Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INTRAMEDULLARY DRUG DELIVERY DEVICE
Document Type and Number:
WIPO Patent Application WO/2007/112195
Kind Code:
A2
Abstract:
An intramedullary drug delivery device is disclosed and can be inserted within a bone canal of a bone. The intramedullary drug delivery device can include a housing. A drug delivery region can be established along the housing. Also, the drug delivery region can be configured to substantially span a fracture within the bone.

Inventors:
MAROTTA JAMES S (US)
SCIFERT JEFFREY L (US)
BODEN SCOTT D (US)
Application Number:
PCT/US2007/063754
Publication Date:
October 04, 2007
Filing Date:
March 12, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WARSAW ORTHOPEDIC INC (US)
MAROTTA JAMES S (US)
SCIFERT JEFFREY L (US)
BODEN SCOTT D (US)
International Classes:
A61M25/00
Foreign References:
US6387098B12002-05-14
US5681289A1997-10-28
US20040068226A12004-04-08
Attorney, Agent or Firm:
JOHNSON, Noreen C. (Minneapolis, Minnesota, US)
Download PDF:
Claims:

WHAT IS CLAIMED IS

1 An intramedullary drug delivery device configured to be inserted within a bone canal of a bone, comprising a housing, and a drug delivery region established along the housing, wherein the drug delh ery region h configured to substantial Iv span a fracture within the bone

2 The intramedullary drug delhery device of claim 1. further comprising a first radiopaque marker on the housing, and a second radiopaque marker on the housing and distanced from the first radiopaque marker

3 The intramedullary drug deli\er> de\ tee of claim 2, wherein the daig delhery region is established between the first radiopaque marker and the second radiopaque marker

4 The intramedullary daig delivery device of claim 1 , further comprising a daig deliven fenestration established within the housins

5 The intramedullary daig deliv ery device of claim 4, v\ herein the di ug delh cry fenestration is established within the drug delivery region

6 The intramedullary drug delivery device of claim ! . further comprising a first balloon adjacent to the first radiopaque marker, the first balloon movable between a deflated position and an inflated position in which the first balloon engages the bone

7 The intramedullary drug delhery de\ ice of claim 6, further comprising a second balloon adjacent to the second radiopaque marker, the second balloon movable between a deflated position and an inflated position in which the second balloon engages the bone

8. The intramedullary drug delivers' device of claim 7, wherein the first baitoon, the second balloon or a combination thereof is radiopaque.

9. The intramedullary drug delivery device of claim 8, wherein the first balloon and the second balloon are radiopaque and define boundaries of the drug delivery region.

10. The intramedullary drug delivery device of claim 3, further comprising: a first balloon disposed over the first radiopaque marker and a second balloon disposed over the second radiopaque marker

1 i. The intramedullary drug delivery device of claim 4, further comprising a therapeutic agent deliverable via the drug delivery region of the housing.

12. The intramedullary drug delivery device of claim 1 1, wherein the therapeutic agent comprises bone morphogenetic protein (BMP), demineralized bone matrix (DBM), cellular material, platelet gel, a cement, a putty, or a combination thereof

13. ' The intramedullary drug delivery device of claim I, wherein the housing comprises a lumen configured to receive a guide wire therein.

14. A method of treating a bone fracture, the method comprising: inserting an intramedullary drug delivery device within a bone such that a drug delivery region of the intramedullary drug delivers' device straddles the fracture; and delivering a therapeutic agent in an area surrounding the fracture

1 5. The method of claim 14, wherein the inserting step further comprises moving the intramedullary daig delivery device along a guide wire

16. The method of claim 14, further comprising: removing the intramedullary drug delivery device from the bone.

17. The method of claim 15, further comprising: inserting an intramedullary rod within the bone.

18. A method of treating a hone fracture, the method comprising: inserting an intramedullary drug delivery device within a bone such that a drug delivery region of the intramedullary drug delivery device straddles the fracture; inflating a first balloon and a second balloon adjacent to the drug delivery region; and delivering a therapeutic agent in an area surrounding the fracture.

