Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ISCHEMIC TRAINING APPARATUS AND METHOD
Document Type and Number:
WIPO Patent Application WO/2015/051457
Kind Code:
A1
Abstract:
Described herein is an apparatus and method for ischemic muscle training or recovery by coordinated blood flow restriction and electrical muscle stimulation. The apparatus comprises a blood flow occluding clement for restricting blood flow to a target muscle or muscle group in a user, and measuring resting systolic blood pressure (SBP); and an electrical muscle stimulator comprising at least one electrode and a control unit which, upon activation, is effective to send low amplitude electric pulses through the target muscle or muscle group forcing the targeted muscle to contract while the blood flow is restricted.

Inventors:
BURR JAMIE FRANCIS (CA)
Application Number:
PCT/CA2014/050973
Publication Date:
April 16, 2015
Filing Date:
October 08, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV PRINCE EDWARD ISLAND (CA)
International Classes:
A61N1/36; A61B5/022; A61B17/135
Domestic Patent References:
WO2013025481A12013-02-21
Foreign References:
US20140114117A12014-04-24
US20090137884A12009-05-28
Other References:
COLE ET AL.: "Response of the human triceps surae muscle to electrical stimulation during varying levels of blood flow restriction", EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, vol. 82, no. ISSUE, May 2000 (2000-05-01), pages 39 - 44, Retrieved from the Internet
INAGAKI ET AL.: "Increase in serum growth hormone induced by electrical stimulation of muscle combined with blood flow restriction", EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, vol. 111, no. ISSUE, November 2011 (2011-11-01), pages 2715 - 2721, Retrieved from the Internet
SHANG ET AL.: "Noninvasive Optical Characterization of Muscle Blood Flow, Oxygenation, and Metabolism in Women With Fibromyalgia", 2012, Retrieved from the Internet
Attorney, Agent or Firm:
NEWTON, Trevor et al. (160 Elgin Street Suite 260, Ottawa Ontario K1P 1C3, CA)
Download PDF:
Claims:
WHAT IS CLAIMKD IS:

1 . An ischemic muscle training or recovery apparatus for blood flow restriction and electrical muscle stimulation, comprising:

a blood flow occluding element for restricting blood flow to a target muscle or muscle group in a user, and measuring resting systolic blood pressure (SBP); and

an electrical muscle stimulator comprising at least one electrode and a control unit which, upon activation, is efteclive to send low amplitude electric pulses through the target muscle or muscle group forcing the targeted muscle to contract while the blood How is restricted.

2. The apparatus of claim 1 , wherein the blood flow occluding element is an occluding cuff adapted to inflate to a pressure causing either full or partial occlusion of blood flow for a period of about 0.5 - 20 min, while the electrical muscle stimulator activates forcing the targeted muscle to contract.

3. The apparatus of claim 2, wherein the control unit comprises an air pump, a circuit board and/or computer, integration timing components, and a pow;er source.

4. The apparatus of claim 3, wherein the control unit further comprises a control panel with controls to adjust power to the apparatus, timing, duration and number of program cycles, pulse settings for electrical muscle stimulation, and/or occluding cuff intensity.

5. The apparatus of claim 3, wherein the occluding cuff is an automated sphygmomanometer, and the control unit is connected to the sphygmomanometer by an air hose operably connected to the air pump, and electrical wiring configured to operate the sphygmomanometer.

6. The apparatus of claim 1 , wherein the electrical muscle stimulator comprises a plurality of pairs of electrodes adapted for attachment or placement directly in contact with the cutaneous surface of the user's limb above the target muscle.

7. The apparatus of claim L wherein the electrical muscle stimulator comprises a plurality of pairs of electrodes in an intramuscular system adapted for stimulation of the target muscle.

8. "The apparatus of claim 2. wherein the occluding cuff and at least one electrode are enclosed in a compression sleeve.

9. The apparatus of claim 8K wherein the compression sleeve is inflatable and adapted to apply a gradient of pressure which restricts blood flow by forcing blood from the target muscle or muscle group back toward the heart in the venous circulation.

1 0. The apparatus of claim 1 , wherein the control unit is adapted for user-control of the frequency, duration and intensity of the electric pulses, or pre-programmed for automated control of the frequency, duration and intensity of the electric pulses.

1 1 . The apparatus of claim 1 , further comprising a heating and/or cooling element for localized heating and/or cooling of the target muscle or muscle group.

12. The apparatus of claim 1 . wherein the electrodes are pre-arranged in pairs on sheets of material with adhesive for application to the skin, and with set distances between them on the sheet for specific muscle group placement,

1 3. The apparatus of claim I , further comprising a sensor to measure tissue oxygen saturation (Sm02) using Near Infrared Spectroscopy (NIRS) and provide feedback to the blood flow occluding element and electrical muscle stimulator and facilitate pressure and timing parameters.

1 4. The apparatus of claim 1 3. wherein the NIRS sensor is configured to measure oxyhemoglobin saturation and adjust pressure based on a reduction of oxygen at the site of muscle stimulation.

