Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HYDROCYANIC ACID CONSISTING OF FORMAMIDE
Document Type and Number:
WIPO Patent Application WO/2004/050587
Kind Code:
A2
Abstract:
The invention relates to a method for producing hydrocyanic acid (HCN) by means of catalytic dehydration of gaseous formamide in a reactor having an inner reactor surface consisting of a steel-containing iron, chromium and nickel. The invention also relates to a reactor for producing hydrocyanic acid by means of catalytic dehydration of gaseous formamide, said reactor having an inner reactor surface consisting of a steel-containing iron, chromium and nickel. The invention further relates to the use of the inventive reactor in a method for producing hydrocyanic acid by means of catalytic dehydration of gaseous formamide.

Inventors:
BASSLER PETER (DE)
SIEGEL WOLFGANG (DE)
ACHHAMMER GUENTHER (DE)
NEGELE ANTON (DE)
MENIG HELMUTH (DE)
RUPPEL WILHELM (DE)
ZEHNER PETER (DE)
LUYKEN HERMANN (DE)
VOGT VOLKER (DE)
Application Number:
PCT/EP2003/013624
Publication Date:
June 17, 2004
Filing Date:
December 03, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF AG (DE)
BASSLER PETER (DE)
SIEGEL WOLFGANG (DE)
ACHHAMMER GUENTHER (DE)
NEGELE ANTON (DE)
MENIG HELMUTH (DE)
RUPPEL WILHELM (DE)
ZEHNER PETER (DE)
LUYKEN HERMANN (DE)
VOGT VOLKER (DE)
International Classes:
B01J12/00; B01J15/00; B01J19/02; B01J19/24; B01J23/86; C01C3/02; (IPC1-7): C07C/
Foreign References:
DE477437C1929-06-11
EP0209039A21987-01-21
DE1000796B1957-01-17
Attorney, Agent or Firm:
Isenbruck, Günter (Theodor-Heuss-Anlage 12, Mannheim, DE)
Download PDF:
Claims:
Patentansprüche
1. Verfahren zur Herstellung von Blausäure (HCN) durch katalytische Dehydratisierung von gasförmigem Formamid in einem Reaktor, der eine innere Reaktoroberfläche aus einem Stahl enthaltend Eisen sowie Chrom und Nickel aufweist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Reaktor keine zusätzlichen Einbauten und/oder Katalysatoren enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Stahl Nickel und Chrom im Verhältnis 1 : 1 bis 1 : 2 enthält.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die innere Reaktoroberfläche aus einem Stahl enthaltend 2 60 Gew. % Eisen aufgebaut ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Druck/Lastverhältnis 1 bis 100 kg Formamidlm2 Reaktorfläche, bevorzugt 5 bis 80 kg Formamid/m Reaktoroberfläche beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Herstellung der Blausäure in Anwesenheit von Luftsauerstoff, bevorzugt 10 bis 50 N1 Luft/kg Formamid, erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verfahren bei einer Temperatur von 350 bis 650°C durchgeführt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Reaktor ein Rohrreaktor ist, der ein oder mehrere Rohre aufweist.
9. Reaktor zur Herstellung von Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid, dadurch gekennzeichnet, daß der Reaktor eine innere Reaktoroberfläche aus einem Stahl enthaltend Eisen sowie Chrom und Nickel aufweist.
10. Reaktor nach Anspruch 9, dadurch gekennzeichnet, dass der Stahl Nickel und Chrom im Verhältnis 1 : 1 bis 1 : 2 enthält.
11. Reaktor nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die innere Reaktoroberfläche aus einem Stahl enthaltend 2 60 Gew. % Eisen aufgebaut ist.
12. Verwendung eines Reaktors gemäß einem der Ansprüche 9 bis 11 in einem Verfahren zur Herstellung von Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid.
13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, daß der Reaktor keine zusätzlichen Einbauten und/oder Katalysatoren enthält.
Description:
Blausäure aus Formamid

Die Erfindung betrifft ein Verfahren zur Herstellung von Blausäure (HCN) durch katalytische Dehydratisierung von gasförmigem Formamid in Anwesenheit von Luftsauerstoff.

Blausäure ist eine wichtige Grundchemikalie, die als Ausgangsprodukt z. B. in zahlreichen organischen Synthesen wie der Herstellung von Methacrylsäureestern und Milchsäure, zur Herstellung von pharmazeutischen und agrochemischen Produkten, im Bergbau und in der metallurgischen Industrie eingesetzt wird.

