Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INJECTOR FOR INJECTING FUEL
Document Type and Number:
WIPO Patent Application WO/2023/110821
Kind Code:
A1
Abstract:
The invention relates to an injector (1) for injecting fuel, preferably for injecting a gaseous fuel, in particular hydrogen, comprising a fuel supply line for introducing a highly pressurized gaseous fuel, an active valve (3) which can be actively shut off and which is designed to close or release at least one passage (A1) on a first face of a valve plate (5) in order to selectively release or interrupt a fluidic connection between the fuel supply line and a region which is downstream of the first face of the valve plate, and a passive valve (4) which is arranged downstream of the valve plate and can be passively switched to a closing or releasing state as a result of different pressure ratios upstream and downstream of the passive valve, wherein the passive valve is designed to close or release the at least one passage on a second face of the valve plate facing away from the first face by means of a tappet in order to selectively release or interrupt a fluidic connection between the second face of the valve plate and a region downstream of the passive valve.

Inventors:
SEIDL MARTIN (DE)
PIRKL RICHARD (DE)
STINGHE RAZVAN-SORIN (DE)
SCHMIDT MARTIN (DE)
KAPUSTA LYDIA (DE)
Application Number:
PCT/EP2022/085529
Publication Date:
June 22, 2023
Filing Date:
December 13, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LIEBHERR COMPONENTS DEGGENDORF GMBH (DE)
International Classes:
F02M21/02; F02M61/18; F02M63/00; F16K15/02
Domestic Patent References:
WO2022073886A12022-04-14
Foreign References:
DE102013202605A12014-08-21
CN107842453A2018-03-27
Attorney, Agent or Firm:
LAUFHÜTTE, Dieter (DE)
Download PDF:
Claims:
Ansprüche

1. Injektor (1) zum Einspritzen von Kraftstoff, vorzugsweise zum Einblasen eines gasförmigen Kraftstoffs, im Besonderen Wasserstoff, umfassend: eine Kraftstoffzuleitung (2) zum Einführen eines unter hohen Druck stehenden insbesondere gasförmigen Kraftstoffs, ein Aktivventil (3), das aktiv schaltbar ist und dazu ausgelegt ist, mindestens einen Durchgang (A1 ) an einer ersten Seite einer Ventilplatte (5) zu verschließen oder freizugeben, um wahlweise eine Strömungsverbindung von der Kraftstoffzuleitung (2) zu einem Bereich stromabwärts der ersten Seite der Ventilplatte (5) freizugeben oder zu unterbrechen, und ein Passivventil (4), das stromabwärts der Ventilplatte (5) angeordnet ist und durch stromauf und stromab des Passivventils (4) anliegende unterschiedliche Druckverhältnisse in einen verschließenden oder freigebenden Zustand passiv schaltbar ist, dadurch gekennzeichnet, dass das Passivventil (4) dazu ausgelegt ist, den mindestens einen Durchgang (A1 ) an einer der ersten Seite abgewandten zweiten Seite der Ventilplatte (5) mit einem Stößel (6) zu verschließen oder freizugeben, um wahlweise eine Strömungsverbindung von der zweiten Seite der Ventilplatte (5) zu einem Bereich stromabwärts des Passivventils (4) freizugeben oder zu unterbrechen. 2. Injektor (1 ) nach dem vorhergehenden Anspruch 1 , wobei in einem geschlossenen Zustand des Passivventils (4) der hin- und herbewegbare Stößel (6) des Passivventils (4) mit der zweiten Seite der Ventilplatte (5) in Kontakt steht, um den mindestens einen Durchgang (A1 ) der Ventilplatte (5) abzudichten.

3. Injektor (1 ) nach dem vorhergehenden Anspruch 2, wobei in einem geschlossenen Zustand des Passivventils (4) der Stößel (6) mit der zweiten Seite der Ventilplatte (5) direkt in Kontakt steht oder indirekt über ein Zwischenelement (11 ) in Kontakt steht.

4. Injektor (1 ) nach einem der vorhergehenden Ansprüche, wobei in einem geschlossenen Zustand des Aktivventils (3) ein hin- und herbewegbarer Anker (7) des Aktivventils (3) mit der ersten Seite der Ventilplatte (5) in Kontakt steht, um den mindestens einen Durchgang (A1 ) der Ventilplatte (5) abzudichten, vorzugsweise wobei der Injektor ferner eine Spule (8) aufweist, die dazu ausgelegt ist, den Anker (7) mittels Magnetkraft aus seiner Schließstellung zu bewegen.

5. Injektor (1 ) nach dem vorhergehenden Anspruch 4, wobei in einem geschlossenen Zustand des Aktivventils (3) der Anker (7) mit der ersten Seite der Ventilplatte (5) direkt in Kontakt steht oder indirekt über ein Zwischenelement (25) in Kontakt steht.

6. Injektor (1 ) nach einem der vorhergehenden Ansprüche, wobei der die Ventilplatte (5) kontaktierende Anschlag des Stößels (6) zusammen mit der zweiten Seite der Ventilplatte (5) als Flachdichtung (13), Kegeldichtung (14) und/oder Kugeldichtung ausgebildet ist.

7. Injektor (1 ) nach einem der vorhergehenden Ansprüche, ferner umfassend eine Drängvorrichtung, die dazu ausgelegt ist, den Stößel (6) des Passivventils (4) hin zur Ventilplatte (5) in Schließstellung zu drängen. 8. Injektor (1 ) nach dem vorhergehenden Anspruch 7, wobei die Drängvorrichtung ein Federelement (10) umfasst, vorzugsweise wobei das Federelement (10) eine Spiralfeder ist.

9. Injektor (1 ) nach einem der vorhergehenden Ansprüche, wobei zwischen dem Stößel (6) und der Ventilplatte (5) ein Zwischenelement (11 ) angeordnet ist, das in einer Schließstellung des Passivventils (4) von einer Seite von dem Stößel (6) und von einer dazu gegenüberliegenden Seite von der Ventilplatte (5) kontaktiert ist.

10. Injektor (1 ) nach dem vorhergehenden Anspruch 9, wobei das Zwischenelement (11 ) aus einem weichelastischen Material ist, insbesondere einem Elastomer besteht, um ein Prellen des Stößels (6) bei einem Anschlägen an der Ventilplatte (5) zu verringern.

11. Injektor (1 ) nach einem der vorhergehenden Ansprüche 9 oder 10, wobei das Zwischenelement (11 ) aus einem wärmeisolierenden Material ist, insbesondere eine Keramik umfasst oder aus einer Keramik ist.

12. Injektor (1 ) nach einem der vorhergehenden Ansprüche 9-11 , wobei das Zwischenelement (11 ) eine an der zur Ventilplatte (5) gewandten Stirnseite des Stößels (6) angeordnete Beschichtung umfasst oder ist und/oder eine an der zum Stößel (6) gewandten Stirnseite der Ventilplatte (5) angeordnete Beschichtung umfasst oder ist.

13. Injektor (1 ) nach einem der vorhergehenden Ansprüche 9-12, wobei das Zwischenelement (11 ) an dem Stößel (6) und/oder der Ventilplatte (5) befestigt ist oder zwischen Stößel (6) und der Ventilplatte (5) frei beweglich angeordnet ist.