19. The method of claim 18, further comprising: deflating the first balloon

20. The method of claim 19, further comprising: deflating the second balloon,

21. The method of claim 20, further comprising: removing the intramedullary daig delivery device from the bone.

22. The method of claim 21, further comprising: inserting an intramedullary rod within the bone.

23. An intramedullary drug delivery device configured to be inserted within a hone canal of a bone, comprising: a housing; a first radiopaque marker on the housing, a second radiopaque marker on the housing and distanced from the first radiopaque marker; a drug deliver)' region established along the housing between the first radiopaque marker and the second radiopaque marker; and

a daig de-iivery fenestration established in the housing within the drug delivery region.

24 An intramedullary drug delivery device configured to be inserted within a bone canal of a bone, comprising- a housing; a first radiopaque marker on the housing, a second radiopaque marker on the housing and distanced from the first radiopaque marker; a drug deϋvery region established along the housing between the first radiopaque marker and the second radiopaque marker; a first balloon adjacent to the drug delivery region, and a second balloon adjacent to the drug delivery region

25. An intramedullary drug delivers' device configured to be inserted within a bone canal of a bone, comprising: a drug delivery region configured to substantially span a fracture within the bone; and a therapeutic agent deliverable to an area substantially near the fracture via the drug delivery region.

26. A kit for treating a fracture within a bone, the kit comprising; an intramedullary daig delivery device configured to be inserted within the bone and comprising a drug delivery region configured to substantially span the fracture, a therapeutic agent deliverable to an area within the bone substantially near the fracture via the daig delivery region, and an intramedullary rod configured to be installed within the bone.

Description:

INTRAMEDULLARY DRUG DEUVERV DEVICE AND METHOD OF TREATJNG BONE FRACTURES

TECHNICAL FIELD

The present disclosure relates generally to orthopedics and orthopedic surgery. More specifically, the present disclosure relates to devices used to deliver drugs within bones

BACKGROUND ART

An adult human skeleton includes two hundred and six bones. During a lifetime a human may fracture one or more of these bones. Some fractures may be treated using a casting process Certain other fractures of long bones may be treated using an intramedullary rod For example, fractures of the ulnae, radii, humeri, femora, tibiae, and fibulae can be treated using an intramedullary rod In such cases, the intramedullary rod can be permanently installed within these bones and the bone can be allowed to heal around the intramedullary rod. It can be advantageous to deliver a therapeutic agent to an area surrounding a fracture prior to the installation of the intramedullary rod.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. I is a plan view of a femur,

FIG. 2 is a plan view of an intramedullary drug delivery device,

FIG. 3 is another plan view of an intramedullary drug delivery device,

FIG. 4 is a plan view of the intramedullary drug delivery device within a bone;

FIG. 5 is another plan view of the intramedullary drug delivery device within a bone:

FIG. 6 is a flow chart of a first method of treating a bone fracture;

FIG. 7 is a plan view of a second embodiment of an intramedullary drug delivery device;

FIG. 8 is another plan view of the second embodiment of the intramedullary drag delivery device;

FlG. 9 is a plan view of the second embodiment of the intramedullary drug delivery device within a bone;

FlG. 10 is another plan view of the second embodiment of the intramedullary drug delivery device within a bone, and

FlG. 11 is a flow chart of a second method of treating a bone fracture.

MODES FOR CARRYING OUT THE INVENTION

An intramedullary drug delivery- device is disclosed and can be inserted within a bone canal of a bone. The intramedullary drug delivery device can include a housing. A drug delivery region can be established along the housing. Also, the drug delivery region can be configured to substantially span a fracture within the bone

In another embodiment, a method of treating a bone fracture is disclosed and can include inserting an intramedullary dmg delivery- device within a bone such that a drug delivery region of the intramedullary drug delivery device straddles the fracture. The method can also include delivering a therapeutic agent in an area surrounding the fracture.

In yet another embodiment, a method of treating a bone fracture is disclosed and includes inserting an intramedullary drug delivery device within a bone such that a drug delivery region of the intramedullary drug delivery device straddles the fracture. Further, the method can include inflating a first balloon and a second balloon adjacent to the drug delivery region. The method can also include delivering a therapeutic agent in an area surrounding the fracture.

In still another embodiment, an intramedullary datg delivery device is disclosed and can be inserted within a bone canal of a bone. The intramedullary drug delivery device can include a housing. A first radiopaque marker can be on the housing. Further, a

second radiopaque marker can be on the housing and can be distanced from the first radiopaque marker A drug delivery region can be established along the housing between the first radiopaque marker and the second radiopaque marker. Moreover, the intramedullary drag delivery device can include a drug delivery fenestration that can be established in the housing within the drug delivery region.

