 2 (CH 2 ) 5 CH3

CH 2 CF 2 CH(CH3)2 CH 2 S(2,4Cl-CgH 3 ) SCH 2 (CgH 5 )

CH 2 CH 2 CH 2 CF 2 CH3 CH 2 S(3SCH 3 -C H 4 ) SCH 2 (3SCH 3 -CgH 4 )

CH 2 -cyclopropyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 (20CH 3 -CgH 4 )

CH2~cyclobutyl CH 2 S(C H 5 ) SCH 2 (2Cl-CgH )

CH 2 -cyclopentyl CH 2 S(3CF 3 -CgH 4 ) SCH 2 (2,4-CgH 3 )

CH -cyclohexyl CH 2 S(2C1-C 6 H 4 ) SCH 2 (4CF 3 -CgH 4 ) cyclopropyl CH 2 S(4CH 3 -CgH 4 ) S(CH 3 ) 3 cyclobutyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 CH(CH 3 ) 2 cyclopentyl CH 2 S(2,4Cl-CgH 3 ) S(CgH 5 ) cyclohexyl CH 2 NHCH 2 CH 3 S(3CF 3 -C 6 H 4 )

CH 2 OCH 2 CH 3 CH 2 NHCH 2 CH 2 CH 3 S(2Cl-CgH 4 )

CH 2 OCH 2 CH 2 CH 3 CH 2 NHCH 2 C(CgH 5 ) S(40CH 3 -CgH 4 )

CH 2 OCH 2 CH(CH 3 ) 2 CH 2 NHCH 2 CH(CH 3 ) 2 S(2,4Cl-CgH 3 )

CH 2 OCH 2 (CgH 5 ) CH 2 NHCH 2 (3CF 3 -CgH 4 ) S (2, 6F-CgH 3 )

CH 2 OCH 2 (3CF 3 -CgH ) CH 2 NHCH 2 (2Cl-CgH ) 2(3CH 3 -CgH 4 )

CH 2 OCH 2 (2Cl-CgH 4 ) CH 2 NH(CgH 5 ) NHCH 2 CH 2 CH 3

CH 2 OCH 2 (3SCH 3 -CgH 4 ) CH 2 NH(2Cl-CgH 4 ) NHCH 2 (CH 2 )2CH3

CH 2 OCH 2 (4Cl-CgH 4 ) CH 2 N(CH 3 ) (2Cl-CgH 4 ) NHCH 2 (CH 2 ) CH 3

CH 2 OCH 2 (2,4F-CgH 3 ) OCH 2 CH 2 CH 3 NHCH 2 (CH 2 )5CH 3

CH 2 CH 2 OCH 2 CH 2 CH 3 OCH 2 (CH 2 )2 c H 3 NHCH 2 CH(CH 3 ) 2

CH 2 0(CgH 5 ) OCH 2 (CH 2 )3CH 3 NHCH 2 (C H 5 )

CH 2 0 (3CF 3 -CgH 4 ) OCH 2 (CH 2 )5CH 3 NHCH 2 (3CF 3 -CgH 4 )

CH 2 OCH 2 (3CF 3 -CgH 4 )

CH 2 OCH 2 (2Cl-CgH 4 )

CH 2 OCH 2 (3SCH 3 -CgH 4 )

CH 2 OCH 2 (4Cl-CgH 4 )

CH 2 OCH 2 (2,4F-CgH 3 )

CH 2 CH 2 OCH 2 CH 2 CH 3

CH 2 0(CgH 5 )

CH 2 0(3CF 3 -CgH 4 )

CH 2 0(4CF 3 -CgH 4 )

CH 2 0(2Cl-CgH 4 )

CH 2 0(3SCH 3 -CgH 4 )

CH 2 0(2CH 3 -CgH 4 )

CH 2 0(4Cl-CgH 4 )

CH 2 0(2,4Cl-CgH 3 )

CH 2 SCH CH3

CH 2 SCH 2 CH 2 CH3

CH 2 SCH 2 CH(CH 3 )2

CH 2 SCH 2 (CgH 5 )

CH 2 SCH 2 (3CF 3 -C 6 H 4 )

CH 2 S(2Cl-CgH 4 )

CH 2 S(4CH 3 -CgH 4 )

CH 2 S(2,4Cl-CgH 3 )

CH 2 S(3SCH 3 -C H 4 )

CH 2 S(2,6C1-C 6 H 3 )

CH 2 S(CgH 5 )

CH 2 S(3CF 3 -CgH 4 )

CH 2 S(2Cl-CgH 4 )

CH 2 S(4CH 3 -C H 4 )

CH 2 S(2,6Cl-CgH 3 )

CH 2 S(2,4C1-C 6 H 3 )

CH 2 NHCH 2 CH 3

CH 2 NHCH 2 CH2CH 3

CH 2 NHCH 2 C(CgH 5 )

CH 2 NHCH 2 CH(CH 3 ) 2

CH 2 NHCH 2 (3CF 3 -C H 4 )

2-imidazolyl CH 2 OCH 2 CH 3 CH 2 NHCH 2 CH 2 CH 3 0-2 (3CF 3 -C 5 H 3 N) CH 2 OCH 2 CH 2 CH 3 CH 2 NHCH 2 C(CgH 5 ) 0-2Cl-6CF 3 -CgH 3 CH 2 OCH 2 CH(CH 3 ) 2 CH 2 NHCH 2 CH(CH 3 ) 2

CH 2 OCH 2 (CgH 5 ) CH 2 NHCH 2 (3CF 3 -CgH 4 )

R 1 =OCF 2 H, R 2 =C(0)NH 2 CH 2 OCH 2 (3CF 3 -CgH 4 ) CH 2 NHCH 2 (2Cl-CgH 4 )

E 3 CH 2 0CH 2 (2C1-C 6 H 4 ) CH 2 NH(CgH 5 )

(CH 2 ) 2 CH 3 CH 2 OCH 2 (3SCH 3 -CgH 4 ) CH 2 NH(2Cl-CgH 4 ) (CH 2 ) 3 CH 3 CH 2 OCH 2 (4Cl-CgH 4 ) CH 2 N(CH 3 ) (2Cl-CgH 4 ) (CH 2 ) 4 CH 3 CH 2 OCH 2 (2,4F-CgH 3 ) OCH 2 CH 2 CH 3 (CH 2 ) 5 CH 3 CH 2 CH 2 OCH 2 CH 2 CH 3 OCH 2 (CH 2 ) 2 CH 3 (CH 2 )gCH 3 CH 2 0(CgH 5 ) OCH 2 (CH 2 ) 3 CH 3 (CH 2 ) 7 CH 3 CH 2 0(3CF 3 -CgH 4 ) OCH 2 (CH 2 ) 5 CH 3 (CH 2 ) 8 CH 3 CH 2 0(4CF 3 -C H 4 ) OCH 2 C(CgH 5 ) (CH 2 ) 9 CH 3 CH 2 0(2Cl-CgH 4 ) OCH 2 (3CF 3 -CgH 4 )

CH 2 CH(CH 3 ) 2 CH 2 0(3SCH 3 -CgH 4 ) OCH 2 (2Cl-CgH )

CH 2 CH 2 CH(CH 3 ) 2 CH 2 0(2CH 3 -CgH 4 ) OCH 2 CH(CH 3 ) 2

CH 2 CH 2 CH 2 CH(CH 3 ) 2 CH 2 0(4Cl-C H 4 ) 0(CgH 5 )

CH 2 CH 2 CH(CH 3 )CH 2 CH 2 CH 3 CH 2 0(2,4Cl-CgH 3 ) 0(3CF 3 -CgH 4 )

CH 2 CH(CH 3 )CH2CH2CH3 CH 2 SCH 2 CH 3 0(2Cl-CgH 4 )

CH 2 CH(CH 2 CH 3 )CH 2 CH 3 CH SCH 2 CH 2 CH3 0(4SCH 3 -C 6 H 4 )

CH 2 CH 2 CH 2 OCH 2 CH3 CH 2 SCH 2 CH(CH 3 )2 0(2,4Cl-CgH 3 )

CH2CH2CH2CH2OCH3 CH 2 SCH 2 (C 6 H 5 ) SCH 2 CH 2 CH3

CH 2 CH 2 CH 2 -S-CH 2 CH3 CH 2 SCH 2 (3CF 3 -CgH 4 ) SCH 2 (CH 2 ) 2 CH3

CH 2 CH 2 CH 2 CH 2 SCH 3 CH 2 S(2Cl-CgH ) SCH 2 (CH 2 ) 3 CH3

CH 2 CH 2 CH 2 NHCH 2 CH 3 CH 2 S(4CH 3 -CgH 4 ) SCH 2 (CH )5CH3

CH 2 CF 2 CH(CH3)2 CH 2 S(2,4Cl-CgH 3 ) SCH 2 (CgH 5 )

CH2CH2CH2CF2CH3 CH 2 S(3SCH 3 -CgH 4 ) SCH 2 (3SCH 3 -CgH 4 )

CH 2 -cyclopropyl CH 2 S(2,6Cl-C H 3 ) SCH 2 (20CH 3 -CgH 4 )

CH2~cyclobutyl CH 2 S(CgH 5 ) SCH 2 (2Cl-CgH 4 )

CH2-cyclopentyl CH 2 S(3CF 3 -CgH 4 ) SCH 2 (2,4-CgH 3 )

CH2-cyclohexyl CH 2 S(2Cl-CgH 4 ) SCH 2 (4CF 3 -CgH 4 ) cyclopropyl CH 2 S(4CH 3 -CgH 4 ) S(CH 3 ) 3 cyclobutyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 CH(CH 3 ) 2 cyclopentyl CH 2 S(2,4Cl-CgH 3 ) S(CgH 5 ) cyclohexyl CH 2 NHCH 2 CH 3 S(3CF 3 -CgH 4 )