14. Injektor (1 ) nach einem der vorhergehenden Ansprüche, wobei ein den maximalen Hub des Stößels (6) von der Ventilplatte (5) begrenzender Gegenanschlag (9) vorgesehen ist, der vorzugsweise mit mindestens einem 26

Dämpfelement (15) versehen ist, um ein Anschlägen des Stößels (6) zu dämpfen und ein Prellen zu verringern.

15. Brennkraftmaschine mit einer Kraftstoffeinspritzung, insbesondere mit einer Gas-Direkteinspritzung, im Besonderen mit einer Wasserstoff-Direkteinspritzung, umfassend einen Injektor (1 ) nach einem der vorhergehenden Ansprüche 1-14.

Description:
Injektor zum Einspritzen von Kraftstoff

Die vorliegende Erfindung betrifft einen Injektor zum Einspritzen von Kraftstoff, insbesondere zum Einblasen eines Gases, vorzugsweise zum direkten Einblasen von Wasserstoff. Dabei kann vorgesehen sein, dass der Injektor dazu ausgelegt ist, Kraftstoff in einen Brennraum einer Verbrennungskraftmaschine einzuspritzen.

Im Zuge von weltweit immer strenger werdenden Abgasgrenzwerten und ambitionierten Klimaschutzzielen steigen die umwelttechnischen Anforderungen an Verbrennungskraftmaschinen stetig an. Das Ziel sind in absehbarer Zukunft emissionsarme oder gar emissionsfreie Antriebstechnologien, die auch strengste Abgasgrenzwerte erfüllen und einen signifikanten Beitrag zum Erreichen der Klimaschutzziele liefern. Bei Technologien, die mit einer Verbrennung arbeiten sind diese Ziele nur bei einer Verwendung von klimaneutralen, regenerativ produzierten Kraftstoffen erreichbar, die entlang der gesamten Wertschöpfungskette keinerlei Emissionen verursachen (sogenannte "zero emissions' -Kraftstoffe).

Mit derzeitigen konventionellen Benzin-, Diesel- und Gasmotoren sind die Anforderungen an eine emissionsfreie Verbrennung - selbst unter Verwendung sogenannter E-Fuels, bspw. eines synthetisch erzeugten OME-Kraftstoffs, zu dessen Herstellung lediglich regenerative Energie benötigt wird - nicht erreichbar, da sich der Ausstoß an schädlichen Abgasen wie Stickstoffoxiden (NOx), unverbrannten Kohlenwasserstoffen (UHC) und Ruß mit heutigen Technologien nicht vollständig reduzieren lässt.

Prinzipiell erfüllen batteriebetriebene Antriebe die Zero-Emissions-Richtlinie während des Betriebs und sind v. a. im Pkw-Bereich auf dem Vormarsch. Wird hingegen die gesamte Wertschöpfungskette betrachtet, so ist jedoch die Produktion der (Lithium-)Akkus energetisch sehr kostspielig und unter umwelttechnischen Gesichtspunkten problematisch, da insbesondere starke Umweltschäden beim Rohstoffabbau auftreten und der Abbau der für die Batterien erforderlichen Rohstoffe nicht nachhaltig durchführbar ist. Zudem ist mit dem heute erzielbaren Leistungsgewicht der Batterien ein Einsatz in Maschinen mit hohem (Spitzen-) Leistungsbedarf nicht möglich.

Brennstoffzellenbetriebene Antriebe mit Versorgung aus regenerativ erzeugtem Wasserstoff erfüllen die vorgegebenen Klimaschutzziele und sind schon heute in sehr begrenztem Maße im Einsatz. Allerdings weist auch dieses Konzept einige Nachteile auf, bspw. eine im Vergleich zu heutigen Dieselantrieben geringe Spitzenleistung und eine geringe Wirtschaftlichkeit.

In den Fokus sind daher Wasserstoff-Verbrennungsmotoren gerückt, die eine vielversprechende Antriebsalternative darstellen. Diese existieren aber bis dato fast ausschließlich in sehr geringer Stückzahl oder als Demonstratoren mit geringem Reifegrad. Ein durch regenerative Energien erzeugter Wasserstoff würde alle Erfordernisse von“ zero emission“ erfüllen, da dieser emissionsfrei verbrennbar ist.

So finden sich im Pkw-Bereich bspw. Wasserstoff-Motoren mit äußerer Gemischbildung (PFI = port fuel injection), bei denen der Kraftstoff schon vor Eintritt in den Brennraum mit Luft in ausreichender Zeit gut durchmischt wird. Wasserstoff- Motoren mit direkter Einblasung des Kraftstoffs in den Brennraum (innere Gemischbildung, DI = direct injection) spielen heutzutage praktisch keine Rolle, weisen jedoch gegenüber dem PFI-Konzept u.a. eine höhere Effizienz, stabilere Verbrennung sowie eine Eliminierung der Gefahr einer Rückzündung in den Ansaugtrakt auf.

Bei direkt einspritzenden Wasserstoffmotoren wird typischerweise noch hinsichtlich des maximalen Einspritzdrucks im Injektor (< 60 bar: Niederdruck, > 60 bar: Hochdruck) unterschieden, wobei die Grenzen nicht eindeutig festgelegt und die Übergänge fließend sind. Höhere Drücke bieten das Potential einer verkürzten Einblasdauer in einer späteren Phase der Kompression bei höheren Brennraumdrücken, was eine erhöhte Effizienz und verbesserte Verbrennungsstabilität zur Folge hat. Allerdings sinkt die Gesamteffizienz, falls zuvor eine Komprimierung des Wasserstoffs nötig ist.

Wird der Wasserstoff zu 100 % aus regenerativen Energien gewonnen, kann mit Wasserstoff-Verbrennungsmotoren ein nahezu klimaneutraler Betrieb realisiert werden. Darüber hinaus bieten sich zahlreiche weitere Vorteile:

• Verwendung bekannter Technologien mit hohem Reifegrad und bestehender Produktionsanlagen

• unbegrenzte Verfügbarkeit des Wasserstoffs durch Elektrolyse von Wasser

• Nutzung des bestehenden Tankstellensystems möglich (nach entsprechender Umrüstung) mit schnellen Tankzeiten

• (fast) emissionsfreie Umwandlung des Wasserstoffs in der Verbrennung möglich, da CO2-neutral, nur minimale CO, UHC-, Partikel- und Ruß- Emissionen (lediglich verursacht durch Schmierstoffe im Zulaufsystem, unterhalb der Messgrenze) und nur minimale NOx-Emissionen durch geeignetes Verbrennungsverfahren (ggf. mit Abgasrückführung, SCR- Katalysator)

• deutlich geringere Anforderung an Reinheit des Wasserstoffs im Vergleich zu Brennstoffzellen-Antrieben

• kein Bedarf an Platin zur Herstellung wie bei Brennstoffzellen Neben diesen zahlreichen Vorteilen gegenüber anderen Antriebskonzepten existieren jedoch auch einige Herausforderungen, die es bei der Entwicklung von Wasserstoff-Verbrennungsmaschinen zu bewältigen gibt:

• geringes Molekulargewicht von Wasserstoff, dadurch eine geringe Dichte einhergehend mit einer geringen volumetrischen Energiedichte (bei hoher massenspezifischer Energiedichte); siehe Tabelle 1

• Bereitstellung eines demzufolge hohen Volumenstroms bei der Einblasung von Wasserstoff

• entsprechende Bereitstellung von großen Strömungsquerschnitten im Injektor und damit benötigter deutlich größerer Hübe des Aktuators als bei konventionellen Antriebsarten