In yet still another embodiment, an intramedullary drug delivery device is disclosed and can be inserted within a bone canal of a bone. The intramedullary drug delivery device can include a bousing A first radiopaque marker can be on the housing. A second radiopaque marker can be on the housing and can be distanced from the first radiopaque marker Further, a drug delivery region can be established along the housing between the first radiopaque marker and the second radiopaque marker. ' The intramedullary drug delivery can also include a first balloon adjacent to the drug delivery region and a second balloon adjacent to the drug delivery region.

ϊn another embodiment, an intramedullary drug delivery device is disclosed and can be inserted within a bone canal of a bone. The intramedullary drug delivery device can include a drug deliver}- region that can substantially span a fracture within the bone. Also, the intramedullary drug delivery device can include a therapeutic agent that can be deliverable to an area substantially near the fracture via the drug delivery region,

ϊn yet another embodiment, a kit for treating a fracture within a bone is disclosed and can include an intramedullary drag delivery device that can be inserted within the bone. The intramedullary drug delivery device can include a daig delivery region that can substantial ly span the fracture. The kit can also include a therapeutic agent that can be deliverable to an area within the bone substantially near the fracture via the drug delivery region. Additionally, the kit can include an intramedullary rod that can be installed within the bone.

Description of Relevant Anatomy

Referring to FlG. I, a femur is shown and is generally designated 100. As shown, the femur 100 includes a femoral body 102 that can define a proximal end 104 and a distal end 106. Further, the femur 100 can include a femoral head 108 that extends from the

proximal end 104 of the femoral body 102. further, a neck 1 10 can be established between the femoral head 108 and the femora! body 102 In a particular embodiment, the femoral head 108 can fit into a hip socket, a k.a , an acetabulum (not shown ).

As further illustrated in FIG. 1 , the proximal end 104 of the femora! body 102 can include a greater trochanter 1 12 adjacent to the neck 106, Additionally, the distal end 106 of the femoral body !02 can include a lateral epϊcondyie 114, a lateral condyle ! 16, a medial condyle 1 18, arid a medial epi condyle 120, In a particular embodiment, the lateral condyle 1 16 and the medial condyle 1 18 can articulate with a patella (not shown) FlO 1 also indicates that the femur 100 can include an adductor tubercle 122

Description of a First Embodiment of an Intramedullary Drug Delivery Device

Referring to FlG 2, a first embodiment of an intramedullary daig delivery device is shown and is generally designated 200 As shown, the intramedullary drug delivery device 200 can include a housing 202 having a proximal end 204 and a distal end 206. hi a particular embodiment, the housing 202 can be generally elongated. Further, the housing 202 can be hollow and can include a cross-section that can be generally circular

In one or more alternative embodiments, the cross-section of the housing 202 can be generally circular, generally rectangular, generally square, generally triangular, generally trapezoidal, generally rhombic, generally quadrilateral, any generally polygonal shape., or any combination thereof

In a particular embodiment the intramedullary drug delivery device 200 can include a datg delivery region 208 adjacent to the distal end 20(> of the intramedullary drug delivery device 200. The drug delivery region 208 can include one or more drug delivery fenestrations 210 through which one or more therapeutic agents can be expelled from the intramedullary drug delivery device 200. In a particular embodiment, the therapeutic agents can be bone morphogenetic protein (BMP), demineralized bone matrix (DBMj, cellular material, platelet gel, or a combination thereof. Further, the therapeutic agents can include a cement, a putty, or a combination thereof, which can provide a scaffold for passive bone formation in addition to acting as a carrier for another therapeutic agent, e.g , one or more of the therapeutic agents described above

As shown in FIG. 2, the drug delivery region 208 of the intramedullary daig delivery device 200 can be established between a first radiopaque marker 2 12 and a second radiopaque marker 2 14, Further, the drag delivery fenestrations 210 can be established between the radiopaque markers 212, 214.