1 5. A method for ischemic muscle training or recovery by blood flow restriction and electrical muscle stimulation, comprising: (a) measuring the blood pressure of the user and recording systolic and diastolic blood pressure peaks:

(b) occluding blood ilow to a target muscle or muscle group in the user and maintaining the occlusion for a period of time;

(c) applying electrical muscle stimulation to one or more muscles or groups of muscles, distal to the site of blood How occlusion, causing the one or more muscles or groups of muscles to contract while blood How thereto is restricted;

(d) withdraw ing the electrical muscle stimulation to the one or more muscles or groups of muscles and/or ceasing the occlusion of blood flow for a rest period; and

(e) optionally repeating steps (b) through (d) for a determined number of cycles effective for muscle training and/or recovery.

1 6. The method of claim 1 5. wherein the blood pressure of the user is measured automatically or manually.

17. The method of claim 1 5, wherein the systolic blood pressure and diastolic blood pressure peaks are recorded automatically or by entering the values into a control unit.

1 8. The method of claim 1 5, wherein tissue oxygen saturation (8ηι02) is measured using a Near infrared Spectroscopy (NIRS) sensor to provide feedback to the blood Ilow occlusion and muscle stimulation and facilitate pressure and timing parameters.

1 9. The method of claim 1 8. wherein the NIRS sensor is configured to measure oxyhemoglobin saturation and adjust pressure based on a reduction of oxygen at the site of muscle stimulation.

20. The method of claim 1 5, wherein the blood Ilow is restricted using an occluding cuff, and inflating the occluding cuff to a desired pressure.

2 1 . The method of claim 20, wherein the pressure is effective for complete occlusion of the blood How. and the occluding cuff is inflated to a pressure exceeding the systolic blood pressure.

22. The method of claim 2 1 . wherein the occluding cuff is inflated to between 140-220 mmHg.

23. The method of claim 20, wherein the pressure is effective for partial blood flow restriction, and the occluding cuff is inflated to a pressure value between the diastolic and systol ic blood pressures.

24. The method of claim 20, wherein the pressure is maintained for about 1 5 to 120 seconds before the electrical muscle stimulation is applied.

25. The method of claim 1 5, wherein the strength of muscle contraction resulting from the application of electrical muscle stimulation is controlled by the user, or is automated.

26. The method of claim 1 5, wherein step (c) is carried out for a period of from 1 to 10 minutes.

27. The method of claim 15, wherein the rest period is from 0.5 to 5 seconds.

28. The method of claim 1 5, wherein the number of cycles ranges from 1 to 1 00. and a program of cycles is optionally repeated up to 1 0 times.

29. The method of claim 1 5, wherein the electrical muscle stimulation is applied in patterns which affect antagonistic muscles alternatively or simultaneously.

30. The method of claim 1 5. wherein the electrical muscle stimulation is focused on a specific muscle group and all angles of attachment of the muscle, effective to cause an overloading stimulus to all segments of the muscle.

3 1 . The method of claim 15, wherein the user is an athlete, and the ischemic muscle training or recovery method reduces the incidence of overtraining and injury through exercise.

32. The method of claim 1 5, wherein the user is an athlete, and the ischemic muscle traini ng or recovery method supplements and increases recovery rate from sport- specific workouts and resistance training.

33. The method of claim 1 5. wherein the user has an inj ury, and the ischemic muscle trai ning or recovery method increases recovery from the inj ury.

34. The method of claim 1 5. wherein the user is a patient with red uced mobi lity, and the ischemic muscle training or recovery method is used for introducing exercise and strengthening the patient' s muscles or muscl e groups.

Description:
ISCHEMIC TRAINING APPARATUS AND METI 101) FIELD OF INVENTION

10001 ] The present invention relates to an apparatus and method for restricting blood How to a muscle and providing simultaneous electrical stimulation of the muscle to make it contract according to the training goals for the individual. The technology can be beneficially applied in exercise programs, physical training and recovery, and generally for other medical applications.

BACKGROUND OF THE INVENTION

[0002] The full benefits of physical activity or exercise are commonly unrealized. This can be true for elite athletes who exercise frequently, as well as for less active people who engage in exercise on a less frequent basis, or for persons with chronic disease, for whom exercise can be a great challenge.

[0003 J People who exercise regularly can be susceptible to injury especially if they are exposed too soon to too great of an exercise stimulus, leading to " overtraining " . Recovery from inj ury can interrupt a training schedule for a long time depending on the nature of the injury. Strength training, incorporated into a training schedule, can help reduce the risk of injury, but takes up time that could otherwise be used for more specific training requirements.

[0004] For athletes and more sedentary persons alike, one way to reduce the chance of overtraining and injury is to have a training schedule in which the level of exercise is increased slowly, starting with a low level of exercise and adding progressively greater demands. Injury can also be avoided by strengthening specific, often relatively underdeveloped, muscles.

[0005] Nonetheless, it is generally hard to predict injury and overtraining, which often manifests in immunosuppression or musculoskeletal injury, particularly about a joint. It can be difficult to know whether a given level of physical exercise is too much for the participant until the participant becomes injured, sick or suffers the effects of overtraining in other ways. Two effective methods of prevention are: 1 ) improved recovery between workouts, and 2) increased strength/ fitness.