(CH 2 ) 9 CH 3 CH 2 0(2Cl-CgH 4 ) OCH 2 (3CF 3 -CgH 4 ) CH 2 CH(CH 3 ) 2 CH 2 0(3SCH 3 -CgH 4 ) OCH 2 (2Cl-CgH 4 ) CH 2 CH 2 CH(CH 3 ) 2 CH 2 0(2CH 3 -CgH 4 ) OCH 2 CH(CH 3 ) 2 CH 2 CH 2 CH 2 CH(CH 3 ) 2 CH 2 0(4Cl-CgH 4 ) 0(CgH 5 ) CH 2 CH 2 CH(CH 3 )CH 2 CH 2 CH 3 CH 2 0(2,4Cl-CgH 3 ) 0(3CF 3 -CgH 4 ) CH 2 CH(CH3)CH 2 CH 2 CH 3 CH 2 SCH 2 CH 3 0(2Cl-CgH 4 ) CH 2 CH(CH 2 CH 3 )CH 2 CH 3 CH 2 SCH 2 CH 2 CH 3 0(4SCH 3 -CgH 4 ) CH2CH2CH2OCH2CH3 CH 2 SCH 2 CH(CH 3 )2 0(2,4Cl-CgH 3 ) CH2CH2CH2CH2OCH3 CH 2 SCH 2 (CgH 5 ) SCH2CH2CH3 CH 2 CH 2 CH 2 -S-CH 2 CH 3 CH 2 SCH 2 (3CF 3 -CgH 4 ) SCH 2 (CH 2 )2CH 3 CH 2 CH 2 CH 2 CH 2 SCH 3 CH 2 S(2Cl-CgH 4 ) SCH 2 (CH 2 ) 3 CH 3 CH 2 CH 2 CH 2 NHCH 2 CH 3 CH 2 S(4CH 3 -CgH 4 ) SCH 2 (CH 2 ) 5 CH 3 CH 2 CF 2 CH(CH 3 ) 2 CH 2 S(2,4Cl-CgH 3 ) SCH 2 (CgH 5 ) CH 2 CH 2 CH 2 CF 2 CH 3 CH 2 S(3SCH 3 -CgH 4 ) SCH 2 (3SCH 3 -CgH 4 ) CH 2 -cyclopropyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 (20CH 3 -CgH 4 ) CH 2 -cyclobutyl CH 2 S (CgH 5 ) SCH 2 (2Cl-C H 4 ) CH 2 -cyclopentyl CH 2 S(3CF 3 -CgH 4 ) SCH 2 (2,4-CgH 3 ) CH 2 -cyclohexyl CH 2 S(2Cl-CgH 4 ) SCH 2 (4CF 3 -CgH 4 ) cyclopropyl CH 2 S(4CH 3 -CgH 4 ) S(CH 3 ) 3 cyclobutyl CH 2 S (2, 6Cl-CgH 3 ) SCH 2 CH(CH 3 ) 2 cyclopentyl CH 2 S(2,4Cl-CgH 3 ) S (CgH 5 ) cyclohexyl CH 2 NHCH 2 CH 3 S(3CF 3 -C 6 H 4 ) CH 2 OCH 2 CH 3 CH 2 NHCH 2 CH 2 CH 3 S(2C1-C 6 H 4 ) CH 2 OCH 2 CH 2 CH 3 CH 2 NHCH 2 C(CgH 5 ) S(40CH 3 -CgH 4 ) CH 2 OCH 2 CH(CH 3 ) 2 CH 2 NHCH 2 CH(CH3) 2 S(2,4C1-C 6 H 3 ) CH 2 OCH 2 (CgH 5 ) CH 2 NHCH 2 (3CF 3 -CgH ) S(2,6F-CgH 3 ) CH 2 OCH 2 (3CF 3 -CgH 4 ) CH 2 NHCH 2 (2Cl-CgH 4 ) 2(3CH 3 -CgH 4 ) CH 2 OCH 2 <2Cl-CgH 4 ) CH 2 NH(CgH 5 ) NHCH 2 CH 2 CH 3 CH 2 OCH 2 (3SCH 3 -CgH 4 ) CH 2 NH(2Cl-CgH 4 ) NHCH 2 (CH 2 ) 2 CH 3 CH 2 OCH 2 (4Cl-CgH 4 ) CH 2 N(CH 3 ) (2Cl-CgH 4 ) NHCH 2 (CH 2 ) 4 CH 3 CH 2 OCH 2 (2,4F-C 6 H 3 ) 0CH 2 CH 2 CH 3 NHCH 2 (CH 2 ) 5 CH 3 CH 2 CH 2 OCH 2 CH 2 CH3 0CH 2 (CH 2 ) 2 CH 3 NHCH 2 CH(CH 3 ) 2 CH 2 0(CgH 5 ) 0CH 2 (CH 2 )3CH 3 NHCH 2 (CgH 5 ) CH 2 0(3CF 3 -CgH 4 ) OCH 2 (CH 2 )5CH 3 NHCH 2 (3CF 3 -CgH 4 ) CH 2 0(4CF 3 -CgH 4 ) OCH 2 C(CgH 5 ) NHCH 2 (2Cl-CgH 4 )

CH 2 CH 2 OCH 2 CH 2 CH3 0CH 2 (CH 2 ) 2 CH 3

CH 2 0(CgH 5 ) 0CH 2 (CH 2 ) 3 CH 3

CH 2 0(3CF 3 -CgH 4 ) 0CH 2 (CH 2 ) 5 CH 3

CH 2 0(4CF 3 -C H 4 ) 0CH 2 C (CgH 5 )

CH 2 0(2Cl-CgH 4 ) OCH 2 (3CF 3 -C 6 H 4 )

CH 2 0(3SCH 3 -CgH ) OCH 2 (2Cl-CgH 4 )

CH 2 0(2CH 3 -CgH 4 ) OCH 2 CH(CH 3 ) 2

CH 2 0(4Cl-CgH 4 ) 0(CgH 5 )

CH 2 0(2,4Cl-CgH 3 ) 0(3CF 3 -CgH 4 )

CH 2 SCH 2 CH 3 0(2Cl-CgH 4 )

CH 2 SCH 2 CH 2 CH 3 0(4SCH 3 -CgH 4 )

CH 2 SCH 2 CH(CH 3 )2 0(2,4Cl-CgH 3 )

CH 2 SCH 2 (CgH 5 ) SCH 2 CH 2 CH 3

CH 2 SCH 2 (3CF 3 -CgH 4 ) SCH 2 (CH 2 )2CH3

CH 2 S(2Cl-CgH 4 ) SCH 2 (CH 2 )3CH 3

CH 2 S(4CH 3 -CgH 4 ) SCH 2 (CH 2 )5CH3

CH 2 S(2,4Cl-C H 3 ) SCH 2 (CgH 5 )

CH 2 S(3SCH 3 -CgH 4 ) SCH 2 (3SCH 3 -CgH 4 )

CH 2 S(2,6Cl-CgH 3 ) SCH 2 (20CH 3 -CgH )

CH 2 S (C H 5 ) SCH 2 (2C1-C 6 H )

CH 2 S(3CF 3 -CgH 4 ) SCH 2 (2,4-CgH 3 )

CH 2 S(2Cl-CgH 4 ) SCH 2 (4CF 3 -CgH 4 )

CH 2 S(4CH 3 -C H 4 ) S(CH 3 ) 3

CH 2 S(2,6Cl-CgH 3 ) SCH 2 CH(CH 3 ) 2

CH 2 S(2,4C1-C 6 H 3 ) S(CgH 5 )

CH 2 NHCH 2 CH 3 S(3CF 3 -C 6 H 4 )

CH 2 NHCH 2 CH 2 CH3 S(2Cl-CgH 4 )

CH 2 NHCH 2 C(CgH 5 ) S(40CH 3 -CgH 4 )

CH 2 NHCH 2 CH(CH3)2 S(2,4Cl-CgH 3 )

CH 2 NHCH 2 (3CF 3 -CgH 4 ) S(2,6F-C 6 H 3 )

CH 2 NHCH 2 (2Cl-CgH 4 ) 2(3CH 3 -CgH 4 )

CH 2 NH(CgH 5 ) NHCH 2 CH 2 CH 3

CH 2 NH(2Cl-CgH 4 ) NHCH 2 (CH 2 )2CH 3

CH 2 N(CH 3 ) (2Cl-CgH 4 ) NHCH 2 (CH 2 ) CH 3

0CH 2 CH 2 CH 3 NHCH 2 (CH 2 ) 5 CH 3

30CH 3 -CgH 4 R 1 =OCF 3 , R 2 =C≡N CH 2 OCH 2 (3CF 3 -CgH 4 )

2CF 3 -CgH 4 E 3 CH 2 OCH 2 (2Cl-CgH 4 )

2,4Cl-CgH 3 (CH 2 ) 2 CH 3 CH 2 OCH 2 (3SCH 3 -CgH 4 )

2,6Cl-CgH 3 (CH 2 ) 3 CH 3 CH 2 OCH 2 (4Cl-CgH 4 )

2SCH 3 -CgH (CH 2 ) 4 CH 3 CH 2 OCH 2 (2,4F-CgH 3 )

CH 2 (CgH5) (CH 2 ) 5 CH 3 CH 2 CH 2 OCH 2 CH 2 CH 3

CH 2 (3CF 3 -CgH 4 ) (CH 2 ) gCH 3 CH 2 0(CgH 5 )

CH 2 (2Cl-CgH 4 ) (CH 2 ) 7 CH 3 CH 2 0(3CF 3 -CgH 4 )

CH 2 (4Cl-CgH 4 ) (CH 2 ) 8 CH 3 CH 2 0(4CF 3 -CgH 4 )

CH 2 (2,4Cl-CgH 3 ) (CH 2 ) 9 CH 3 CH 2 0(2Cl-CgH 4 )

CH 2 (3SCH 3 -CgH 4 ) CH 2 CH (CH 3 ) 2 CH 2 0(3SCH 3 -CgH 4 )

CH 2 (30CH 3 -CgH ) CH 2 CH 2 CH(CH 3 ) 2 CH 2 0(2CH 3 -CgH 4 )

CH 2 (3C1-C 6 H 4 ) CH 2 CH 2 CH 2 CH(CH3) 2 CH 2 0(4Cl-CgH 4 )

CH 2 (2,6F-C 6 H 3 ) CH 2 CH 2 CH(CH3)CH 2 CH 2 CH 3 CH 2 0(2,4Cl-CgH 3 )

CH 2 (2,6Cl-CgH 3 ) CH 2 CH(CH3)CH 2 CH 2 CH 3 CH 2 SCH 2 CH 3

CH 2 (3,4F-CgH 3 ) CH 2 CH(CH 2 CH 3 )CH 2 CH 3 CH 2 SCH 2 CH 2 CH 3

CH 2 -Si(CH 3 ) 3 CH2CH2CH2OCH2CH3 CH 2 SCH 2 CH(CH 3 )2

ON=C(CH 3 ) 2 CH2CH2CH2CH2OCH3 CH 2 SCH 2 (CgH 5 )

ON=CH(CgH 5 ) CH2CH2CH2-S-CH2CH3 CH 2 SCH 2 (3CF 3 -CgH 4 )

ON=C(CH 3 )CgH 5 CH2CH2CH2CH2SCH3 CH 2 S(2Cl-CgH 4 )

OCH 2 (2,6-Cl-CgH 3 ) CH 2 CH 2 CH2NHCH 2 CH3 CH 2 S(4CH 3 -C H )