FϊG, 2 further shows that a drug delivery syringe 216 can be connected to the housing 202 via a drug delivery 1 tube 218 In a particular embodiment, the drug delivery tube 218 can extend through the proximal end 204 of the housing 202 and can lead to the drug delivery region 208 of the intramedullary drug delivery device 200 The drug delivery syringe 216 can include a syringe housing 220. The syringe housing 220 can include a tip 222 and the drug delivery tube 218 can be coupled, or otherwise connected to the tip 222 of the syringe housing 220. Further, a plunger 224 can be inserted within the syringe housing 220. In alternative embodiments, the drug delivery syringe 216 can be removably or substantially permanently connected to the drug deliver tube 218. which can be removably or substantially permanently connected to the housing 202.

In a particular embodiment, when the plunger 224 of the drug delivers' syringe 2 !6 is depressed, as shown in PIG. 3, a therapeutic agent 226 can be delivered from the drug delivery syringe 216 to the drug delivery region 208 of the intramedullary drug delivery device 200 via the drug delivery tube 218 The therapeutic agent 226 can be expelled from the intramedullary drag delivery device 200 via the drug delivery fenestrations 210 within drug delivery region 208 In a particular embodiment, the therapeutic agent 226 can be one or more of the therapeutic agents described herein.

PIG. 2 further shows that the distal end 206 of the intramedullary drug delivery device 200 can include a guide wire hole 228 that can lead to a lumen (not shown) formed within the intramedullary drug delivery device 200. As such, the intramedullary drug delivery device 200 can be inserted over a guide wire (not shown) or a guide pin (not shown). The guide wire can facilitate insertion of the intramedullary drug delivery device 200,

During use, the intramedullary daig delivers' device 200 can be placed within a bone 400, as depicted in FIG. 4. In a particular embodiment, the intramedullary drug delivery device 200 can be inserted within a bone canal 402 of the bone 400. In a particular

embodiment, the bone 400 can be an ulna, a radius, a humerus, a femur, a tibia, a fibula, or any other similar bone The radiopaque markers 21 2, 214 can be used to properly locate the daig delivery- region 208 of the intramedullary drug deliver)' device 200 at or near a fracture 404 within the bone 400, Specifically, in the presence of X-rays, e.g., from a fluoroscopy device, the radiopaque markers 212, 214 will be visible to allow placement of the intramedullary daig delivery device 200. in a particular embodiment, the intramedullary drug delivery device 200 can be placed so that the drug delivery region 208 spans, or otherwise straddles, the fracture 404 within the bone 400.

Further, when the plunger 224 of the drug deliver)- syringe 216 is depressed, a therapeutic agent 226 can be delivered from the intramedullary drug delivers' device 200 to the area substantially near or adjacent to the fracture 404, as shown in FlG. 5

Description of a First Method of Treating a Bone Fracture

Referring to FlG 6, a first method of treating a bone fracture is shown and commences at block 600. At block 600, an end of a bone can be accessed. At block 602, a pilot hole can be drilled in the end of the bone Moving to block 604, a guide wire, or guide pin, can be inserted into a bone canal within the bone through the pilot hole. Thereafter, at block 606, a bone reamer can be inserted into the bone canal over the guide w ire.

Proceeding to block 608, the bone canal can be reamed using the bone reamer. At block 610, the bone reamer can be removed from the bone canal. Moving to block 612, an intramedullary datg delivery device can be inserted over the guide wire In a particular embodiment, the intramedullary drug delivery device can be an intramedullary drug delivery device according to one or more of the embodiments described herein Further, in a particular embodiment the intramedullary drug delivery device can be positioned within the bone so that a daig delivery region of the intramedullary drug delivery device straddles a fracture in the bone One or more radiopaque markers on the intramedullary daig delivery device, in conjunction with an X-ray device or a fluoroscopy device, can facilitate the positioning of the intramedullary drug delivery- device within the bone.

