Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HYDRAULIC ENERGY CONVERSION UNIT AND METHOD OF CONTROLLING SUCH A UNIT
Document Type and Number:
WIPO Patent Application WO/2010/094887
Kind Code:
A1
Abstract:
The invention relates to a unit comprising a hydraulic turbine (1), a duct (5) leading a forced flow of water to the turbine, a duct (8) discharging the outgoing flow from the turbine and vanes (20) for guiding the flow through the discharge duct. Each guide vane (20) is able to rotate about an axis (x22) secant to the wall (84) of the discharge duct. Means (30) are provided for controlling the angular position of the vane (20) about its axis of rotation (x22). Each guide vane (20) can also be retracted into the wall (84) of the discharge duct (8), and means (21) are provided for adjusting the extent to which they are withdrawn into the wall.

Inventors:
BREMOND JACQUES (FR)
MARIN JOEL LOUIS PIERRE (FR)
MAZZOUJI FARID (FR)
BAZIN DANIELE (FR)
Application Number:
PCT/FR2010/050268
Publication Date:
August 26, 2010
Filing Date:
February 17, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ALSTOM HYDRO FRANCE (FR)
BREMOND JACQUES (FR)
MARIN JOEL LOUIS PIERRE (FR)
MAZZOUJI FARID (FR)
BAZIN DANIELE (FR)
International Classes:
F03B3/18; F03B11/00
Domestic Patent References:
WO2005038243A12005-04-28
Foreign References:
JPS57108468A1982-07-06
US4017211A1977-04-12
JPS5266128A1977-06-01
JPH0463969A1992-02-28
GB799013A1958-07-30
FR2300909A11976-09-10
US20040037698A12004-02-26
US20070009352A12007-01-11
JPS57108468A1982-07-06
Other References:
GREIN H: "VIBRATION PHENOMENA IN FRANCIS TURBINES: THEIR CAUSES AND PREVENTION", ESCHER WYSS NEWS, ESCHER WYSS, ZURICH, CH, vol. 54/55, no. 1, 1 January 1981 (1981-01-01), pages 37 - 42, XP008018462, ISSN: 0367-1402
Attorney, Agent or Firm:
MYON, Gérard et al. (FR)
Download PDF:
Claims:
REVENDICATIONS

1.- Installation (i) de conversion d'énergie hydraulique en énergie électrique, cette installation comprenant une turbine hydraulique (1 ), un conduit (5) d'amenée à la turbine d'un écoulement forcé (E) d'eau, un conduit (8) d'évacuation de l'écoulement sortant de la turbine et des ailettes (20) de guidage de l'écoulement dans le conduit d'évacuation, caractérisée en ce que chaque ailette de guidage (20) est mobile en rotation autour d'un axe (X22) sécant à la paroi (84) du conduit d'évacuation, en ce que l'installation comprend des moyens (10, 30) de commande de la position angulaire (α) de l'ailette autour de son axe de rotation, en ce chaque ailette (20) mobile en rotation est rétractable dans la paroi (84) du conduit d'évacuation (8) et en ce que l'installation comprend des moyens (21 ) aptes à régler l'enfoncement de l'ailette (20) dans la paroi.

2.- Installation selon la revendication 1 , caractérisée en ce que les moyens de commande (10, 30) sont aptes à fixer la position angulaire (α) de l'ailette de guidage (20) en fonction d'au moins un paramètre (Q, ω, H, P) représentatif de l'écoulement (E).

3.- Installation selon l'une des revendications précédentes, caractérisée en ce que la ou chaque ailette (20) mobile en rotation est démontable, par rapport à la paroi (84) du conduit d'évacuation (8), par l'intérieur de ce conduit.