OCH 2 (C=CH 2 )CH 3 CH 2 CF 2 CH(CH 3 ) 2 CH 2 S(2,4Cl-CgH 3 ) ψ-2 CH 2 CH 2 CH 2 CF 2 CH 3 CH 2 S(3SCH 3 -C H )

OCH 2 "CH

CH- CH 2 -cyclopropyl CH 2 S(2,6Cl-CgH 3 )

CH 2 -cyclobutyl CH 2 S(CgH 5 )

4F-CgH 4

CH 2 -cyclopentyl CH 2 S(3CF 3 -CgH 4 )

4Cl-CgH 4

CH 2 -cyclohexyl CH 2 S(2Cl-CgH 4 )

4Br-CgH 4 cyclopropyl CH 2 S(4CH 3 -CgH 4 )

2-pyridyl cyclobutyl CH 2 S(2,6Cl-CgH 3 )

2-furyl cyclopentyl CH 2 S(2,4Cl-CgH 3 )

2-thiazolyl cyclohexyl CH 2 NHCH 2 CH 3

2-imidazolyl

O-2OCF3-C5H3N) CH 2 OCH 2 CH 3 CH2NHCH2CH2CH3

CH 2 OCH 2 CH 2 CH 3 CH 2 NHCH 2 C(CgH 5 )

0-2Cl-6CF 3 -C 6 H 3

CH 2 OCH 2 CH(CH 3 ) 2 CH 2 NHCH 2 CH(CH 3 ) 2

CH 2 OCH 2 (CgH 5 ) CH 2 NHCH 2 (3CF 3 -CgH 4 )

2-imidazolyl CH 2 OCH 2 CH 3 CH2NHCH2CH2CH3

0-2(3CF 3 -C 5 H 3 N) CH 2 OCH 2 CH 2 CH 3 CH 2 NHCH 2 C(CgH 5 )

0-2Cl-6CF 3 -C 6 H 3 CH 2 OCH 2 CH(CH3)2 CH 2 NHCH 2 CH(CH3)2

CH 2 OCH 2 (CgH 5 ) CH 2 NHCH 2 (3CF 3 -CgH 4 )

R 1 =OCF 2 H, R 2 =C≡N CH 2 OCH 2 (3CF 3 -CgH 4 ) CH 2 NHCH 2 (2Cl-CgH 4 ) E 3 CH 2 OCH 2 (2Cl-CgH 4 ) CH 2 NH(CgH 5 )

(CH 2 ) 2 CH 3 CH 2 OCH 2 (3SCH 3 -C 6 H 4 ) CH 2 NH(2Cl-CgH 4 )

(CH 2 ) 3 CH 3 CH 2 OCH 2 (4Cl-CgH 4 ) CH 2 N(CH 3 ) (2Cl-CgH 4 )

(CH 2 ) 4 CH 3 CH 2 OCH 2 (2,4F-CgH 3 ) OCH 2 CH 2 CH 3

(CH 2 ) 5 CH 3 CH 2 CH 2 OCH 2 CH 2 CH3 OCH 2 (CH 2 )2 H 3

(CH 2 )gCH 3 CH 2 0(CgH 5 ) OCH 2 (CH 2 )3CH 3

(CH 2 ) 7 CH 3 CH 2 0(3CF 3 -CgH 4 ) OCH 2 (CH 2 ) 5 CH3

(CH 2 ) 8 CH 3 CH 2 0(4CF 3 -CgH 4 ) OCH 2 C(CgH 5 )

(CH 2 ) 9 CH 3 CH 2 0(2Cl-CgH 4 ) OCH 2 (3CF 3 -CgH 4 ) CH 2 CH(CH 3 ) 2 CH 2 0(3SCH 3 -CgH 4 ) OCH 2 (2Cl-CgH 4 ) CH 2 CH 2 CH(CH3)2 CH 2 0(2CH 3 -CgH 4 ) OCH 2 CH(CH 3 ) 2 CH 2 CH 2 CH 2 CH(CH3) 2 CH 2 0(4Cl-C H 4 ) 0(CgH 5 ) CH 2 CH 2 CH(CH3)CH 2 CH 2 CH 3 CH 2 0(2,4Cl-CgH 3 ) 0(3CF 3 -CgH 4 ) CH 2 CH(CH 3 )CH 2 CH 2 CH 3 CH SCH 2 CH3 0(2Cl-CgH 4 ) CH 2 CH(CH 2 CH 3 )CH 2 CH 3 CH 2 SCH 2 CH 2 CH3 0(4SCH 3 -C H 4 ) CH 2 CH 2 CH 2 OCH 2 CH 3 CH 2 SCH 2 CH(CH 3 )2 0(2,4C1-C 6 H 3 ) CH 2 CH 2 CH 2 CH 2 OCH 3 CH 2 SCH 2 (CgH 5 ) SCH 2 CH 2 CH 3 CH2CH2CH2-S-CH2CH3 CH 2 SCH 2 (3CF 3 -CgH 4 ) SCH 2 (CH 2 ) 2 CH 3 CH2CH2CH2CH2SCH3 CH 2 S(2Cl-CgH 4 ) SCH 2 (CH 2 ) 3 CH 3 CH 2 CH 2 CH 2 NHCH 2 CH3 CH 2 S(4CH 3 -CgH 4 ) SCH 2 (CH 2 ) 5 CH 3 CH 2 CF 2 CH(CH 3 ) 2 CH 2 S(2,4Cl-CgH 3 ) SCH 2 (C H 5 ) CH 2 CH 2 CH 2 CF 2 CH 3 CH 2 S(3SCH 3 -CgH 4 ) SCH 2 (3SCH 3 -CgH 4 ) CH 2 -cyclopropyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 (20CH 3 -CgH 4 ) CH 2 -cyclobutyl CH 2 S(CgH 5 ) SCH 2 (2C1-C 6 H 4 ) CH 2 -cyclopentyl CH 2 S(3CF 3 -C 6 H 4 ) SCH 2 (2,4-CgH 3 ) CH 2 -σyclohexyl CH 2 S(2Cl-CgH 4 ) SCH 2 (4CF 3 -CgH 4 ) cyclopropyl CH 2 S(4CH 3 -C H 4 ) S(CH 3 ) 3 cyclobutyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 CH(CH 3 ) 2 cyclopentyl CH 2 S(2,4Cl-C H 3 ) S(CgH 5 ) cyclohexyl CH 2 NHCH 2 CH 3 S(3CF 3 -CgH 4 )

S(2C1-C 6 H 4 ) 4Br-CgH 4

S(40CH 3 -CgH 4 ) 2-pyridyl

S(2,4Cl-CgH 3 ) 2-furyl

S(2,6F-CgH 3 ) 2-thiazolyl

2(3CH 3 -CgH 4 ) 2-i idazolyl

NHCH 2 CH 2 CH 3 0-2 OCF3-C5H3N)

NHCH 2 (CH 2 )2CH 3 0-2Cl-6CF 3 -CgH 3

NHCH 2 (CH 2 ) 4 CH 3

NHCH2(CH 2 ) 5 CH3 R 1 =N0 2 , R 2 =C≡N

NHCH 2 CH(CH 3 ) 2 E 3

NHCH 2 (CgH 5 ) (CH 2 ) 2 CH 3

NHCH 2 (3CF 3 -CgH 4 ) (CH 2 ) 3 CH 3

NHCH 2 (2C1-C 6 H 4 ) (CH 2 ) 4 CH 3

NHCH 2 (4CH 3 -CgH 4 ) (CH 2 ) 5 CH 3

NHCH 2 (2,4Cl-CgH 3 ) (CH 2 )gCH 3

NHCH 2 (2,6Cl-CgH 3 ) (CH 2 ) 7 CH 3

NH(CgH 5 ) (CH 2 ) 8 CH 3

NH(3CF 3 -C H 4 ) (CH 2 ) 9 CH 3

NH(2Cl-CgH 4 ) CH 2 CH(CH 3 ) 2

NH(3CH 3 -CgH 4 ) CH 2 CH 2 CH(CH 3 ) 2

NH(2,4Cl-CgH 3 ) CH 2 CH 2 CH 2 CH(CH3) 2

NH(2,6Cl-CgH 3 ) CH 2 CH 2 CH(CH3)CH 2 CH 2 CH 3

N(CH 3 ) (3CF 3 -CgH 4 ) CH 2 CH(CH3)CH 2 CH 2 CH 3

N(CH 3 )CH 2 CH 2 CH 3 CH 2 CH(CH 2 CH 3 )CH 2 CH 3

N(CH 2 ) 4 CH 2 CH 2 CH 2 OCH 2 CH 3

N(CH 2 ) 5 CH 2 CH 2 CH 2 CH 2 OCH 3

N(CH 2 )g CH 2 CH 2 CH 2 -S-CH 2 CH 3

N(CH 2 CH 2 -0CH 2 CH 2 ) 2 CH 2 CH 2 CH 2 CH 2 SCH 3

CH 2 C0 2 CH 3 CH 2 CH 2 CH 2 NHCH 2 CH 3

CH2CH2CO2CH2CH3 CH 2 CF 2 CH(CH 3 )

CH2CH2CO2CH3 CH 2 CH 2 CH 2 CF 2 CH 3

CH 2 CH 2 OCH 2 CH3 CH2~cyclopropyl

CH2CH2SCH2CH3 CH 2 -cyclobutyl

CH2CH2-NHCH2CH3 CH2-cyclopentyl

CH 2 CH 2 N(CH 3 )CH 2 CH 3 CH2~cyclohexyl

cyclopropyl CH 2 S (4CH 3 -CgH 4 ) S(CH 3 ) 3 cyclobutyl CH 2 S (2 , 6Cl-C H 3 ) SCH 2 CH(CH 3 ) 2 cyclopentyl CH 2 S (2 , 4Cl-CgH 3 ) S(CgH 5 ) cyclohexyl CH 2 NHCH 2 CH 3 S(3CF 3 -CgH 4 )

CH 2 OCH 2 CH 3 CH 2 NHCH 2 CH 2 CH 3 S(2Cl-CgH 4 )

CH2OCH2CH2CH3 CH 2 NHCH 2 C(CgH 5 ) S(40CH 3 -CgH 4 )

CH 2 OCH 2 CH(CH3)2 CH 2 NHCH 2 CH(CH 3 ) 2 S(2,4Cl-CgH 3 )

CH 2 OCH 2 (CgH 5 ) CH 2 NHCH 2 (3CF 3 -CgH 4 ) S(2,6F-CgH 3 )

CH 2 OCH 2 (3CF 3 -CgH 4 ) CH 2 NHCH 2 (2Cl-CgH 4 ) 2(3CH 3 -C 6 H 4 )