• einhergehende Entwicklung einer deutlich stärkeren Aktuatoreinheit bei gleichzeitig begrenztem Bauraum

• Dichtheit des Gesamtsystems / Verhinderung von externen Leckagen, v. a. im Hinblick auf Sicherheitsaspekte (Brand- und Explosionsgefahr aufgrund aus dem System austretenden Wasserstoff)

• erhöhte Verschleißgefahr an Führungen bewegter Bauteile aufgrund der praktisch nicht vorhandenen Schmierwirkung von Wasserstoff

• deutlich stärkere Neigung bewegter Bauteile zum Prellen an mechanischen Anschlägen in Gasinjektoren im Vergleich zu Injektoren mit Flüssigkraftstoffen durch geringe Dämpfwirkung bei der Gaskompression

• Materialbeständigkeit gegenüber Wasserstoff nötig im Hinblick auf die Gefahr einer Wasserstoffversprödung in mechanisch beanspruchten / druckbeaufschlagten Bauteilen (reduzierte Festigkeit) oder durch chemische Reaktion des Wasserstoffs mit in der Kupferspule des Aktuators vorhandenem Sauerstoff (Wasserstoffkrankheit des Kupfers)

• Gemischaufbereitung im Brennraum / Beeinflussung des Einblasstrahls / Zündverhalten bei Kleinstmengeneinblasung

Tabelle 1 : Massen- und volumenspezifischer Heizwert von Diesel und Wasserstoff

Es ist das Ziel der vorliegenden Erfindung die vorstehend aufgeführten Nachteile zumindest teilweise zu überwinden oder abzumildern. Zudem ist es von Vorteil, wenn der Injektor nur einen geringen Bauraum in Anspruch nimmt und/oder eine geringe axiale Länge aufweist. Insbesondere soll dabei ein Kraftstoffinjektor geschaffen werden, der auch bei hoher thermischer Belastung einen zuverlässigen Betrieb ermöglicht. Ferner ist von Vorteil, wenn der Injektor gegen den Druck im Zylinder während dessen Kompressionsphase zuverlässig abgedichtet ist, da der hohe Zylinderdruck ansonsten das schaltbare Ventil in Offenstellung drücken würde. Ferner ist es von Vorteil, wenn mit dem Injektor ein schnelles und stabiles Öffnen möglich ist, bei dem keine Drosselung der Strömung erfolgt. Zumindest einige oder sämtliche der vorgenannten Ziele werden mit einem Injektor zum Einspritzen von Kraftstoff, der sämtliche Merkmale des Anspruchs 1 aufweist, erreicht. Vorteilhafte Ausgestaltungen des Injektors sind dabei in den abhängigen Ansprüchen angegeben.

Ein erfindungsgemäßer Injektor zum Einspritzen von Kraftstoff, vorzugsweise zum Einblasen eines gasförmigen Kraftstoffs, im Besonderen Wasserstoff, umfasst eine Kraftstoffzuleitung zum Einführen eines unter hohen Druck stehenden gasförmigen Kraftstoffs, ein Aktivventil, das aktiv schaltbar ist und dazu ausgelegt ist, mindestens einen Durchgang an einer ersten Seite einer Ventilplatte zu verschließen oder freizugeben, um wahlweise eine Strömungsverbindung von der Kraftstoffzuleitung zu einem Bereich stromabwärts der ersten Seite der Ventilplatte freizugeben oder zu unterbrechen, und ein Passivventil, das stromabwärts der Ventilplatte angeordnet ist und durch stromauf und stromab des Passivventils anliegende unterschiedliche Druckverhältnisse in einen verschließenden oder freigebenden Zustand passiv schaltbar ist. Der Injektor ist dadurch gekennzeichnet, dass das Passivventil dazu ausgelegt ist, den mindestens einen Durchgang der Ventilplatte an einer der ersten Seite abgewandten zweiten Seite der Ventilplatte mit einem Stößel zu verschließen oder freizugeben, um wahlweise eine Strömungsverbindung von der zweiten Seite der Ventilplatte zu einem Bereich stromabwärts des Passivventils freizugeben oder zu unterbrechen.

Indem der Stößel des Passivventils direkt an die die zweite Seite (beispielsweise die Unterseite) der Ventilplatte ansetzt, ergibt sich eine besonders platzsparende Konfiguration eines Injektors. Typischerweise wurde im Stand der Technik für die Umsetzung des Passivventils eine weitere Dichtfläche vorgesehen, die stromabwärts der Ventilplatte angeordnet ist, was zwangsläufig zu einer axialen Vergrößerung des Injektors führt. Indem nun nach der Erfindung die erste Seite der Ventilplatte durch den aktiv schaltbaren Anker und die davon abgewandten Seite der Ventilplatte durch den Stößel des Passivventils abdichtbar ist, ergibt sich eine besonders platzsparende Konfiguration eines Injektors, die in Längsrichtung kompakt ist und den erforderlichen Einbauraum verringert.

Weiter vorteilhaft ist bei der Erfindung auch, dass ein ungewolltes Abheben des Ankers von der Ventilplatte aufgrund einer Druckspritze oder eines sehr hohen Druckniveaus, welches sich beispielsweise während einer Kompressionsphase des Zylinders oder während einer Verbrennung vom Brennraum her Richtung Ventilplatte ausbreitet, dazu führt, dass der Stößel des Passivventils in seine Schließstellung gegen die Ventilplatte gedrängt wird. Das Passivventil sorgt demnach für eine Abdichtung des Ventil- und Nadelraums gegen den Zylinderdruck. Dadurch kann auch die Federkraft, mit der der Anker in einer Schließstellung auf die Ventilplatte für eine sichere Abdichtung gedrängt werden muss, verringert werden, was sich weiter vorteilhaft auf die Dimensionierung und die Kosten des Injektors auswirkt.

Darüber hinaus gibt es mit der erfindungsgemäßen Umsetzung nur ein sehr kleines Volumen an Kraftstoff, welches sich im Zwischenbereich von Aktivventil und Passivventil befinden kann. Kommt es also stromab des Passivventils zu einem Unterdrück (beispielsweise in einer Expansionsphase oder auch in einer Ansaugphase eines Zylinders), der zu einem Abheben des Stößels des Passivventils von der Ventilplatte führt, strömt nur ein sehr geringes Volumen von Kraftstoff aus, welches gegebenenfalls unverbrannt in einen Abgastrakt eines Motors gelangt. Dies führt dazu, dass die Ausgabe des Kraftstoffs in Bezug auf eine effiziente Verwendung verbessert wird, da der Ausgabezeitpunkt verlässlicher gesteuert werden kann und auch im Falle eines das Passivventil öffnenden Unterdrucks sehr viel weniger Kraftstoff ungewollt ausgegeben wird.

Nach einer weiteren optionalen Fortbildung der Erfindung kann dabei vorgesehen sein, dass in einem geschlossenen Zustand des Passivventils der hin- und herbewegbare Stößel des Passivventils mit der zweiten Seite der Ventilplatte in Kontakt steht, um den mindestens einen Durchgang der Ventilplatte abzudichten. Der hin- und herbewegbare Stößel kontaktiert dabei in einer Schließstellung die zweite Seite (Unterseite) der Ventilplatte und dichtet so den mindestens einen die Ventilplatte durchstoßenden Durchgang von der zweiten Seite her ab.