4.- Installation selon l'une des revendications 1 ou 2, caractérisée en ce qu'elle comprend une galerie (100) d'accès à la face externe (841 ) de la paroi (84) du conduit d'évacuation (8) et en ce que la ou chaque ailette (20) est démontable, par rapport à cette paroi, à partir de la galerie. 5.- Installation selon l'une des revendications précédentes, caractérisée en ce que chaque ailette (20) est solidaire d'un piston (21 ) monté coulissant, parallèlement à l'axe (X22) de rotation de l'ailette, par rapport à une pièce (27) fixée sur la paroi, en ce qu'un sous-ensemble (20-25) comprenant l'ailette et le piston est monté avec possibilité de rotation autour de l'axe de rotation de l'ailette et en ce que ce sous-ensemble comprend des moyens (243) de coopération avec des moyens (29, 30) d'entraînement du sous-ensemble en rotation autour de l'axe (X22) de rotation de l'ailette.

6.- Installation selon l'une des revendications précédentes, caractérisée en ce que chaque ailette mobile (20) s'étend de part et d'autre de son axe de rotation (X22).

7.- Procédé de commande d'une installation (i) de conversion d'énergie hydraulique en énergie électrique ou mécanique comprenant une turbine hydraulique (1 ), un conduit (5) d'amenée à la turbine d'un écoulement forcé (E) d'eau, un conduit (8) d'évacuation de l'écoulement sortant de la turbine et au moins une ailette (20) de guidage de l'écoulement dans le conduit d'évacuation caractérisé en ce qu'il comprend une étape consistant à commander (S3) la position angulaire (α), autour d'un axe (X22) sécant à la paroi (84) du conduit d'évacuation (8), de chaque ailette (20) de guidage de l'écoulement (E) dans le conduit d'évacuation et une étape consistant à commander la position de chaque ailette mobile (20) en enfoncement dans la paroi (84) du conduit d'évacuation (8).

8.- Procédé selon la revendication 7, caractérisé en ce que la position angulaire de l'ailette (20) est commandée en fonction d'au moins un paramètre (Q, ω, H, P) représentatif de l'écoulement (E), notamment du débit (Q) de l'écoulement (E).

9.- Procédé selon l'une des revendications 7 ou 8, caractérisé en ce que l'installation comprend plusieurs ailettes (20) réparties sur la paroi (84) du tube d'évacuation (8) et la position des ailettes est commandée de façon groupée.

10.- Procédé selon l'une des revendications 7 ou 8, caractérisé en ce que l'installation comprend plusieurs ailettes (20) réparties sur la paroi (84) du tube d'évacuation (8) et la positon de chaque ailette est commandée individuellement.

11.- Procédé selon l'une des revendications 6 à 9, caractérisé en ce que la position de chaque ailette mobile (20) en enfoncement dans la paroi (84) du conduit d'évacuation est commandée en alimentant ou non, en eau sous pression provenant du conduit d'amenée (5), une chambre (C22) ménagée dans un corps (22) appartenant à un sous-ensemble (20-25) et délimitée par un piston (21 ) solidaire de l'ailette.

Description:
INSTALLATION DE CONVERSION D'ÉNERGIE HYDRAULIQUE ET PROCÉDÉ DE COMMANDE D'UNE TELLE INSTALLATION

La présente invention a trait à une installation de conversion d'énergie hydraulique en énergie électrique ou mécanique, une telle installation comprenant une turbine hydraulique, un conduit d'amenée à la turbine d'un écoulement forcé d'eau et un conduit d'évacuation de cet écoulement lorsqu'il sort de la turbine.

Dans les installations connues, l'écoulement en aval de la roue d'une turbine fluctue en fonction du point de fonctionnement de la turbine qui dépend, entre autres, du débit d'eau acheminé à la turbine. A certains points de fonctionnement, des tourbillons ou turbulences, généralement qualifiés de « torches », tendent à se former et provoquent des fluctuations de pression et/ou de puissance.

Pour répondre à ce problème, il est connu, par exemple de WO-A- 2005/038243 d'équiper la roue d'une turbine Francis avec une pointe comprenant deux surfaces, respectivement convergente et divergente en direction d'un axe de rotation de la roue, ce qui limite, dans une large mesure, les turbulences.

Toutefois, à certains régimes, les turbulences demeurent.