[0006] In acutely or chronically-diseased populations, the benefits of exercise are often not realized because the challenges of even light exercise are too great and the barriers to initiation too hard to overcome.

| 0007] For clinical populations, there are clinical, community or home-based physical activity prescriptive programs and programs for rehabilitation. These programs typically have poor uptake. It is difficult for clinicians to control the amount of exercise undertaken by each patient, and there is often poor adherence by the patient to the prescription. The result can be that the patient is receiving an inappropriate dose of exercise, and is either not realizing the benefits of exercise or running the risk of injury or other adverse effect. Exercise programs can be resource-intensive and present barriers to delivery or uptake. When prescriptive, supervision is often necessary and specialized equipment may be required, all of which can be expensive. Under these programs, it can be difficult to target a particular muscle group without affecting related components of the musculoskeletal system. There are several technologies which have emerged to assist with athletic training or to aid generally in fitness and recovery.

[0008] For example, there are existing approaches that use electrical muscle stimulation to cause muscles to contract for the purpose of warming the muscle for rehabilitation, improving muscle tiring or muscle rehabilitation itself. In theory, electric stimulators should be capable of causing muscle adaptive responses on par with typical exercise training; however, one reason for the ineffectiveness of this approach at inducing changes is the inability to sufficiently contract muscles without intense discomfort to the user owing to the required high intensity.

[ 0009 ] In other existing methods, passive exercise through electrical muscle stimulation has been combined with exercise, although the exercise is typically applied to the non-occluded limb and therefore not to the ischemic muscle wherein adaptation is magnified. [0010] In other examples, occlusive technology has been combined with active exercise (such as riding a bike, using a treadmill, or lifting weights). Kaatsu training with specialized bl ood flow occluding bands is one example of this approach, and has become popular in many- exercise regimes. The possible benefits of blood flow restricted exercise using low intensity traditional resistance or aerobic based exercise loads and manually restricted blood flow have been cited in the scientific literature. For example. Abe et al (Abe, T., Fujita, S., Nakajima. T., ct al.. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and V02, niW in young men, Journal of Sports Science and Medicine, 2010. vol, 9 pp. 452-458) found that low-intensity, short-duration, blood flow restricted exercise improved muscle hypertrophy and aerobic capacity in young men. Occlusive technology has not. however, been combined with passive exercise such as can be achieved through electrical muscle stimulation.

[00 1 1 ] In other related applications, there are technologies that use compression garments or external counterpulsation devices (e.g. US2009/0287243 Greennbcrg ct al.) which are designed to improve venous return to the heart. Such approaches arc not designed to reduce blood flow or to combine blood flow restriction to a distal periphery with electrical muscle stimulation distal to the restriction. Instead, the timing of blood flow restriction associated w r ith these types of approaches is designed to push blood back during diastole of the heart, and the length of blood restriction is prolonged to induce an ischemic cascade in musculaturc/vasculature below the level of occlusion. Such approaches do not target the skeletal muscle itself nor are they intended to cause local physiological changes.

[001 2J A further disadvantage of these and other existing approaches is that they do not support localized exercise training, and do not allow precise and specific training effects to be stimulated. Accordingly, there continues to be a need for new methods and technologies to enhance training effectiveness and overall fitness and recovery.

SUMMARY OF THE INVENTION

[00 1 3] It is therefore an object of the invention to provide an improved system and method for ischemic muscle training or recovery. [001 4] According to an aspect of the invention, there is provided an ischemic muscle training or recovery apparatus which facilitates combi ned blood flow restriction and electrical muscle stimulation. The apparatus comprises:

a blood flow occluding element for restricting blood flow to a target muscle or muscle group in a user, and measuring resting systolic blood pressure (SBP); and

an electrical muscle stimulator comprising at least one electrode and a control unit which, upon activation, is effective to send low amplitude electric pulses through the target muscle or muscle group forcing the targeted muscle to contract while the blood flow is restricted,

[00 1 5] In certain non-limiting embodiments, a low amplitude electric pulse may include pulses of approximately 1 5-50 mA, or will otherwise involve the necessary intensity to evoke the individualized maximum tolerable contraction.

[0016] In a further non-limiting embodiment of the apparatus, the blood flow occluding element may be an occluding cuff adapted to inflate to a pressure causing either full or partial occlusion of blood flow for a period of approximately 0.5-20 min, while the electrical muscle stimulator activates forci ng the targeted muscle to contract. The inflation of the occluding cuff may be accomplished using any type of fluid (i.e. gas, liquid) or by manual/automated constriction of a closed loop band.

[001 7] In further embodiments, which are also non-limiting, the control unit may comprise an air pump, a circuit board and/or computer, integration timing components, and a power source. The control unit may also include a control panel w th controls to adj ust power to the apparatus, timing, duration and number of program cycles, pulse settings for electrical muscle stimulation, and/or occl uding cuff intensity, in certain specific embodiments, which are not intended to be limiting, the occl uding cuff may be an automated sphygmomanometer, with the control unit being connected to the sphygmomanometer by an air hose operably connected to the air pump, and electrical wiring as required to operate the sphygmomanometer. The control unit may also be configured for user-control of the frequency, duration and intensity of ( he electric pulses, or pre-programmed for automated control. f 001 8 j In other embodiments of the apparatus ; the electrical muscle stimulator may comprise a plurality of pairs of electrodes adapted for attachment or placement directly in contact with the cutaneous surface of the user ' s limb above the target muscle. Alternately, the electrical muscle stimulator may comprise a plurality of pairs of electrodes in an intramuscular system adapted for stimulation of the target muscle. Without wishing to be limiting, it is also envisioned that the electrodes may be pre-arranged in pairs on sheets of material with adhesive for application to the skin, and with set di stances between them on the sheet for specific muscle group placement.