Vorzugsweise kann dabei vorgesehen sein, dass in einem geschlossenen Zustand des Passivventils der Stößel mit der zweiten Seite der Ventilplatte direkt in Kontakt steht oder indirekt über ein Zwischenelement in Kontakt steht.

Nach einer vorteilhaften Modifikation der vorliegenden Erfindung kann vorgesehen sein, dass in einem geschlossenen Zustand des Aktivventils ein in Längsrichtung des Injektors hin- und herbewegbarer Anker des Aktivventils mit der ersten Seite der Ventilplatte in Kontakt steht, um den mindestens einen Durchgang der Ventilplatte von der ersten Seite her abzudichten, vorzugsweise wobei der Injektor ferner eine Spule aufweist, die dazu ausgelegt ist, den Anker mittels Magnetkraft aus seiner Schließstellung zu bewegen.

An der ersten Seite (beispielsweise einer Oberseite) der Ventilplatte wird dabei üblicherweise mithilfe eines über eine Spule aus einer Schließstellung anhebbaren Ankers der mindestens eine Durchgang der Ventilplatte wahlweise verschlossen oder freigegeben. In einer Schließstellung dichtet der Anker den mindestens einen Durchgang der Ventilplatte ab, sodass eine durch die Ventilplatte geführte Fluidströmung entlang der Ventilplatte unterbunden ist. Dabei kann optionaler Weise eine Spule vorgesehen sein, die bei Bestromung ein Magnetfeld erzeugt, das zu einem Anheben des Ankers führt, sodass der mindestens eine Durchgang freigegeben wird.

Vorzugsweise kann dabei vorgesehen sein, dass in einem geschlossenen Zustand des Aktivventils der Anker mit der ersten Seite der Ventilplatte direkt in Kontakt steht oder indirekt über ein Zwischenelement in Kontakt steht. Das Zwischenelement kann dabei ein Dichtelement darstellen, dass die Öffnungskontur umfangsseitig umgibt oder ganz überdeckt und beispielsweise an der zum Anker zugewandten Stirnseite der Ventilplatte angeordnet ist. Alternativ oder zusätzlich ist aber auch denkbar, dass das Dichtelement an der zur Ventilplatte zugewandten Stirnseite des Ankers angeordnet ist oder frei beweglich zwischen Ventilplatte und Anker angeordnet ist.

Nach einer optionalen Fortbildung der vorliegenden Erfindung kann vorgesehen sein, dass der die Ventilplatte kontaktierende Anschlag des Stößels als Flachdichtung, Kegeldichtung und/oder Kugeldichtung ausgebildet ist. Dem Fachmann ist klar, dass eine Vielzahl von möglichen Kontaktpaarungen zu einer gewünschten Dichtwirkung führen kann. Besonders vorteilhaft ist aber die Flachdichtung, da bei einem Öffnungsvorgang, in dem der Stößel aus einer schließenden Position von der Ventilplatte weggedrückt wird, die von der Kraftstoffzuführleitung herrührende Kraftstoffströmung direkt auf eine eben ausgeführte Platte auftrifft, sodass dadurch ein hoher Staudruck entsteht und große Druckkräfte wirken, welche den Stößel schnell und sicher öffnen.

Nach einer optionalen Fortbildung der Erfindung kann vorgesehen sein, dass der Injektor ferner eine Drängvorrichtung umfasst, die dazu ausgelegt ist, den Stößel des Passivventils hin zur Ventilplatte in Schließstellung zu drängen. Dabei kann vorteilhafterweise vorgesehen sein, dass die Drängvorrichtung ein Federelement umfasst, insbesondere wobei das Federelement eine Spiralfeder ist. Das Federelement kann sich dabei an einem unbeweglichen Gegenanschlag abstützen, der gleichzeitig auch die Aufgabe hat, den maximalen Hub des Stößels zu begrenzen. Der Gegenanschlag definiert dabei also den maximalen Abstand, den der Stößel von der Ventilplatte einnehmen kann.

Nach einerweiteren Fortbildung der Erfindung kann dabei vorgesehen sein, dass der Gegenanschlag, an welchen sich das Federelement abstützt nur zu Ventilplatte hin geöffnet ist und ansonsten fluiddicht abgeschlossen ist. Dabei kann vorgesehen sein, dass der Gegenanschlag einen radial zur Längsrichtung des Injektros verlaufenden ersten Abschnitt und einen sich hieran anschließenden parallel zur Längsrichtung des Injektors verlaufenden zweiten Abschnitt umfasst, welcher vorzugsweise koaxial zum Einblasrohr angeordnet ist. In diese eine Kreisform aufweisende taschenartige Ausgestaltung des Gegenanschlags kann das zur Ventilplatte entfernte Ende eines Federelements eingefügt werden, insbesondere das zur Ventilplatte entfernte Ende einer Spiralfeder. Vorteilhaft hieran ist, dass bei einer maximalen Auslenkung des Stößels, in welchem dieser den Gegenanschlag kontaktiert, die Strömung des gasförmigen Kraftstoffs nicht mit dem Federlement zusammenwirkt und damit keine unerwünschten Verwirbelungen entstehen. Das Federelement wird also von dem Strömungsweg des gasförmigen Kraftstoffs isoliert und kann diesen nicht negativ beeinflussen. Dabei ist vorteilhafterweise vorgesehen, dass die Öffnungskontur des Stößels nur in einem Bereich angeordnet ist, welcher bei einem Aufsetzen auf den Gegenanschlag, der im Querschnitt des Kontaktbereichs mit dem Stößel kreisförmig ist, im Inneren der kreisförmigen Kontur (bei Betrachtung im Querschnitt) liegt.

Nach einer weiteren vorteilhaften Modifikation der vorliegenden Erfindung kann vorgesehen sein, dass zwischen dem Stößel und der Ventilplatte ein Zwischenelement angeordnet ist, das in einer Schließstellung des Passivventils an einer ersten Seite von dem Stößel und an einer dazu gegenüberliegenden Seite von der Ventilplatte kontaktiert ist. Das Zwischenelement kann dabei als Dichtelement ausgeführt sein und eine Öffnungskontur der Ventilplatte an der zum Stößel zugewandten Stirnseite umschließen oder überdecken. Führt man also Stößel und Ventilplatte aufeinander, so dichtet das als Dichtelement ausgeführt Zwischenelement in Verbindung mit dem Stößel den mindestens einen Durchgang durch die Ventilplatte fluidisch ab.

Dabei kann auch vorgesehen sein, dass das Zwischenelement aus einem weichelastischen Material ist, insbesondere einem Elastomer, um ein Prellen des Stößels bei einem Anschlägen an der Ventilplatte zu verringern. Neben einer vorteilhaften Dichtwirkung wird somit auch die Problematik abgemildert, die ein Prellen des Stößels an der Ventilplatte nach sich zieht. Führt man das Zwischenelement aus einem weichelastischen Material aus oder umfasst dieses ein weichelastisches Material wird der Anschlag bei einem Kontaktierende Stößels mit der Ventilplatte gedämpft, sodass es zu einem Verringern des Prellens kommt.

Weiter kann nach der Erfindung vorteilhafterweise vorgesehen sein, dass das Zwischenelement aus einem wärmeisolierenden Material ist, insbesondere eine Keramikmaterial umfasst oder aus einer Keramik ist. Besitzt das Zwischenelement wärmeisolierende Eigenschaften führt dies dazu, dass stromaufwärts angeordnete Bestandteile von den typischerweise bei einer Verbrennung von Kraftstoff auftretenden hohen Temperaturen abgeschirmt werden. Es ist dann möglich, Bauteile zu verwenden, die in einem niedrigeren Temperaturbereich spezifiziert sind und dadurch aus preiswerteren Materialien bestehen können sowie einen insgesamt günstigeren Injektor ermöglichen.