Pour palier à cette perte de rendement, il a été envisagé dans US-A- 2007/0009352, des ailettes rétractables. Ces ailettes rétractables ne sont pas adaptées à tous les points de fonctionnement d'une turbine et, dans certaines conditions de fonctionnement, leur impact sur le rendement de l'installation est très négatif.

Il est connu de JP-A-57 108468 de monter une ailette mobile en rotation au- dessus d'une ailette fixe dans un conduit d'évacuation de l'écoulement de sortie d'une turbine. L'ailette fixe perturbe l'écoulement, au moins à certains régimes.

En outre, des problèmes de cavitation peuvent survenir avec les matériels connus.

C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant une installation de conversion d'énergie du type mentionné ci-dessus dans laquelle l'écoulement transitant dans le conduit d'évacuation peut être stabilisé, sans diminuer le rendement de l'installation aux différents points de fonctionnement de celle-ci. A cet effet, l'invention concerne une installation du type mentionné ci- dessus dans laquelle chaque ailette de guidage est mobile en rotation autour d'un axe sécant à la paroi du conduit d'évacuation, cette installation comprenant des moyens de commande de la position angulaire de l'ailette autour de son axe de rotation, alors que chaque ailette mobile en rotation est rétractable dans la paroi du conduit d'évacuation et que l'installation comprend des moyens de réglage de l'enfoncement de cette ailette dans cette paroi.

Grâce à l'invention, il est possible d'adapter l'orientation des ailettes de guidage et la façon dont elles font saillie par rapport à la paroi du conduit d'évacuation ou conduit d'aspiration, en tenant compte du sens de l'éventuelle composante de rotation de l'écoulement en sortie de turbine.

Selon des aspects avantageux mais non obligatoires de l'invention, une telle installation peut incorporer une ou plusieurs des caractéristiques suivantes, prises dans toutes combinaisons techniquement admissibles : - Les moyens de commande sont aptes à fixer la position angulaire de l'ailette de guidage en fonction d'au moins un paramètre représentatif de l'écoulement.

- La ou chaque ailette mobile en rotation est démontable, par rapport à la paroi du conduit d'évacuation, par l'intérieur de ce conduit. En variante, l'installation comprend une galerie d'accès à la face externe de la paroi du conduit d'évacuation et la ou chaque ailette est démontable, par rapport à cette paroi, à partir de cette galerie.

- Chaque ailette est solidaire d'un piston monté coulissant, parallèlement à l'axe de rotation de l'ailette, par rapport à une pièce fixée sur la paroi, alors qu'un sous-ensemble comprenant l'ailette et le piston est monté avec possibilité de rotation autour de l'axe de rotation de l'ailette et en ce que ce sous-ensemble comprend des moyens de coopération avec des moyens d'entraînement du sous- ensemble en rotation autour de l'axe de rotation de l'ailette.

- Chaque ailette mobile s'étend de part et d'autre de son axe de rotation. - L'installation comprend plusieurs ailettes de guidage mobiles en rotation, chacune autour d'un axe sécant à la paroi du conduit d'évacuation et les moyens de commande agissent de façon groupée sur les ailettes de guidage. En variante, les moyens de commande agissent de façon individualisée sur les ailettes de guidage.

L'invention concerne également un procédé qui peut être mis en œuvre avec une installation telle que mentionnée ci-dessus et, plus spécifiquement, un procédé de commande d'une installation de conversion d'énergie hydraulique en énergie électrique ou mécanique comprenant une turbine hydraulique, un conduit d'amenée à la turbine d'un écoulement forcé d'eau et un conduit d'évacuation de l'écoulement sortant de la turbine et au moins une ailette de guidage de l'écoulement dans la conduit d'évacuation, caractérisé en ce que ce procédé comprend une étape consistant à commander la position angulaire, autour d'un axe sécant à la paroi du conduit d'évacuation, de chaque ailette de guidage de l'écoulement dans le conduit d'évacuation, ainsi qu'une étape consistant à commander la position de chaque ailette mobile en enfoncement dans la paroi du conduit d'évacuation. Ce procédé peut incorporer une ou plusieurs des caractéristiques suivantes qui sont avantageuses et optionnelles :

- La position angulaire de l'ailette est commandée en fonction d'au moins un paramètre représentatif de l'écoulement, notamment de son débit.

