Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INDUCTIVE SENSOR FOR SHOCK ABSORBER
Document Type and Number:
WIPO Patent Application WO/2017/184994
Kind Code:
A1
Abstract:
An inductor sensor assembly for determining to position of object includes a layer of ferrite overlaying exciting and receiving coils formed on a substrate. A magnet attached to the target produces a virtual coupler in an area of ferrite overlaying the coils. An application for a shock absorber includes a sensor module mounted in a recess in a dust cover and a magnet mounted to a cylinder tube of the shock absorber.

Inventors:
ELLIOTT RYAN W (CA)
SHAO LINGMIN (CA)
FULLER SHAUN (CA)
HILL BENJAMIN SCOTT (CA)
Application Number:
PCT/US2017/028874
Publication Date:
October 26, 2017
Filing Date:
April 21, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KSR IP HOLDINGS LLC (US)
International Classes:
F16F9/32; G01D5/20; G01B7/00; H01F38/00
Foreign References:
US20140327432A12014-11-06
US5233293A1993-08-03
US20130033407A12013-02-07
US6012050A2000-01-04
US20130181797A12013-07-18
US20140144223A12014-05-29
US6064284A2000-05-16
Attorney, Agent or Firm:
ANDERSON, Thomas E. et al. (US)
Download PDF:
Claims:
CLAIMS

1. An inductive sensor assembly for determining the position of a target on an object, the sensor comprising: a substrate having at least one transmitting coil and at least one receiving coil mounted to the substrate; a resonator connected to the transmitting coils; a processing module connected to the at least one receiving coil, the processing module measuring eddy currents produced in the receiving coil; a layer of ferrite having magnetic permeability greater than 10 covering the at least one transmitting coil and at least one receiving coil;

a magnet mounted to a movable object spaced apart from the layer of ferrite, the magnet producing a magnetic field acting on an area of the ferrite layer to inductively couple the at least one transmitting coil with the at least one receiving coil in a region adjacent the area

2. The sensor assembly of claim 1, wherein the substrate is a printed wiring board having a top surface.

3. The sensor assembly of claim 1, wherein the layer of ferrite has one side having an adhesive.

4. The sensor assembly of claim 2, wherein the layer of ferrite is mounted to the top surface of the printed wiring board.

5. The sensor assembly of claim 1, wherein the layer of ferrite is flexible.

6. The sensor assembly of claim 1, wherein the object is formed of aluminum nonmagnetic material.

7. A sensor assembly for sensing the position of a shock absorber, the sensor assembly comprising:

a housing;

a sensor module mounted to the housing, the module having at least one transmitting coil and at least one receiving coil. Ihe module further having a layer of ferrite covering the transmitting coil and at least one receiving coil;

a magnet mounted to the shock absorber, the magnet spaced apart from the ferrite layer, the magnet having a magnetic field action on the ferrite layer to inductively couple the at least one transmitting coil to the at least one receiving coil to produce a signal indicative of the position of the magnet and object relative to the housing.

8. The sensor assembly of claim 7, wherein the housing has a generally circular cross section defining a center cavity. 9. The sensor assembly of claim 7, wherein the housing has a recess for housing the sensor module.

10. The sensor assembly of claim 7, wherein the shock absorber has an aluminum tube movable with respect to a rod.

11. The sensor assembly of claim 7, wherein the sensor module includes a connector.

12. The sensor assembly of claim 7, wherein the sensor module includes a printed wire board and a printed wire assembly.

13. The sensor assembly of claim 12, wherein the printed wire assembly includes a resonator.

14. The sensor assembly of claim 13, wherein the printed wire board includes at least one exciting coil and at least one receiving coil.

Description:
INDUCTIVE SENSOR FOR SHOCK ABSORBER

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority of United States Provisional Patent Applications serial no. 62/326,208 filed April 22, 2016; 62/329,538 filed April 29, 2016; and 62/396,433 filed September 19, 2016 which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The invention relates to inductive sensors and more particularly to inductive sensors using a resonator, exciting coils, and receiving coils which are coupled to determine the position of an object. BACKGROUND OF THE INVENTION

[0003] Inductive sensors are well known in the art. A typical inductive sensors arrangement has exciting coils and receiving coils. A resonator is connected to the exciting coils. A movable coupler couples the coils to create eddy currents in the receiving coil. The coupler is attached to a target. When the target and coupler move, the magnitude of the eddy currents changes in proportion to the position of the coupler. The position of the coupler and target is men determined. However, these couplers are a disadvantage in that they cannot be used through conductive materials such as aluminum. Presently known inductive sensors cannot be used in applications where the target is housed in aluminum.

SUMMARY OF THE INVENTION [0004] An inductive sensor assembly for determining the position of a target on an object movable with respect to the sensor includes a substrate having at least one transmitting coil and at least one receiving coil mounted to the substrate, a resonator connected to the transmitting coils, a layer of ferrite covering the at least one transmitting coil and at least one receiving coil, a processing module connected to the receiving coil to measure the differential coupling and produce a signal, and a magnet mounted to the movable object spaced apart from the layer of ferrite.

[0005] A particular application for the sensor assembly includes a housing, a sensor module mounted to the housing, and a sensor module having at least one receiving coil and at least one exciting coil, a layer of ferrite covering the receiving coil and the exciting coil, a shock absorber having an outer cylinder tube, and a magnet mounted to the outer cylinder tube.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Fig. 1 is a perspective partial view of a sensor in accordance with the invention. Fig. 2 is partial cross sectional view of magnet and sensor module in accordance with the invention. Fig. 2 is a side view of a sensor assembly and shock absorber coupler region.