Ein wichtiges Verfahren zur industriellen Herstellung von Blausäure ist die thermische Dehydratisierung von Formamid im Vakuum, die nach der folgenden Gleichung (I) abläuft : HCONH2--+ HCN + Ha0 (1) Diese Umsetzung ist von der Zersetzung des Formamids gemäß folgender Gleichung (n) unter Bildung von Ammoniak und Kohlenmonoxid begleitet : HCONH2 NH3 + CO (n) Der gebildete Ammoniak katalysiert die Polymerisation der gewünschten Blausäure und führt somit zu einer Beeinträchtigung der Qualität der Blausäure und einer Verringerung der Ausbeute an der gewünschten Blausäure.

Die Polymerisation von Blausäure und die damit verbundene Rußbildung kann durch die Zugabe von geringen Mengen Sauerstoff in Form von Luft, wie z. B. in EP-A 0 209 039 offenbart ist, unterdrückt werden. In EP-A 0 209 039 ist ein Verfahren zur thermolytischen Spaltung von Formamid an hochgesinterten Aluminiumoxid-oder Aluminiumoxid- Siliziumdioxid-Formkörpern oder an hochtemperatur-korrosionsfesten Chrom-Nickel- Edelstahl-Formkörpern offenbart. Der Formamid-Umsatz ist in diesem Verfahren nicht vollständig und des weiteren entstehen als Nebenprodukte Ammoniak und Kohlenmonoxid gemäß Gleichung (II). Somit ist eine Abtrennung und Rückführung des Rest-Formamids

notwendig, wobei schwersiedende Nebenprodukte entstehen, die aus dem Verfahren abgetrennt werden müssen. Weiterhin führt die zugesetzte Luftmenge zu einer Bildung von Kohlendioxid aus dem gemäß Gleichung (II) gebildeten Kohlenmonoxid, das mit dem gleichzeitig gebildeten Ammoniak zu festen Carbamaten reagiert und so zu schwer handhabbaren Ablagerungen und zur Korrosion in den verwendeten Anlagen führt (Feststoffproblematik). Die Spaltung wird in der Regel in Edelstahl-oder Eisenrohren durchgeführt, deren genaue Zusammensetzung nicht erwähnt wird.

US 2,042, 451 betrifft die Dehydratisierung von Formamid zur Herstellung von HCN. Als Katalysator dient eine geheizte Oberfläche (Messing oder Eisen), die von einer dünnen, katalytisch aktiven Oxidschicht aus Zn, Al, Mg, Cr oder Sn-Oxid überzogen ist. Der Reaktionsraum ist der Zwischenraum zwischen einem zylindrischen Metallrohr und einem zylindrischen Metallstab, der in das Rohr eingeführt wurde. Wichtig ist gemäß der Beschreibung, daß kein Teil des Gases mehr als einen 1/2 inch von der katalytischen Oberfläche entfernt ist. Mit dem Verfahren werden Umsätze von 73 bis 89%, bezogen auf Formamid, erzielt.

DE-A 1 209 561 betrifft ein Verfahren zur Herstellung von HCN durch Spalten von Formamiddampf an Ferrioxid als Katalysator, das durch teilweise oder vollständige Bindung an Säuren unter Bildung von Salzen oder durch Kombination mit einem oder mehreren nicht flüchtigen Oxiden von 1-bis 6-wertigen Metallen desaktiviert ist. Die Katalysatoren liegen als Pellets oder als im Strangpressen gefertigte Katalysatorkörner vor.

Die Spaltung wird in einem Spaltofen mit Röhren aus einer Fe-Legierung durchgeführt, die zum Beispiel neben Fe 13% Cr, 1% AI, 1% Si, < 1% Mn und ca. 0, 1% C enthält.

DE-A 1 000 796 betrifft ein Verfahren zur Spaltung von Formamiddampf, wobei einem Temperaturgefälle innerhalb der Öfen zur Spaltung dadurch Rechnung getragen wird, daß die Spaltung an stückigen oder körnigen hochgebrannten eisenoxidhaltigen Silikaten oder Spinellen in einem Spaltungsraum erfolgt, dessen Wandung eine niedrigere katalytische Aktivität besitzt als die der Katalysatoren im Spaltungsraum. Die Wandung besteht zum Beispiel aus Edelstahl, der insbesondere ca. 84% Fe und ca. 16% Cr enthält. Der Spaltungsraum wird aus von außen beheizten Röhren gebildet.