Nach einer optionalen Fortbildung der vorliegenden Erfindung kann vorgesehen sein, dass das Zwischenelement eine an der zur Ventilplatte gewandten Stirnseite des Stößels angeordnete Beschichtung ist oder umfasst und/oder eine an der zum Stößel gewandten Stirnseite der Ventilplatte angeordnete Beschichtung umfasst oder ist. Das Zwischenelement muss nicht zwangsläufig als separate Scheibe oder Folie ausgebildet sein, sondern kann auch durch eine entweder an dem Stößel und/oder der Ventilplatte angeordnete Beschichtung umgesetzt sein. Dies ist hinsichtlich der Fertigung des Injektors von Vorteil, da bei einer Beschichtung an dem Stößel und/oder der Ventilplatte weniger Bauteile händisch oder in automatisierter Art und Weise bei der Fertigung des Injektors zusammengefügt werden müssen.

Weiter kann nach einer vorteilhaften Gestaltung der vorliegenden Erfindung vorgesehen sein, dass das Zwischenelement an dem Stößel und/oder der Ventilplatte befestigt ist oder zwischen Stößel und der Ventilplatte frei beweglich angeordnet ist. So ist beispielsweise eine Umsetzung des Zwischenelements als Beilegscheibe oder Beilegung denkbar, die ebenfalls in dem den Stößel umfangsseitig umgebenden Stößelführungsabschnitt eingelegt und dort geführt ist. Diese Umsetzung ist insbesondere in Bezug auf zukünftig anfallende Wartungskosten von Vorteil, da zu erwarten ist, dass das Zwischenelement einer besonders hohen Abnutzung unterliegt. Ist dies der Fall, kann eine abgenutzte Scheibe einfach entnommen und durch eine neuwertige Scheibe ersetzt werden, sodass der ursprüngliche Stößel wie auch die ursprüngliche Ventilplatte weiterverwendet werden können.

Nach einer vorteilhaften Ausgestaltung kann nach der Erfindung ferner vorgesehen sein, dass ein den maximalen Hub des Stößels von der Ventilplatte begrenzender Gegenanschlag vorgesehen ist, der vorzugsweise mit mindestens einem Dämpfelement versehen ist, um ein Anschlägen des Stößels zu dämpfen und ein Prellen zu verringern. Das hierbei verwendete Dämpfelement kann aus einem weichelastischen Material bestehen oder ein solches umfassend und ist insbesondere aus einem Elastomer gefertigt.

Nach der Erfindung kann ferner vorgesehen sein, dass der Stößel des Passivventils eine Öffnungskontur aufweist, durch welche der von der Kraftstoffzuleitung stammende gasförmige Kraftstoff stromabwärts strömt. Vorzugsweise kann nach einer optionalen Fortbildung der Erfindung vorgesehen sein, dass die Öffnungskontur durch eine einzige Bohrung, vorzugsweise eine einzige zentrale Bohrung in dem Stößel umgesetzt ist. Weiter kann vorgesehen sein, dass in einer vollständig geöffneten Position des Passivventils, in der der Stößel also von der Ventilplatte maximal beabstandet ist, die Öffnungskontur die einzige Verbindung für den gasförmigen Kraftstoff darstellt, über den eine stromabwärtige Strömung erfolgen kann. Bspw. ist dies dann umgesetzt, wenn der Gegenanschlag durchgehend am Innenumfang des Einblasrohrs so ausgestaltet ist, dass ein Strömen eines Fluids im Verbindungsbereich von Gegenanschlag und des den Gegenanschlag umgebenden Einblasrohrs nicht vorhanden ist.

Die Erfindung betrifft ferner eine Brennkraftmaschine mit einer Kraftstoffeinspritzung, insbesondere mit einer Gas-Direkteinspritzung, im Besonderen mit einer Wasserstoff-Direkteinspritzung, umfassend einen Injektor nach einem der vorhergehenden Ansprüche 1 -14.

Weitere Merkmale, Einzelheiten und Vorteile der Erfindung werden anhand der nachfolgenden Figurenbeschreibung ersichtlich. Dabei zeigen:

Fig. 1 : eine schematische Schnittansicht eines Injektors nach dem Stand der Technik,

Fig. 2: eine Darstellung verschiedener Zustände von Bauteilen und Drücken in einem Injektor,

Fig. 3: eine schematische Teilschnittansicht eines erfindungsgemäßen Injektors im Bereich der Ventilplatte,

Fig. 4a-b: eine schematische Schnittansicht des erfindungsgemäßen Injektors in einem geschlossenen und einem offenen Zustand,

Fig. 5: eine schematische Teilschnittansicht eines erfindungsgemäßen Injektors nach einer zweiten Ausführungsform in einem geschlossenen Zustand,

Fig. 6: eine schematische Teilschnittansicht des erfindungsgemäßen Injektors nach einer dritten Ausführungsform in einem geschlossenen Zustand, und Fig. 7: eine schematische Teilschnittansicht des erfindungsgemäßen Injektors nach einer vierten Ausführungsform in einem geschlossenen Zustand.

Die nachfolgende detaillierte Figurenbeschreibung der Fig. 1 wird anhand eines Injektors zum Einblasen eines gasförmigen Kraftstoffs erläutert, wobei dem Fachmann aber klar ist, dass von der Erfindung ebenfalls ein Injektor zum Einspritzen eines anderen Kraftstoffs umfasst ist.

Fig. 1 zeigt dabei einen Längsschnitt eines Injektors 1 zum Einblasen eines gasförmigen Kraftstoffs, beispielsweise Wasserstoff, in einen Brennraum. Der Injektor 1 besitzt dabei ein Injektorgehäuse, in dem sich unterschiedliche Komponenten des Injektors 1 befinden. Anschlussseitig ist eine Kraftstoffzuleitung 2 zum Einführen eines Kraftstoffs in den Injektor 1 vorgesehen. Zunächst wird dabei der Kraftstoff oder ein anderes brennbares Fluid (beispielsweise ein Wasserstoff) durch eine etwa zentral im Injektorgehäuse verlaufende Bohrung eines Deckels 16 und im Anschluss daran durch einen Fluidkanal eines Ankergegenstücks 19, einer Durchgangsöffnung der Ankerbasis 23 und dem hohlen Inneren des Ankers 7, das manchmal auch Hohlnadel oder einfach nur Nadel genannt wird, zu dem von der Anschlussseite entfernten Ende des Ankers 7 geleitet.