- L'installation comprend plusieurs ailettes réparties sur la paroi du tube d'évacuation et la position des ailettes est commandée de façon groupée. En variante, la position de chaque ailette est commandée individuellement.

- La position de chaque ailette mobile en enfoncement dans la paroi du conduit d'évacuation est commandée en alimentant ou non, en eau sous pression provenant du conduit d'amenée, une chambre ménagée dans un corps appartenant à un sous-ensemble et délimitée par un piston solidaire de l'ailette.

L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre de deux modes de réalisation d'une installation conforme à son principe et de son procédé de commande, donné uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :

- la figure 1 est une représentation schématique de principe, en section axiale, d'une installation conforme à un premier mode de réalisation de l'invention ; - la figure 2 est une vue à plus grande échelle du détail II à la figure 1 ;

- la figure 3 est une représentation schématique en développé de la répartition des vitesses dans une première configuration d'utilisation de l'installation de la figure 1 ; - la figure 4 est une vue de face, dans le sens de la flèche Fi à la figure 2, d'une ailette mobile en rotation dans une position correspond à la répartition de vitesse de la figure 3 ;

- la figure 5 est une représentation schématique analogue à la figure 3, alors que l'installation fonctionne dans d'autres conditions ; - la figure 6 est une vue analogue à la figure 4 lorsque l'installation fonctionne dans les conditions représentées à la figure 5 ; et

- la figure 7 est une vue analogue à la figure 2 pour une installation conforme à un deuxième mode de réalisation de l'invention.

L'installation i représentée aux figures 1 à 6 comprend une turbine 1 de type Francis, dont la roue 2 est destinée à être mise en rotation, autour d'un axe vertical X2, par un écoulement forcé d'eau E provenant d'une retenue d'eau non représentée. Un arbre 3, solidaire de la roue 2, est couplé à un alternateur 4 qui délivre un courant alternatif à un réseau non représenté, en fonction de la rotation de la roue 2. L'installation I permet donc de convertir l'énergie hydraulique de l'écoulement E en énergie électrique. L'installation I peut comprendre plusieurs turbines 1 alimentées à partir de la retenue d'eau.

En variante, l'arbre 3 peut être couplé à un ensemble mécanique, auquel cas l'installation 1 convertit l'énergie hydraulique de l'écoulement E en énergie mécanique. Une conduite d'alimentation 5 permet d'amener l'écoulement E à la roue 2 et s'étend entre la retenue d'eau et une bâche 6 équipée de directrices 61 qui régulent l'écoulement E.

Un conduit 8 est prévu en aval de la turbine 1 pour évacuer l'écoulement E et le renvoyer vers le lit d'une rivière ou d'un fleuve à partir de laquelle ou duquel est alimentée la retenue d'eau. Ce conduit 8 est parfois qualifié de conduit d'aspiration.

Une unité de commande 10 est prévue pour piloter la turbine 1 en fonction, notamment, des besoins en électricité du réseau alimenté à partir de l'alternateur 4 et du débit d'eau disponible pour l'écoulement E. L'unité 10 est capable de définir plusieurs points de fonctionnement de l'installation i et d'adresser, respectivement à l'alternateur 4 et aux directrices 61 , des signaux de commande Si et S 2 . Le conduit 8 comprend une partie amont 81 sensiblement verticale, tronconique et centrée sur l'axe de rotation X 2 de la roue 2. Le conduit 8 comprend également une partie aval 82 centrée sur un axe Xs 2 sensiblement horizontal. Cet axe Xs 2 est sensiblement horizontal en ce sens qu'il forme avec un plan horizontal un angle inférieur à 20°. En pratique, l'axe Xs 2 peut être légèrement ascendant dans le sens de l'écoulement E. Un coude 83, à 90° relie les parties 81 et 82 du conduit e.