CH 2 OCH 2 (2Cl-CgH 4 ) CH 2 NH(CgH 5 ) NHCH 2 CH 2 CH 3

CH 2 OCH 2 (3SCH 3 -CgH 4 ) CH 2 NH(2Cl-CgH 4 ) NHCH 2 (CH 2 ) 2 CH 3

CH 2 OCH 2 (4Cl-CgH 4 ) CH 2 N(CH 3 ) (2Cl-CgH 4 ) NHCH 2 (CH 2 ) 4 CH 3

CH 2 OCH 2 (2,4F-C H 3 ) 0CH 2 CH 2 CH 3 NHCH 2 (CH 2 ) 5 CH 3

CH 2 CH 2 OCH 2 CH 2 CH 3 0CH 2 (CH 2 ) 2 CH 3 NHCH 2 CH(CH 3 ) 2

CH 2 0(C 6 H 5 ) OCH 2 (CH 2 ) 3 CH 3 NHCH 2 (CgH 5 )

CH 2 0(3CF 3 -CgH 4 ) OCH 2 (CH 2 ) 5 CH 3 NHCH 2 (3CF 3 -C H )

CH 2 0(4CF 3 -CgH 4 ) OCH 2 C(CgH 5 ) NHCH 2 (2Cl-CgH 4 )

CH 2 0(2Cl-CgH 4 ) OCH 2 (3CF 3 -CgH 4 ) NHCH 2 (4CH 3 -CgH 4 )

CH 2 0(3SCH 3 -CgH 4 ) OCH 2 (2Cl-CgH ) NHCH 2 (2,4Cl-CgH 3 )

CH 2 0(2CH 3 -CgH 4 ) OCH 2 CH(CH 3 ) 2 NHCH 2 (2,6Cl-CgH 3 )

CH 2 0(4Cl-CgH 4 ) 0(CgH 5 ) NH(CgH 5 )

CH 2 0(2,4Cl-CgH 3 ) 0(3CF 3 -CgH 4 ) NH(3CF 3 -CgH 4 )

CH 2 SCH 2 CH 3 0(2Cl-CgH 4 ) NH(2Cl-CgH 4 )

CH 2 SCH 2 CH 2 CH 3 0(4SCH 3 -CgH 4 ) NH(3CH 3 -CgH 4 )

CH 2 SCH 2 CH(CH 3 )2 0(2,4Cl-CgH 3 ) NH(2,4Cl-CgH 3 )

CH 2 SCH 2 (CgH 5 ) SCH 2 CH 2 CH 3 NH(2,6Cl-C H 3 )

CH 2 SCH 2 (3CF 3 -CgH 4 ) SCH 2 (CH 2 ) 2 CH 3 N(CH 3 ) (3CF 3 -CgH 4 )

CH 2 S(2Cl-CgH 4 ) SCH 2 (CH 2 ) 3 CH 3 N(CH 3 )CH 2 CH 2 CH 3

CH 2 S(4CH 3 -CgH 4 ) SCH 2 (CH 2 ) 5 CH 3 N(CH 2 )

CH 2 S(2,4Cl-CgH 3 ) SCH 2 (CgH 5 ) N(CH 2 ) 5

CH 2 S(3SCH 3 -CgH 4 ) SCH 2 (3SCH 3 -CgH 4 ) N(CH 2 )g

CH 2 S(2,6Cl-CgH 3 ) SCH 2 (20CH 3 -CgH 4 ) N(CH 2 CH 2 -0CH 2 CH 2 ) 2

CH 2 S (CgH 5 ) SCH 2 (2Cl-CgH 4 ) CH 2 C0 2 CH 3

CH 2 S(3CF 3 -CgH 4 ) SCH 2 (2,4-CgH 3 ) CH 2 CH 2 C0 2 CH 2 CH 3

CH 2 S (2Cl-CgH 4 ) SCH 2 (4CF 3 -CgH 4 ) CH 2 CH 2 C0 2 CH 3

CH 2 -σyclopropyl

CH 2 -cyclobutyl

CH 2 -cyclopentyl

CH 2 -cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl

CH 2 OCH 2 CH 3

CH 2 OCH 2 CH 2 CH 3

CH 2 OCH CH(CH 3 ) 2

CH 2 OCH 2 (CgH 5 )

CH 2 0CH 2 (3CF 3 -CgH 4 )

CH 2 OCH 2 (2Cl-CgH 4 )

CH 2 0CH 2 (3SCH 3 -CgH 4 )

CH 2 OCH 2 (4Cl-CgH 4 )

CH 2 OCH 2 (2,4F-CgH 3 )

CH 2 CH 2 OCH 2 CH 2 CH3

CH 2 0(CgH 5 )

CH 2 0(3CF 3 -C H 4 )

CH 2 0(4CF 3 -CgH 4 )

CH 2 0(2Cl-CgH )

CH 2 0(3SCH 3 -CgH 4 )

CH 2 0(2CH 3 -C H 4 )

CH 2 0(4Cl-CgH 4 )

CH 2 0(2,4Cl-CgH 3 )

CH 2 SCH 2 CH 3

CH 2 SCH 2 CH 2 CH 3

CH 2 SCH 2 CH(CH 3 )2

CH 2 SCH 2 (CgH 5 )

CH 2 SCH 2 (3CF3-CgH 4 )

CH 2 S(2Cl-CgH 4 )

CH 2 S(4CH 3 -CgH 4 )

CH 2 S(2,4Cl-CgH 3 )

CH 2 S(3SCH 3 -CgH 4 )

CH 2 CH(CH 2 CH 3 )CH 2 CH 3 CH 2 SCH 2 CH 2 CH3 0(4SCH 3 -CgH 4 )

CH 2 CH 2 CH 2 0CH 2 CH 3 CH 2 SCH 2 CH(CH 3 )2 0(2,4Cl-CgH 3 )

CH 2 CH 2 CH 2 CH 2 OCH 3 CH 2 SCH 2 (CgH 5 ) SCH 2 CH 2 CH 3

CH 2 CH 2 CH 2 -S-CH 2 CH 3 CH 2 SCH 2 (3CF 3 -CgH 4 ) SCH 2 (CH 2 )2CH 3

CH 2 CH 2 CH 2 CH 2 SCH 3 CH 2 S(2Cl-CgH 4 ) SCH 2 (CH 2 )3CH 3

CH 2 CH 2 CH 2 NHCH 2 CH 3 CH 2 S(4CH 3 -CgH 4 ) SCH 2 (CH 2 )5CH3

CH 2 CF 2 CH(CH 3 ) 2 CH 2 S(2,4Cl-CgH 3 ) SCH 2 (CgH 5 )

CH 2 CH 2 CH 2 CF 2 CH 3 CH 2 S(3SCH 3 -CgH ) SCH 2 (3SCH 3 -CgH )

CH 2 -cyclopropyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 (20CH 3 -CgH )

CH 2 -cyclobutyl CH 2 S(CgH 5 ) SCH 2 (2Cl-CgH 4 )

CH 2 -cyclopentyl CH 2 S(3CF 3 -CgH 4 ) SCH 2 (2,4-CgH 3 )

CH 2 -cyclohexyl CH 2 S(2Cl-CgH 4 ) SCH 2 (4CF 3 -CgH 4 ) cyclopropyl CH 2 S(4CH 3 -C H 4 ) S(CH 3 ) 3 cyclobutyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 CH(CH 3 ) 2 cyclopentyl CH 2 S(2,4Cl-CgH 3 ) S(CgH 5 ) cyclohexyl CH 2 NHCH 2 CH 3 S(3CF 3 -CgH 4 )

CH 2 OCH 2 CH 3 CH 2 NHCH 2 CH 2 CH 3 S(2Cl-C H 4 )

CH2OCH2CH2CH3 CH 2 NHCH 2 C(CgH 5 ) S(40CH 3 -CgH 4 )

CH 2 OCH 2 CH(CH 3 )2 CH2NHCH 2 CH(CH 3 ) 2 S(2,4C1-C 6 H 3 )

CH 2 OCH2(CgH 5 ) CH 2 NHCH 2 (3CF 3 -CgH 4 ) S(2,6F-C 6 H 3 )

CH 2 OCH 2 (3CF 3 -CgH ) CH 2 NHCH 2 (2Cl-CgH 4 ) 2(3CH 3 -C 6 H 4 )

CH 2 OCH 2 (2Cl-C H 4 ) CH 2 NH(C H 5 ) NHCH 2 CH 2 CH 3

CH 2 OCH 2 (3SCH 3 -CgH 4 ) CH 2 NH(2Cl-CgH 4 ) NHCH 2 (CH 2 )2CH 3

CH 2 OCH 2 (4Cl-CgH 4 ) CH 2 N(CH 3 ) <2Cl-C H ) NHCH 2 (CH 2 ) CH 3

CH 2 OCH 2 (2,4F-C 6 H3) OCH 2 CH 2 CH 3 NHCH 2 (CH 2 )5CH 3

CH 2 CH 2 OCH 2 CH2CH3 OCH 2 (CH 2 ) 2 CH 3 NHCH 2 CH(CH 3 ) 2

CH 2 0(CgH 5 ) OCH 2 (CH 2 ) 3 CH 3 NHCH 2 (CgH 5 )

CH 2 0(3CF 3 -CgH 4 ) OCH 2 (CH 2 ) 5 CH 3 NHCH 2 (3CF 3 -CgH 4 )

CH 2 0(4CF 3 -CgH 4 ) OCH 2 C(CgH 5 ) NHCH 2 (2Cl-C H 4 )

CH 2 0(2Cl-C H 4 ) OCH 2 (3CF 3 -CgH 4 ) NHCH 2 (4CH 3 -CgH 4 )

CH 2 0(3SCH 3 -CgH ) OCH 2 (2Cl-CgH 4 ) NHCH 2 (2,4Cl-C H 3 )

CH 2 0(2CH 3 -CgH 4 ) OCH 2 CH(CH 3 ) 2 NHCH 2 (2,6Cl-CgH 3 )

CH 2 0(4Cl-CgH ) 0(CgH 5 ) NH(CgH 5 )

CH 2 0(2,4Cl-CgH 3 ) 0(3CF 3 -CgH 4 ) NH(3CF 3 -CgH 4 )

CH 2 SCH 2 CH 3 0(2Cl-CgH 4 ) NH(2Cl-CgH 4 )

CH 2 (3CF 3 -CgH 4 ) (CH 2 ) 7 CH 3 CH 2 0(3CF 3 -CgH 4 )

CH 2 (2Cl-CgH 4 ) (CH 2 ) 8 CH 3 CH 2 0(4CF 3 -CgH 4 )

CH 2 (4Cl-CgH 4 ) (CH2) 9 CH CH 2 0(2Cl-CgH 4 )