[001 9J In other optional embodiments, the apparatus may include a sensor to measure tissue oxygen saturation (Sm0 2 ), e.g. using Near Infrared Spectroscopy (NIRS), and provide feedback to the blood How occluding element and electrical muscle stimulator to facilitate pressure and timing parameters. In a non-limiting embodiment, the NIRS sensor may be configured to measure oxyhemoglobin saturation and adjust pressure based on a reduction of oxygen at the site of muscle stimulation.

[0020] The occluding cuff and at least one electrode may also be enclosed within a compression sleeve in further non-limiting embodiments. For example, the compression sleeve may be inflatable and adapted to apply a gradient of pressure which restricts blood flow by forcing blood from the target muscle or muscle group back toward the heart in the venous circulation.

[0021 ] In other optional embodiments, the apparatus may further include a heating and/or cooling element which can be used for localized heating and/or cooling of the target muscle or muscle group.

[0022] In a further aspect of the invention, there is also provided a method for ischemic muscle training or recovery by blood flow restriction and electrical muscle stimulation. The method comprises:

(a) measuring the blood pressure of the user and recording systolic and diastolic blood pressure peaks; (b) occluding blood How lo a target muscle or muscle group in the user and maintaining the occlusion for a period of time;

(c) applying electrical muscle stimulation to one or more muscles or groups of muscles, distal to the site of blood How occlusion, causing the one or more muscles or groups of muscles to contract while blood How thereto is restricted;

(d) withdrawing the electrical muscle stimulation to the one or more muscles or groups of muscles and/or ceasing the occlusion of blood flow for a rest period; and

(c) optionally repeating steps (b) through (d) for a determined number of cycles optimally effective for varying goals of muscle training and/or recovery. This may include, but is not l imited to, targeting aerobic type muscular changes or muscle hypertrophy.

[0023 ] In certain non-limiting embodiments of the described method, the blood pressure of the user may be measured automatically or manually. Similarly, the systolic blood pressure and diastolic blood pressure peaks may be recorded automatically or by manually entering the values into a control unit,

[0024] in addition, the blood flow that is restricted may be an arterial blood How, but can also be a venous blood How by restricting venous return and causing blood congestion in the limb.

[0025] In further optional embodiments, the method may also include measuring tissue oxygen saturation (SmOi), e.g. using a Near Infrared Spectroscopy (N1RS) sensor to provide feedback to the blood How occlusion and muscle stimulation and facilitate pressure and timing parameters. For example, the NIRS sensor may be configured to measure oxyhemoglobin saturation and adj ust pressure based on a reduction of oxygen at the site of muscle stimulation.

[0026J In specific examples of the method, the blood flow may be restricted in step (b) using an occluding cuff, by inflating the occluding cuff to a desired pressure. For example, yet without wishing to be limiting, the pressure used may be effective for complete occlusion of the blood flow, e.g. by inflating the occluding cuff to a pressure exceeding the systolic blood pressure, such as 1 30% of SBP, or within the range of 1 40-220 mmTlg. The specific pressure is dependent on the blood pressure of the subject, and the size of the subject ' s limb, which in turn affect the width of the cuff used; as wider cuffs require higher pressures for occlusion. Approximate ranges may in specific examples include 1 60-220 mmHg with a wide cuff (1 0 cm), or 140-200 mmHg with a narrow cuff (5cm). In other non-limiting examples, the pressure used may be effective for partial blood flow restriction, whereby the occluding cuff is inflated to a pressure value between the diastolic and systolic blood pressures. The pressure may be maintained, for example, for approximately 1 5 to 1 20 seconds before the electrical muscle stimulation is applied, more particularly about 60 seconds.

[0027] In addition, it is envisioned that the strength of muscle contraction resulting from the application of electrical muscle stimulation can either be controlled by the user, or automated.

[0028 ] Step (c) of the method, in non-limiting embodiments, may be carried out for a period of from about 1 to about 1 0 minutes. In other non-limiting embodiments, stimulation frequencies may range from 1 5 to 50 HZ and pulse durations from 250-400 microseconds. The rest period between trains may be from about 0.5 sec to about 5, and the number of cycles may range from about ! O to 1 00, with the possibility of repeating 1 to 10 iterations of a given program.

[0029 ] The electrical muscle stimulation may, in embodiments of the method, be applied in patterns which affect antagonistic muscles alternatively or simultaneously. In addition, the electrical muscle stimulation can be focused on a specific muscle group and all angles of attachment of the muscle, effective to cause an overloading stimulus to all segments of the muscle.

10030 ] In particular examples of the method and apparatus, the user may be an athlete or military personnel, whereby the method and apparatus is used to reduce the incidence of overtraining and injury through carefully titrated exercise, or to supplement and increase recovery from workouts and resistance training. The user may also be one with an injury or recovering from a medical or surgical procedure, and whereby the apparatus and method is used to aid in recovery thereof. The user may also be a patient, for example, one with reduced mobility, whereby the apparatus and method is used for introducing exercise, and strengthening the patient's muscles or muscle groups. BR1 HF DESCRI PTION OF THE DRAWINGS

[00 1 ] These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein;

FIGURE 1 shows mi example of an embodiment of an ischemic training apparatus with an occluding cuff and electrodes for applying electrical muscle stimulation.