Pour stabiliser l'écoulement E après qu'il a traversé la roue 2, le conduit 8 est pourvu, dans sa partie amont 81 , de plusieurs ailettes 20 qui font saillie, à partir de la paroi 84 de la partie amont 81 , en direction de l'axe X 2 . Ces ailettes 20 sont destinées à être léchées par la portion de l'écoulement E qui s'écoule, en sortant de la roue 2, le long de la paroi 84. Ces ailettes influent donc sur l'écoulement E dans le conduit d'évacuation ou d'aspiration 8.

La figure 1 , qui est une section dans un plan vertical comprenant l'axe X 2 , montre deux ailettes 20. En pratique, le nombre d'ailettes 20 est choisi en fonction du diamètre de la partie 81 et du débit prévu pour l'écoulement E. Comme il ressort plus particulièrement de la figure 2, chaque ailette 20 est solidaire d'un piston 21 monté dans un corps cylindrique 22 à base circulaire centré sur un axe X 22 perpendiculaire à la paroi 84. Le piston 21 est équipé de joints d'étanchéité 211 et 212 et solidaire d'une tige 23 qui traverse une plaque 24 en forme de disque, avec possibilité de coulissement par rapport à cette plaque le long de l'axe X 22 . La plaque 24 est équipée de joints d'étanchéité 241 et 242 qui assurent, avec les joints 211 et 212, l'isolation fluidique vis-à-vis de l'extérieur d'une chambre C 22 ménagée radialement à l'intérieur du corps 22, entre la plaque 24 et le piston 21 et autour de la tige 23. Comme cela ressort de la figure 4, chaque ailette 20 s'étend de part et d'autre de l'axe X 22 correspondant. En pratique, chaque ailette 20 est centrée sur l'axe X 22 . La plaque 24 est fixée sur le corps 22 au moyen de vis 25 représentées par leurs traits d'axe sur la figure 2.

La chambre C22 est alimentée, par un conduit non représenté, en eau provenant de la conduite 5. Ceci permet de mettre en pression la chambre C22, ce qui a pour effet de repousser le piston 21 dans le sens de la flèche F 2 à la figure 2 et de faire dépasser l'ailette 20 en direction de l'axe X 2 , par rapport à la paroi 84.

Le sous-ensemble formé par les pièces 20 à 25 est monté, avec possibilité de rotation autour de l'axe X 22 , dans une chemise 26 immobilisée dans une couronne 27 fixe par rapport à la paroi 84. Des joints formant palier sont éventuellement disposés radialement autour du corps 22 et de la plaque 24 et permettent la rotation du sous-ensemble précité par rapport à la chemise 26.

Dans sa partie qui dépasse axialement, le long de l'axe X 22 , par rapport à la chemise 26, la couronne 24 est pourvue d'une denture radiale externe 243 qui engrène avec un pignon 29 entraîné par l'arbre de sortie 301 d'un servo-moteur électrique 30. Ce moteur est commandé par l'unité 10 au moyen d'un signal électronique S3.

Le servo-moteur 30 permet donc d'entraîner en rotation le sous ensemble formé des pièces 20 à 25 autour de l'axe X 22 , en fonction d'un signal de commande S3 reçu de l'unité 10. Cette rotation permet de faire varier la position angulaire de l'ailette 20 autour de l'axe X 22 . Chaque ailette 20 est donc orientable autour d'un axe X 22 . Comme il ressort des figures 4 et 6, l'ailette 20 est en forme de plaque plane et sa position angulaire peut être mesurée par un angle α pris, au dessus de l'axe X 22 , entre un plan P 20 médian entre les grandes faces latérales 201 et 202 de l'ailette 20 et un plan vertical P 22 contenant l'axe X 22 .

Le moteur 30 permet, pour chaque ailette mobile 20, adapter sa position angulaire autour de l'axe X 22 aux conditions de l'écoulement E dans le conduit 8.