CH 2 (2,4Cl-CgH 3 ) CH 2 CH(CH 3 ) 2 CH 2 0(3SCH 3 -CgH )

CH 2 (3SCH 3 -CgH 4 ) CH 2 CH 2 CH(CH 3 ) 2 CH 2 0(2CH 3 -CgH 4 )

CH 2 (30CH 3 -CgH 4 ) CH 2 CH 2 CH 2 CH(CH3) 2 CH 2 0(4Cl-CgH 4 )

CH 2 (3Cl-CgH 4 ) CH 2 CH 2 CH(CH 3 )CH 2 CH 2 CH 3 CH 2 0(2,4Cl-CgH 3 )

CH 2 (2,6F-CgH 3 ) CH 2 CH(CH3)CH 2 CH 2 CH 3 CH 2 SCH 2 CH3

CH 2 (2,6Cl-CgH 3 ) CH 2 CH(CH 2 CH 3 )CH 2 CH 3 CH 2 SCH 2 CH 2 CH 3

CH 2 (3,4F-CgH 3 ) CH 2 CH 2 CH 2 0CH 2 CH 3 CH 2 SCH 2 CH(CH 3 )2

CH 2 -Si(CH 3 ) 3 CH 2 CH 2 CH 2 CH 2 0CH 3 CH 2 SCH 2 (CgH 5 )

0N=C(CH 3 ) 2 CH 2 CH 2 CH 2 -S-CH 2 CH 3 CH 2 SCH 2 (3CF 3 -C 6 H 4 )

0N=CH(CgH 5 ) CH 2 CH 2 CH 2 CH 2 SCH 3 CH 2 S(2Cl-C H 4 )

ON=C(CH 3 )CgH 5 CH 2 CH 2 CH 2 NHCH 2 CH 3 CH 2 S(4CH 3 -CgH 4 )

OCH 2 (2,6-Cl-CgH 3 ) CH 2 CF 2 CH(CH 3 ) 2 CH 2 S(2,4Cl-CgH 3 )

OCH 2 (C«=CH 2 )CH 3 CH2CH2CH2CF2CH3 CH 2 S(3SCH 3 -CgH 4 ) CH2-cyclopropyl CH 2 S(2,6Cl-CgH 3 ) CH2-cyclobutyl CH 2 S(C 6 H 5 ) CH2-cyclopentyl CH 2 S(3CF 3 -C H 4 ) 4F-CgH 4 CH 2 -cyclohexyl CH 2 S(2Cl-CgH ) 4Cl-CgH 4 cyclopropyl CH 2 S(4CH 3 -C 6 H 4 ) 4Br-CgH 4 cyclobutyl CH 2 S (2, 6Cl-CgH 3 ) 2 -pyridyl cyclopentyl CH 2 S(2,4Cl-CgH 3 ) 2-furyl cyclohexyl CH 2 NHCH 2 CH 3 2-thiazolyl CH 2 OCH 2 CH 3 CH2NHCH2CH2CH3 2-imidazolyl CH 2 OCH 2 CH 2 CH 3 CH 2 NHCH 2 C(CgH 5 ) 0-2(3CF 3 -C 5 H 3 N) 0-2Cl-6CF 3 -C 6 H 3 CH 2 OCH 2 CH(CH3)2 CH 2 HCH 2 CH(CH3)2 CH 2 OCH 2 (CgHg) CH 2 NHCH 2 (3CF 3 -CgH 4 ) CH 2 OCH 2 (3CF 3 -CgH 4 ) CH 2 NHCH 2 (2Cl-C H 4 )

R 1 =OCF 3 , R 2 =C0 2 H CH 2 OCH 2 (2Cl-CgH 4 ) CH 2 NH(CgH 5 )

E- CH 2 OCH 2 (3SCH 3 -CgH 4 ) CH 2 NH(2Cl-CgH 4 )

(CH 2 ) 2 CH 3 CH 2 OCH 2 (4Cl-CgH 4 ) CH 2 N(CH 3 ) (2Cl-CgH 4 ) (CH 2 ) 3 CH 3 CH 2 OCH 2 (2,4F-CgH3) 0CH 2 CH 2 CH 3 (CH 2 ) 4 CH 3 CH 2 CH 2 OCH 2 CH 2 CH3 OCH 2 (CH 2 )2 H3 (CH 2 ) 5 CH 3 CH 2 0(CgH 5 ) OCH 2 (CH 2 )3CH3 (CH 2 )gCH 3

(CH 2 ) 3 CH 3 CH 2 OCH 2 (4Cl-CgH 4 ) CH 2 N(CH 3 ) (2Cl-CgH 4 )

(CH 2 ) 4 CH 3 CH 2 OCH 2 (2,4F-CgH 3 ) 0CH 2 CH 2 CH 3

(CH 2 ) 5 CH 3 CH 2 CH 2 OCH 2 CH 2 CH 3 0CH 2 (CH 2 )2CH3

(CH 2 )gCH 3 CH 2 0(CgH 5 ) 0CH 2 (CH 2 )3CH 3

(CH 2 ) 7 CH 3 CH 2 0(3CF 3 -C 6 H 4 ) OCH2(CH 2 ) 5 CH3

(CH 2 ) 8 CH 3 CH 2 0(4CF 3 -CgH 4 ) OCH 2 C(C H 5 )

(CH 2 ) 9 CH 3 CH 2 0(2Cl-CgH 4 ) OCH 2 (3CF 3 -CgH 4 ) CH 2 CH(CH 3 ) 2 CH 2 0(3SCH 3 -CgH 4 ) OCH 2 (2Cl-CgH 4 ) CH 2 CH 2 CH(CH 3 ) 2 CH 2 0(2CH 3 -CgH 4 ) OCH 2 CH(CH 3 ) 2 CH 2 CH 2 CH 2 CH(CH3) 2 CH 2 0(4Cl-CgH 4 ) 0(CgH 5 ) CH 2 CH 2 CH(CH 3 )CH 2 CH 2 CH 3 CH 2 0(2,4Cl-CgH 3 ) 0(3CF 3 -CgH 4 ) CH 2 CH(CH 3 )CH 2 CH 2 CH 3 CH 2 SCH 2 CH3 0(2Cl-CgH 4 ) CH 2 CH(CH 2 CH 3 )CH 2 CH 3 CH SCH 2 CH 2 CH 3 0(4SCH 3 -CgH 4 ) CH 2 CH 2 CH 2 OCH 2 CH 3 CH 2 SCH 2 CH(CH 3 )2 0(2,4Cl-CgH 3 ) CH 2 CH 2 CH 2 CH 2 OCH 3 CH 2 SCH 2 (CgH 5 ) SCH 2 CH 2 CH 3 CH CH CH -S~CH CH CH 2 SCH 2 (3CF 3 -CgH 4 ) SCH 2 (CH 2 ) 2 CH 3 CH CH CH CH SCH CH 2 S(2Cl-CgH 4 ) SCH 2 (CH 2 ) 3 CH 3 CH 2 CH 2 CH 2 NHCH 2 CH 3 CH 2 S(4CH 3 -CgH 4 ) SCH 2 (CH 2 )5CH3 CH 2 CF 2 CH(CH 3 ) 2 CH 2 S(2,4Cl-CgH 3 ) SCH2(CgH 5 ) CH 2 CH CH 2 CF 2 CH3 CH 2 S(3SCH 3 -CgH ) SCH 2 (3SCH 3 -CgH 4 ) CH 2 -cyclopropyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 (20CH 3 -CgH 4 ) CH 2 -cyclobutyl CH 2 S(CgH 5 ) SCH 2 (2Cl-CgH 4 ) CH 2 -cyclopentyl CH 2 S(3CF 3 -C H 4 ) SCH 2 (2 f 4-CgH 3 ) CH 2 -cyclohexyl CH 2 S(2Cl-CgH 4 ) SCH 2 (4CF 3 -CgH 4 ) cyclopropyl CH 2 S(4CH 3 -CgH 4 ) S(CH 3 ) 3 cyclobutyl CH 2 S(2,6Cl-CgH 3 ) SCH 2 CH(CH 3 ) 2 cyclopentyl CH 2 S(2,4Cl-CgH 3 ) S(CgH 5 ) cyclohexyl CH 2 NHCH 2 CH 3 S(3CF 3 -C 6 H 4 ) CH 2 OCH 2 CH 3 CH 2 NHCH 2 CH 2 CH 3 S(2Cl-CgH 4 ) CH2OCH2CH2CH3 CH 2 NHCH 2 C(CgH 5 ) S(40CH 3 -C 6 H 4 ) CH 2 OCH 2 CH(CH3)2 CH 2 NHCH 2 CH(CH3) 2 S(2,4C1-C 6 H 3 ) CH 2 OCH 2 (CgH 5 ) CH 2 NHCH 2 (3CF 3 -CgH 4 ) S(2,6F-CgH 3 ) CH 2 OCH 2 (3CF 3 -CgH 4 ) CH 2 NHCH 2 (2Cl-CgH 4 ) 2(3CH 3 -C 6 H 4 ) CH 2 OCH 2 (2Cl-CgH 4 ) CH 2 NH(CgH 5 ) NHCH 2 CH 2 CH 3 CH 2 OCH 2 (3SCH 3 -CgH 4 ) CH 2 NH(2Cl-C H 4 ) NHCH 2 (CH 2 ) 2 CH 3

CH 2 OCH 2 (CgH 5 ) CH 2 NHCH 2 (3CF 3 -CgH 4 )

CH 2 OCH 2 (3CF 3 -CgH 4 ) CH 2 NHCH 2 (2Cl-CgH 4 )

CH 2 OCH 2 (2Cl-CgH 4 ) CH 2 NH(CgH 5 )

CH 2 OCH 2 ( 3SCH 3 -CgH 4 ) CH 2 NH(2Cl-C H 4 )

CH 2 OCH 2 ( 4Cl-CgH 4 ) CH 2 N(CH 3 ) (2Cl-CgH 4 )

CH 2 OCH 2 (2 , 4F-CgH 3 ) 0CH CH 2 CH 3

CH 2 CH 2 OCH 2 CH 2 CH 3 OCH 2 (CH 2 ) 2 CH 3

CH 2 0(CgH 5 ) OCH 2 (CH 2 ) 3 CH3

CH 2 0(3CF 3 -C H 4 ) OCH 2 (CH 2 ) 5 CH 3

CH 2 0(4CF 3 -CgH 4 ) OCH 2 C(CgH 5 )

CH 2 0(2Cl-CgH 4 ) OCH 2 (3CF 3 -C H 4 )

CH 2 0(3SCH 3 -CgH 4 ) 0CH 2 (2C1-C 6 H 4 )

CH 2 0(2CH 3 -CgH 4 ) 0CH 2 CH(CH 3 ) 2

CH 2 0(4Cl-CgH 4 ) 0(CgH 5 )