[0007] Fig. 3 is a side view of a sensor assembly used with a shock absorber.

[0008] Fig. 4 is a perspective view of a sensor module installed in a dust cover for a shock absorber. Fig. 5 is a cross section view of a dust cover. DETAILED DESCRIPTION OF THE INVENTION

[0009] Inductive as shown in Figs. 1 and 2, a novel inductive position sensor assembly 10 has a substrate 12 with coils 16 covered with a layer of ferrite 14. A strong permanent magnet 18 attached to a movable target 20. The magnet 18 causes an area 22 of low permeability in the layer of ferrite adjacent to the magnet 18. The coupler region 22 of ferrite 16 becomes saturated. The permeability of the saturated area 22 drops to one when compared with the adjacent unsaturated regions 24 of the ferrite where the permeability is much higher. The saturated area 22 then acts as a "virtual coupler" 26 for the underlying area of the coils 16. The virtual coupler 26 permits a resonator 28 to excite exciting coils 30 and to generate eddy currents in receiving coils 32 in the same fashion as traditional inductive couplers. A suitable ferrite is one that has high magnetic permeability greater than ten. The ferrite should also have minimal eddy loses up to 5 MHz beyond the range of the inductive sensor. The eddy currents produced are proportional to the distance that the region or virtual coupler is from the end of the coils. The sensor assembly can be used with movable targets formed of aluminum.

[0010] A specific application of a sensor assembly 10 for use in determining the position of a shock absorber 24 is shown in Figs. 3, 4, and 5. Although the sensor assembly 10 is shown for use with a shock absorber 24, the sensor assembly 10 may be used for determining the position of virtually any target movable with respect to a sensor module. The sensor assembly 10 includes a sensor module 36 which is mounted in a dust cover 38 for the shock absorber 34. The magnet 18 is mounted to an aluminum cylinder tube 40 of the shock absorber 34. The dust cover 38 is positioned so that there is a gap of 5 to 10 mm between the magnet 18 and ferrite strip 14. The magnet 18 is rectangular and is 20x12x5 mm, NdFe42, full sintered / pressed. The magnet 18 has strength of .5 T. The strength of the magnet 18 is chosen with respect to nature of the application. The position of the outer tube 40 relative to the dust cover 38 and ram 42 may be determined by the sensor assembly 10.

[0011] As shown in Figs. 3 and 5, the dust cover 38 has a generally circular cross section with longitudinal a recess 44. The recess 44 is formed to hold the sensor module 36 a predetermined distance or gap from the magnet 18. The recess 44 is generally U shaped and extends a top 46 to bottom 48 of the dust cover 38. The dust cover 38 is extruded from a suitable nylon and is fixedly mounted with an end of member supporting ram 42 of the shock absorber.

[0012] As shown in Fig 4, the sensor module 36 includes a printed wiring board (PWB) 50. The PWB 50 has exciting coils 52 and receiving coils 44 arranged on a substrate 12. The sensor module 52 also includes a printed wiring assembly (PWA) 56 which includes a resonator 58 and ASIC chips 60. The PWA 50 is a generally rectangular board and can be as long as 200 mm. The PWA 52 and PWB 56 are soldered together and a connector 62 is mounted with a molded extension 64 to the PWA 56. The PWB 50 and PWA 52 are separate for efficiency reasons. The PWB 50 and PWA 52 are soldered together via terminals pins 64 to complete the subassembly. Both boards are heat staked to the connector molding 62 to limit stress on the soldered connections. The connector 62 for delivering output of the sensor module is over molded onto the PWA 56 having the ASIC 60. The connector 62 has terminals for connecting into the bus in a vehicle to deliver signals to a vehicle controller. A multi rib silicon radial compression seal 66 is epoxied or glued over the opposite end of the channel of the dust cover to seal the connector module in the dust cover 38.

[0013] The top surface of the PCB 50 is covered with a layer of ferrite 16. In the preferred embodiment the layer of ferrite 16 is a flexible sheet approximately 1/10 mm thick and having an adhesive layer on one side for mounting to the PCB 50. The flexible ferrite sheet permits forming the shape of the sensor module to conform to the environment. Likewise, the PCB 50 may be formed of flexible material and covered with a flexible ferrite sheet to form a flexible sensing unit such as a tube. The thickness of the ferrite layer can be varied to resist stray magnetic fields. The thicker the layer of ferrite more resistant the sensor is to the effects of the stray magnetic field.

[0014] As set form above, the magnet 18, creates a coupler region 22 of low permeability in the ferrite 16 layer adjacent to the magnet 18. The coupler region 22 couples the exciting coils 52 to the receiving coils to produce the differential coupling. As the target 20 and magnet 18 move longitudinally along the sensor module the percentage of voltage with respect to a reference voltage for the coils increases linearly.

[0015] The primary advantage of the sensor assembly 10 is the ability to operate effectively when one of the components is a conductive material such as aluminum However, the module can be used in virtually any environment and can be configured to determine the position of objects which move linearly with respect to the sensor module or could be configured for use with objects that move rotationally with respect to a sensor module.

[0016] Thus it will be apparent to those skilled in the art that there are many variations and adaptations of the invention which are within the scope of the invention as defined by the claims.

10 sensor assembly

12 substrate

16 ferrite

18 magnet

20 target

22 coupler region

24 unsaturated regions

26 virtual coupler

28 reasonator

30 exciting coils

32 receiving coils

34 shock absorber 36 sensor module 38 dust cover

40 outer tube

42 ram

44 recess

46 top

48 bottom

50 PWB

52 excite

54 receiving coils