La figure 3 montre, dans une vue développée de la ceinture de la roue 2 , la répartition des vitesses au voisinage du bord de fuite 2A d'une aube 2B de la roue 2. En considérant que la roue 2 tourne avec une vitesse angulaires , alors la vitesse tangentielle U du bord de fuite 2A est égale à ωx R, où R est la distance radiale, ou rayon, entre le bord 2A et l'axe X 2 . Par ailleurs, si l'on considère la vitesse W de l'écoulement d'eau en sortie de la roue 2, cette vitesse W est dans le prolongement de l'aube 2B. Cette vitesse W se décompose en une composante W v verticale, c'est-à-dire parallèle à l'axe X2, et une composante tangentielle W τ . Dans une configuration à faible débit Q pour l'écoulement E, telle que représentée à la figure 3, la composante verticale de vitesse W v est relativement faible et, comme l'angle β d'inclinaison de la vitesse W par rapport à la verticale est fixée par la géométrie de l'aube 2B, la composante tangentielle W τ de la vitesse a un module |W T | qui est inférieur au module | LJ | de la vitesse tangentielle de l'aube. Dans ces conditions, l'eau qui est éjectée de la roue 2 au voisinage du bord 2A a une composante de vitesse tangentielle dans le même sens que la vitesse tangentielle U de l'aube, c'est-à-dire dirigée vers la droite sur la figure 3.

L'écoulement de l'eau dans le plan de cette figure est représenté par la flèche E.

Dans ce cas, l'eau sortant de la roue tourne, autour de l'axe X 2 , dans le même sens que la roue 2.

Ceci induit la formation de torches turbulentes dans le conduit 8, avec de fortes fluctuations de pression, ce que peuvent corriger les ailettes 20 si elles sont correctement positionnées.

Dans le cas où l'écoulement E a un débit Q important, la composante verticale W v de la vitesse W a un module important et, comme l'angle β est fixé par la géométrie de l'aube 2B, la composante tangentielle V τ a alors un module supérieur au module de la vitesse tangentielle U. Dans ce cas représenté à la figure 5, l'écoulement E est éjecté vers la gauche à la figure 5 et il peut être représenté par la flèche E sur cette figure. Dans ce cas, l'écoulement E tourne en sens inverse du sens de rotation de la roue 2 lorsqu'il est éjecté de celle-ci. Là encore, des torches turbulentes sont crées, avec des fluctuations de pression importantes, ce que peuvent corriger les ailettes 20.

Ainsi, suivant la valeur du débit Q, le sens de rotation autour de l'axe X 2 de l'écoulement E dans le conduit d'aspiration 8 varie. La position angulaire des ailettes 20 permet d'influer sur cette rotation de l'écoulement E de la façon suivante : i) A faible débit Q, si le point de fonctionnement est tel qu'on cherche seulement à réduire fortement les fluctuations de pression sans se préoccuper de la chute de rendement, alors on fait pivoter chaque ailette 20 avec un angle α positif dans la représentation de la figure 4, afin de ralentir au maximum l'écoulement rotatif de l'eau dans la conduit d'aspiration 8. ii) Toujours à faible débit Q, si le point de fonctionnement présente toujours des fluctuations de pression, mais à un niveau moindre que le cas i) considéré ci-dessus, alors l'ailette 20 peut être orientée avec un angle α négatif dans la représentation de la figure 4, afin d'avoir un impact négatif moindre sur le rendement de l'installation, tout en réduisant légèrement les fluctuations de pression. iii) Dans un cas à fort débit Q, le sens de rotation de l'écoulement dans le conduit d'aspiration étant inversé, le raisonnement pour les deux points de fonctionnement ci-dessus est inversé.

Pour ce faire, l'angle α formé par l'ailette 20 avec la verticale peut être ajusté pour obtenir l'effet désiré. Si on oriente l'ailette dans une direction sensiblement parallèle à l'écoulement, l'impact sur le rendement est faible. En revanche, si on veut réduire fortement les fluctuations de pression pour un point de fonctionnement, on peut faire pivoter l'ailette de manière à ce qu'elle s'oppose à l'écoulement. Cette réduction des fluctuations de pression a un effet négatif relativement important sur le rendement, mais cet effet négatif n'existe que pour le point de fonctionnement considéré, l'angle α d'orientation des ailettes 20 autour des axes X22 pouvant être réajusté différemment pour les autres points de fonctionnement.