Abhängig von der Stellung des Ankers 7 gegenüber der Ventilplatte 5 sind die die Ventilplatte 5 durchstoßenden Öffnungen A1 verschlossen oder freigegeben. In dem in Fig. 1 dargestellten Zustand sind die Durchgänge A1 durch das Anpressen des Ankers 7 gegen die Ventilplatte 5 verschlossen, da die Stirnseite des Ankers 7 die Öffnungskonturen der Durchgänge A1 abdeckt. Zum Verbessern der Dichtheit können Dichtelemente 25 vorgesehen sein, die um die Öffnungskonturen der Durchgänge A1 herum verlaufen und in einem abdichtenden Zustand die Stirnseite des Ankers 7 kontaktieren. Sind die Durchgänge A1 durch die Stirnseite des Ankers 7 verschlossen, wird die Fluidströmung des Kraftstoffs an dieser Stelle des Injektors 1 aufgehalten und es kommt zu keiner stromabwärtigen Strömung von Kraftstoff jenseits der Ventilplatte 5. Sind die Durchgänge A1 hingegen freigegeben, was durch ein Abheben des Ankers 7 weg von der Ventilplatte 5 umgesetzt wird, strömt der mit einem gewissen Druck in den Injektor 1 eingeführte Kraftstoff aus und tritt über die mehreren Durchgänge A1 auf der von dem Anker 7 beabstandeten Seite der Ventilplatte 5 aus. Nach Durchströmen eines Passivventils 4, das in dem Injektor 1 vorgesehen ist, strömt der unter Druck stehende Kraftstoff durch die Einblaskappe 28 aus dem Injektor aus. Nach einem Durchströmen der Einblaskappe 28 befindet sich dann der durch den Injektor 1 abgegebene Kraftstoff typischerweise außerhalb des Injektors 1 in einem Brennraum. Zudem findet in dem Brennraum 16 typischerweise eine Komprimierung des Kraftstoffs statt, wo der Kraftstoff sich dann entzündet bzw. entzündet wird.

Das Passivventil 4, das auf der vom Anker 7 abgewandten Seite der Ventilplatte 5 liegt, dient dazu, einen im Brennraum herrschenden sehr hohen Druck vom Anker 7 fernzuhalten. Anderenfalls könnte es passieren, dass der sehr hohe im Brennraum herrschende Druck auf den Anker 7 wirkt und diesen aus seiner den mindestens einen Durchgang A1 schließenden Position wegbewegt. In einem darauffolgenden Arbeitsschritt des Injektors 1 würde dann nicht mehr der zum Verbrennen erforderliche Kraftstoff in den Brennraum eingeleitet werden, sondern ein bereits zumindest teilweise verbranntes Gemisch, was zu einem Unterbrechen des Verbrennvorgangs oder bestenfalls zu einer geringeren Leistung des Verbrennvorgangs führen kann.

Das Passivventil 4 weist dabei einen Ventilstößel 6, eine Ventilführung 27 und eine Ventilfeder 10 auf, die den Ventilstößel 6 in eine Schließrichtung drängt, sodass ein Ausströmen von Kraftstoff über die Öffnungskontur A2 des Passivventils 4 nur dann auftritt, wenn auf der zur Ventilplatte 5 zugewandten Seite des Passivventils 4 ein Druck herrscht, der mindestens um die von der Ventilfeder 10 ausgeübte Rückstellkraft des Ventilstößel 6 größer ist als der auf der von dem Passivventil 4 zur Ventilplatte 5 abgewandten Seite herrschende Druck. Ein Einströmen eines Fluids von der zum Brennraum zugewandten Seite des Passivventils 4 wird dadurch verhindert. Abweichend von den zeichnerischen Darstellungen kann vorgesehen sein, dass die Öffnungskontur durch eine einzige Bohrung, vorzugsweise eine einzige zentrale Bohrung umgesetzt ist, durch welche die Strömung des gasförmigen Kraftstoffs das Passivventil geführt ist. Das Vorsehen von nur einer Bohrung in dem Passivventil kann in Bezug auf die erforderlichen Herstellungskosten des Passivventils und etwaige auftretende Verwirbelungen bei der Strömungsführung von Vorteil sein.

Der Anker 7 ist in der Längsrichtung des Injektors 1 hin- und herbewegbar. Die Bewegung des Ankers 7, der einstückig oder aus einer Ankerbasis 23 und einer Ankerspitze (auch Nadel oder Hohlnadel genannt) bestehen kann, wird dabei über ein Aktivventil 3 gesteuert, das in der vorliegenden Darstellung der Fig. 1 ein Magnetventil ist. Der Anker 7 ist dabei so ausgestaltet, dass er auf die von einer Spule 8 erzeugte Magnetkraft reagiert. Die Spule 8 kann dabei wahlweise so von Strom durchflossen sein, dass die dabei entstehende magnetische Kraft den Anker 7 in Richtung des Kraftstoffanschlusses 2 bewegt. Durch diese Bewegung kommt es zu einem Anheben des Ankers 7 gegenüber der Ventilplatte 5. Dadurch werden die Durchgänge A1 in der Ventilplatte 5 freigegeben, sodass die Ventilplatte 5 von Kraftstoff durchströmt werden kann.

Für eine präzise Führung des Ankers 7 entlang der Längsachse des Injektors bzw. kann eine Ankerführung 24 vorgesehen sein, die eine Außenseite des Ankers 7 umfangsseitig umschließt.

Zwischen dem Anker 7 und dem Ankergegenstück 19 ist ein Luftspalt 22 vorgesehen, der bei einer Bestromung der Spule 8 geschlossen bzw. verringert wird.

Um den magnetischen Fluss 12 bei einer Umsetzung des Aktivventils 3 als Magnetventil zu verbessern, kann die Spule 8 an ihrer umfangsseitigen Außenseite von einem Eisenrückschluss 21 umgeben sein, in dem sich das Magnetfeld besonders gut ausbreiten kann. Ähnlich verhält es sich mit dem direkt das Ankerelement 5 und das Ankergegenstück 27 umgebenden Gehäusebestandteil, das ebenfalls vorzugsweise aus einem magnetisierbaren Material besteht. So kann es von Vorteil sein, wenn das Polrohr 18, das ein Bestandteil des Injektorgehäuses 2 darstellt, ebenfalls aus Eisen oder einem anderen ferromagnetischen Material ist. Dasselbe gilt auch für das Ankergegenstück 19, das vorteilhafterweise ebenfalls aus einem magnetisierbaren Material besteht.

Eine visualisierte Darstellung der magnetischen Feldlinien 12 ist jeweils durch die gepunktete, geschlossene Linie illustriert, die kreisförmig um die Spule herum verläuft. Durch die Magnetkraft wird das Ankerelement 7 (zusammen mit der Ankerbasis 23) hin zum Ankergegenstück 19 gezogen und so von der Ventilplatte 5 bzw. von den die Ventilplatte 5 durchbrechenden Durchgängen A1 abgehoben, sodass es zu einem Einströmen von Kraftstoff hin zum Passivventil kommen kann, von wo aus Kraftstoff schlussendlich über die Einblaskappe 28 in den Brennraum eingeleitet wird.