Continuing to biock 614, a therapeutic agent can be de!i\ ered to the bone canal In a particular embodiment, the therapeutic agent can be delivered to the area immediately around the fracture Also, in a particular embodiment, the therapeutic agent can be delivered to the bone canal by depressing a plunger on a syringe of the intramedullary drug deliv ery device Further, in a particular embodiment, the therapeutic agent can be bone moφhogenetic protein (BMP), demineralized bone matrix (DBM), cellular material. platelet gel, or a combination thereof Also, the therapeutic agents can include a cement, a putty, or a combination thereof, which can provide a scaffold for passiv e bone formation in addition to acting as a caπier for another thαapeutic agent, e g , one or more of the therapeutic agents described abov e

At block 616, the intramedullary drug deliv ers' de\ice can be remov ed from the bone canal Thereafter, at block 618, an intramedullary rod can be inserted into the bone canal over the guide wire At block 620, the guide wire can be ieino\ ed Moving to block 622, the surgical wound, e g , the surgical wound used to access the end of the bone, can be closed l he surgical wound can be closed by simply allowing the patient ' s skin to close due to the elasticity of the skin Alternative!} , the surgical wound can be closed using sutures, surgical staples, or any other surgical technique well known in the art At block 624. po$toρerati\ e care can be initiated Then, the method can end at state 626

Description of a Second Embodiment of an Intramedullary Drug Deliv ery Device

Referring to FKϊ 7. a second embodiment of an iπϋameduHaiy diug deiiveiv. device is shown and is generally designated 700 As show n, the intramedullary drug deliv ery dev ice 700 can include a housing 702 having a proximal end 704 and a distal end 706 in a particular embodiment, the housing 702 cars be generally elongated Further, the housing 702 can be hollow and can include a cross-section that can be generally circular hi one or more alternativ e embodiments, the cross-section of the housing 702 can be generally circular, generally rectangular, generally square, generally triangular, generally trapezoidal, general!) rhombic, generally quadrilateral, any general!) poSv gona! shape, or anv combination thereof

In a particular embodiment the intramedullary drug delh ery device 700 can include a drug delivery region 708 adjacent to the distal end 706 of the intramedullary drag delh ery de\ ice 7(KJ The drag delivery- region 708 can include one or more drug delivers fenestrations 7) 0 through which one or more therapeutic agents can be expelled from the intramedullary diug deli \ cry device 700 In a particular embodiment, the therapeutic agents can be bone morphogcnctic protein (BMP), dem moralized bone matrix (DBM ), cellular material, platelet gel, or a combination thereof Further, the therapeutic agents can include a cement, a putt> , or a combination thereof, which can pro\ ide a scaffold for passive bone formation in addition to acting as a carrier for another therapeutic agent, e g . one or more of the therapeutic agents described above

As shown in FlG 7, the drug delh ery region 708 of the intramedullary drug delivers device 700 can be established between a first radiopaque marker 712 and a second radiopaque marker 714 Further, the drug delivery fenestrations 710 can be established between the radiopaque markers 712, 714

FlG 7 further indicates that the intramedullary daig delh ery de\ice 700 can include a first balloon 7 I o adjacent to the drug deliver} region 708 betw een the drug delh ery region 708 and the proximal end 704 of the housing 702 Also, the intramedullary drug delivers device 700 can include a second balloon 718 between the drug delivery region 708 and the distal end 70(> of the housing 702 Each balloon 716, 718 can be moved between a deflated position, shown in FIG 7, and an inflated position, shown in FlG 8

In a particular embodiment, the first balloon 7 ! (> can be disposed ov er the first radiopaque marker 712 and the second balloon 718 can be disposed over the second radiopaque marker 714 In an alternative embodiment, the balloons 716, 718 can be radiopaque

FlG 7 further shows that a drug delivery syringe 720 can be connected to the housing 702 via a drug deliver}-' tube 722 In a particular embodiment, the drug delivers tube 722 can extend through the proximal end 704 of the housing 702 and can lead to the drug deliv ery region 708 of the intramedullary drug delh ery de\ ice 700 Hie drug deliver} syringe 720 can include a syringe housing 724 The syringe housing 724 can include a tip 726 and the drug delh ery tube 722 can be coupled, or otherwise connected to the tip 726 of the syringe housing 724 Further, a plunger 728 can be inserted within the

syringe housing 724. In alternative embodiments, the drug delivery syringe 720 can be removably or substantially permanently connected to the claig deliver tube 722, which can be removably or substantially permanently connected to the housing 702.

ϊπ a particular embodiment, when the plunger 728 of the drug delivery syringe 720 is depressed, as shown in FϊG S, a therapeutic agent 730, described herein, can be delivered from the drug delivery syringe 720 to the drug delivery region 70S of the intramedullary drug deliver}' device 700 via the daig deliver}' tube 722. The therapeutic agent 730 can be expelled from the intramedullary drug delivery device 700 via the drug delivery fenestrations 7 K) within drug delivery region 708. In a particular embodiment, the therapeutic agent 730 can be one or more of the therapeutic agents described herein.