On règle donc l'angle α d'orientation de chaque ailette 20 de manière à obtenir le meilleur compromis fluctuations de pression / rendement. Lorsque le débit de l'écoulement E et la vitesse de rotation de la roue 2 sont tels que les modules |W T | et | LJ | des vitesses tangentielles sont égaux, c'est-à-dire lorsque l'écoulement E est sensiblement vertical en sortie de la roue 2, les ailettes 20 sont disposées de telle sorte que leurs plans médians respectifs P20 sont verticaux, c'est-à-dire que l'angle α prend une valeur nulle. Le réglage de la position angulaire des ailettes 20 autour de leurs axes de rotation X22 peut être effectué de façon empirique, en vérifiant a posteriori l'influence de cette position sur le rendement de l'installation i et le niveau de fluctuations de pression.

De façon avantageuse, l'unité 10 commande automatiquement les ailettes orientables 20 en fonction d'un signal S 4 délivré par un capteur de débit 12 installé sur la conduite 5. Ce capteur de débit peut être de tout type approprié, par exemple réalisé à partir de capteurs de pression différentielle. En première approximation, et en considérant que la roue 2 tourne à vitesse sensiblement constante, ce qui est le cas pour les machines équipées d'un alternateur synchrone, il est possible de calculer dans l'unité 10 les vitesses tangentielles W τ et U, sur la base du débit Q de l'écoulement E et, à partir de là, de déterminer la direction de sortie de l'écoulement E par rapport au sens de rotation de la roue, à savoir dans le même sens ou en sens inverse. L'unité 10 est alors en mesure de déterminer quelle orientation angulaire doit être donnée aux ailettes 20, autour de leurs axes X22 respectifs, pour stabiliser l'écoulement E. En variante ou en complément, il est possible de monter un tachymètre 14 sur l'arbre 3 et de fournir à l'unité 10 un signal S 5 représentatif de la vitesse de rotation de l'arbre 3, ce qui permet de connaître précisément la valeur de la vitesse tangentielle U. Ce signal S 5 peut être intégré par l'unité 10 pour déterminer la valeur de l'angle d'inclinaison α à donner à chacune des ailettes 20 pour stabiliser l'écoulement E dans le tube d'aspiration 8.

Chaque chemise 26 est vissée dans une couronne 27 et, lorsqu'il convient d'intervenir sur l'un des sous ensembles 20-25 pour sa maintenance, il suffit de dévisser la chemise 26 correspondante de la couronne 27 pour avoir accès, à partir de la partie amont 81 du conduit 8, aux éléments constitutifs de ce sous ensemble. Les éléments de support et de positionnement des ailettes sont disposés dans un logement 90 ménagé dans la structure en béton de l'installation, radialement à l'extérieur de la paroi 84, comme représenté uniquement à la figure 2.

En variante, et comme représenté à la figure 7, une galerie 100 d'accès à la face externe 841 de la paroi 84 peut être ménagée radialement autour de la partie 81 du conduit 8, ce qui permet de réaliser les opérations de maintenance sur les ailettes 20 et leurs organes d'entraînement à partir de cette galerie. La forme de la chemise 26 et celle de la couronne 27 sont alors adaptées. Sur cette figure 7, les éléments analogues à ceux du premier mode de réalisation portent les mêmes références et une ailette 20 est solidaire d'un piston 21 que prolonge une tige 23 coulissant dans une plaque 24 solidaire d'un corps 22 au moyen de vis 25. Une chemise 26 entoure le sous ensemble formé des pièces 20 à 25 et est vissée sur une couronne 27, à partir la galerie 100. Un servo-moteur 30 entraîne un pignon 29 en prise avec une denture extérieure 243 de la plaque 24, ce qui permet de contrôler l'orientation angulaire de l'ailette 20 autour d'un axe X22 perpendiculaire à la paroi 84, comme expliqué pour le premier mode de réalisation. Dans les deux modes de réalisation, la pression d'alimentation de la chambre C22 permet de contrôler la position, le long de l'axe X22, du piston 21 et de l'ailette 20. En particulier, lorsque, l'écoulement dans le conduit 8 est stabilisé, il est possible de ne pas alimenter la chambre C22 en eau sous pression, de telle sorte que l'ailette 20 est rétractée ou enfoncée, par rapport à la paroi 84, à l'extérieur du conduit 8, du fait de la pression de l'eau sur la face 213 du piston 21 tournée vers le conduit 8.