FIGURE I A shows an example of an embodiment of an ischemic training apparatus with a cuff and electrodes for applying electrical muscle stimulation enclosed in a sleeve.

FIGURE 2 shows an example of a method for operating an ischemic training apparatus.

FIGURES 3A and 3B show an example of increases in isometric leg strength following 6 weeks of training under different conditions.

FIGURE 4 shows an example of increases in isometric leg endurance following 6 weeks of training under different conditions.

FIGURES 5A and 5B show an example of differences in muscle girth following 6 weeks of training under di fferent conditions.

FIGURES 6A and 6B show an example of differences in muscle cross-sectional area following 6 weeks of training under different conditions.

FIGURE 7 shows an example of differences in average speed (mph) from a first ride to a second ride following muscle soreness inducing exercise, where different recovery techniques were used.

FIG URE 8 shows an example of di fferences in amount of time (see) required to complete a 10km time trial pre and post treatment under different conditions.

FIGURE 9 shows differences in perception of increased leg pain at 48hr following exercise, using different conditions. DETAILED DESCRIPTION

[0032] According to the present invention, blood flow to a particular muscle or muscle group is purposefully restricted, and the same muscle or muscle group is electrically stimulated. This approach allows controlled and localized training or treatment of particular muscles or muscle groups.

[0033] Blood How restriction allows for significant muscular adaptations, using particularly low exercise loads. Thus by restricting blood flow, electrical muscle stimulation can thus be used at a tolerable level to evoke previously unattained/unreasonably painful results.

[0034] Thus, the invention relates to an ischemic muscle training apparatus which provides blood flow restriction and electrical muscle stimulation. In one embodiment, blood How to a user's limb is restricted by an inflatable cuff, which measures the resting systolic blood pressure (SBP) and inflates to a pressure approximately between 140-240 mmHg (or up to a percentage of SBP e.g. for full occlusion 130% of SBP is commonly employed). The cuff can be placed at the proximal end of the user's limb. The cuff can, for example, range from three to 1 1 inches in width. In some embodiments of the apparatus, the cuff can be contained within a larger inflating sleeve, designed to apply a gradient of pressure (distal to proximal), restricting flow by forcing blood from the limb back toward the heart in the venous circulation. The increased venous return serves to decrease the chance of a detrimental ischemic cardiovascular event (heart attack) in chronically diseased or post-operative patients.

[0035] Pressure is maintained for a period of a few minutes while the electrical muscle stimulator activates, forcing the targeted muscle to contract. The electrical muscle stimulator functions by sending a low amplitude electric pulse through the muscle. The pulse is transferred from a control unit to the muscle by placing pairs of surface electrodes on the cutaneous surface above the target muscle. The pattern of firing (i.e. the frequency, duration and intensity of pulses) can be user-controlled according to the desired effects of training (for example whether it be more toward endurance type or strength/power type adaptations). In some embodiments, the system can be fully automated. In other embodiments, the pressure and electrical stimulation can be controlled manually or semi-manually by the user or an exercise therapist/health care provider.

[00361 For example, the system can be automated to track which muscles groups have been exercised at what time and for how long. This mechanism allows the system to ensure that workouts intended to induce strength training benefits are spaced appropriately (e.g. at least 72 hours apart), and only "recovery type " stimulation is applied to muscles between workouts.

[00371 The device can also track other sport specific workouts through user input and/or integration with other devices such as heart rate monitors or bicycle power meters to select an appropriate intensity of exercise or recovery.

[0038 ' | FIG. 1 shows an example of one non-limiting embodiment of an ischemic training apparatus 100 with an occluding cuff 1 50 and electrodes 160A-D for applying electrical muscle stimulation. Apparatus 100 further comprises control unit 1 1 0, control panel 1 20, air hose 130, electrical wiring 140, and electrical wiring 1 62A-D to electrodes 160A-D.

[ 0039J Control unit 1 1 0 comprises an air pump, a circuit board and/or computer, integration timing components, and a battery or other suitable power source,

[00401 Control panel 1 20 on control unit 1 10 comprises control switches such as for example an on/off switch and an emergency off switch. Control panel 120 also comprises devices for adj usting control parameters which can include for example timing, duration and number of program cycles, pulse settings for electrical muscle stimulation, and occluding cuff intensity control.

[004 1 1 Control unit 1 1 0 is connected to occluding cuff 1 50 by air hose 1 30 and electrical wiring 1 40. Occluding cuff 1 50 is inllated via air hose 1 30 using air from an air pump (not shown) housed in the control unit 1 10. When occluding cuff 1 50 is inflated, blood flow to muscle distal to cuff 1 50 is restricted to a degree determined by the level of inflation of cuff 150. [0042 j !n the embodiment shown in FIG. 1 , electrical wiring 140 connects control unit 1 10 to cuff 1 50, as required for an automated sphygmomanometer (blood pressure cuff).