DE-A 477 437 betrifft ein Verfahren zur katalytischen Herstellung von Blausäure aus Formamid, worin Formamiddämpfe in großer Verdünnung und mit großer Geschwindigkeit in Abwesenheit von wasserabspaltenden Katalysatoren bei Temperaturen von über 300°C

über Metallkatalysatoren wie Flußeisen, V2A-Stahl, Nickel oder Aluminium geleitet werden. Gemäß einer Ausführungsform wird die Reaktion in Rohren durchgeführt, die aus katalytisch wirkendem Metall hergestellt oder mit diesem ausgekleidet sind und sonst keinen Katalysator enthalten.

Eine Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Herstellung von Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid in Anwesenheit von Luftsauerstoff bereitzustellen, das eine hohe Selektivität zu der gewünschten Blausäure aufweist und in dem die Bildung von Ammoniak gemäß Gleichung (> möglichst unterdrückt wird. Auf diese Weise sollen hohe Ausbeuten an Blausäure erzielt werden.

Gleichzeitig soll das Verfahren bei hohen Druck/Lastverhältnissen gefahren werden können und eine Dehydratisierung bei Drucken ermöglichen, die nahe am atmosphärischen Druck liegen. Weiterhin soll ein Verfahren bereitgestellt werden, worin der Katalysator lange Standzeiten aufweist.

Die Aufgabe wird durch ein Verfahren zur Herstellung von Blausäure (HCN) durch katalytische Dehydratisierung von gasförmigem Formamid in Anwesenheit von Luftsauerstoff gelöst, wobei das erfindungsgemäße Verfahren in einem Reaktor durchgeführt wird, der eine innere Reaktoroberfläche aus einem Stahl enthaltend Eisen sowie Chrom und Nickel aufweist.

Wird ein Reaktor mit einer inneren Reaktoroberfläche aus einem Stahl, enthaltend neben Eisen sowohl Chrom als auch Nickel eingesetzt, kann mit Hilfe des erfindungsgemäßen Verfahrens Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid mit guten Umsätzen und in hohen Ausbeuten erhalten werden. Zusätzliche Einbauten und/oder zusätzliche Katalysatoren sind in dem erfindungsgemäßen Verfahren nicht erforderlich.

Bevorzugt wird in dem erfindungsgemäßen Verfahren somit ein Reaktor eingesetzt, der keine zusätzlichen Einbauten und/oder Katalysatoren enthält, d. h., daß lediglich die innere Reaktoroberfläche als Katalysator in dem erfindungsgemäßen Verfahren wirksam ist und keine weiteren Katalysatoren zugesetzt werden.

Auf diese Weise ist es möglich, einen kostengünstigen Reaktor zur Verfügung zu stellen, der keine Einbauten aufweist. Dadurch ist der Druckverlust im Reaktor niedrig, so daß das erfindungsgemäße Verfahren ohne Umsatzverlust bei höherem Reaktionsdruck durchgeführt werden kann, so daß Kosten für aufwendige Apparaturen zur Druckverminderung gespart

werden können. Des weiteren ist der in dem erfindungsgemäßen Verfahren eingesetzte Reaktor, der keine zusätzlichen Einbauten oder Katalysatoren enthält, mechanisch stabiler als ein Reaktor mit Einbauten bzw. Katalysatoren, da diese im Laufe der Reaktion verstärkt Korrosionsangriffen ausgesetzt sind. Des weiteren ist in dem erfindungsgemäßen Verfahren keine aufwendige Aktivierung der inneren Reaktoroberfläche durch Oxidations-bzw.

Reduktionsschritte notwendig.

Erfindungsgemäß wurde gefunden, daß die Chemie des Stahls, aus dem die innere Reaktoroberfläche aufgebaut ist, für die katalytische Dehydratisierung von gasförmigem Formamid zu Blausäure entscheidend ist.

Bevorzugt enthält der Stahl, aus dem die innere Reaktoroberfläche aufgebaut ist, Nickel und Chrom im Verhältnis 1 : 1 bis 1 : 2, besonders bevorzugt 1 : 1, 5 bis 1 : 2.