Fig. 2 zeigt das prinzipielle Verhalten des Injektors 1 während einer Einblasung. In Ausgangsstellung zum Zeitpunkt t 0 am unteren Totpunkt (UT) des Zylinderkolbens werden Anker 7 und Ventilstößel 6 durch die vorgespannte Ankerfeder 17 bzw. Passivventilfeder 10 in ihrem jeweiligen Anschlag gedrückt und verschließen die Drosselstellen A1 bzw. A2, welche den Nadelraum mit dem Ventilraum bzw. den Ventilraum mit dem Einblasraum im geöffneten Zustand von Anker 7 bzw. Ventilstößel 6 verbinden. Der Druck im Injektor 1 entspricht dem Druck in der Zuleitung, der Druck im Brennraum sowie im Einblasraum entspricht dem Ladedruck während der Ansaugphase des Zylinderkolbens, in der Frischluft über die Einlassventile in den Brennraum angesaugt wird. Der Druck im Ventilraum entspricht in etwa dem Brennraumdruck und hängt u.a. von der Ankerfeder 17, dem Druck im Brennraum während der Phase des Ausstoßens der heißen Verbrennungsgase über die Auslassventile des Brennraums und ggf. vorangehender Einblasungen ab. Die Funktionsdarstellung folgt im Folgenden vereinfacht und ohne Berücksichtigung des Ladungswechsels durch Öffnen und Schließen der Ein- und Auslassventile des Brennraums. Zum Zeitpunkt wird vom Ansteuergerät ein Spannungssignal über die elektrischen Kontakte an die Spule 8 des Aktuators angelegt, so dass der Strom F1 im elektrischen Kreis bis auf ein definiertes Endniveau ansteigt. Die stromdurchflossene Spule 8 induziert ein magnetisches Feld 12 im Aktuator, dessen Magnetfeldlinien sich torusförmig um die Spule herum ausbreiten (siehe Fig. 1 ). Durch das magnetische Feld 12 wird eine Magnetkraft F2 im Luftspalt zwischen Anker 7 und Ankergegenstück 19 aufgebaut, wodurch zum Zeitpunkt t 2 der Anker 7 zum Ankergegenstück 19 angezogen wird, sobald die Magnetkraft F2 die Schließkraft (Summe aus Vorspannkraft der Ankerfeder 17 und Druckkräften auf den Anker 7) übertrifft. Der Aufbau des Magnetfeldes und damit der Magnetkraft F2 wird dabei durch Wirbelströme in den Eisenteilen des Magnetkreises verzögert. Der Anker 7 ist einteilig oder fest mit der Ankerbasis 23 verbunden, so dass sich der Anker 7 gleichförmig mit dem Ankerhub (oder auch: Nadelhub) F3 bewegt. Sobald das Dichtelement 25 auf der Ventilplatte 5 zum Zeitpunkt t 3 nicht mehr in Kontakt mit der Stirnfläche des Ankers 7 ist, wird die Verbindung zwischen Nadelraum und Ventilraum freigegeben, so dass der Kraftstoff vom Nadelraum in den Ventilraum strömt. Dadurch erhöht sich der Druck im Ventilraum. Sobald die Druckdifferenz von Ventilraum zu Einblasraum einer Kraftdifferenz auf den Ventilstößel 6 in gleicher Höhe wie der Vorspannkraft der Ventilfeder 10 entspricht, öffnet das Passivventil 4, d. h. der Ventilstößel 6 bewegt sich entlang eines Ventilstößelhubs F4 vom Sitz weg und gibt die Verbindung zwischen Ventilraum und Einblasraum frei, so dass Kraftstoff vom Ventilraum in den Einblasraum strömt. Dadurch kommt es zu einem Druckanstieg im Einblasraum (vgl. F8: Druck im Einblasraum). Der Kraftstoff strömt stromab weiter durch die Öffnung(en) A3 in der Einblaskappe 28 in die Brennkammer. Die Einblaskappe 28 ist dabei so gestaltet, dass die Strömung in einem definierten Zustand (Strahlorientierung, Eintrittsimpuls, Strahlbild, etc.) in den Brennraum eingebracht werden kann. Der geöffnete Zustand von Anker 7 und Ventilstößel 6 wird während der gesamten restlichen Bestromungsphase beibehalten. Das Stromniveau kann (z.B. durch ein PWM-Spannungssignal) reduziert werden, sobald der Anker 7 vollständig geöffnet ist und ein mögliches Prellen nicht zu einem Schließen des Ankers 7 führt. Während der Einblasung befindet sich der Zylinder des Motors in der Kompressionsphase, so dass der Brennraumdruck F5 stetig ansteigt.

Um den Einblasvorgang zu beenden, wird die Spannungsversorgung durch das Steuergerät beendet, so dass der Strom F1 durch die Spule 8 bis auf null reduziert wird (Zeitpunkt t 4 ). Aufgrund der Wirbelströme zeitlich verzögert baut sich auch die Magnetkraft F2 ab. Sobald die Magnetkraft F2 geringer ist als die Summe aus der Schließkraft der Ankerfeder 17 und den hydraulischen Kräften auf den Anker 7, beginnt sich der Anker 7 gleichförmig zu schließen (Zeitpunkt t 5 ); vgl. auch F3, F4. Trifft die Stirnseite des Ankers 7 auf das Dichtelement 25 der Ventilplatte 5, so wird die Verbindung zwischen Nadelraum und Ventilraum getrennt und der Kraftstofffluss vom Nadelraum in den Ventilraum unterbrochen (Zeitpunkt t 6 ). Damit sinkt der Druck im Ventilraum F7. Wenn die Druckdifferenz vom Ventilraum F7 zum Einblasraum F8 einer Kraftdifferenz auf den Ventilstößel 6 in gleicher Höhe wie der Ventilfederkraft entspricht, bewegt sich der Ventilstößel 6 zurück in seine Schließposition am Ventilsitz 27 und wird durch den zunehmenden Druck F5 im Brennraum und damit im Einblasraum gegen den Sitz 27 gedrückt, so dass die Kraftstoffverbindung zwischen Ventilraum und Einblasraum (ggf. nach einer Phase des Prellens des Stößels am Ventilsitz 27) unterbrochen wird (Zeitpunkte t 6 - t 7 ). Der Einblasvorgang ist damit abgeschlossen. Während der weiteren Kompressionsphase des Brennraums bis zum oberen Totpunkt (OT) im Zeitraum t 7 - t s wird das Luft- Brennstoffgemisch im Einblasraum komprimiert, während es in der anschließenden Expansionsphase entspannt (Zeitraum t 8 - t 9 ), wobei der weitere zwischenzeitliche Anstieg des Brennraumdrucks F5 aufgrund von Verbrennung der Einfachheit halber hier nicht dargestellt ist. Sinkt der Druck im Brennraum so weit ab, dass die Differenz aus Druckkräften auf den Ventilstößel 6 der Vorspannkraft der Ankerfeder 17 entspricht (Zeitpunkt t 9 ), so öffnet sich der Ventilstößel 6 kurzzeitig erneut, so dass ein Teil des im Ventilraum vorhandenen Kraftstoffs in den Brennraum entweicht. Dieser Vorgang ist abhängig von der Federkraft und kann in wiederholtem Male auftreten (Zeitraum t 9 - 1 10 ). Der jeweilige Massenstrom des Kraftstoffs über die Durchgänge A1 der Ventilplatte 5, die Durchgänge A2 des Stößels 6 und die und die Durchgänge A3 der Einblaskappe 28 ist dabei mit F9, F10 bzw. F11 angegeben.