En variante, la position de chaque ailette le long de son axe de rotation X22 peut être commandée par des moyens autres qu'une chambre de pression alimentée en eau. On peut utiliser, par exemple, à cet effet un servo-moteur électrique ou un vérin hydraulique, mécanique ou électrique.

Le piston 21 , le servo-moteur ou le vérin précité permet donc de commander l'enfoncement de chaque ailette 20 dans la paroi 84, en tenant compte d'un paramètre représentatif de l'écoulement E, comme mentionné ci- dessus pour ce qui concerne l'orientation angulaire des ailettes. L'invention décrite ci-dessus est représentée sur les figures dans le cas où l'axe X22 de rotation des ailettes 20 est perpendiculaire à la paroi 84. Ceci n'est pas obligatoire et il suffit que l'axe X22, qui est fixe par rapport à la paroi 84, soit sécant à cette paroi. En pratique, si l'axe X22 n'est pas perpendiculaire à la paroi 84, l'angle aigu qu'il forme avec cette paroi est choisi supérieur à 45°, de préférence supérieur à 75°, de préférence encore supérieur à 85°.

L'invention a été représentée, dans les deux modes de réalisation, avec un servo-moteur associé à chaque ailette 20, ce qui permet de commander les ailettes individuellement. La synchronisation entre le mouvement des ailettes est assurée par l'unité 10 et sa gestion des différents signaux S3 destinés aux différents moteurs 30.

En variante, on peut utiliser des moyens mécaniques reliant entre elles les ailettes 20, ce qui permet d'assurer une commande groupée des ailettes. On peut, par exemple, utiliser des chaînes ou un cercle de vannage tel que connu, par exemple, pour la commande des directrices 61.

D'autres dispositifs peuvent être envisagés pour assurer la rotation, avec commande individuelle ou groupée, des ailettes 20. En pratique, cette rotation peut être assurée par tout actionneur adapté, par exemple un vérin rotatif ou linéaire associé à une bielle. Les vérins peuvent être actionnés par de l'huile, un courant électrique, de l'air comprimé ou de l'eau. La solution utilisant des vérins à eau est privilégiée compte tenu de l'environnement de travail de ces actionneurs.

L'invention a été représentée lors de son application avec une turbine de type Francis. Elle est toutefois applicable à d'autres types de turbine, telle que les turbines Kaplan et les turbines de type hélice, ainsi qu'aux turbine-pompes.

L'invention a été représentée dans le cas où toutes les ailettes sont orientables, c'est-à-dire mobiles en rotation autour d'un axe sécant, en particulier perpendiculaire, à la paroi du conduit d'évacuation. En variante, seule certaines ailettes peuvent être orientables. Selon une variante non représentée de l'invention, celle-ci peut être mise en œuvre alors que la roue de la turbine est équipée d'une pointe visant à améliorer le guidage de l'écoulement à l'aval de la roue, par exemple une pointe connue de WO-A-2005/038243.

L'invention a été décrite ci-dessus dans le cas où le débit de l'écoulement E est utilisé pour déterminer l'orientation angulaire des ailettes 20. Toutefois, d'autres paramètres peuvent être pris en compte à cet effet, notamment la hauteur de chute H aux bornes de l'installation, la puissance P délivrée par l'installation ou la vitesse de rotation ω de la roue 2.

En variante, les ailettes 20 peuvent avoir une forme autre que plane.