[0043 J In one embodiment (shown in FIG. 1 ). electrodes 160A through 1 60D are connected to control unit 100 by electrical wiring 1 62A-D. Any number of pairs of electrodes may be used. Electrodes 1 60A-D are attached to the skin of the user or patient and located to provide electrical muscle stimulation of the desired muscles or muscle groups. Control unit 1 10 comprises equipment to provide electrical muscle stimulation to the muscles via electrical wiring 1 62A-D and electrodes 1 60A-D.

[0044] In operation, apparatus 1 00 inflates cuff 150 to restrict blood ilow distal to cuff 150. and applies electrical muscle stimulation to muscles distal to cuff 150 via electrical wiring 1 2A-D and electrodes 1 60A-D.

[0045] In an optional embodiment, the apparatus 1 00 may further include a sensor 180 to measure tissue oxygen saturation (Sm0 2 ) and provide feedback to the blood flow occluding element and electrical muscle stimulator, and facilitate pressure and timing parameters. For example, the sensor 100 may be a Near Infrared Spectroscopy (NIRS) sensor and be configured within the system to measure oxyhemoglobin saturation and adj ust pressure based on a reduction of oxygen at the site of muscle stimulation.

10046 J FIG.1 A shows a further example of a non-limiting embodiment of an ischemic training apparatus 100A, with a cuff 150 and electrodes 160A-D (for applying electrical muscle stimulation) enclosed in a sleeve 170. in some embodiments, sleeve 170 is a compression sleeve. For example, sleeve 170 can be inflatable to provide full limb compression. In other embodiments, sleeve 170 does not provide additional compression, but serves as a convenient way of placing electrodes on the user. Electrodes 1 60A-D can be inside sleeve 1 70 as indicated by the dotted lines in FIG. 1 A. Other components of apparatus 1 00A and its operation are as described for FIG. 1 .

[0047] In other embodiments, blood flow can be controlled by changing the pressure around the entire body, a portion of the body or a single limb using air, water or other fluids (e.g. in a hypo- or hyperbaric chamber). After applying this pressure ΐο the desired area for the purposes of changing blood flow, electrical muscle stimulation can he applied to introduce an exercise stimulus of the desired intensity,

[0048] FIG. 2 shows an example of a non-limiting embodiment of a method for operating an ischemic training apparatus. For example, method 200 can be used to operate apparatus 100 from FIG. 1 or other embodiments of the present technology. Method 200 can be implemented by manual or automatic means.

[0049 ] Method 200 begins at step 210 where the blood pressure of the user or patient is measured. In some embodiments, the measurement of blood pressure can be done automatically. In other embodiments, the measurement of btood pressure can be done manually. Method 200 then proceeds to step 220 where apparatus 1 00 records the systolic blood pressure and diastolic blood pressure peaks by automatic means or by a human operator entering the values into control unit 1 10 from FIG. 1 .

[0050J Method 200 proceeds next to step 230 and cuff 150 from FIG. l is inflated to a desired pressure. The desired pressure is determined by the required occlusion level which in turn is dependent on the pre-existing conditions and exercise training goals of the user or patient. For example, if complete occiusion is desired, cuff 150 can he inflated to a pressure exceeding the systolic blood pressure (for example 1 30% of SBP or 1 40-220 mmllg). In other examples, where complete occlusion is not desired, then cuff 1 50 is inflated to a pressure value between the diastolic and systolic blood pressures, resulting in partial blood flow restriction.

[005 1 ] At step 240, the pressure is maintained for a short period of time (e.g. 30-60 seconds) after which method 200 proceeds to step 250 and electrical muscle stimulation is applied. Kiectrical muscle stimulation can he applied to one or more selected muscles or groups of muscles, causing the muscles to contract. To achieve the benefits of hlood flow restriction, electrical muscle stimulation is applied to muscles distal to the occlusion site. For example, if cuff 1 50 from FIG. 1 is placed around the thigh, electrical muscle stimulation can be applied to the hamstring or calf muscle. [0052 J In some embodiments, the strength of the muscle contraction resulting from applying electrical muscle stimulation at step 250 can he controlled by the user through the mechanisms provided, for example on control panel 120 from FIG. 1 . Similarly, parameters of contraction length, intensity, pulse frequency or any other relevant parameter can be controlled and selected according to the goals of the exercise program. In some embodiments, automated programs can be pre-programmed into apparatus 1 00, In other embodiments, the control can be provided manually.

[0053] In another optional embodiment, a step 245 may be carried out whereby tissue oxygen saturation (SmO ? ) is measured to provide feedback to the blood flow occlusion and muscle stimulation and facilitate pressure and timing parameters. This can be carried out. for example, using a Near Infrared Spectroscopy ( IRS) sensor configured to measure oxyhemoglobin saturation and adj ust pressure based on a reduction of oxygen at the site of muscle stimulation.

[00541 At step 260, following a period of occlusion with electrical stimulation, the electrical stimulus is withdrawn and the blood occlusion . ceased by deflating cuff 150. The period of restriction may for example be a few minutes, and at step 270 is followed by a rest period. The rest period may be pre-determined or selectable. At the end of the rest period, method 200 proceeds to step 280. If the present cycle is the last cycle in the exercise program (YES), then method 200 proceeds to step 290 and the program ends. If the present cycle is not the last cycle in the exercise program (NO), then method 200 proceeds to step 230 and the cycle begins again.