Moreover, as shown in FlG. 7. the intramedullary drug delivery device 700 can include a first balloon inflating syringe 732, which can be connected to the housing 702 via a first balloon inflating tube 734. In a particular embodiment, the first balloon inflating tube 734 can extend through the proximal end 704 of the housing 702 and can lead to the first balloon 716 of the intramedullary drug delivery device 700. The first balloon inflating syringe 732 can include a syringe housing 736. The syringe housing 736 can include a tip 738 and the first bal loon inflating tube 734 can be coupled, or otherwise connected to the tip 738 of the syringe housing 736. Further, a plunger 740 can be inserted within the syringe housing 736. In alternative embodiments, the first balloon inflating syringe 732 can be removably or substantially permanently connected to the first balloon inflating tube 734. which can be removably or substantially permanently connected to the housing 702.

In a particular embodiment, when the plunger 740 of the first balloon inflating syringe 732 is depressed, an inflating fluid 742 can be delivered from the first balloon inflating syringe 732 to the first balloon 716 of the intramedullary drug delivery device

700 via the first balloon inflating tube 734 The inflating fluid 742 can inflate the first balloon 716 until the first balloon 716 engages the bone 900 as shown in FIG. 10. In a particular embodiment, the inflating fluid 742 can be air, saline, or any other bioconipati bl e fl ui d

FlG. 7 further illustrates that the intramedullary drug delivery device 700 can include a second balloon inflating syringe 752 that can be connected to the housing 702 via a second balloon inflating tube 754. In a particular embodiment, the second balloon inflating tube 754 can extend through the proximal end 704 of the housing 702 and can lead to the second balloon 71 S of the intramedullary drug delivery device 700. The second balloon inflating syringe 752 can include a syringe housing 756 The syringe housing 756 can include a tip 758 and the second balloon inflating tube 754 can be coupled, or otherwise connected to the tip 758 of the syringe housing 756 Further, a plunger 760 can be inserted within the syringe housing 756. In alternative embodiments, the second bal loon inflating syringe 752 can be removably or substantially permanently- connected to the second balloon inflating tube 754, which can be removably or substantially permanently connected to the housing 702.

In a particular embodiment, when the plunger 7(>0 of the second balloon inflating syringe 752 is depressed, an inflating fluid 762 can be delivered from the second balloon inflating syringe 752 to the second balloon 718 of the intramedullary drug delivery device

700 via the second balloon inflating tube 754. The inflating fluid 762 can inflate the second balloon 718 until the second balloon 718 engages the bone 900, as shown in FIG. 10. In a particular embodiment, the inflating fluid 762 can be air, saline, or any other biocompatible fluid.

In alternative embodiments, the various combinations of the drug delivery syringe

720, the drug delivery tube 722, the first balloon inflating syringe 732, the first balloon inflating tube 734, the second balloon inflating syringe 752, or the second balloon inflating tube 754 can be removably or substantially permanently connected to each other or to the housing 702,

FlG. 7 further shows that the distal end 706 of the intramedullary drug delivery device 700 can include a guide wire hole 770 that can lead to a lumen (not shown) formed within the intramedullary drug delivery device 700, As such, the intramedullary drug delivery device 700 can be inserted over a guide wire (not shown) or a guide pin (not shown). The guide wire can facilitate insertion of the intramedullary drug delivery device 700.

During use, the intramedullary drug delivery device 700 can be placed within a bone 900, as depicted in FIG. 9. Jn a particular embodiment, the intramedullary drug delivery device 700 can be inserted within a bone canal 902 of the bone 1 XX). In a particular embodiment, the bone 900 can be an ulna, a radius, a humerus, a femur, a tibia, a fibula, or any other similar bone. The radiopaque markers 712, 714 can he used to properly locate the drug delivery region 708 of the intramedullary drug delivers' device 700 at or near a fracture 904 within the bone 900 Specifically, in the presence of X-rays, e g , from a fluoroscopy device, the radiopaque markers 712, 714 will be visible to allow placement of the intramedullary drug delivery device 700. In a particular embodiment, the intramedullary drug delivery device 700 can be placed so that the drug delivery region 708 spans, or otherwise straddles, the fracture 904 within the bone 900

Additionally, as shown in FIG. 10, the balloons 716, 718 can be inflated to engage the bone 000. As such, the drug delivery region 708 can be bound by the inflated balloons 716, 718 and the balloons 716, 718 can substantially trap a therapeutic agent delivered by the intramedullary drug delivery- device 700 in the area immediately adjacent to and surrounding the fracture 904.