Der Anteil an Eisen in dem die innere Reaktoroberfläche bildenden Stahl beträgt im Allgemeinen > 50 Gew. -%, bevorzugt > 60 Gew. -%, besonders bevorzugt 2 70 Gew.-%.

Der Rest sind im Allgemeinen Nickel und Chrom, wobei gegebenenfalls geringe Mengen weiterer Metalle wie Molybdän, Mangan, Silicium, Aluminium, Titan, Wolfram, Cobalt mit einem Anteil von im Allgemeinen 0 bis 5 Gew. -%, bevorzugt 0 bis 2 Gew. -% enthalten sein können.

Für die innere Reaktoroberfläche geeignete Stahlqualitäten sind im Allgemeinen Stahlqualitäten entsprechend den Normen 1.4541, 1.4571, 1.4573, 1.4580, 1.4401, 1.4404, 1.4435, 2.4816, 1.3401, 1.4876 und 1.4828. Bevorzugt werden Stahlqualitäten entsprechend den Normen 1.4541, 1.4571, 1.4828, 1.3401, 1.4876, 1.4762, besonders bevorzugt Stahlqualitäten 1.4541, 1.4571, 1.4762, 1.4828.

Das erfindungsgemäße Verfahren kann in einem breiten Belastungsbereich gefahren werden, insbesondere dann, wenn der Reaktor keine zusätzlichen Einbauten und/oder Katalysatoren enthält, was bevorzugt ist. Im Allgemeinen beträgt das Druck/Lastverhältnis 1 bis 100 kg Formamid/m2 Reaktorfläche, bevorzugt 5 bis 80 kg Formamid/m2 Reaktorfläche, besonders bevorzugt 10 bis 50 kg/Formamid/m2 Reaktoroberfläche. Durch die durch das erfindungsgemäße Verfahren ermöglichte Fahrweise bei einem hohen Druck/Lastverhältnis ist es möglich, bei gegebener Produktkapazität kleinere Reaktoren als im Stand der Technik einzusetzen. Dadurch ist das erfindungsgemäße Verfahren besonders wirtschaftlich.

Das erfindungsgemäße Verfahren zur Herstellung von Blausäure (HCN) liefert die gewünschte Blausäure in hohen Selektivitäten von im Allgemeinen > 90%, bevorzugt > 94%, und Umsätzen von im Allgemeinen >90%, bevorzugt zu 95%, so dass Ausbeuten von im Allgemeinen >85%, bevorzugt von > 90% erzielt werden.

In dem erfindungsgemäßen Verfahren wird gasförmiges Formamid im Allgemeinen in Anwesenheit von Luftsauerstoff, bevorzugt 10 bis 50 N1 Luft/kg Formamid, besonders bevorzugt 20 bis 30 N1 Luft/kg Formamid umgesetzt. Wird zuviel Luftsauerstoff zugesetzt, ist mit Selektivitätsverlusten zu rechnen.

Das erfindungsgemäße Verfahren wird im allgemeinen bei vermindertem Druck, bevorzugt bei einem Druck von 70 bis 350 mbar, besonders bevorzugt bei 200 bis 250 mbar durchgeführt. Auch bei Drucken von > 200 mbar werden in dem erfindungsgemäßen Verfahren Ausbeuten von >90% erzielt. Somit kann das Verfahren kostengünstig durchgeführt werden, da ein weniger starkes Vakuum während der Dehydratisierungsreaktion des Formamids aufrechterhalten werden muss.

Das erfindungsgemäße Verfahren wird im Allgemeinen bei einer Temperatur von 350 bis 650°C, bevorzugt 450 bis 550°C, besonders bevorzugt 500 bis 550°C durchgeführt. Werden niedrigere oder höhere Temperaturen gewählt, ist mit verschlechterten Selektivitäten und Umsätzen zu rechnen.

Die mittlere Verweilzeit an der Reaktoroberfläche beträgt im allgemeinen 0,01 bis 0,25 s, bevorzugt 0, 01 bis 0,15 s.