[0055J In some embodiments, the length of the rest period may be determined by the exercise training goals of the specific program selected, in some embodiments, electrical muscle stimulation may be applied without blood flow restriction during the rest period. In other embodiments blood flow restriction may be applied without stimulation as part of the work/rest/recovery cycle.

[0056 J in some embodiments, the apparatus can incorporate local heating or cooling of the muscle(s). The addition of a heat/cold modality may be beneficial in altering blood flow of the more superficial tissue. For example, vasodilation may add to the re-perfusion effect of blood re-entering the area after the occlusion has been withdrawn.

[ " 00571 In some embodiments, the pairs of electrodes required for electrical muscle stimulation can be placed manually in the appropriate places on skin adjacent to the targeted muscles. In other embodiments, the electrodes can be pre-arranged on sheets of material which are applied to the skin, and can cover multiple muscles and be activated by the control unit according to an exercise program. In some embodiments, the electrodes can come in matched pairs with set distances between them on the sheet (for specific muscle group placement). The apparatus can sense and select which pairs to fire or whether to fire in individual pairings. For sheet placement, lines for orientation on the body can be printed and the computer in the control unit can track which pairs best align with the underlying muscles for maximal contraction.

[0058] Electrodes can be activated in patterns which affect antagonistic muscles alternatively (i.e. first the extensors around a joint and then the flexors). This approach provides a more time-efficient and balanced workout. Balance is also important to avoiding injury.

[0059] Electrodes can also be activated so as to focus on specific muscles groups and all angles of attachment of the muscle to ensure an "overloading stimulus " aflecting all segments of the muscle.

[0060] Firing electrodes of antagonistic muscles simultaneously can also offer a time-efficient option by exercising muscles intended to flex and extend joints at the same time (and potentially allowing strong isometric contractions without joint flexion or extension).

[0061 ] In some embodiments, a motion sensor can be used to detect the effect of electrical muscle stimulation on a muscle for a given stimulus, and can be used to provide feedback to adjust the timing and strength of stimulation. Any other suitable biofeedback mechanism such as impedance, ultrasound, or near-infrared spectroscopy measurements can also be used to control the timing and strength of stimulus. [0062] For athletes, the above described technolog}' can reduce the likelihood of overtraining and inj ury through exercise, primarily through controlling the "off-field" stimulus as opposed to that imposed during regular workouts. The technology provides a control led and targeted training of particular muscles under beneficial ischemic conditions. The above described technology may also be beneficial lor supplementing and recovering from sport-specific workouts and resistance training sessions, allowing better training to occur. In the case of injury, the above described technology can speed recovery through a controlled program of exercise that increases in intensity in an appropriate fashion. This specific use would be akin to (and perhaps in place of) cool down exercises traditionally performed by running, riding a stationary bike or stretching. Similarly, in clinical situations, the above described technology provides a controlled program for introducing exercise and increasing its intensity while reducing the likelihood of injury or harm. The above described technology may be particularly beneficial for introducing exercise to immobile patients, and for recovery from acute or chronic conditions.

[0063] In addition to training, exercise and injury recovery for humans, the technology has potential applications lor animals includi ng veterinary science and dog/horse racing.

EXAMPLE 1 : BLOOD FLOW RESTRICTION AND MUSCLE STIMULATION TO STIMULATE ALTERATIONS IN STRENGTH AND HYPERTROPHY

[0064] Effects of blood flow restriction and electrical muscle stimulation for increasing strength and muscle size in humans was determined. The combined stimulus of blood flow restriction and electrical muscle stimulation was compared with each stimulus alone. Participants were assigned to one of four of the conditions detailed below, allowing direct comparisons. Participants trained using the indicated stimulus 4 d/wk, for 32min each session for a period of 6 weeks. For all conditions including electrical stimulation, the stimulator was used at the highest i ntensity the participant could tolerate for the duration o f the training session. Blood flow occlusion was performed intermittently 4 min on, 4 rain off.

[0065 ] Participant leg strength was tested at baseline, and then participants were randomly assigned to 6 weeks of training according to one of the following four conditions: 1 ) control; 2) electrical stimulation only fTEMS); 3) blood flow restriction only (BFR): or 4) combined blood flow restriction and electrical stimulation (BFR+TE S). Mean delta scores for measures of muscular strength, muscular endurance and muscular size following training are presented in Figures A, 3 B, 4, 5 A, 5 B, 6A, and 6B, and Tables 1 -6.

TABLE! 1 : Mean isometric leg strength following 6 weeks of training under different conditions.

CONDITION LEG STRENGTH

BFR Only 15.847

TEMS Only 18.404

BFR + TEMS 31.224

Control 4.383333333

TAB LE) 2; [Differences in isometric leg strength by group-significance, p=0.05

Diffe re nce by group- significance p=0.05

Leg strength ( post Hoc)

[0066J The data shown in TABLE 1 is graphically represented in Figures 3A and 3 B.

[0067] As shown in Figures 3A and 3 B, and Tables 1 and 2, isometric leg strength increased above the baseline levels following 6 weeks of training. Only the combined group, BFR ÷ T Ms. showed statistically significant differences from the control group. These results indicate that the combination of blood flow restriction with electrical muscle stimulation confers additional benefit compared to either modality alone for causing alteration in leg strength. TABLR 3: Mean leg muscular endurance following 6 weeks of training under different conditions.