CH 2 0(2,4Cl-CgH 3 ) 0(3CF 3 -CgH 4 )

CH 2 SCH 2 CH 3 0(2C1-C 6 H 4 )

CH 2 SCH 2 CH 2 CH 3 0(4SCH 3 -C 6 H 4 )

CH 2 SCH 2 CH(CH 3 )2 0(2,4Cl-CgH 3 )

CH 2 SCH 2 (CgH 5 ) SCH 2 CH 2 CH 3

CH 2 SCH 2 (3CF 3 -CgH 4 ) SCH 2 (CH 2 ) 2 CH 3

CH 2 S(2Cl-CgH 4 ) SCH 2 (CH 2 ) 3 CH 3

CH 2 S(4CH 3 -CgH 4 ) SCH 2 (CH 2 )5CH3

CH 2 S(2,4Cl-CgH 3 ) SCH2(CgH 5 )

CH 2 S(3SCH 3 -CgH ) SCH 2 (3SCH 3 -CgH 4 )

CH 2 S(2,6Cl-CgH 3 ) SCH 2 (20CH 3 -CgH )

CH 2 S(CgH 5 ) SCH 2 (2Cl-CgH 4 )

CH 2 S(3CF 3 -CgH 4 ) SCH 2 (2,4-CgH 3 )

CH 2 S(2Cl-C H 4 ) SCH 2 (4CF 3 -CgH 4 )

CH 2 S(4CH 3 -CgH 4 ) S(CH 3 ) 3

CH 2 S(2,6C1-C 6 H 3 ) SCH 2 CH(CH 3 ) 2

CH 2 S(2,4Cl-CgH 3 ) S(CgH 5 )

CH 2 NHCH 2 CH 3 S(3CF 3 -CgH 4 )

CH 2 NHCH 2 CH 2 CH 3 S(2Cl-CgH 4 )

CH 2 NHCH 2 C(CgH 5 ) S(40CH 3 -C H 4 )

CH 2 NHCH 2 CH(CH 3 ) 2 S(2,4Cl-CgH 3 )

IΔBiE ^ Z

2 3 3

Compositions of this invention comprising the active compounds of Formula I or II will generally be used in formulation with an agriculturally suitable carrier comprising a liquid or solid diluent or an organic solvent. Useful formulations may be in the form that includes dusts, granules, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates, dry flowables and the like, consistent 0 with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred

liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up 100 weight percent.

Weight Percent

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and

Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents and solvents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon \'s Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth, etc. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer mill or fluid energy mill. Water-dispersible granules can be produced be agglomerating a fine powder composition; see for example, Cross et al., Pesticide Formulations,

Washington, D.C., 1988, pp 251-259. Suspensions are prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry\'s Chemical Engineer \'s Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can also be prepared as taught in DE 3,246,493.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S.

3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, IVeed Control as a Science, John Wiley and

Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are worked up in conventional ways. Compound numbers refer to compounds in Index Table A.

EXAMPLE A High Strength Concentrate Compound 1 98.5% silica aerogel 0.5% synthetic amorphous fine silica 1.0%

EXAMPLE B Wettable Powder Compound 1 65.0%

dodecylphenol polyethylene glycol ether 2.0% sodium ligninsulfonate 4.0% sodium silicoaluminate 6.0% montmorillonite (calcined) 23.0% EXAMPLE C

Granule

Compound 1 10.0% attapulgite granules (low volative matter, 0.71/0.30 mm; U.S.S. No. 25-50 sieves) 90.0%

EXAMPLE D Extruded Pellet

Compound 1 25.0% anhydrous sodium sulfate 10.0% crude calcium ligninsulfonate 5.0% sodium alkylnaphthalenesulfonate 1.0% calcium/magnesium bentonite 59.0%

Tests results indicate that the compounds of the present invention are highly active preemergent and/or postemergent herbicides and/or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas. parking lots, drive-in theaters, around billboards and highway and railroad structures. Some of the compounds are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops which include but are not limited to barley, cotton, wheat, corn, soybeans and rice. Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growt .

In certain instances, combinations with other herbicides having a similiar spectrum of control but a different mode of action will be particularly advantageous for resistance management. UTILITY

Test results indicate that compositions of this invention are herbicidally active postemergence and preemergence. The compositions of this invention are particularly useful for the control of barnyardgrass (Echinochloa crus-galli ) in crops especially upland and rice ( Oryza sativa) .

A herbicidal effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general terms, a herbicidally effective amount is a rate from 0.005 to 10 kg/ha with a preferred rate range of 0.01 to 1 kg/ha. One skilled in the art can easily determine effective application rates for desired level of weed control.

The compositions of this invention may include as active compounds the compounds of Formulas I or II alone or in combination with other commercial herbicides, insecticides, or fungicides. The following list exemplifies some of the herbicides suitable for use in mixtures . A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control. Examples of other herbicides with which compounds of this invention can be formulated are: acetochlor, acifluorfen, acrolein, 2-propenal, alachlor, ametryn, amidosulfuron, ammonium sulfamate, amitrole, anilofos, asula , atrazine, barban, benefin, bensulfuron methyl, bensulide, bentazon, benzofluor, benzoylprop, bifenox,

bromacil, bromoxynil, bromoxynil heptanoate, bromoxynil octanoate, butachlor, buthidazole, butralin, butylate, cacodylic acid, 2-chloro-iV, N-di-2-propenylacetamide, 2-chloroallyl diethyldithiocarbamate, chloramben, chlorbromuron, chloridazon, chlorimuron ethyl, chlormethoxynil, chlornitrofen, chloroxuron, chlorpropham, chlorsulfuron, chlortoluron, cinmethylin, cinosulfuron, clethodim, clomazone, cloproxydim, clopyralid, calcium salt of methylarsonic acid, cyanazine, cycloate, cycluron, cyperquat, cyprazine, cyprazole, cypromid, dalapon, dazomet, dimethyl 2,3,5, 6-tetrachloro-l, -benzenedicarboxylate, desmedipham, desmetryn, dicamba, dichlobenil, dichlorprop, diclofop, diethatyl, difenzoquat, diflufenican, dimepiperate, dinitramine, dinoseb, diphenamid, dipropetryn, diquat, diuron, 2-methyl-4,6- dinitrophenol, disodium salt of methylarsonic acid, dymron, endothall, S-ethyl dipropylcarbamothioate, esprocarb, ethalfluralin, ethametsulfuron methyl, ethofumesate, fenac, fenoxaprop, fenuron, salt of fenuron and trichloroacetic acid, flamprop, fluazifop, fluazifop-P, fluchloralin, flumesulam, flumipropyn, fluometuron, fluorochloridone, fluorodifen, fluoro- glycofen, flupoxam, fluridone, fluroxypyr, fluzasulfuron, fomesafen, fosamine, glyphosate, haloxyfop, hexaflurate, hexazinone, imazamethabenz, imazapyr, imazaquin, imazamethabenz methyl, imazethapyr, imazosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, karbutilate, lactofen, lenacil, linuron, metobenzuron, metsulfuron methyl, methylarsonic acid, monoammonium salt of methylarsonic acid, (4-chloro-2-methylphenoxy)acetic acid, S,S\'-dimethyl-2-(difluoromethyl)-4-(2-methylpropyl)-6- (trifluoromethyl)-3,5-pyridinedicarbothioate, mecoprop, mefenacet, mefluidide, methalpropalin, metha-

benzthiazuron, metham, methazole, methoxuron, metolachlor, metribuzin, 1, 2-dihydropyridazine-3, 6- dione, molinate, monolinuron, monuron, monuron salt and trichloroacetic acid, monosodium salt of methylarsonic acid, napropamide, naptalam, neburon, nicosulfuron, nitralin, nitrofen, nitrofluorfen, norea, norflurazon, oryzalin, oxadiazon, oxyfluorfen, paraquat, pebulate, pendimethalin, perfluidone, phenmedipham, picloram, 5- [2-chloro-4- (trifluoromethyl)phenoxy] -2- nitroacetophenone oxime-O-acetic acid methyl ester, pretilachlor, primisulfuron, procyazine, profluralin, prometon, prometryn, pronamide, propachlor, propanil, propazine, propha , prosulfalin, prynachlor, pyrazolate, pyrazon, pyrazosulfuron ethyl, quinchlorac, quizalofop ethyl, rimsulfuron, secbumeton, sethoxydim, siduron, simazine, 1- (a,a-dimethylbenzyl)-3- (4- methylphenyl)urea, sulfometuron methyl, trichloroacetic acid, tebuthiuron, terbacil, terbuchlor, terbuthylazine, terbutol, terbutryn, thifensulfuron methyl, thiobencarb, triallate, trialkoxydim, triasulfuron, tribenuron methyl, triclopyr, tridiphane, trifluralin, trimeturon, (2, -dichlorophenoxy) acetic acid, 4- (2,4-dichlorophenoxy)butanoic acid, vernolate, and xylachlor. Compositions comprising a combination of a compound of Formula I or II with one or more of the following herbicides may be particularly useful for weed control in rice: bensulfuron methyl, N-[2-(2- methoxyethoxyphenyl sulfonyl] - \'-4, 6-dimethoxy-l, 3,5- triazin-2-ylurea, N- [ [ (4, 6-dimethoxypyrimidin-2- yl) amino] carbonyl] -l-methyl-4- (2-methyl-2H-tetrazol-5- yl) -lH-pyrazole-5-sulfonamide, mefenacet, metsulfuron methyl, molinate, pyrazosulfuron ethyl, quinclorac, N- [ [ (4, 6-dimethoxy-2-pyrimidinyl) amino] -carbonyl] -3- methyl-5- (2,2, 2-trifluoroethyl) -4-isothiazole-

sulfonamide, 3-chloro-N-[ [ (4, 6-dimethoxy-2- pyrimidinyl)amino]carbonyl]imidazo-[1,2-a]pyridine-3- sulfonamide, S,S-dimethyl 2-(difluoromethyl)-4-(2- methylpropyl)-6- (trifluoromethyl)-3,5-pyridine- carbothioate, and butachlor.

Selective herbicidal properties of compositions comprising the compounds of Formulas I or II were discovered in greenhouse tests as described below.