Im Allgemeinen setzt man in dem erfindungsgemäßen Verfahren gasförmiges, überhitztes Formamid ein. Bevorzugt wird das Formamid dadurch erhalten, dass flüssiges Formamid in einem Wärmetauscher, bevorzugt einem Rohrbündelwärmetauscher, Fallfilmverdampfer oder Dünnschichtverdampfer unter vermindertem Druck von im allgemeinen 1 bis 350 mbar, bevorzugt von 100 bis 250 mbar und bei Temperaturen von im allgemeinen 100 bis 300°C, bevorzugt von 150 bis 200°C verdampft.

Anschließend wird im Allgemeinen Luft zugeführt. Der Luftanteil kann gegebenenfalls im vorgewärmten Zustand zugeführt werden.

Das Formamid bzw. das Formamid-Luft-Gemisch-unverdünnt, d. h. ohne Zusatz von Inertgasen und/oder Ammoniak-wird bei der eigentlichen Dehydratisierung auf die bereits genannten Temperaturen erhitzt und an den in dem erfindungsgemäßen Verfahren eingesetzten Katalysatoren zu Blausäure und Wasser gespalten. Bevorzugte Verweilzeiten und Drucke wurden bereits vorstehend genannt.

Ein besonderer Vorteil in dem erfindungsgemäßen Verfahren ist, dass die in dem erfindungsgemäßen Verfahren als Katalysator genutzte Reaktorinnenwand auch nach langen Standzeiten noch hochselektiv ist und gute Umsätze und somit gute Ausbeuten in den vorstehend genannten Größenordnungen erzielt werden. Im allgemeinen betragen die Standzeiten der Katalysatoren 500 bis 8000 Stunden, bevorzugt 1000 bis 3000. Dadurch ist das erfindungsgemäße Verfahren sehr wirtschaftlich, da ein häufiges Abstellen des Reaktors zur Regenerierung des Katalysators und ein damit verbundener Produktausfall vermieden wird.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Reaktor zur Herstellung von Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid, wobei der Reaktor eine innere Reaktoroberfläche aus einem Stahl enthaltend Eisen sowie Chrom und Nickel aufweist. Bevorzugte Nickel/Chrom-Verhältnisse und Anteile an Eisen sowie weiterer Komponenten des die innere Reaktoroberfläche bildenden Stahls sind bereits vorstehend genannt.

Mit Hilfe dieses Reaktors ist eine katalytische Dehydratisierung von gasförmigem Formamid zur Herstellung von Blausäure möglich, ohne daß zusätzliche Katalysatoren eingesetzt werden müssen bzw. der Reaktor zusätzliche Einbauten aufweist. Bevorzugt ist der erfindungsgemäße Reaktor ein Rohrreaktor, der ein oder mehrere Rohre aufweist.

Ein weiterer Gegenstand der vorliegenden Anmeldung ist die Verwendung des erfindungsgemäßen Reaktors in einem Verfahren zur Herstellung von Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid. Durch Einsatz des erfindungsgemäßen Reaktors in dem Verfahren zur Herstellung von Blausäure kann Blausäure aus Formamid mit hohen Selektivitäten und Umsätzen in guten Ausbeuten gewonnen werden. Zusätzliche Einbauten und/oder Katalysatoren im Reaktor sind nicht erforderlich.

Die nachfolgenden Beispiele erläutern die Erfindung zusätzlich.

Beispiele Beispiel 1 Ein Rohrreaktor (1.4541 (V2A-Stahl), Länge 400 mm, Durchmesser 6 mm) wird auf 520°C beheizt und ein gasförmiger Formamidstrom (FA) von 100 g/h bei einem Druck von 230 mbar und Zugabe von 24 NI/kg FA Luft hindurchgeleitet. Es resultiert eine HCN- Selektivität von 94% und ein FA-Umsatz von 95% über 3000 h.

Beispiel 2 Ein Rohrreaktor (1.4541, Länge 400 mm, Durchmesser 6 mm) wird auf 520°C beheizt und ein gasförmiger Formamidstrom (FA) von 200 g/h bei einem Druck von 450 mbar und Zugabe von 24 Nl/kg FA Luft hindurchgeleitet. Es resultiert eine HCN-Selektivität von 93,5% und ein FA-Umsatz von 81%.

Beispiel 3 Ein Rohrreaktor (1.4541, Länge 400 mm, Durchmesser 6 mm) wird auf 520°C beheizt und ein gasförmiger Formamidstrom (FA) von 300 g/h bei einem Druck von 600 mbar und Zugabe von 24 NI/kg FA Luft hindurchgeleitet. Es resultiert eine HCN-Selektivität von 93,5% und ein FA-Umsatz von 70%.