Fig. 3 zeigt eine Teilschnittansicht eines Injektors 1 nach der vorliegenden Erfindung mit Fokus auf das Passivventil 4 und der Ventilplatte 5. Man erkennt, dass der Stößel 6 des Passivventils 4 an einer Unterseite der Ventilplatte 5 vorgesehen ist und die in der Ventilplatte 5 vorgesehenen Durchgänge A1 durch direkten Kontakt abdichtet. An der anderen Seite der Ventilplatte 5 wird dabei je nach Stellung des Ankers 7 (oder auch: Ankernadel oder nur Nadel) ebenfalls der mindestens eine Durchgang A1 durch die Ventilplatte 5 wahlweise verschlossen oder freigegeben. Da die Ventilplatte 5 von zwei Seiten mit jeweiligen Ventileinsätzen, nämlich dem Stößel 6 und dem Anker 7, in Kontakt treten kann, ist ein zweiseitiges Ventil offenbart, das nur geöffnet ist, wenn beide Ventileinsätze (Stößel 6 und Anker 7) in Offenstellung sind. So erkennt man, dass das eine Ende des mindestens einen Durchgangs A1 durch die Ventilplatte 5 von dem Anker 7 und das andere Ende des mindestens einen Durchgangs A1 von dem Stößel 6 verschlossen werden kann. Dabei wirken die Schließkräfte der beiden Ventileinsätze antiparallel zueinander, sodass eine Kraft zum Abheben eines jeweiligen Ventileinsatzes (Anker 7 und Stößel 6) jeweils von der Ventilplatte 5 weg gerichtet sein muss.

Dabei wird der Stößel 6 durch ein Federelement 10 in seine Schließstellung gedrängt, wobei das Federelement 10 sich an einem stromabwärts angeordneten Gegenanschlag abstützt, der starr in dem Injektor 1 angeordnet ist. Zudem erkennt man, dass die durch den Stößel 6 verwirklichte Dichtung an der Unterseite der Ventilplatte 5 eine Flachdichtung bzw. ein Flachsitz 13 ist.

Der Anker 7 wird ebenfalls mit einer gewissen Kraft auf die Ventilplatte 5 gedrängt, die typischerweise über eine Ankerfeder 17 ausgeübt wird. Die von der Ankerfeder 17 ausgeübte Kraft auf den Anker 7 wirkt dabei in Gegenrichtung zu der Kraft, welche von Federelement 10 zum Drängen des Stößels 6 in seine Schließstellung ausgeübt wird. Die dargestellte Konfiguration mit einer direkten Abdichtung an der Unterseite der Ventilplatte 5 ist dabei sehr raumsparend und ermöglicht in Längsrichtung sehr kurze Injektoren 1.

Fig. 4a und Fig. 4b zeigen dabei einen geschlossenen Zustand (Fig. 4a) und einen geöffneten Zustand (Fig. 4b) des Injektors. In Fig. 4b ist dabei die Strömung des Kraftstoffs ausgehend von der Kraftstoffzuleitung hin zur Einblaskappe mit Pfeilen dargestellt. Weiter ist auch die aus ihrer jeweiligen Schließstellung erforderliche Bewegung der Bauteile, die zum Erzeugen der Fluidverbindung zwischen der Kraftstoffzuleitung und der Einblaskappe vonnöten ist, durch Pfeile hervorgehoben. Man erkennt, dass der Anker aufgrund einer Bestromung der Spule aus seiner Schließstellung abgehoben ist, was dazu führt, dass der unter hohem Druck stehende Kraftstoff den Stößel des Passivventils aus seiner Schließstellung drängt. Ist eine entsprechende Bewegung der Bauteile erfolgt, kann der unter hohem Druck stehende Kraftstoff von der Kraftstoffzuleitung hin zur Einblaskappe aus dem Injektor

I herausströmen.

Fig. 5 zeigt eine schematische Teilschnittansicht eines erfindungsgemäßen Injektors nach einer zweiten Ausführungsform in einem geschlossenen Zustand. Man erkennt eine entsprechende Ausformung des Stößels 6 und der Unterseite der Ventilplatte 5, sodass die durch ein Drängen des Stößels 6 an die Unterseite der Ventilplatte 5 erzeugte Dichtung durch einen Kegeldichtsitz bzw. einen Kugeldichtsitz verwirklicht ist. Vorteilhaft hieran ist, dass diese Art der Dichtsitze eine zuverlässige Abdichtung ermöglichen und verschleißarm sind.

Fig. 6 zeigt eine weitere Ausführungsform der vorliegenden Erfindung, bei der im Zwischenbereich zwischen dem Stößel 6 und der Ventilplatte 5 ein Zwischenelement

I I angeordnet ist, das vorzugsweise eine zum Stößel 6 gerichtete Kontur des mindestens einen Durchgangs A1 der Ventilplatte 5 überdeckt oder umschließt. Dabei kann vorgesehen sein, dass das Zwischenelement 11 aus einem weichelastischen Material ist, um einen Anschlag des Stößels 6 bei einer Bewegung in Richtung der Ventilplatte 5 zu dämpfen. Als beispielhafte Umsetzung für das weichelastischen Material bietet sich hierbei ein Elastomer an, das sehr gute Dämpfeigenschaften aufweist.

Alternativ oder zusätzlich zu der Ausgestaltung als weichelastisches Material kann auch vorgesehen sein, dass das Zwischenelement 11 eine wärmeisolierende Eigenschaft hat bzw. ein wärmeisolierendes Material umfasst oder aus diesem besteht. Ferner kann das Zwischenelement auch eine an dem Stößel 6 und/oder der Ventilplatte 5 aufgebrachte Beschichtung sein, wobei alternativ dazu aber auch möglich ist, dass das Zwischenelement 11 in dem Zwischenraum zwischen Stößel 6 und Ventilplatte 5 frei beweglich angeordnet ist.

Das Vorsehen des Zwischenelements 11 ist insbesondere hinsichtlich der Dauerfestigkeit der dichtenden Verbindung von Stößel 6 und Ventilplatte 5 von Vorteil und schont die bei einem Anschlägen von Stößel 6 und Ventilplatte 5 typischerweise stark beanspruchten Bestandteile.

Fig. 7 zeigt eine weitere Modifikation der erfindungsgemäßen Idee, bei dem der Gegenanschlag 9, der den maximalen Hub des Stößels 6 weg von der Ventilplatte 5 definiert, ein Dämpfelement 15 aufweist. Dieses Dämpfelement 15 ist so an dem Gegenanschlag 9 angeordnet, dass ein sich auf den Gegenanschlag 9 zubewegender Stößel 6 durch das Dämpfelement 15 gedämpft wird, bevor es in seiner Bewegung vollständig gestoppt wird. Dadurch verringert sich das Prellen des Stößels 6 bei einem Öffnen des Passivventils 4, wobei darüber hinaus auch die hohen mit dem Prellen einhergehenden Matenalbeanspruchungen aufgrund des Dämpfelements 15 verringert werden.

Dem Fachmann ist klar, dass die in den Figuren erläuterten verschiedenen Ausführungsformen der vorliegenden Erfindung teilweise oder vollständig miteinander kombiniert werden können. Bezuqszeichenliste:

1 Injektor

2 Kraftstoffzuleitung

3 Aktivventil

4 Passivventil

5 Ventilplatte

6 Stößel / Ventileinsatz

7 Anker

8 Spule

9 Gegenanschlag

10 Federelement

11 Zwischenelement

12 magnetische Feldlinien

13 Flachdichtung/Flachsitz

14 Kegeldichtsitz/Kugeldichtsitz

15 Dämpfelement

16 Gehäusedeckel

17 Ankerfeder

18 Polrohr

19 Ankergegenstück

20 Bypass

21 Eisenrückschluss

22 Luftspalt

23 Ankerbasis

24 Ankerführung/Nadelführung

25 Dichtelement

26 Einblasrohr

27 Ventilführung

28 Einblaskappe

A1 Durchgang der Ventilplatte

A2 Durchgang des Stößels

A3 Durchgang der Einblaskappe