Description of a Second Method of ' Treating a Bone Fracture

deferring to FIG. I U a second method of treating a bone fracture is shown and commences at block 1 100 At block 1 100, an end of a bone can be accessed At block 1 102, a pilot hole can be drilled in the end of the bone. Moving to block 1 104, a guide wire, or guide pin, can be inserted into a bone canal within the bone through the pilot hole Thereafter, at block 1 106, a bone reamer can be inserted into the hone canal over the guide wire

Proceeding to block 1 108, the bone canal can be reamed using the bone reamer. At block 1 1 10, the bone reamer can be removed from the bone canal. Moving to block 1 1 12, an intramedullary drug delivery ice can be inserted over the guide wire. In a particular embodiment, the intramedullary drug delivery device can be an intramedullary drug delivery device according to one or more of the embodiments described herein Further, in a particular embodiment, the intramedullary drug delivery device can be positioned within the bone so that a drug delivery region of the intramedullary drug delivery device

straddles a fracture in the bone One or more radiopaque markers on the intramedullary drug deliver j device, in conjunction w ith an X-ray device or a fluoroscopy device, can facilitate the positioning of the intramedullary drug delh ery device within the bone

Continuing to block 1 1 14, a pair of balloons on the intramedullary drug delhery device can be inflated In a particular embodiment, the balloons can be inflated by depressing the plungeis on a pair of balloon inflating syringes of the intramedullary drug delivers device At block 1 1 16, a therapeutic agent can be delivered to the bone canal In a particular embodiment, the therapeutic agent can be delivered to the area immediately around the fracture The balloons can help keep the therapeutic agent within the bone canal aiound the fraciuie In a particular embodiment, the therapeutic agent can be deliv ered to the bone canal b> depressing a plunger on a s\ ringe of the intramedullary drug delivers device Further, in a particular embodiment, the therapeutic agent can be bone morphogenetic protein (BMP), deinineialized bone matrix (DBM ), cellular material, platelet gel, or a combination thereof Also, the therapeutic agent can include a cement, a putty, or a combination thereof, w hich can provide a scaffold for passiv e bone formation in addition to acting as a carrier for another therapeutic agent, e g , one or more of the therapeutic agents described above

Moving to block 1 1 18. the pair of balloons on the intramedullary drug deliv ery device can be deflated In a particular embodiment, the balloons can be deflated b\ retracting the plungers on the balloon inflating syringes of the intramedullary drug deliv ery' device and withdrawing the inflation material within the balloons

At block 1 120, the intramedullary drug deliv ery device can be remo\ ed from the bone canal Thereafter, at block i 122, an intramedullary rod can be inserted into the bone canal ov er the guide wire At block 1 124, the guide wire can be remo\ ed Proceeding to block 1 126. the surgical wound, e g . the surgical wound used to access the end of the bone, can be closed The surgical w ound can be closed by simply allowing the patient ' s skin to close due to the elasticity of the skin Alternativ el> , the surgical wound can be closed using suaues, suigical staples, or any other surgical technique well known in the art At block ! 128, postoperative caie can be initiated Then, the method can end at state 1 130

Conclusion

With the configuration of structure described above, the intramedullary drug delivery device provides a device that can be used to deliver a therapeutic agent to an area within a bone immediately adjacent to a fracture One or more radiopaque markers on the intramedullary drag delivery device can be used to position a drug deliver}- region of the intramedullary drug delivery device immediately adjacent to the fracture After delivery of the therapeutic agent, the intramedullary' daig delivery device can be removed from the bone and an intramedullary rod or an intramedullary nail can be inserted into the bone

In a particular embodiment, localized deliver}' of the therapeutic agent can be beneficial to patients that may be slow to heal, e.g , patients that smoke, diabetic patients, and patients that are taking steroids.

The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments that fall within the true spirit and scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be detenu ined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.