Beispiel 4 Ein Rohrreaktor (1.4541, Länge 400 mm, Durchmesser 6 mm) wird auf 520°C beheizt und ein gasförmiger Formamidstrom (FA) von 100 g/h bei einem Druck von 230 mbar hindurchgeleitet und keine Luft zugegeben. Es resultiert eine HCN-Selektivität von 96% und ein FA-Umsatz von anfänglich 90%, der innerhalb von 300 h Betriebsdauer auf 85% abfällt.

Beispiel S Ein Rohrreaktor (1.4541, Länge 400 mm, Durchmesser 6 mm) wird auf 520°C beheizt und ein gasförmiger Formamidstrom (FA) von 100 g/h bei einem Druck von 230 mbar hindurchgeleitet und 12,5 N1 Luft/kg FA zugegeben. Es resultiert eine HCN-Selektivität von 95% und ein FA-Umsatz von anfänglich 92%, der innerhalb von 500 h Betriebsdauer auf 85% abfällt.

Beispiel 6 Ein Rohrreaktor (1.4541, Länge 400 mm, Durchmesser 6 mm) wird auf 600°C beheizt und ein gasförmiger Formamidstrom (FA) von 100 g/h bei einem Druck von 230 mbar hindurchgeleitet und 24 N1 Luft/kg FA zugegeben. Es resultiert eine HCN-Selektivität von 90% und ein FA-Umsatz von 97%.

Beispiel 7 Ein Rohrreaktor (1.4541, Länge 400 mm, Durchmesser 6 mm) wird auf 450°C beheizt und ein gasförmiger Formamidstrom (FA) von 100 g/h bei einem Druck von 230 mbar hindurchgeleitet und 24 N1 Luft/kg FA zugegeben. Es resultiert eine HCN-Selektivität von 90% und ein FA-Umsatz von 85%.

Beispiel 8 Ein Rohrreaktor (1.4571, Länge 400 mm, Durchmesser 6 mm) wird auf 520°C beheizt und ein gasförmiger Formamidstrom (FA) von 100 g/h bei einem Druck von 230 mbar hindurchgeleitet und 24 N1 Luft/kg FA zugegeben. Es resultiert eine HCN-Selektivität von 94% und ein FA-Umsatz von 95%.

Beispiel 9 Ein Rohrreaktor (1.3401, Länge 400 mm, Durchmesser 6 mm) wird auf 520°C beheizt und ein gasförmiger Formamidstrom (FA) von 100 g/h bei einem Druck von 230 mbar hindurchgeleitet und 24 N1 Luft/kg FA zugegeben. Es resultiert eine HCN-Selektivität von 91% und ein FA-Umsatz von 94%.

Beispiel 10 Ein Rohrreaktor (1.4876, Länge 400 mm, Durchmesser 6 mm) wird auf 520°C beheizt und ein gasförmiger Formamidstrom (FA) von 100 g/h bei einem Druck von 230 mbar hindurchgeleitet und 24 N1 Luft/kg FA zugegeben. Es resultiert eine HCN-Selektivität von 90% und ein FA-Umsatz von 90%.

Beispiel 11 Ein Rohrreaktor (1.4828, Länge 400 mm, Durchmesser 6 mm) wird auf 520°C beheizt und ein gasförmiger Formamidstrom (FA) von 100 g/h bei einem Druck von 230 mbar hindurchgeleitet und 24 N1 Luft/kg FA zugegeben. Es resultiert eine HCN-Selektivität von 94% und ein FA-Umsatz von 91%.

Beispiel 12 Ein 4,5 m langes Reaktionsrohr aus 1.4541 mit einem Innendurchmeser von 10 mm und einem Außendurchmesser von 12 mm wird elektrisch auf eine konstante Außentemperatur von 520°C gebracht. Das Reaktionsrohr besitzt eine spezifische Oberfläche von 400 m2/m3.

Der Innendruck im Rohr beträgt 200 mbar abs. und wird durch eine Vakuumpumpe erzeugt.