CONDITION Muscular Endurance

BFR Only 13.516

TEMS Only 14.741

BFR + TEMS 22.99911111

Control 14.12833333

[0068] The data shown in TABLR; 3 is graphically represented in Figure 4.

[0069 J As shown in TABLR 3 and Figure 4, muscular endurance increased above baseline in all grou s; suggesting that another factor (e.g. learning how to do the test better) may have had an influence. Most groups increased similarly to control, whereas the combined (BFR + TEMs) group had a greater response. Indeed, muscular endurance increased to a greater extent in the combined group than any other group.

TABLE 4: Mean muscle girth following 6 weeks of training under different conditions.

CONDITION Muscle Girth

BFR Only 0.01

TEMS Only 1.1946

BFR + TEMS 1.9866

Control -0.7

TABLE 5: Differences in muscle girth by group-significance, p=0.06.

Differe nce by group- significance p=0.006

Leg girth (post hoc)

| ()()70] The data shown in Table 4 is graphically represented in Figures 5A and 5B. [0071 J As shown in Figures 5 A. and 5B, and Tables 4 and 5, muscle girth, indicative of alterations in muscle size, were the greatest in the combined (BFR + TEMs) group. Alterations in muscle girth were not statistically different from the control in any group except the combined group. These results support the literature which shows that TEMS alone is relatively ineffective at causing hypertrophy (attributed to the intensity of contraction required). When combined with blood How restriction, TEMS is more effective - in agreement with the effect in the reported literature for traditional exercise training with blood flow restriction, which has shown that when training (dynamic weight lifting) using occlusion methods, alterations in strength and hypertrophy can occur with loads that arc 20-30% of max (vs. the 70-80% required without occlusion).

TABLE 6: Differences in muscle cross-sectional area.

DEXA ost hoc

[00721 The data shown in Table 6 is graphically represented in Figures 6A and 6B.

10073 ] As shown in Figures 6A and 6B, and Table 6, muscle cross-sectional area increased above baseline following 6 weeks of training. Alterations in muscle cross-sectional area was measured by dual x-ray absorptiometry (D XA). The data objectively confirms the findings for leg girth described above.

[0074] The results of these studies arc applicable to applications in rehab (orthopaedic, cardiovascular, other surgeries, bed-rest, chronic disease (diabetes)). This may also have applications to athletic populations. EXAMPLE 2; RECOVERY AND POST-RECOVERY PERFORMANCE FOLLOWING EXTREMELY TAX ING EXERCISE

[0075] Experiments were performed to understand if using a combination of blood flow restriction and electrical muscle stimulation was more effective for stimulating muscular recovery (and repeated exercise performance) than doing nothing at all, or employing either modality in isolation. The subjective feelings of leg pain experienced by subjects as a result of exposure to a 4()min session of downhill running (60% of V0 2 max, -12° decline), which accentuates the eccentric muscular contractions that occur with each step, was also tracked.

[ 0076] Participants (n=20) performed a 10km simulated time trial on a cycle ergometer within the lab. Following this, participants were exposed to fatigue (and muscle soreness) inducing exercise, in the form of downhill running and then randomized to one of four conditions: 1 ) control; 2) electrical stimulation only (TEMS); 3) blood flow restriction only (BFR); or 4) combined blood flow restriction and electrical stimulation (BFR+TEMS). Participants used this mode of recovery immediately following the exercise, during one day of no exercise and then preceding the repeated 10km time trial. Difference scores between the pre- and post average speeds maintained throughout the trials arc presented in Figure 7. with both pre and post ride times presented in Figure 8.

[0077] As shown in Figures 7 and 8, participants using BFR and BFR + TEMs had a greater recovery than those who used TEMs alone or did not use a recovery technique (control). A decrease in performance is the expected response, however the use of BFR led to an increase in performance and a greater increase when combined with TEMs. Figure 7 shows the difference in average speed (mph) from ride 1 to ride 2 following muscle soreness inducing exercise. Figure 8 shows the amount of time (sec) required to complete the 10km time trial, pre (dark grey) and post (light grey), therefore lower values equate to better performance.

[ 0078] These results indicate that the use of BFR + TEMs could be the most effective technique of muscle recovery studied, above the effects of BFR alone, and certainly more so than TEMs or control. Of note, the BFR + TEMs group represented the most elite riders (by chance through random allocation), evident in the fastest pre 10km time. This group would thus be expected to have the least variation in performance owing to external influences, such as poor pacing, etc. Importantly, it was also this group who saw the greatest improvements in time/pace.

TABLE 7: Differences in perception of increased leg pain at 48hr by group.

[0079J The data shown in TABLE 7 is graphically represented in Figure 9.

[0080] As shown, when compared with baseline values, there were di fferences in perception of increased pain at 48hr by group (p=0.042). Participant' s subjective rating of pain (in a 1 0cm analogue scale) was significantly lower at 48hr in the BRF + TEMs group.

[0081 ] Exposure to intense eccentric exercise is expected to cause delayed onset muscle soreness, which typically peaks at 48hr post exposure. The use of combined blood flow restriction and TEMs blunted the perceived increase in pain at 48hr, and could well be related to the improved performance of this group. 0082J The results of these studies are primarily applicable to athletic / human performance applications.

[0083] One or more currently preferred embodiments have been described by way of example. It will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.