INDEX TABLE A

OCH 2 C(CH 3 ) (0CH 3 ) 2 113-118

OCH 2 CH(CH 3 )2 oil O

CH, 134-136

OCH 2 CH

-CH,

OCH 2 (2,6F-CgH 3 ) 82-86

CH. oil

OCH 2 -C-CH 3 OCH 2 C0 2 CH 3 Oil OCH 2 CH(CH 3 ) 2 oil

OCH 2 CH(CH 3 ) 2 79-81

OCH 2 (2,6-FCgH 3 ) 167-171 CH

II 2 89-92

OCH 2 -C-CH 3 OCH 2 (2,6-FCgH 3 ) 175-176

-CH, OCH 2 CH^ I 149-151

CH-

CH,

29 Cl C(0)NH 2 115-117

105-107

37-41

81-84

110-124

94-97

82-85

160-165

150-177

98-101 oil oil

92-98

138-145

122-128 166-170

4-OCH 3 CgH 4 180-184 4-ClCgH 4 198-202 4-FCgH 4 167-170 4-BrCgH 4 >250

(4-CH 2 CH2CH 2 CH3)CgH 4 196-200 OCCH 2 CH 2 CH 3 oil CH2CH2CH2CH3 Oil CH2CH2CH2CH2CH3 oil CH 2 CH 2 CH 2 CH 3 oil CH 2 CH(CH 3 ) 2 oil CH 2 CH 2 CH(CH 3 ) 2 oil CH 2 Si(CH 3 ) 3 oil CH2CH2CH2CH2CH3 91-99 CH2CH2CH2CH3 118-121 CH 2 CH 2 CH(CH 3 ) 2 88-107

CH 2 CH(CH 3 ) 2 97-107

OC-Si(CH 3 ) 3 106-109

CH 2 CH 2 CH(CH 3 ) 2

2-C 4 H 3 0 79-83

2-C H 3 0 86-125

Cl (CO)NH 2 168-172

JO

86 Br CH=N-0H CH 2 CH2CH 2 CH 3 oil

98 Cl C(0)NH 2

04 Cl C(0)NH 2

INDEX TABLE B

I

Compounds of Formula I wherein:

CMPD

1 NMR (CDC1 3 ) : ppm δ 7.88 (d, IH) ; 7.0 (s, IH) ; 6.8 (d, IH) ;

3.89 (s, 3H); 3.74 (d, 2H) ; 2.0 (m, IH) ; 1.035 ( , 6H) IR (Neat) : 1730 cm -1 (C=0)

NMR (CDCI3) ppm δ 7.87 (d, IH) ; 6.96 (s, IH) ; 6.8 (d, IH) ;

4.0 (m, 2H) ; 3.89 (s, 3H) ; 1.8 (m, IH) ; 1.67

(m, 2H) ; 0.97 (d, 6H)

IR (Neat) : 1725 cm -1 (C=0) NMR (CDCI3) ppm δ 7.88 (d, IH) ; 7.0 (s, IH) ; 6.8 (d, IH) ;

5.3 (m, IH); 4.07 (m, 4H) ; 4.06 ( , 2H) ; 3.89

(s, 3H)

IR (Neat) : 1720 cm "1 (C=0) NMR (CDCI3) ppm δ 10.5 (s, IH) ; 7.88 (d, IH) ; 6.93 (s,

IH) ; 6.8 (d of d, IH) ; 3.86 (d, 2H) ; 2.1 (m,

IH) ; 1.05 (d, 6H)

IR (Neat) : 1680 cm -1 (C=0) NMR (CDCI3) ppm δ 7.87 (d, IH) ; 6.98 (s, IH) ; 6.8 (d of d,

IH); 5.0 (s, 2H); 4.64 (s, 2H) ; 3.9 (s, 3H) ;

1.82 (s, 3H)

IR (Neat) : 1725 cm -1 (C=0) NMR (CDCI3) ppm δ 7.89 (d, IH) ; 6.98 (s, IH) ; 6.8 (d of d,

IH); 4.68 (s, 2H) ; 3.9 (S, 3H) ; 3.88 (s, 3H)

IR (Neat) : 1755; 1720 cm -1 (C-O) NMR (CDCI3) ppm δ 7.34 (d, IH) ; 6.93 (s, IH) ; 6.8 (d of d,

IH); 4.77 (d, 2H) ; 3.71 (d, 2H) ; 2.15 (m, IH) ;

1.8 (s, IH) ; 1.026 (d, 6H)

IR (Neat) : 3400 cm -1 (C=0) NMR (CDCI3) ppm δ 7.87 (d, IH) ; 6.98 (s, IH) ; 6.8 (m, IH) ;

5.0 (d, 2H); 4.64 (s, 2H) ; 3.9 (S, 3H) ; 1.82

(s, 3H)

IR (Neat) : 1725 cm -1 (C=0) NMR (CDCI3) ppm δ 7.53 (d, IH) ; 7.31 (m, IH) ; 6.8 (d of d,

IH); 3.92 (s, 3H) ; 3.7 (d, 2H) ; 2.0 (m, IH) ;

1.03 (d, 6H)

IR (Neat) : 1740 cm -1 (C=0) NMR (CDCI3) ppm δ 8.0 (d, IH) ; 7.5 (b, s, IH) ; 7.2 (s,

IH) ; 6.8 (d, IH) ; 3.8 (d, 2H) ; 2.0 (m, IH) ;

1.02 (d, 6H)

IR (Neat) : 3400, 1712 cm "1

NMR (CDCI3) ppm δ 7.37 (d, IH) ; 6.95 (s, IH) ; 6.8 (d, IH) ; 4.0 (s, 3H) ; 3.73 (d, 2H) ; 2.1 (m, IH) ; 1.02 (d, 6H

IR (Neat) : 1601 (C=N) cm "1 NMR (CDCI3) : ppm δ 7.6 (d, IH) ; 7.5 (s, IH) ; 6.93 (s, IH) ; 6.8 (d, IH); 3.71 (d, 2H) ; 2.08 (m, IH) ; 1.01 (d, 6H) NMR (CDCI3) ppm δ 7.568 (m, 2H) ; 7.52 (d, IH) ; 2.413 (m, 2H); 1.64 (m, 2H) ; 1.047 (t, 3H)

IR (Neat) : 2229 (ON) cm "1 NMR (CDCI3) ppm δ 10.4 (s, IH); 7.84 (d, IH) ; 7.468 (s, IH); 7.25 (d, IH) ; 2.63 (m, 2H) ; 1.37 (m, 2H) ; 0.94 (m, 3H)

IR (Neat) : 2748; 1692 (C=0) cm "1 NMR (CDCI3) ppm δ 7.55 (d, IH) ; 7.32 (s, IH) ; 7.19 (d, IH) ; 2.62 (t, 2H) ; 1.62 (m, 2H) ; 1.32 (m, 4H) ; 0.89 (t, 3H)

IR (Neat) : 2231 (ON) cm "1 NMR (CDCI3) ppm δ 7.56 (d, IH) ; 7.32 (s, IH) ; 7.198 (d, IH); 2.64 (t, 2H) ; 1.602 (m, 2H) ; 1.38 (m, 2H); 0.93 (t, 3H)

IR (Neat) : 2231 cm" 1 (ON) NMR (CDCI3) ppm δ 7.57 (d, IH) ; 7.3 (s, IH) ; 7.151 (d, IH); 2.51 (d, 2H) ; 1.9 (m, IH) ; 0.91 (d, 6H)

IR (Neat) : 2210 ((ON) cm" 1 NMR (CDCI3) ppm δ 7.55 (d, IH) ; 7.32 (s, IH) ; 7.198 (d, IH); 2.646 (t, 2H) ; 1.5-1.6 (m, 3H) ; 0.93 (d, 6H)

IR (Neat) : 2231 ((ON) cm" 1 NMR (CDCI3) ppm δ 7.48 (d, IH); 7.1 (s, IH) ; 6.95 (d, IH) ; 2.14 (s, 2H) ; 0.006 (s, 9H)

IR (Neat) : 2210 cm" 1 (ON) NMR (CDCI3) ppm δ 7.41 (d, IH) ; 7.23 (s, IH) ; 7.08 (d, IH); 6.5 (bs, IH) ; 4.94 (bs, 2H) ; 2.6 (t, 2H) ; 1.6 (m, IH); 1.49 (m, 2H) ; 0.93 (d, 6H)

IR (Nujol) : 1649 (ON) cm "1 86 NMR (CDCI3) ppm δ 8.5 (s, IH) ; 8.4 (s, IH) ; 7.7 (d, IH) ; 7.4 (s, IH) ; 2.6 ( , 2H) ; 1.6 (m, 2H) ; 1.27 (m, 2H); .97 (m, 3H)

89 NMR (CDCI3) ppm δ 7.8 (s, IH) ; 7.6 (m, 2H) ; 7.26 (m, IH) ;

7.0 (S, IH); 6.8 (d, IH)

IR (Neat) : 2232 cm "1 (ON) 91 NMR (CDCI3) ppm δ 7.6 (d, IH) ; 7.53 (s, IH) ; 7.32 (d, IH) ;

7.11 (d, IH); 7.09 (s, IH) ; 6.83 (d, IH)

IR (Neat) : 2230 cm" 1 (ON) 95 NMR (CDCI3) ppm δ 7.65 (m, 4H) ; 7.48 (m, 3H) ; 7.26 (m,

IH) ; 7.1 (t, IH) + isomer

IR (Neat) : 2229 cm " l (ON) , 1631 (C=N) cm "1 102 NMR (CDCI3) ppm δ 7.42 (d, IH) ; 6.99 (s, IH) ; 6.83

IH) ; 3.74 (d, 2H) ; 2.08 (m, IH) ; 1.02 (d, 6H)

IR (Neat) : 3313 cm "1 (OH), 2195 cm "1 (ON) 107 NMR (CDCI3) ppm δ 8.82 (s, IH) ; 8.34 (d, IH) ; 8.05 (d,

IH); 2.92 (d, 2H) ; 2.3 (m, IH) ; 1.03 (d, 6H)

IR (Neat) : 2234 (ON) ; 1695 (OO) cm "1 110 NMR (CDCI3) ppm δ 7.55 (d, IH) ; 7.0 (s, IH) ; 6.85 (d, IH) ;

3.76 (d, 2H); 2.1 (m, IH) ; 1.04 (d, 6H)

IR (Neat) : 1599, 1556 (C«=N) cm" 1 113 NMR (CDCI3) : ppm δ 9.125 (s, IH) ; 7.4 (d, IH) ; 6.866 (s,

IH); 6.8 (d, IH) ; 5.3 (t, IH) ; 3.72 (d, 2H) ;

3.01

IR (Neat) : 1700, 1602 (C=0) cm "1 115 NMR (CDCI3) ppm δ 7.4 (d, IH); 6.95 (s, IH) ; 6.78 (d, IH) ; 3.7 (d, 2H) ; 3.27 (s, IH) ; 2.08 (m, IH) ; 1.01

IR (Neat) : 116 NMR (CDCI3) ppm δ 7.33 (d, IH) ; 6.945 (s, IH) ; 6.8 (d, IH); 4.67 (s, 2H); 3.7 (d, 2H) ; 2.04 (m, IH) ; 1.01 (d, 6H)