In einem vorgeschalteten Verdampfer, der ebenfalls unter dem Reaktionsdruck steht, werden 1,3 kg/h Formamid bei 210°C verdampft und auf den Kopf des Reaktionsrohres geleitet. Zusätzlich wird an der Verbindung zwischen Verdampfer und Reaktorrohr 13 N1 Luft/h eingespeist.

Am Ende des Reaktionsrohres wird eine Probe genommen und diese auf ihre Bestandteile analysiert. Die Analyse ergab einen Umsatz des Formamids von 98,52% und eine Blausäureselektivität bez. auf Formamid von 93, 21%.

Beispiel 13 Ein 4,5 m langes Reaktionsrohr aus 1.4541 mit einem Innendurchmeser von 10 mm und einem Außendurchmesser von 12 mm wird elektrisch auf eine konstante Außentemperatur von 520°C gebracht. Das Reaktionsrohr besitzt eine spezifische Oberfläche von 400 m2/m3.

Der Innendruck im Rohr beträgt 200 mbar abs. und wird durch eine Vakuumpumpe erzeugt.

In einem vorgeschalteten Verdampfer, der ebenfalls unter dem Reaktionsdruck steht, werden 2,2 kg/h Formamid bei 210°C verdampft und auf den Kopf des Reaktionsrohres geleitet. Zusätzlich wird an der Verbindung zwischen Verdampfer und Reaktorrohr 18 N1 Luft/h eingespeist.

Am Ende des Reaktionsrohres wird eine Probe genommen und diese auf ihre Bestandteile analysiert. Die Analyse ergab einen Umsatz des Formamids von 97,12% und eine Blausäureselektivität bez. auf Formamid von 94,74%.

Beispiel 14 Ein 4,5 m langes Reaktionsrohr aus 1.4541 mit einem Innendurchmeser von 10 mm und einem Außendurchmesser von 12 mm wird elektrisch auf eine konstante Außentemperatur von 500°C gebracht. Das Reaktionsrohr besitzt eine spezifische Oberfläche von 400 m2/m3.

Der Innendruck im Rohr beträgt 200 mbar abs. und wird durch eine Vakuumpumpe erzeugt.

In einem vorgeschalteten Verdampfer, der ebenfalls unter dem Reaktionsdruck steht, werden 2,4 kg/h Formamid bei 210°C verdampft und auf den Kopf des Reaktionsrohres geleitet. Zusätzlich wird an der Verbindung zwischen Verdampfer und Reaktorrohr 18 N1 Luft/h eingespeist.

Am Ende des Reaktionsrohres wird eine Probe genommen und diese auf ihre Bestandteile analysiert. Die Analyse ergab einen Umsatz des Formamids von 94,00% und eine Blausäureselektivität bez. auf Formamid von 93,85%.

Beispiel 15 Das Verfahren zur Herstellung von Blausäure aus Formamid wurde unter den Reaktionsbedingungen von Beispiel 1 wiederholt, wobei die katalytisch aktive Reaktorwand mit den in Tabelle 1 genannten verschiedenen Werkstoffen ausgekleidet war. Werkstoff Zusanitnensetzung FA HCN-HCN- Umsatz Selektivität Ausbeute V2A-Stahl (1. 4541) 74% Fe, 9% Ni, 17% Cr 94% 94% 88,4% Kupfer 100% Cu 4% 62% 2,5% Nickel 100% Ni 53% 40% 21,2% Aluminium 100% Al 45% 97% 43, 7% Alloy 601 (2. 4851) 60% Ni, 23% Cr, 14% Fe 78% 91% 71% Alloy 800 H (1.4876) 30% Ni, 19% Cr, 51% Fe 90% 90% 81% HT-Stahl (1.4828) 11% Ni, 19% Cr, 70% Fe 91% 94% 85,5% HT-Stahl (1. 4841) 19% Ni, 24% Cr, 57% Fe 77% 94% 72,4% Sicromal 12 (1.4762) 26% Cr, 1,7% Al, 1,4% 65% 93% 60,5% Si, 71% Fe Chrom 100% Cr 88% 83% 73% Alonisierter (1. 4541) AL-Oberfläche, Basis : 11% 15% 1,7% 1.4541 Quarz 14% 31% 4,3% Eisen 100% Fe 97% 90% 87,3% V4A-Stahl (1.4571) 71% Fe, 10,5% Ni, 16,5% 91% 92,5% 84,2% Cr, 2% Mo 1) FA Formamid