117 NMR (CDC1 3 ) ppm δ 7.38 (d, IH) ; 6.95 (s, IH) ; 6.83 (d,

IH) ; 3.76 (s, 2H) ; 3.7 (d, 2H) ; 2.08 (m, IH) ;

1.02 (d, 6H)

IR (Neat) : 2251 (CsN) cm "1 121 NMR(CDC1 3 ): ppm δ 7.55 (d, IH) ; 7.18 (s, IH) ; 6.9 (d, IH) ;

3.75 (d, 2H) ; 2.05 (m, IH) ; 1.03 (d, 6H)

IR (Neat) : 2229 (ON) cm "1 123 NMR (CDCI3) ppm δ 7.79 (d, 2H) ; 7.27 (m, IH) ; 3.87 (d,

2H); 2.1 (m, IH) ; 1.06 (d, 6H)

IR (Neat) : 2229 (ON) cm "1

TEST A

Seeds of barley (Hordeum vulgare) , barnyardgrass (Echinochloa crus-galli ) , bedstraw ( Galium aparine) , blackgrass (Alopecurus myosuroides) , bush bean (Phaseolus vulgaris) , cheatgrass (Bromus secalinus) , chickweed (Stellaria media ) , cocklebur (Xanthium pe sy Ivan i cum) , corn (Zea mays) , cotton ( Gossypium hirsutum) , crabgrass (Digitaria spp.), giant foxtail (Setaria faberii) , lambsquarters ( Chenopodium album) , morningglory ( Ipomoea hederacea) , rape (Brassica napus) , rice ( Oryza sativa) , sicklepod ( Cassia obtusifolia) , sorghum (Sorghum bicolor) , soybean ( Glycine max) , sugar beet (Beta vulgaris) , velvetleaf (Abutilon theophrasti ) , wheat ( Triticum aestivum) , wild buckwheat (Polygonum convolvulus) , wild oat (Avena fatua) and purple nutsedge ( Cyperus rotundus) tubers were planted and treated preemergence with test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species were also treated with postemergence applications of test chemicals. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table A, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

Table A COMPOUND

Rate 400 g/ha 2 3 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

POSTEMERGENCE

Barley 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Barnyardgrass 4 10 5 9 0 0 0 0 0 0 0 4 0 0 0 0 3 4 8 0 0 8 9 9 0 0 9

Bedstraw 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Blackgrass 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 2 0 0 1 0 0 0 0 3

Bush bean _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Cheatgrass - 0 0 0 0 0 0 0 0 0 0 - - - - - - 1 1 0 0 0 0 0 0 0 0

Chickweed - 3 0 0 0 - 0 0 0 - 0 - - - - - - 4 3 0 0 3 0 0 0 0 0

Cocklebur 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Corn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cotton 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

Crabgrass 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Giant foxtail 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lambsquarter - 5 0 0 - 0 - 0 0 0 0 - - - - - - 2 0 0 0 0 0 0 0 0 0

Morningglory 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

Nutsedge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rape 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rice 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sicklepod _ _ _ _ - _ - - - - _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _

Sorghum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Soybean 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

Sugar beet 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 5 0 0 0 0 0

Velvetleaf 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 6 0 0 0 0 0 0 0 0 0

Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 Wild buckwheat 0 0 0 0 0 0 0 0 0 - 0 0 0 0 6 0 0 7 0 0 0 0 0 0 0 0 0

Wild oat 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0

Table A COMPOUND

Rate 400 g/ha 38 39 40 41 42 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

POSTEMERGENCE

Table A COMPOUND

Rate 400 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

POSTEMERGENCE

Table A COMPOUND

Rate 400 g/ha 93 94 95 96 97 98 99 100 101 103 104 105 106 107 108 109 110 111 112 113 114 115 116

POSTEMERGENCE

Table A COMPOUND Table A COMPOUND

Rate 400 g/ha 117 118 120 Rate 400 g/ha 117 118 120 POSTEMERGENCE POSTEMERGENCE

Table A COMPOUND

Rate 400 g/ha 2 3 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

PREEMERGENCE

Barley 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Barnyardgrass 4 10 2 7 0 0 0 0 0 0 0 2 0 0 0 0 3 3 6 0 0 5 8 8 0 0 6

Bedstraw 0 0 0 0 9 - - 9 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Blackgrass 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cheatgrass 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chickweed 0 0 - - - 0 - - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cocklebur 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Corn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cotton 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Crabgrass 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Giant foxtail 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lambsquarter 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Morningglory 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nutsedge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rape 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rice 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sicklepod _ _ _ _ _ _ _ - _ _ - - - - - - - - _ - _ - _ _ _ _ _

Sorghum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Soybean 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sugar beet 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Velvetleaf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Wild buckwheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Wild oat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A COMPOUND

Rate 400 g/ha 93 94 95 96 97 98 99 100 101 103 104 105 106 107 108 109 110 111 112 113 114 115 116

PREEMERGENCE

Table A COMPOUND Table A COMPOUND Rate 200 g/ha 102 119 Rate 200 g/ha 102 119 PREEMERGENCE PREEMERGENCE

TEST B

Seeds of barnyardgrass (Echinochloa crus-galli) , cheatgrass (Bromus secalinus) , cocklebur (Xanthium pensylvanicum) , crabgrass (Digitaria spp.), giant foxtail (Setaria faberii ) , morningglory ( Ipomoea spp.), sorghum (Sorghum bicolor) , velvetleaf (Abutilon theophrasti ) , and wild oat (Avena fatua) were planted into a sandy loam soil and treated preemergence with test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species were also treated postemergence with test chemicals. Plants ranged in height from two to eighteen cm and were in the two to three leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately eleven days, after which all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table B, are based on a 0 to 10 scale where 0 is no effect and 10 is complete control. A dash (-) response means no test results.

The test chemicals were formulated in a non- phytoxic solvent and applied to water that covered the soil surface (flood application) . Seeds of barnyardgrass (Echinochloa crus-galli) , and rice ( Oryza sativa) were planted in silt loam soil in separate containers. Containers of barnyardgrass and rice were grown for ten days (barnyardgrass at 2 leaf stage) and flooded one day prior to treatment. Water depth was maintained at approximately 2.5 cm for the duration of the test.

All plant species were grown using normal greenhouse practices. Treated plants were compared to untreated controls and visually evaluated eleven to fifteen days after treatment. Plant response ratings, summarized in Table C, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table C COMPOUND

Rate 16 g/ha 3 9 28 46 55 POSTEMERGENCE

Barnyardgrass 2 100 40 95 95 95

Rice Japonica 0 0 0 0 0

Table C COMPOUND Rate 4 g/ha 3 9 28 46 55 POSTEMERGENCE Barnyardgrass 2 95 20 85 90 80 Rice Japonica 0 0 0 0 0

Table C COMPOUND

Rate 1 g/ha 3 9 46 55

POSTEMERGENCE

Barnyardgrass 2 65 0 65 60

Rice Japonica 0 0 0 0

TEST D

Plastic pots were partially filled with silt loam soil then saturated with water. Japonica rice ( Oryza sativa) seedlings, barnyardgrass (Echinochloa crus- galli) and watergrass (Echinochloa walteri) were grown

to the 1 , 2 and 3 leaf stages and planted . After planting, water levels were raised to 3 cm above the soil surface and maintained at this level throughout the test . Chemical treatments were formulated in a non-phytotoxic solvent and applied directly to the paddy water . Treated plants and controls were maintained in a greenhouse for approximately 21 days, after which all species were compared to controls and visually evaluated. Plant response ratings , summarized in Table D, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control . A dash (-) response means no test result .

Table D COMPOUND Table D COMPOUND

Rate 500 g/ha 3 46 Rate 250 g/ha 3 46

FLOOD FLOOD

Barnyardgrass 2 - 100 Barnyardgrass 2 - 100 Barnyardgrass 3 100 100 Barnyardgrass 3 100 100 Japonica 1 0 35 Japonica 1 0 20

Japonica 2 - 0 Japonica 2 - 0

Watergrass 2 - 0 Watergrass 2 - 0

Watergrass 3 85 - Watergrass 3 90 -

Table D COMPOUND Table D COMPOUND

Rate 125 g/ha 3 46 Rate 32 g/ha 3 28 46 FLOOD FLOOD

Barnyardgrass 2 - 100 Barnyardgrass 2 - 85 100

Barnyardgrass 3 100 100 Barnyardgrass 3 98 85 100

Japonica 1 0 0 Japonica 1 0 0 0

Japonica 2 - 0 Japonica 2 - 0 0

Watergrass 2 - 0 Watergrass 2 - 0 0

Watergrass 3 80 - Watergrass 3 75

Rate 64 g/ha 3 28 46 Rate 16 g/ha 3 28 46 FLOOD FLOOD

Barnyardgrass 2 - 98 100 Barnyardgrass 2 - 60 98

Barnyardgrass 3 100 98 100 Barnyardgrass 3 75 70 95

Japonica 1 0 0 10 Japonica 1 0 0 0

Japonica 2 - 0 0 Japonica 2 - 0 0

Watergrass 2 - 0 0 Watergrass 2 - 0 0

Watergrass 3 80 Watergrass 3 50

Rate 8 g/ha 3 28 46 Rate 4 g/ha 28 46 FLOOD FLOOD

Barnyardgrass 2 - 35 80 Barnyardgrass 2 25 70

Barnyardgrass 3 75 40 85 Barnyardgrass 3 30 70

Japonica 1 0 0 0 Japonica 1 0 0

Japonica 2 - 0 0 Japonica 2 0 0

Watergrass 2 - 0 0 Watergrass 2 0 0

Watergrass 3 45 Watergrass 3 -

TEST E

Plastic pots were partially filled with clay loam soil. Transplanted seedlings of Japonica rice ( Oryza sative) and seeds of barnyardgrass (Echinoghloa oryzicola) were planted in flooded pots. Plants were then grown to the 2 leaf, 2.5 leaf and 3 leaf stages for testing. At test, water levels for all plantings were kept to 3 cm above the soil surface. Chemical treatments were formulated in a non-phytotoxic solvent and applied directly to the paddy water. Treated plants and controls were maintained in a greenhouse for approximately 21 to 28 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table E are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

Table E COMPOUND Table E COMPOUND Rate 1000 g/ha 3 Rate 250 g/ha 3 Barnyardgrass 2 50 Barnyardgrass 2 50 Rice 1 10 Rice 1 25

Rice 2 10 Rice 2 10

Rate 500 g/ha 3 Rate 125 g/ha 3

Barnyardgrass 2 50 Barnyardgrass 2 40

Rice 1 15 Rice 1 0

Rice 2 10 Rice 2 0